Staging: comedi: s526: fixes for pulse generator
[safe/jmp/linux-2.6] / drivers / staging / panel / panel.c
1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  *      - the initialization/deinitialization process is very dirty and should
26  *        be rewritten. It may even be buggy.
27  *
28  * TODO:
29  *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  *      - make the LCD a part of a virtual screen of Vx*Vy
31  *      - make the inputs list smp-safe
32  *      - change the keyboard to a double mapping : signals -> key_id -> values
33  *        so that applications can change values without knowing signals
34  *
35  */
36
37 #include <linux/module.h>
38
39 #include <linux/types.h>
40 #include <linux/errno.h>
41 #include <linux/signal.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/smp_lock.h>
45 #include <linux/interrupt.h>
46 #include <linux/miscdevice.h>
47 #include <linux/slab.h>
48 #include <linux/ioport.h>
49 #include <linux/fcntl.h>
50 #include <linux/init.h>
51 #include <linux/delay.h>
52 #include <linux/ctype.h>
53 #include <linux/parport.h>
54 #include <linux/version.h>
55 #include <linux/list.h>
56 #include <linux/notifier.h>
57 #include <linux/reboot.h>
58 #include <linux/utsrelease.h>
59
60 #include <linux/io.h>
61 #include <asm/uaccess.h>
62 #include <asm/system.h>
63
64 #define LCD_MINOR               156
65 #define KEYPAD_MINOR            185
66
67 #define PANEL_VERSION           "0.9.5"
68
69 #define LCD_MAXBYTES            256     /* max burst write */
70
71 #define KEYPAD_BUFFER           64
72 #define INPUT_POLL_TIME         (HZ/50) /* poll the keyboard this every second */
73 #define KEYPAD_REP_START        (10)    /* a key starts to repeat after this times INPUT_POLL_TIME */
74 #define KEYPAD_REP_DELAY        (2)     /* a key repeats this times INPUT_POLL_TIME */
75
76 #define FLASH_LIGHT_TEMPO       (200)   /* keep the light on this times INPUT_POLL_TIME for each flash */
77
78 /* converts an r_str() input to an active high, bits string : 000BAOSE */
79 #define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
80
81 #define PNL_PBUSY               0x80    /* inverted input, active low */
82 #define PNL_PACK                0x40    /* direct input, active low */
83 #define PNL_POUTPA              0x20    /* direct input, active high */
84 #define PNL_PSELECD             0x10    /* direct input, active high */
85 #define PNL_PERRORP             0x08    /* direct input, active low */
86
87 #define PNL_PBIDIR              0x20    /* bi-directional ports */
88 #define PNL_PINTEN              0x10    /* high to read data in or-ed with data out */
89 #define PNL_PSELECP             0x08    /* inverted output, active low */
90 #define PNL_PINITP              0x04    /* direct output, active low */
91 #define PNL_PAUTOLF             0x02    /* inverted output, active low */
92 #define PNL_PSTROBE             0x01    /* inverted output */
93
94 #define PNL_PD0                 0x01
95 #define PNL_PD1                 0x02
96 #define PNL_PD2                 0x04
97 #define PNL_PD3                 0x08
98 #define PNL_PD4                 0x10
99 #define PNL_PD5                 0x20
100 #define PNL_PD6                 0x40
101 #define PNL_PD7                 0x80
102
103 #define PIN_NONE                0
104 #define PIN_STROBE              1
105 #define PIN_D0                  2
106 #define PIN_D1                  3
107 #define PIN_D2                  4
108 #define PIN_D3                  5
109 #define PIN_D4                  6
110 #define PIN_D5                  7
111 #define PIN_D6                  8
112 #define PIN_D7                  9
113 #define PIN_AUTOLF              14
114 #define PIN_INITP               16
115 #define PIN_SELECP              17
116 #define PIN_NOT_SET             127
117
118 #define LCD_FLAG_S              0x0001
119 #define LCD_FLAG_ID             0x0002
120 #define LCD_FLAG_B              0x0004  /* blink on */
121 #define LCD_FLAG_C              0x0008  /* cursor on */
122 #define LCD_FLAG_D              0x0010  /* display on */
123 #define LCD_FLAG_F              0x0020  /* large font mode */
124 #define LCD_FLAG_N              0x0040  /* 2-rows mode */
125 #define LCD_FLAG_L              0x0080  /* backlight enabled */
126
127 #define LCD_ESCAPE_LEN          24      /* 24 chars max for an LCD escape command */
128 #define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
129
130 /* macros to simplify use of the parallel port */
131 #define r_ctr(x)        (parport_read_control((x)->port))
132 #define r_dtr(x)        (parport_read_data((x)->port))
133 #define r_str(x)        (parport_read_status((x)->port))
134 #define w_ctr(x, y)     do { parport_write_control((x)->port, (y)); } while (0)
135 #define w_dtr(x, y)     do { parport_write_data((x)->port, (y)); } while (0)
136
137 /* this defines which bits are to be used and which ones to be ignored */
138 static __u8 scan_mask_o;        /* logical or of the output bits involved in the scan matrix */
139 static __u8 scan_mask_i;        /* logical or of the input bits involved in the scan matrix */
140
141 typedef __u64 pmask_t;
142
143 enum input_type {
144         INPUT_TYPE_STD,
145         INPUT_TYPE_KBD,
146 };
147
148 enum input_state {
149         INPUT_ST_LOW,
150         INPUT_ST_RISING,
151         INPUT_ST_HIGH,
152         INPUT_ST_FALLING,
153 };
154
155 struct logical_input {
156         struct list_head list;
157         pmask_t mask;
158         pmask_t value;
159         enum input_type type;
160         enum input_state state;
161         __u8 rise_time, fall_time;
162         __u8 rise_timer, fall_timer, high_timer;
163
164         union {
165                 struct {        /* this structure is valid when type == INPUT_TYPE_STD */
166                         void (*press_fct) (int);
167                         void (*release_fct) (int);
168                         int press_data;
169                         int release_data;
170                 } std;
171                 struct {        /* this structure is valid when type == INPUT_TYPE_KBD */
172                         /* strings can be full-length (ie. non null-terminated) */
173                         char press_str[sizeof(void *) + sizeof(int)];
174                         char repeat_str[sizeof(void *) + sizeof(int)];
175                         char release_str[sizeof(void *) + sizeof(int)];
176                 } kbd;
177         } u;
178 };
179
180 LIST_HEAD(logical_inputs);      /* list of all defined logical inputs */
181
182 /* physical contacts history
183  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
184  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
185  * corresponds to the ground.
186  * Within each group, bits are stored in the same order as read on the port :
187  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
188  * So, each __u64 (or pmask_t) is represented like this :
189  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
190  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
191  */
192 static pmask_t phys_read;       /* what has just been read from the I/O ports */
193 static pmask_t phys_read_prev;  /* previous phys_read */
194 static pmask_t phys_curr;       /* stabilized phys_read (phys_read|phys_read_prev) */
195 static pmask_t phys_prev;       /* previous phys_curr */
196 static char inputs_stable;      /* 0 means that at least one logical signal needs be computed */
197
198 /* these variables are specific to the keypad */
199 static char keypad_buffer[KEYPAD_BUFFER];
200 static int keypad_buflen;
201 static int keypad_start;
202 static char keypressed;
203 static wait_queue_head_t keypad_read_wait;
204
205 /* lcd-specific variables */
206 static unsigned long int lcd_flags;     /* contains the LCD config state */
207 static unsigned long int lcd_addr_x;    /* contains the LCD X offset */
208 static unsigned long int lcd_addr_y;    /* contains the LCD Y offset */
209 static char lcd_escape[LCD_ESCAPE_LEN + 1];     /* current escape sequence, 0 terminated */
210 static int lcd_escape_len = -1; /* not in escape state. >=0 = escape cmd len */
211
212 /*
213  * Bit masks to convert LCD signals to parallel port outputs.
214  * _d_ are values for data port, _c_ are for control port.
215  * [0] = signal OFF, [1] = signal ON, [2] = mask
216  */
217 #define BIT_CLR         0
218 #define BIT_SET         1
219 #define BIT_MSK         2
220 #define BIT_STATES      3
221 /*
222  * one entry for each bit on the LCD
223  */
224 #define LCD_BIT_E       0
225 #define LCD_BIT_RS      1
226 #define LCD_BIT_RW      2
227 #define LCD_BIT_BL      3
228 #define LCD_BIT_CL      4
229 #define LCD_BIT_DA      5
230 #define LCD_BITS        6
231
232 /*
233  * each bit can be either connected to a DATA or CTRL port
234  */
235 #define LCD_PORT_C      0
236 #define LCD_PORT_D      1
237 #define LCD_PORTS       2
238
239 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
240
241 /*
242  * LCD protocols
243  */
244 #define LCD_PROTO_PARALLEL      0
245 #define LCD_PROTO_SERIAL        1
246 #define LCD_PROTO_TI_DA8XX_LCD  2
247
248 /*
249  * LCD character sets
250  */
251 #define LCD_CHARSET_NORMAL      0
252 #define LCD_CHARSET_KS0074      1
253
254 /*
255  * LCD types
256  */
257 #define LCD_TYPE_NONE           0
258 #define LCD_TYPE_OLD            1
259 #define LCD_TYPE_KS0074         2
260 #define LCD_TYPE_HANTRONIX      3
261 #define LCD_TYPE_NEXCOM         4
262 #define LCD_TYPE_CUSTOM         5
263
264 /*
265  * keypad types
266  */
267 #define KEYPAD_TYPE_NONE        0
268 #define KEYPAD_TYPE_OLD         1
269 #define KEYPAD_TYPE_NEW         2
270 #define KEYPAD_TYPE_NEXCOM      3
271
272 /*
273  * panel profiles
274  */
275 #define PANEL_PROFILE_CUSTOM    0
276 #define PANEL_PROFILE_OLD       1
277 #define PANEL_PROFILE_NEW       2
278 #define PANEL_PROFILE_HANTRONIX 3
279 #define PANEL_PROFILE_NEXCOM    4
280 #define PANEL_PROFILE_LARGE     5
281
282 /*
283  * Construct custom config from the kernel's configuration
284  */
285 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
286 #define DEFAULT_PARPORT         0
287 #define DEFAULT_LCD             LCD_TYPE_OLD
288 #define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
289 #define DEFAULT_LCD_WIDTH       40
290 #define DEFAULT_LCD_BWIDTH      40
291 #define DEFAULT_LCD_HWIDTH      64
292 #define DEFAULT_LCD_HEIGHT      2
293 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
294
295 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
296 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
297 #define DEFAULT_LCD_PIN_RW      PIN_INITP
298 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
299 #define DEFAULT_LCD_PIN_SDA     PIN_D0
300 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
301 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
302
303 #ifdef CONFIG_PANEL_PROFILE
304 #undef DEFAULT_PROFILE
305 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
306 #endif
307
308 #ifdef CONFIG_PANEL_PARPORT
309 #undef DEFAULT_PARPORT
310 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
311 #endif
312
313 #if DEFAULT_PROFILE == 0        /* custom */
314 #ifdef CONFIG_PANEL_KEYPAD
315 #undef DEFAULT_KEYPAD
316 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
317 #endif
318
319 #ifdef CONFIG_PANEL_LCD
320 #undef DEFAULT_LCD
321 #define DEFAULT_LCD CONFIG_PANEL_LCD
322 #endif
323
324 #ifdef CONFIG_PANEL_LCD_WIDTH
325 #undef DEFAULT_LCD_WIDTH
326 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
327 #endif
328
329 #ifdef CONFIG_PANEL_LCD_BWIDTH
330 #undef DEFAULT_LCD_BWIDTH
331 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
332 #endif
333
334 #ifdef CONFIG_PANEL_LCD_HWIDTH
335 #undef DEFAULT_LCD_HWIDTH
336 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
337 #endif
338
339 #ifdef CONFIG_PANEL_LCD_HEIGHT
340 #undef DEFAULT_LCD_HEIGHT
341 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
342 #endif
343
344 #ifdef CONFIG_PANEL_LCD_PROTO
345 #undef DEFAULT_LCD_PROTO
346 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
347 #endif
348
349 #ifdef CONFIG_PANEL_LCD_PIN_E
350 #undef DEFAULT_LCD_PIN_E
351 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
352 #endif
353
354 #ifdef CONFIG_PANEL_LCD_PIN_RS
355 #undef DEFAULT_LCD_PIN_RS
356 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
357 #endif
358
359 #ifdef CONFIG_PANEL_LCD_PIN_RW
360 #undef DEFAULT_LCD_PIN_RW
361 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
362 #endif
363
364 #ifdef CONFIG_PANEL_LCD_PIN_SCL
365 #undef DEFAULT_LCD_PIN_SCL
366 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
367 #endif
368
369 #ifdef CONFIG_PANEL_LCD_PIN_SDA
370 #undef DEFAULT_LCD_PIN_SDA
371 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
372 #endif
373
374 #ifdef CONFIG_PANEL_LCD_PIN_BL
375 #undef DEFAULT_LCD_PIN_BL
376 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
377 #endif
378
379 #ifdef CONFIG_PANEL_LCD_CHARSET
380 #undef DEFAULT_LCD_CHARSET
381 #define DEFAULT_LCD_CHARSET
382 #endif
383
384 #endif /* DEFAULT_PROFILE == 0 */
385
386 /* global variables */
387 static int keypad_open_cnt;     /* #times opened */
388 static int lcd_open_cnt;        /* #times opened */
389 static struct pardevice *pprt;
390
391 static int lcd_initialized;
392 static int keypad_initialized;
393
394 static int light_tempo;
395
396 static char lcd_must_clear;
397 static char lcd_left_shift;
398 static char init_in_progress;
399
400 static void (*lcd_write_cmd) (int);
401 static void (*lcd_write_data) (int);
402 static void (*lcd_clear_fast) (void);
403
404 static DEFINE_SPINLOCK(pprt_lock);
405 static struct timer_list scan_timer;
406
407 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
408
409 static int parport = -1;
410 module_param(parport, int, 0000);
411 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
412
413 static int lcd_height = -1;
414 module_param(lcd_height, int, 0000);
415 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
416
417 static int lcd_width = -1;
418 module_param(lcd_width, int, 0000);
419 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
420
421 static int lcd_bwidth = -1;     /* internal buffer width (usually 40) */
422 module_param(lcd_bwidth, int, 0000);
423 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
424
425 static int lcd_hwidth = -1;     /* hardware buffer width (usually 64) */
426 module_param(lcd_hwidth, int, 0000);
427 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
428
429 static int lcd_enabled = -1;
430 module_param(lcd_enabled, int, 0000);
431 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
432
433 static int keypad_enabled = -1;
434 module_param(keypad_enabled, int, 0000);
435 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
436
437 static int lcd_type = -1;
438 module_param(lcd_type, int, 0000);
439 MODULE_PARM_DESC(lcd_type,
440                  "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
441
442 static int lcd_proto = -1;
443 module_param(lcd_proto, int, 0000);
444 MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial,"
445                 "2=TI LCD Interface");
446
447 static int lcd_charset = -1;
448 module_param(lcd_charset, int, 0000);
449 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
450
451 static int keypad_type = -1;
452 module_param(keypad_type, int, 0000);
453 MODULE_PARM_DESC(keypad_type,
454                  "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
455
456 static int profile = DEFAULT_PROFILE;
457 module_param(profile, int, 0000);
458 MODULE_PARM_DESC(profile,
459                  "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
460
461 /*
462  * These are the parallel port pins the LCD control signals are connected to.
463  * Set this to 0 if the signal is not used. Set it to its opposite value
464  * (negative) if the signal is negated. -MAXINT is used to indicate that the
465  * pin has not been explicitly specified.
466  *
467  * WARNING! no check will be performed about collisions with keypad !
468  */
469
470 static int lcd_e_pin  = PIN_NOT_SET;
471 module_param(lcd_e_pin, int, 0000);
472 MODULE_PARM_DESC(lcd_e_pin,
473                  "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
474
475 static int lcd_rs_pin = PIN_NOT_SET;
476 module_param(lcd_rs_pin, int, 0000);
477 MODULE_PARM_DESC(lcd_rs_pin,
478                  "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
479
480 static int lcd_rw_pin = PIN_NOT_SET;
481 module_param(lcd_rw_pin, int, 0000);
482 MODULE_PARM_DESC(lcd_rw_pin,
483                  "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
484
485 static int lcd_bl_pin = PIN_NOT_SET;
486 module_param(lcd_bl_pin, int, 0000);
487 MODULE_PARM_DESC(lcd_bl_pin,
488                  "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
489
490 static int lcd_da_pin = PIN_NOT_SET;
491 module_param(lcd_da_pin, int, 0000);
492 MODULE_PARM_DESC(lcd_da_pin,
493                  "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
494
495 static int lcd_cl_pin = PIN_NOT_SET;
496 module_param(lcd_cl_pin, int, 0000);
497 MODULE_PARM_DESC(lcd_cl_pin,
498                  "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
499
500 static unsigned char *lcd_char_conv;
501
502 /* for some LCD drivers (ks0074) we need a charset conversion table. */
503 static unsigned char lcd_char_conv_ks0074[256] = {
504         /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
505         /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
506         /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
507         /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
508         /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
509         /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
510         /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
511         /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
512         /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
513         /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
514         /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
515         /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
516         /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
517         /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
518         /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
519         /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
520         /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
521         /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
522         /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
523         /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
524         /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
525         /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
526         /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
527         /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
528         /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
529         /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
530         /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
531         /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
532         /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
533         /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
534         /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
535         /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
536         /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
537 };
538
539 char old_keypad_profile[][4][9] = {
540         {"S0", "Left\n", "Left\n", ""},
541         {"S1", "Down\n", "Down\n", ""},
542         {"S2", "Up\n", "Up\n", ""},
543         {"S3", "Right\n", "Right\n", ""},
544         {"S4", "Esc\n", "Esc\n", ""},
545         {"S5", "Ret\n", "Ret\n", ""},
546         {"", "", "", ""}
547 };
548
549 /* signals, press, repeat, release */
550 char new_keypad_profile[][4][9] = {
551         {"S0", "Left\n", "Left\n", ""},
552         {"S1", "Down\n", "Down\n", ""},
553         {"S2", "Up\n", "Up\n", ""},
554         {"S3", "Right\n", "Right\n", ""},
555         {"S4s5", "", "Esc\n", "Esc\n"},
556         {"s4S5", "", "Ret\n", "Ret\n"},
557         {"S4S5", "Help\n", "", ""},
558         /* add new signals above this line */
559         {"", "", "", ""}
560 };
561
562 /* signals, press, repeat, release */
563 char nexcom_keypad_profile[][4][9] = {
564         {"a-p-e-", "Down\n", "Down\n", ""},
565         {"a-p-E-", "Ret\n", "Ret\n", ""},
566         {"a-P-E-", "Esc\n", "Esc\n", ""},
567         {"a-P-e-", "Up\n", "Up\n", ""},
568         /* add new signals above this line */
569         {"", "", "", ""}
570 };
571
572 static char (*keypad_profile)[4][9] = old_keypad_profile;
573
574 /* FIXME: this should be converted to a bit array containing signals states */
575 static struct {
576         unsigned char e;        /* parallel LCD E   (data latch on falling edge) */
577         unsigned char rs;       /* parallel LCD RS  (0 = cmd, 1 = data) */
578         unsigned char rw;       /* parallel LCD R/W (0 = W, 1 = R) */
579         unsigned char bl;       /* parallel LCD backlight (0 = off, 1 = on) */
580         unsigned char cl;       /* serial LCD clock (latch on rising edge) */
581         unsigned char da;       /* serial LCD data */
582 } bits;
583
584 static void init_scan_timer(void);
585
586 /* sets data port bits according to current signals values */
587 static int set_data_bits(void)
588 {
589         int val, bit;
590
591         val = r_dtr(pprt);
592         for (bit = 0; bit < LCD_BITS; bit++)
593                 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
594
595         val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
596             | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
597             | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
598             | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
599             | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
600             | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
601
602         w_dtr(pprt, val);
603         return val;
604 }
605
606 /* sets ctrl port bits according to current signals values */
607 static int set_ctrl_bits(void)
608 {
609         int val, bit;
610
611         val = r_ctr(pprt);
612         for (bit = 0; bit < LCD_BITS; bit++)
613                 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
614
615         val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
616             | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
617             | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
618             | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
619             | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
620             | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
621
622         w_ctr(pprt, val);
623         return val;
624 }
625
626 /* sets ctrl & data port bits according to current signals values */
627 static void panel_set_bits(void)
628 {
629         set_data_bits();
630         set_ctrl_bits();
631 }
632
633 /*
634  * Converts a parallel port pin (from -25 to 25) to data and control ports
635  * masks, and data and control port bits. The signal will be considered
636  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
637  *
638  * Result will be used this way :
639  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
640  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
641  */
642 void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
643 {
644         int d_bit, c_bit, inv;
645
646         d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
647         d_val[2] = c_val[2] = 0xFF;
648
649         if (pin == 0)
650                 return;
651
652         inv = (pin < 0);
653         if (inv)
654                 pin = -pin;
655
656         d_bit = c_bit = 0;
657
658         switch (pin) {
659         case PIN_STROBE:        /* strobe, inverted */
660                 c_bit = PNL_PSTROBE;
661                 inv = !inv;
662                 break;
663         case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
664                 d_bit = 1 << (pin - 2);
665                 break;
666         case PIN_AUTOLF:        /* autofeed, inverted */
667                 c_bit = PNL_PAUTOLF;
668                 inv = !inv;
669                 break;
670         case PIN_INITP: /* init, direct */
671                 c_bit = PNL_PINITP;
672                 break;
673         case PIN_SELECP:        /* select_in, inverted */
674                 c_bit = PNL_PSELECP;
675                 inv = !inv;
676                 break;
677         default:                /* unknown pin, ignore */
678                 break;
679         }
680
681         if (c_bit) {
682                 c_val[2] &= ~c_bit;
683                 c_val[!inv] = c_bit;
684         } else if (d_bit) {
685                 d_val[2] &= ~d_bit;
686                 d_val[!inv] = d_bit;
687         }
688 }
689
690 /* sleeps that many milliseconds with a reschedule */
691 static void long_sleep(int ms)
692 {
693
694         if (in_interrupt())
695                 mdelay(ms);
696         else {
697                 current->state = TASK_INTERRUPTIBLE;
698                 schedule_timeout((ms * HZ + 999) / 1000);
699         }
700 }
701
702 /* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
703 static void lcd_send_serial(int byte)
704 {
705         int bit;
706
707         /* the data bit is set on D0, and the clock on STROBE.
708          * LCD reads D0 on STROBE's rising edge.
709          */
710         for (bit = 0; bit < 8; bit++) {
711                 bits.cl = BIT_CLR;      /* CLK low */
712                 panel_set_bits();
713                 bits.da = byte & 1;
714                 panel_set_bits();
715                 udelay(2);      /* maintain the data during 2 us before CLK up */
716                 bits.cl = BIT_SET;      /* CLK high */
717                 panel_set_bits();
718                 udelay(1);      /* maintain the strobe during 1 us */
719                 byte >>= 1;
720         }
721 }
722
723 /* turn the backlight on or off */
724 static void lcd_backlight(int on)
725 {
726         if (lcd_bl_pin == PIN_NONE)
727                 return;
728
729         /* The backlight is activated by seting the AUTOFEED line to +5V  */
730         spin_lock(&pprt_lock);
731         bits.bl = on;
732         panel_set_bits();
733         spin_unlock(&pprt_lock);
734 }
735
736 /* send a command to the LCD panel in serial mode */
737 static void lcd_write_cmd_s(int cmd)
738 {
739         spin_lock(&pprt_lock);
740         lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
741         lcd_send_serial(cmd & 0x0F);
742         lcd_send_serial((cmd >> 4) & 0x0F);
743         udelay(40);             /* the shortest command takes at least 40 us */
744         spin_unlock(&pprt_lock);
745 }
746
747 /* send data to the LCD panel in serial mode */
748 static void lcd_write_data_s(int data)
749 {
750         spin_lock(&pprt_lock);
751         lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
752         lcd_send_serial(data & 0x0F);
753         lcd_send_serial((data >> 4) & 0x0F);
754         udelay(40);             /* the shortest data takes at least 40 us */
755         spin_unlock(&pprt_lock);
756 }
757
758 /* send a command to the LCD panel in 8 bits parallel mode */
759 static void lcd_write_cmd_p8(int cmd)
760 {
761         spin_lock(&pprt_lock);
762         /* present the data to the data port */
763         w_dtr(pprt, cmd);
764         udelay(20);             /* maintain the data during 20 us before the strobe */
765
766         bits.e = BIT_SET;
767         bits.rs = BIT_CLR;
768         bits.rw = BIT_CLR;
769         set_ctrl_bits();
770
771         udelay(40);             /* maintain the strobe during 40 us */
772
773         bits.e = BIT_CLR;
774         set_ctrl_bits();
775
776         udelay(120);            /* the shortest command takes at least 120 us */
777         spin_unlock(&pprt_lock);
778 }
779
780 /* send data to the LCD panel in 8 bits parallel mode */
781 static void lcd_write_data_p8(int data)
782 {
783         spin_lock(&pprt_lock);
784         /* present the data to the data port */
785         w_dtr(pprt, data);
786         udelay(20);             /* maintain the data during 20 us before the strobe */
787
788         bits.e = BIT_SET;
789         bits.rs = BIT_SET;
790         bits.rw = BIT_CLR;
791         set_ctrl_bits();
792
793         udelay(40);             /* maintain the strobe during 40 us */
794
795         bits.e = BIT_CLR;
796         set_ctrl_bits();
797
798         udelay(45);             /* the shortest data takes at least 45 us */
799         spin_unlock(&pprt_lock);
800 }
801
802 /* send a command to the TI LCD panel */
803 static void lcd_write_cmd_tilcd(int cmd)
804 {
805         spin_lock(&pprt_lock);
806         /* present the data to the control port */
807         w_ctr(pprt, cmd);
808         udelay(60);
809         spin_unlock(&pprt_lock);
810 }
811
812 /* send data to the TI LCD panel */
813 static void lcd_write_data_tilcd(int data)
814 {
815         spin_lock(&pprt_lock);
816         /* present the data to the data port */
817         w_dtr(pprt, data);
818         udelay(60);
819         spin_unlock(&pprt_lock);
820 }
821
822 static void lcd_gotoxy(void)
823 {
824         lcd_write_cmd(0x80      /* set DDRAM address */
825                       | (lcd_addr_y ? lcd_hwidth : 0)
826                       /* we force the cursor to stay at the end of the line if it wants to go farther */
827                       | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
828                          (lcd_hwidth - 1) : lcd_bwidth - 1));
829 }
830
831 static void lcd_print(char c)
832 {
833         if (lcd_addr_x < lcd_bwidth) {
834                 if (lcd_char_conv != NULL)
835                         c = lcd_char_conv[(unsigned char)c];
836                 lcd_write_data(c);
837                 lcd_addr_x++;
838         }
839         /* prevents the cursor from wrapping onto the next line */
840         if (lcd_addr_x == lcd_bwidth)
841                 lcd_gotoxy();
842 }
843
844 /* fills the display with spaces and resets X/Y */
845 static void lcd_clear_fast_s(void)
846 {
847         int pos;
848         lcd_addr_x = lcd_addr_y = 0;
849         lcd_gotoxy();
850
851         spin_lock(&pprt_lock);
852         for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
853                 lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
854                 lcd_send_serial(' ' & 0x0F);
855                 lcd_send_serial((' ' >> 4) & 0x0F);
856                 udelay(40);     /* the shortest data takes at least 40 us */
857         }
858         spin_unlock(&pprt_lock);
859
860         lcd_addr_x = lcd_addr_y = 0;
861         lcd_gotoxy();
862 }
863
864 /* fills the display with spaces and resets X/Y */
865 static void lcd_clear_fast_p8(void)
866 {
867         int pos;
868         lcd_addr_x = lcd_addr_y = 0;
869         lcd_gotoxy();
870
871         spin_lock(&pprt_lock);
872         for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
873                 /* present the data to the data port */
874                 w_dtr(pprt, ' ');
875                 udelay(20);     /* maintain the data during 20 us before the strobe */
876
877                 bits.e = BIT_SET;
878                 bits.rs = BIT_SET;
879                 bits.rw = BIT_CLR;
880                 set_ctrl_bits();
881
882                 udelay(40);     /* maintain the strobe during 40 us */
883
884                 bits.e = BIT_CLR;
885                 set_ctrl_bits();
886
887                 udelay(45);     /* the shortest data takes at least 45 us */
888         }
889         spin_unlock(&pprt_lock);
890
891         lcd_addr_x = lcd_addr_y = 0;
892         lcd_gotoxy();
893 }
894
895 /* fills the display with spaces and resets X/Y */
896 static void lcd_clear_fast_tilcd(void)
897 {
898         int pos;
899         lcd_addr_x = lcd_addr_y = 0;
900         lcd_gotoxy();
901
902         spin_lock(&pprt_lock);
903         for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
904                 /* present the data to the data port */
905                 w_dtr(pprt, ' ');
906                 udelay(60);
907         }
908
909         spin_unlock(&pprt_lock);
910
911         lcd_addr_x = lcd_addr_y = 0;
912         lcd_gotoxy();
913 }
914
915 /* clears the display and resets X/Y */
916 static void lcd_clear_display(void)
917 {
918         lcd_write_cmd(0x01);    /* clear display */
919         lcd_addr_x = lcd_addr_y = 0;
920         /* we must wait a few milliseconds (15) */
921         long_sleep(15);
922 }
923
924 static void lcd_init_display(void)
925 {
926
927         lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
928             | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
929
930         long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
931
932         lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
933         long_sleep(10);
934         lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
935         long_sleep(10);
936         lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
937         long_sleep(10);
938
939         lcd_write_cmd(0x30      /* set font height and lines number */
940                       | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
941                       | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
942             );
943         long_sleep(10);
944
945         lcd_write_cmd(0x08);    /* display off, cursor off, blink off */
946         long_sleep(10);
947
948         lcd_write_cmd(0x08      /* set display mode */
949                       | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
950                       | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
951                       | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
952             );
953
954         lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
955
956         long_sleep(10);
957
958         lcd_write_cmd(0x06);    /* entry mode set : increment, cursor shifting */
959
960         lcd_clear_display();
961 }
962
963 /*
964  * These are the file operation function for user access to /dev/lcd
965  * This function can also be called from inside the kernel, by
966  * setting file and ppos to NULL.
967  *
968  */
969
970 static ssize_t lcd_write(struct file *file,
971                          const char *buf, size_t count, loff_t *ppos)
972 {
973
974         const char *tmp = buf;
975         char c;
976
977         for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
978                 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
979                         schedule();     /* let's be a little nice with other processes that need some CPU */
980
981                 if (ppos == NULL && file == NULL)
982                         c = *tmp;       /* let's not use get_user() from the kernel ! */
983                 else if (get_user(c, tmp))
984                         return -EFAULT;
985
986                 /* first, we'll test if we're in escape mode */
987                 if ((c != '\n') && lcd_escape_len >= 0) {       /* yes, let's add this char to the buffer */
988                         lcd_escape[lcd_escape_len++] = c;
989                         lcd_escape[lcd_escape_len] = 0;
990                 } else {
991                         lcd_escape_len = -1;    /* aborts any previous escape sequence */
992
993                         switch (c) {
994                         case LCD_ESCAPE_CHAR:   /* start of an escape sequence */
995                                 lcd_escape_len = 0;
996                                 lcd_escape[lcd_escape_len] = 0;
997                                 break;
998                         case '\b':      /* go back one char and clear it */
999                                 if (lcd_addr_x > 0) {
1000                                         if (lcd_addr_x < lcd_bwidth)    /* check if we're not at the end of the line */
1001                                                 lcd_write_cmd(0x10);    /* back one char */
1002                                         lcd_addr_x--;
1003                                 }
1004                                 lcd_write_data(' ');    /* replace with a space */
1005                                 lcd_write_cmd(0x10);    /* back one char again */
1006                                 break;
1007                         case '\014':    /* quickly clear the display */
1008                                 lcd_clear_fast();
1009                                 break;
1010                         case '\n':      /* flush the remainder of the current line and go to the
1011                                            beginning of the next line */
1012                                 for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1013                                         lcd_write_data(' ');
1014                                 lcd_addr_x = 0;
1015                                 lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1016                                 lcd_gotoxy();
1017                                 break;
1018                         case '\r':      /* go to the beginning of the same line */
1019                                 lcd_addr_x = 0;
1020                                 lcd_gotoxy();
1021                                 break;
1022                         case '\t':      /* print a space instead of the tab */
1023                                 lcd_print(' ');
1024                                 break;
1025                         default:        /* simply print this char */
1026                                 lcd_print(c);
1027                                 break;
1028                         }
1029                 }
1030
1031                 /* now we'll see if we're in an escape mode and if the current
1032                    escape sequence can be understood.
1033                  */
1034                 if (lcd_escape_len >= 2) {      /* minimal length for an escape command */
1035                         int processed = 0;      /* 1 means the command has been processed */
1036
1037                         if (!strcmp(lcd_escape, "[2J")) {       /* Clear the display */
1038                                 lcd_clear_fast();       /* clear display */
1039                                 processed = 1;
1040                         } else if (!strcmp(lcd_escape, "[H")) { /* Cursor to home */
1041                                 lcd_addr_x = lcd_addr_y = 0;
1042                                 lcd_gotoxy();
1043                                 processed = 1;
1044                         }
1045                         /* codes starting with ^[[L */
1046                         else if ((lcd_escape_len >= 3) &&
1047                                  (lcd_escape[0] == '[') && (lcd_escape[1] == 'L')) {    /* LCD special codes */
1048
1049                                 char *esc = lcd_escape + 2;
1050                                 int oldflags = lcd_flags;
1051
1052                                 /* check for display mode flags */
1053                                 switch (*esc) {
1054                                 case 'D':       /* Display ON */
1055                                         lcd_flags |= LCD_FLAG_D;
1056                                         processed = 1;
1057                                         break;
1058                                 case 'd':       /* Display OFF */
1059                                         lcd_flags &= ~LCD_FLAG_D;
1060                                         processed = 1;
1061                                         break;
1062                                 case 'C':       /* Cursor ON */
1063                                         lcd_flags |= LCD_FLAG_C;
1064                                         processed = 1;
1065                                         break;
1066                                 case 'c':       /* Cursor OFF */
1067                                         lcd_flags &= ~LCD_FLAG_C;
1068                                         processed = 1;
1069                                         break;
1070                                 case 'B':       /* Blink ON */
1071                                         lcd_flags |= LCD_FLAG_B;
1072                                         processed = 1;
1073                                         break;
1074                                 case 'b':       /* Blink OFF */
1075                                         lcd_flags &= ~LCD_FLAG_B;
1076                                         processed = 1;
1077                                         break;
1078                                 case '+':       /* Back light ON */
1079                                         lcd_flags |= LCD_FLAG_L;
1080                                         processed = 1;
1081                                         break;
1082                                 case '-':       /* Back light OFF */
1083                                         lcd_flags &= ~LCD_FLAG_L;
1084                                         processed = 1;
1085                                         break;
1086                                 case '*':       /* flash back light using the keypad timer */
1087                                         if (scan_timer.function != NULL) {
1088                                                 if (light_tempo == 0
1089                                                     && ((lcd_flags & LCD_FLAG_L)
1090                                                         == 0))
1091                                                         lcd_backlight(1);
1092                                                 light_tempo = FLASH_LIGHT_TEMPO;
1093                                         }
1094                                         processed = 1;
1095                                         break;
1096                                 case 'f':       /* Small Font */
1097                                         lcd_flags &= ~LCD_FLAG_F;
1098                                         processed = 1;
1099                                         break;
1100                                 case 'F':       /* Large Font */
1101                                         lcd_flags |= LCD_FLAG_F;
1102                                         processed = 1;
1103                                         break;
1104                                 case 'n':       /* One Line */
1105                                         lcd_flags &= ~LCD_FLAG_N;
1106                                         processed = 1;
1107                                         break;
1108                                 case 'N':       /* Two Lines */
1109                                         lcd_flags |= LCD_FLAG_N;
1110                                         break;
1111
1112                                 case 'l':       /* Shift Cursor Left */
1113                                         if (lcd_addr_x > 0) {
1114                                                 if (lcd_addr_x < lcd_bwidth)
1115                                                         lcd_write_cmd(0x10);    /* back one char if not at end of line */
1116                                                 lcd_addr_x--;
1117                                         }
1118                                         processed = 1;
1119                                         break;
1120
1121                                 case 'r':       /* shift cursor right */
1122                                         if (lcd_addr_x < lcd_width) {
1123                                                 if (lcd_addr_x < (lcd_bwidth - 1))
1124                                                         lcd_write_cmd(0x14);    /* allow the cursor to pass the end of the line */
1125                                                 lcd_addr_x++;
1126                                         }
1127                                         processed = 1;
1128                                         break;
1129
1130                                 case 'L':       /* shift display left */
1131                                         lcd_left_shift++;
1132                                         lcd_write_cmd(0x18);
1133                                         processed = 1;
1134                                         break;
1135
1136                                 case 'R':       /* shift display right */
1137                                         lcd_left_shift--;
1138                                         lcd_write_cmd(0x1C);
1139                                         processed = 1;
1140                                         break;
1141
1142                                 case 'k':{      /* kill end of line */
1143                                                 int x;
1144                                                 for (x = lcd_addr_x; x < lcd_bwidth; x++)
1145                                                         lcd_write_data(' ');
1146                                                 lcd_gotoxy();   /* restore cursor position */
1147                                                 processed = 1;
1148                                                 break;
1149                                         }
1150                                 case 'I':       /* reinitialize display */
1151                                         lcd_init_display();
1152                                         lcd_left_shift = 0;
1153                                         processed = 1;
1154                                         break;
1155
1156                                 case 'G':       /* Generator : LGcxxxxx...xx; */  {
1157                                                 /* must have <c> between '0' and '7', representing the numerical
1158                                                  * ASCII code of the redefined character, and <xx...xx> a sequence
1159                                                  * of 16 hex digits representing 8 bytes for each character. Most
1160                                                  * LCDs will only use 5 lower bits of the 7 first bytes.
1161                                                  */
1162
1163                                                 unsigned char cgbytes[8];
1164                                                 unsigned char cgaddr;
1165                                                 int cgoffset;
1166                                                 int shift;
1167                                                 char value;
1168                                                 int addr;
1169
1170                                                 if (strchr(esc, ';') == NULL)
1171                                                         break;
1172
1173                                                 esc++;
1174
1175                                                 cgaddr = *(esc++) - '0';
1176                                                 if (cgaddr > 7) {
1177                                                         processed = 1;
1178                                                         break;
1179                                                 }
1180
1181                                                 cgoffset = 0;
1182                                                 shift = 0;
1183                                                 value = 0;
1184                                                 while (*esc && cgoffset < 8) {
1185                                                         shift ^= 4;
1186                                                         if (*esc >= '0' && *esc <= '9')
1187                                                                 value |= (*esc - '0') << shift;
1188                                                         else if (*esc >= 'A' && *esc <= 'Z')
1189                                                                 value |= (*esc - 'A' + 10) << shift;
1190                                                         else if (*esc >= 'a' && *esc <= 'z')
1191                                                                 value |= (*esc - 'a' + 10) << shift;
1192                                                         else {
1193                                                                 esc++;
1194                                                                 continue;
1195                                                         }
1196
1197                                                         if (shift == 0) {
1198                                                                 cgbytes[cgoffset++] = value;
1199                                                                 value = 0;
1200                                                         }
1201
1202                                                         esc++;
1203                                                 }
1204
1205                                                 lcd_write_cmd(0x40 | (cgaddr * 8));
1206                                                 for (addr = 0; addr < cgoffset; addr++)
1207                                                         lcd_write_data(cgbytes[addr]);
1208
1209                                                 lcd_gotoxy();   /* ensures that we stop writing to CGRAM */
1210                                                 processed = 1;
1211                                                 break;
1212                                         }
1213                                 case 'x':       /* gotoxy : LxXXX[yYYY]; */
1214                                 case 'y':       /* gotoxy : LyYYY[xXXX]; */
1215                                         if (strchr(esc, ';') == NULL)
1216                                                 break;
1217
1218                                         while (*esc) {
1219                                                 if (*esc == 'x') {
1220                                                         esc++;
1221                                                         lcd_addr_x = 0;
1222                                                         while (isdigit(*esc)) {
1223                                                                 lcd_addr_x =
1224                                                                     lcd_addr_x *
1225                                                                     10 + (*esc -
1226                                                                           '0');
1227                                                                 esc++;
1228                                                         }
1229                                                 } else if (*esc == 'y') {
1230                                                         esc++;
1231                                                         lcd_addr_y = 0;
1232                                                         while (isdigit(*esc)) {
1233                                                                 lcd_addr_y =
1234                                                                     lcd_addr_y *
1235                                                                     10 + (*esc -
1236                                                                           '0');
1237                                                                 esc++;
1238                                                         }
1239                                                 } else
1240                                                         break;
1241                                         }
1242
1243                                         lcd_gotoxy();
1244                                         processed = 1;
1245                                         break;
1246                                 }       /* end of switch */
1247
1248                                 /* Check wether one flag was changed */
1249                                 if (oldflags != lcd_flags) {
1250                                         /* check wether one of B,C,D flags was changed */
1251                                         if ((oldflags ^ lcd_flags) &
1252                                             (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1253                                                 /* set display mode */
1254                                                 lcd_write_cmd(0x08 |
1255                                                               ((lcd_flags & LCD_FLAG_D) ? 4 : 0) |
1256                                                               ((lcd_flags & LCD_FLAG_C) ? 2 : 0) |
1257                                                               ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1258                                         /* check wether one of F,N flags was changed */
1259                                         else if ((oldflags ^ lcd_flags) &
1260                                                  (LCD_FLAG_F | LCD_FLAG_N))
1261                                                 lcd_write_cmd(0x30 |
1262                                                               ((lcd_flags & LCD_FLAG_F) ? 4 : 0) |
1263                                                               ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1264                                         /* check wether L flag was changed */
1265                                         else if ((oldflags ^ lcd_flags) &
1266                                                  (LCD_FLAG_L)) {
1267                                                 if (lcd_flags & (LCD_FLAG_L))
1268                                                         lcd_backlight(1);
1269                                                 else if (light_tempo == 0)      /* switch off the light only when the tempo lighting is gone */
1270                                                         lcd_backlight(0);
1271                                         }
1272                                 }
1273                         }
1274
1275                         /* LCD special escape codes */
1276                         /* flush the escape sequence if it's been processed or if it is
1277                            getting too long. */
1278                         if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1279                                 lcd_escape_len = -1;
1280                 }               /* escape codes */
1281         }
1282
1283         return tmp - buf;
1284 }
1285
1286 static int lcd_open(struct inode *inode, struct file *file)
1287 {
1288         if (lcd_open_cnt)
1289                 return -EBUSY;  /* open only once at a time */
1290
1291         if (file->f_mode & FMODE_READ)  /* device is write-only */
1292                 return -EPERM;
1293
1294         if (lcd_must_clear) {
1295                 lcd_clear_display();
1296                 lcd_must_clear = 0;
1297         }
1298         lcd_open_cnt++;
1299         return 0;
1300 }
1301
1302 static int lcd_release(struct inode *inode, struct file *file)
1303 {
1304         lcd_open_cnt--;
1305         return 0;
1306 }
1307
1308 static struct file_operations lcd_fops = {
1309         .write   = lcd_write,
1310         .open    = lcd_open,
1311         .release = lcd_release,
1312 };
1313
1314 static struct miscdevice lcd_dev = {
1315         LCD_MINOR,
1316         "lcd",
1317         &lcd_fops
1318 };
1319
1320 /* public function usable from the kernel for any purpose */
1321 void panel_lcd_print(char *s)
1322 {
1323         if (lcd_enabled && lcd_initialized)
1324                 lcd_write(NULL, s, strlen(s), NULL);
1325 }
1326
1327 /* initialize the LCD driver */
1328 void lcd_init(void)
1329 {
1330         switch (lcd_type) {
1331         case LCD_TYPE_OLD:      /* parallel mode, 8 bits */
1332                 if (lcd_proto < 0)
1333                         lcd_proto = LCD_PROTO_PARALLEL;
1334                 if (lcd_charset < 0)
1335                         lcd_charset = LCD_CHARSET_NORMAL;
1336                 if (lcd_e_pin == PIN_NOT_SET)
1337                         lcd_e_pin = PIN_STROBE;
1338                 if (lcd_rs_pin == PIN_NOT_SET)
1339                         lcd_rs_pin = PIN_AUTOLF;
1340
1341                 if (lcd_width < 0)
1342                         lcd_width = 40;
1343                 if (lcd_bwidth < 0)
1344                         lcd_bwidth = 40;
1345                 if (lcd_hwidth < 0)
1346                         lcd_hwidth = 64;
1347                 if (lcd_height < 0)
1348                         lcd_height = 2;
1349                 break;
1350         case LCD_TYPE_KS0074:   /* serial mode, ks0074 */
1351                 if (lcd_proto < 0)
1352                         lcd_proto = LCD_PROTO_SERIAL;
1353                 if (lcd_charset < 0)
1354                         lcd_charset = LCD_CHARSET_KS0074;
1355                 if (lcd_bl_pin == PIN_NOT_SET)
1356                         lcd_bl_pin = PIN_AUTOLF;
1357                 if (lcd_cl_pin == PIN_NOT_SET)
1358                         lcd_cl_pin = PIN_STROBE;
1359                 if (lcd_da_pin == PIN_NOT_SET)
1360                         lcd_da_pin = PIN_D0;
1361
1362                 if (lcd_width < 0)
1363                         lcd_width = 16;
1364                 if (lcd_bwidth < 0)
1365                         lcd_bwidth = 40;
1366                 if (lcd_hwidth < 0)
1367                         lcd_hwidth = 16;
1368                 if (lcd_height < 0)
1369                         lcd_height = 2;
1370                 break;
1371         case LCD_TYPE_NEXCOM:   /* parallel mode, 8 bits, generic */
1372                 if (lcd_proto < 0)
1373                         lcd_proto = LCD_PROTO_PARALLEL;
1374                 if (lcd_charset < 0)
1375                         lcd_charset = LCD_CHARSET_NORMAL;
1376                 if (lcd_e_pin == PIN_NOT_SET)
1377                         lcd_e_pin = PIN_AUTOLF;
1378                 if (lcd_rs_pin == PIN_NOT_SET)
1379                         lcd_rs_pin = PIN_SELECP;
1380                 if (lcd_rw_pin == PIN_NOT_SET)
1381                         lcd_rw_pin = PIN_INITP;
1382
1383                 if (lcd_width < 0)
1384                         lcd_width = 16;
1385                 if (lcd_bwidth < 0)
1386                         lcd_bwidth = 40;
1387                 if (lcd_hwidth < 0)
1388                         lcd_hwidth = 64;
1389                 if (lcd_height < 0)
1390                         lcd_height = 2;
1391                 break;
1392         case LCD_TYPE_CUSTOM:   /* customer-defined */
1393                 if (lcd_proto < 0)
1394                         lcd_proto = DEFAULT_LCD_PROTO;
1395                 if (lcd_charset < 0)
1396                         lcd_charset = DEFAULT_LCD_CHARSET;
1397                 /* default geometry will be set later */
1398                 break;
1399         case LCD_TYPE_HANTRONIX:        /* parallel mode, 8 bits, hantronix-like */
1400         default:
1401                 if (lcd_proto < 0)
1402                         lcd_proto = LCD_PROTO_PARALLEL;
1403                 if (lcd_charset < 0)
1404                         lcd_charset = LCD_CHARSET_NORMAL;
1405                 if (lcd_e_pin == PIN_NOT_SET)
1406                         lcd_e_pin = PIN_STROBE;
1407                 if (lcd_rs_pin == PIN_NOT_SET)
1408                         lcd_rs_pin = PIN_SELECP;
1409
1410                 if (lcd_width < 0)
1411                         lcd_width = 16;
1412                 if (lcd_bwidth < 0)
1413                         lcd_bwidth = 40;
1414                 if (lcd_hwidth < 0)
1415                         lcd_hwidth = 64;
1416                 if (lcd_height < 0)
1417                         lcd_height = 2;
1418                 break;
1419         }
1420
1421         /* this is used to catch wrong and default values */
1422         if (lcd_width <= 0)
1423                 lcd_width = DEFAULT_LCD_WIDTH;
1424         if (lcd_bwidth <= 0)
1425                 lcd_bwidth = DEFAULT_LCD_BWIDTH;
1426         if (lcd_hwidth <= 0)
1427                 lcd_hwidth = DEFAULT_LCD_HWIDTH;
1428         if (lcd_height <= 0)
1429                 lcd_height = DEFAULT_LCD_HEIGHT;
1430
1431         if (lcd_proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1432                 lcd_write_cmd = lcd_write_cmd_s;
1433                 lcd_write_data = lcd_write_data_s;
1434                 lcd_clear_fast = lcd_clear_fast_s;
1435
1436                 if (lcd_cl_pin == PIN_NOT_SET)
1437                         lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1438                 if (lcd_da_pin == PIN_NOT_SET)
1439                         lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1440
1441         } else if (lcd_proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1442                 lcd_write_cmd = lcd_write_cmd_p8;
1443                 lcd_write_data = lcd_write_data_p8;
1444                 lcd_clear_fast = lcd_clear_fast_p8;
1445
1446                 if (lcd_e_pin == PIN_NOT_SET)
1447                         lcd_e_pin = DEFAULT_LCD_PIN_E;
1448                 if (lcd_rs_pin == PIN_NOT_SET)
1449                         lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1450                 if (lcd_rw_pin == PIN_NOT_SET)
1451                         lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1452         } else {
1453                 lcd_write_cmd = lcd_write_cmd_tilcd;
1454                 lcd_write_data = lcd_write_data_tilcd;
1455                 lcd_clear_fast = lcd_clear_fast_tilcd;
1456         }
1457
1458         if (lcd_bl_pin == PIN_NOT_SET)
1459                 lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1460
1461         if (lcd_e_pin == PIN_NOT_SET)
1462                 lcd_e_pin = PIN_NONE;
1463         if (lcd_rs_pin == PIN_NOT_SET)
1464                 lcd_rs_pin = PIN_NONE;
1465         if (lcd_rw_pin == PIN_NOT_SET)
1466                 lcd_rw_pin = PIN_NONE;
1467         if (lcd_bl_pin == PIN_NOT_SET)
1468                 lcd_bl_pin = PIN_NONE;
1469         if (lcd_cl_pin == PIN_NOT_SET)
1470                 lcd_cl_pin = PIN_NONE;
1471         if (lcd_da_pin == PIN_NOT_SET)
1472                 lcd_da_pin = PIN_NONE;
1473
1474         if (lcd_charset < 0)
1475                 lcd_charset = DEFAULT_LCD_CHARSET;
1476
1477         if (lcd_charset == LCD_CHARSET_KS0074)
1478                 lcd_char_conv = lcd_char_conv_ks0074;
1479         else
1480                 lcd_char_conv = NULL;
1481
1482         if (lcd_bl_pin != PIN_NONE)
1483                 init_scan_timer();
1484
1485         pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1486                     lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1487         pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1488                     lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1489         pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1490                     lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1491         pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1492                     lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1493         pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1494                     lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1495         pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1496                     lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1497
1498         /* before this line, we must NOT send anything to the display.
1499          * Since lcd_init_display() needs to write data, we have to
1500          * enable mark the LCD initialized just before.
1501          */
1502         lcd_initialized = 1;
1503         lcd_init_display();
1504
1505         /* display a short message */
1506 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1507 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1508         panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1509 #endif
1510 #else
1511         panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1512                         PANEL_VERSION);
1513 #endif
1514         lcd_addr_x = lcd_addr_y = 0;
1515         lcd_must_clear = 1;     /* clear the display on the next device opening */
1516         lcd_gotoxy();
1517 }
1518
1519 /*
1520  * These are the file operation function for user access to /dev/keypad
1521  */
1522
1523 static ssize_t keypad_read(struct file *file,
1524                            char *buf, size_t count, loff_t *ppos)
1525 {
1526
1527         unsigned i = *ppos;
1528         char *tmp = buf;
1529
1530         if (keypad_buflen == 0) {
1531                 if (file->f_flags & O_NONBLOCK)
1532                         return -EAGAIN;
1533
1534                 interruptible_sleep_on(&keypad_read_wait);
1535                 if (signal_pending(current))
1536                         return -EINTR;
1537         }
1538
1539         for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) {
1540                 put_user(keypad_buffer[keypad_start], tmp);
1541                 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1542         }
1543         *ppos = i;
1544
1545         return tmp - buf;
1546 }
1547
1548 static int keypad_open(struct inode *inode, struct file *file)
1549 {
1550
1551         if (keypad_open_cnt)
1552                 return -EBUSY;  /* open only once at a time */
1553
1554         if (file->f_mode & FMODE_WRITE) /* device is read-only */
1555                 return -EPERM;
1556
1557         keypad_buflen = 0;      /* flush the buffer on opening */
1558         keypad_open_cnt++;
1559         return 0;
1560 }
1561
1562 static int keypad_release(struct inode *inode, struct file *file)
1563 {
1564         keypad_open_cnt--;
1565         return 0;
1566 }
1567
1568 static struct file_operations keypad_fops = {
1569         .read    = keypad_read,         /* read */
1570         .open    = keypad_open,         /* open */
1571         .release = keypad_release,      /* close */
1572 };
1573
1574 static struct miscdevice keypad_dev = {
1575         KEYPAD_MINOR,
1576         "keypad",
1577         &keypad_fops
1578 };
1579
1580 static void keypad_send_key(char *string, int max_len)
1581 {
1582         if (init_in_progress)
1583                 return;
1584
1585         /* send the key to the device only if a process is attached to it. */
1586         if (keypad_open_cnt > 0) {
1587                 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1588                         keypad_buffer[(keypad_start + keypad_buflen++) %
1589                                       KEYPAD_BUFFER] = *string++;
1590                 }
1591                 wake_up_interruptible(&keypad_read_wait);
1592         }
1593 }
1594
1595 /* this function scans all the bits involving at least one logical signal, and puts the
1596  * results in the bitfield "phys_read" (one bit per established contact), and sets
1597  * "phys_read_prev" to "phys_read".
1598  *
1599  * Note: to debounce input signals, we will only consider as switched a signal which is
1600  * stable across 2 measures. Signals which are different between two reads will be kept
1601  * as they previously were in their logical form (phys_prev). A signal which has just
1602  * switched will have a 1 in (phys_read ^ phys_read_prev).
1603  */
1604 static void phys_scan_contacts(void)
1605 {
1606         int bit, bitval;
1607         char oldval;
1608         char bitmask;
1609         char gndmask;
1610
1611         phys_prev = phys_curr;
1612         phys_read_prev = phys_read;
1613         phys_read = 0;          /* flush all signals */
1614
1615         oldval = r_dtr(pprt) | scan_mask_o;     /* keep track of old value, with all outputs disabled */
1616         w_dtr(pprt, oldval & ~scan_mask_o);     /* activate all keyboard outputs (active low) */
1617         bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;        /* will have a 1 for each bit set to gnd */
1618         w_dtr(pprt, oldval);    /* disable all matrix signals */
1619
1620         /* now that all outputs are cleared, the only active input bits are
1621          * directly connected to the ground
1622          */
1623         gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;        /* 1 for each grounded input */
1624
1625         phys_read |= (pmask_t) gndmask << 40;   /* grounded inputs are signals 40-44 */
1626
1627         if (bitmask != gndmask) {
1628                 /* since clearing the outputs changed some inputs, we know that some
1629                  * input signals are currently tied to some outputs. So we'll scan them.
1630                  */
1631                 for (bit = 0; bit < 8; bit++) {
1632                         bitval = 1 << bit;
1633
1634                         if (!(scan_mask_o & bitval))    /* skip unused bits */
1635                                 continue;
1636
1637                         w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1638                         bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1639                         phys_read |= (pmask_t) bitmask << (5 * bit);
1640                 }
1641                 w_dtr(pprt, oldval);    /* disable all outputs */
1642         }
1643         /* this is easy: use old bits when they are flapping, use new ones when stable */
1644         phys_curr =
1645             (phys_prev & (phys_read ^ phys_read_prev)) | (phys_read &
1646                                                           ~(phys_read ^
1647                                                             phys_read_prev));
1648 }
1649
1650 static void panel_process_inputs(void)
1651 {
1652         struct list_head *item;
1653         struct logical_input *input;
1654
1655 #if 0
1656         printk(KERN_DEBUG
1657                "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1658                phys_prev, phys_curr);
1659 #endif
1660
1661         keypressed = 0;
1662         inputs_stable = 1;
1663         list_for_each(item, &logical_inputs) {
1664                 input = list_entry(item, struct logical_input, list);
1665
1666                 switch (input->state) {
1667                 case INPUT_ST_LOW:
1668                         if ((phys_curr & input->mask) != input->value)
1669                                 break;
1670                         /* if all needed ones were already set previously, this means that
1671                          * this logical signal has been activated by the releasing of
1672                          * another combined signal, so we don't want to match.
1673                          * eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
1674                          */
1675                         if ((phys_prev & input->mask) == input->value)
1676                                 break;
1677                         input->rise_timer = 0;
1678                         input->state = INPUT_ST_RISING;
1679                         /* no break here, fall through */
1680                 case INPUT_ST_RISING:
1681                         if ((phys_curr & input->mask) != input->value) {
1682                                 input->state = INPUT_ST_LOW;
1683                                 break;
1684                         }
1685                         if (input->rise_timer < input->rise_time) {
1686                                 inputs_stable = 0;
1687                                 input->rise_timer++;
1688                                 break;
1689                         }
1690                         input->high_timer = 0;
1691                         input->state = INPUT_ST_HIGH;
1692                         /* no break here, fall through */
1693                 case INPUT_ST_HIGH:
1694 #if 0
1695                         /* FIXME:
1696                          * this is an invalid test. It tries to catch transitions from single-key
1697                          * to multiple-key, but doesn't take into account the contacts polarity.
1698                          * The only solution to the problem is to parse keys from the most complex
1699                          * to the simplest combinations, and mark them as 'caught' once a combination
1700                          * matches, then unmatch it for all other ones.
1701                          */
1702
1703                         /* try to catch dangerous transitions cases :
1704                          * someone adds a bit, so this signal was a false
1705                          * positive resulting from a transition. We should invalidate
1706                          * the signal immediately and not call the release function.
1707                          * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1708                          */
1709                         if (((phys_prev & input->mask) == input->value)
1710                             && ((phys_curr & input->mask) > input->value)) {
1711                                 input->state = INPUT_ST_LOW;    /* invalidate */
1712                                 break;
1713                         }
1714 #endif
1715
1716                         if ((phys_curr & input->mask) == input->value) {
1717                                 if ((input->type == INPUT_TYPE_STD)
1718                                     && (input->high_timer == 0)) {
1719                                         input->high_timer++;
1720                                         if (input->u.std.press_fct != NULL)
1721                                                 input->u.std.press_fct(input->u.
1722                                                                        std.
1723                                                                        press_data);
1724                                 } else if (input->type == INPUT_TYPE_KBD) {
1725                                         keypressed = 1; /* will turn on the light */
1726
1727                                         if (input->high_timer == 0) {
1728                                                 if (input->u.kbd.press_str[0])
1729                                                         keypad_send_key(input->
1730                                                                         u.kbd.
1731                                                                         press_str,
1732                                                                         sizeof
1733                                                                         (input->
1734                                                                          u.kbd.
1735                                                                          press_str));
1736                                         }
1737
1738                                         if (input->u.kbd.repeat_str[0]) {
1739                                                 if (input->high_timer >=
1740                                                     KEYPAD_REP_START) {
1741                                                         input->high_timer -=
1742                                                             KEYPAD_REP_DELAY;
1743                                                         keypad_send_key(input->
1744                                                                         u.kbd.
1745                                                                         repeat_str,
1746                                                                         sizeof
1747                                                                         (input->
1748                                                                          u.kbd.
1749                                                                          repeat_str));
1750                                                 }
1751                                                 inputs_stable = 0;      /* we will need to come back here soon */
1752                                         }
1753
1754                                         if (input->high_timer < 255)
1755                                                 input->high_timer++;
1756                                 }
1757                                 break;
1758                         } else {
1759                                 /* else signal falling down. Let's fall through. */
1760                                 input->state = INPUT_ST_FALLING;
1761                                 input->fall_timer = 0;
1762                         }
1763                         /* no break here, fall through */
1764                 case INPUT_ST_FALLING:
1765 #if 0
1766                         /* FIXME !!! same comment as above */
1767                         if (((phys_prev & input->mask) == input->value)
1768                             && ((phys_curr & input->mask) > input->value)) {
1769                                 input->state = INPUT_ST_LOW;    /* invalidate */
1770                                 break;
1771                         }
1772 #endif
1773
1774                         if ((phys_curr & input->mask) == input->value) {
1775                                 if (input->type == INPUT_TYPE_KBD) {
1776                                         keypressed = 1; /* will turn on the light */
1777
1778                                         if (input->u.kbd.repeat_str[0]) {
1779                                                 if (input->high_timer >= KEYPAD_REP_START)
1780                                                         input->high_timer -= KEYPAD_REP_DELAY;
1781                                                 keypad_send_key(input->u.kbd.repeat_str,
1782                                                                 sizeof(input->u.kbd.repeat_str));
1783                                                 inputs_stable = 0;      /* we will need to come back here soon */
1784                                         }
1785
1786                                         if (input->high_timer < 255)
1787                                                 input->high_timer++;
1788                                 }
1789                                 input->state = INPUT_ST_HIGH;
1790                                 break;
1791                         } else if (input->fall_timer >= input->fall_time) {
1792                                 /* call release event */
1793                                 if (input->type == INPUT_TYPE_STD) {
1794                                         if (input->u.std.release_fct != NULL)
1795                                                 input->u.std.release_fct(input->u.std.release_data);
1796
1797                                 } else if (input->type == INPUT_TYPE_KBD) {
1798                                         if (input->u.kbd.release_str[0])
1799                                                 keypad_send_key(input->u.kbd.release_str,
1800                                                                 sizeof(input->u.kbd.release_str));
1801                                 }
1802
1803                                 input->state = INPUT_ST_LOW;
1804                                 break;
1805                         } else {
1806                                 input->fall_timer++;
1807                                 inputs_stable = 0;
1808                                 break;
1809                         }
1810                 }
1811         }
1812 }
1813
1814 static void panel_scan_timer(void)
1815 {
1816         if (keypad_enabled && keypad_initialized) {
1817                 if (spin_trylock(&pprt_lock)) {
1818                         phys_scan_contacts();
1819                         spin_unlock(&pprt_lock);        /* no need for the parport anymore */
1820                 }
1821
1822                 if (!inputs_stable || phys_curr != phys_prev)
1823                         panel_process_inputs();
1824         }
1825
1826         if (lcd_enabled && lcd_initialized) {
1827                 if (keypressed) {
1828                         if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1829                                 lcd_backlight(1);
1830                         light_tempo = FLASH_LIGHT_TEMPO;
1831                 } else if (light_tempo > 0) {
1832                         light_tempo--;
1833                         if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1834                                 lcd_backlight(0);
1835                 }
1836         }
1837
1838         mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1839 }
1840
1841 static void init_scan_timer(void)
1842 {
1843         if (scan_timer.function != NULL)
1844                 return;         /* already started */
1845
1846         init_timer(&scan_timer);
1847         scan_timer.expires = jiffies + INPUT_POLL_TIME;
1848         scan_timer.data = 0;
1849         scan_timer.function = (void *)&panel_scan_timer;
1850         add_timer(&scan_timer);
1851 }
1852
1853 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1854  * if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
1855  * to out and in bits respectively.
1856  * returns 1 if ok, 0 if error (in which case, nothing is written).
1857  */
1858 static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1859                            char *imask, char *omask)
1860 {
1861         static char sigtab[10] = "EeSsPpAaBb";
1862         char im, om;
1863         pmask_t m, v;
1864
1865         om = im = m = v = 0ULL;
1866         while (*name) {
1867                 int in, out, bit, neg;
1868                 for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name); in++)
1869                         ;
1870                 if (in >= sizeof(sigtab))
1871                         return 0;       /* input name not found */
1872                 neg = (in & 1); /* odd (lower) names are negated */
1873                 in >>= 1;
1874                 im |= (1 << in);
1875
1876                 name++;
1877                 if (isdigit(*name)) {
1878                         out = *name - '0';
1879                         om |= (1 << out);
1880                 } else if (*name == '-')
1881                         out = 8;
1882                 else
1883                         return 0;       /* unknown bit name */
1884
1885                 bit = (out * 5) + in;
1886
1887                 m |= 1ULL << bit;
1888                 if (!neg)
1889                         v |= 1ULL << bit;
1890                 name++;
1891         }
1892         *mask = m;
1893         *value = v;
1894         if (imask)
1895                 *imask |= im;
1896         if (omask)
1897                 *omask |= om;
1898         return 1;
1899 }
1900
1901 /* tries to bind a key to the signal name <name>. The key will send the
1902  * strings <press>, <repeat>, <release> for these respective events.
1903  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1904  */
1905 static struct logical_input *panel_bind_key(char *name, char *press,
1906                                             char *repeat, char *release)
1907 {
1908         struct logical_input *key;
1909
1910         key = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
1911         if (!key) {
1912                 printk(KERN_ERR "panel: not enough memory\n");
1913                 return NULL;
1914         }
1915         memset(key, 0, sizeof(struct logical_input));
1916         if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1917                              &scan_mask_o))
1918                 return NULL;
1919
1920         key->type = INPUT_TYPE_KBD;
1921         key->state = INPUT_ST_LOW;
1922         key->rise_time = 1;
1923         key->fall_time = 1;
1924
1925 #if 0
1926         printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
1927                key->value);
1928 #endif
1929         strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1930         strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1931         strncpy(key->u.kbd.release_str, release,
1932                 sizeof(key->u.kbd.release_str));
1933         list_add(&key->list, &logical_inputs);
1934         return key;
1935 }
1936
1937 #if 0
1938 /* tries to bind a callback function to the signal name <name>. The function
1939  * <press_fct> will be called with the <press_data> arg when the signal is
1940  * activated, and so on for <release_fct>/<release_data>
1941  * Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
1942  */
1943 static struct logical_input *panel_bind_callback(char *name,
1944                                                  void (*press_fct) (int),
1945                                                  int press_data,
1946                                                  void (*release_fct) (int),
1947                                                  int release_data)
1948 {
1949         struct logical_input *callback;
1950
1951         callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
1952         if (!callback) {
1953                 printk(KERN_ERR "panel: not enough memory\n");
1954                 return NULL;
1955         }
1956         memset(callback, 0, sizeof(struct logical_input));
1957         if (!input_name2mask(name, &callback->mask, &callback->value,
1958                              &scan_mask_i, &scan_mask_o))
1959                 return NULL;
1960
1961         callback->type = INPUT_TYPE_STD;
1962         callback->state = INPUT_ST_LOW;
1963         callback->rise_time = 1;
1964         callback->fall_time = 1;
1965         callback->u.std.press_fct = press_fct;
1966         callback->u.std.press_data = press_data;
1967         callback->u.std.release_fct = release_fct;
1968         callback->u.std.release_data = release_data;
1969         list_add(&callback->list, &logical_inputs);
1970         return callback;
1971 }
1972 #endif
1973
1974 static void keypad_init(void)
1975 {
1976         int keynum;
1977         init_waitqueue_head(&keypad_read_wait);
1978         keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
1979
1980         /* Let's create all known keys */
1981
1982         for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1983                 panel_bind_key(keypad_profile[keynum][0],
1984                                keypad_profile[keynum][1],
1985                                keypad_profile[keynum][2],
1986                                keypad_profile[keynum][3]);
1987         }
1988
1989         init_scan_timer();
1990         keypad_initialized = 1;
1991 }
1992
1993 /**************************************************/
1994 /* device initialization                          */
1995 /**************************************************/
1996
1997 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
1998                             void *unused)
1999 {
2000         if (lcd_enabled && lcd_initialized) {
2001                 switch (code) {
2002                 case SYS_DOWN:
2003                         panel_lcd_print
2004                             ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2005                         break;
2006                 case SYS_HALT:
2007                         panel_lcd_print
2008                             ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2009                         break;
2010                 case SYS_POWER_OFF:
2011                         panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2012                         break;
2013                 default:
2014                         break;
2015                 }
2016         }
2017         return NOTIFY_DONE;
2018 }
2019
2020 static struct notifier_block panel_notifier = {
2021         panel_notify_sys,
2022         NULL,
2023         0
2024 };
2025
2026 static void panel_attach(struct parport *port)
2027 {
2028         if (port->number != parport)
2029                 return;
2030
2031         if (pprt) {
2032                 printk(KERN_ERR
2033                        "panel_attach(): port->number=%d parport=%d, already registered !\n",
2034                        port->number, parport);
2035                 return;
2036         }
2037
2038         pprt = parport_register_device(port, "panel", NULL, NULL,       /* pf, kf */
2039                                        NULL,
2040                                        /*PARPORT_DEV_EXCL */
2041                                        0, (void *)&pprt);
2042
2043         if (parport_claim(pprt)) {
2044                 printk(KERN_ERR
2045                        "Panel: could not claim access to parport%d. Aborting.\n",
2046                        parport);
2047                 return;
2048         }
2049
2050         /* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
2051         if (lcd_enabled) {
2052                 lcd_init();
2053                 misc_register(&lcd_dev);
2054         }
2055
2056         if (keypad_enabled) {
2057                 keypad_init();
2058                 misc_register(&keypad_dev);
2059         }
2060 }
2061
2062 static void panel_detach(struct parport *port)
2063 {
2064         if (port->number != parport)
2065                 return;
2066
2067         if (!pprt) {
2068                 printk(KERN_ERR
2069                        "panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
2070                        port->number, parport);
2071                 return;
2072         }
2073
2074         if (keypad_enabled && keypad_initialized)
2075                 misc_deregister(&keypad_dev);
2076
2077         if (lcd_enabled && lcd_initialized)
2078                 misc_deregister(&lcd_dev);
2079
2080         parport_release(pprt);
2081         parport_unregister_device(pprt);
2082         pprt = NULL;
2083 }
2084
2085 static struct parport_driver panel_driver = {
2086         .name = "panel",
2087         .attach = panel_attach,
2088         .detach = panel_detach,
2089 };
2090
2091 /* init function */
2092 int panel_init(void)
2093 {
2094         /* for backwards compatibility */
2095         if (keypad_type < 0)
2096                 keypad_type = keypad_enabled;
2097
2098         if (lcd_type < 0)
2099                 lcd_type = lcd_enabled;
2100
2101         if (parport < 0)
2102                 parport = DEFAULT_PARPORT;
2103
2104         /* take care of an eventual profile */
2105         switch (profile) {
2106         case PANEL_PROFILE_CUSTOM:      /* custom profile */
2107                 if (keypad_type < 0)
2108                         keypad_type = DEFAULT_KEYPAD;
2109                 if (lcd_type < 0)
2110                         lcd_type = DEFAULT_LCD;
2111                 break;
2112         case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */
2113                 if (keypad_type < 0)
2114                         keypad_type = KEYPAD_TYPE_OLD;
2115                 if (lcd_type < 0)
2116                         lcd_type = LCD_TYPE_OLD;
2117                 if (lcd_width < 0)
2118                         lcd_width = 16;
2119                 if (lcd_hwidth < 0)
2120                         lcd_hwidth = 16;
2121                 break;
2122         case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */
2123                 if (keypad_type < 0)
2124                         keypad_type = KEYPAD_TYPE_NEW;
2125                 if (lcd_type < 0)
2126                         lcd_type = LCD_TYPE_KS0074;
2127                 break;
2128         case PANEL_PROFILE_HANTRONIX:   /* 8 bits, 2*16 hantronix-like, no keypad */
2129                 if (keypad_type < 0)
2130                         keypad_type = KEYPAD_TYPE_NONE;
2131                 if (lcd_type < 0)
2132                         lcd_type = LCD_TYPE_HANTRONIX;
2133                 break;
2134         case PANEL_PROFILE_NEXCOM:      /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2135                 if (keypad_type < 0)
2136                         keypad_type = KEYPAD_TYPE_NEXCOM;
2137                 if (lcd_type < 0)
2138                         lcd_type = LCD_TYPE_NEXCOM;
2139                 break;
2140         case PANEL_PROFILE_LARGE:       /* 8 bits, 2*40, old keypad */
2141                 if (keypad_type < 0)
2142                         keypad_type = KEYPAD_TYPE_OLD;
2143                 if (lcd_type < 0)
2144                         lcd_type = LCD_TYPE_OLD;
2145                 break;
2146         }
2147
2148         lcd_enabled = (lcd_type > 0);
2149         keypad_enabled = (keypad_type > 0);
2150
2151         switch (keypad_type) {
2152         case KEYPAD_TYPE_OLD:
2153                 keypad_profile = old_keypad_profile;
2154                 break;
2155         case KEYPAD_TYPE_NEW:
2156                 keypad_profile = new_keypad_profile;
2157                 break;
2158         case KEYPAD_TYPE_NEXCOM:
2159                 keypad_profile = nexcom_keypad_profile;
2160                 break;
2161         default:
2162                 keypad_profile = NULL;
2163                 break;
2164         }
2165
2166         /* tells various subsystems about the fact that we are initializing */
2167         init_in_progress = 1;
2168
2169         if (parport_register_driver(&panel_driver)) {
2170                 printk(KERN_ERR
2171                        "Panel: could not register with parport. Aborting.\n");
2172                 return -EIO;
2173         }
2174
2175         if (!lcd_enabled && !keypad_enabled) {
2176                 /* no device enabled, let's release the parport */
2177                 if (pprt) {
2178                         parport_release(pprt);
2179                         parport_unregister_device(pprt);
2180                 }
2181                 parport_unregister_driver(&panel_driver);
2182                 printk(KERN_ERR "Panel driver version " PANEL_VERSION
2183                        " disabled.\n");
2184                 return -ENODEV;
2185         }
2186
2187         register_reboot_notifier(&panel_notifier);
2188
2189         if (pprt)
2190                 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2191                        " registered on parport%d (io=0x%lx).\n", parport,
2192                        pprt->port->base);
2193         else
2194                 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2195                        " not yet registered\n");
2196         /* tells various subsystems about the fact that initialization is finished */
2197         init_in_progress = 0;
2198         return 0;
2199 }
2200
2201 static int __init panel_init_module(void)
2202 {
2203         return panel_init();
2204 }
2205
2206 static void __exit panel_cleanup_module(void)
2207 {
2208         unregister_reboot_notifier(&panel_notifier);
2209
2210         if (scan_timer.function != NULL)
2211                 del_timer(&scan_timer);
2212
2213         if (pprt != NULL) {
2214                 if (keypad_enabled)
2215                         misc_deregister(&keypad_dev);
2216
2217                 if (lcd_enabled) {
2218                         panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2219                                         "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2220                         misc_deregister(&lcd_dev);
2221                 }
2222
2223                 /* TODO: free all input signals */
2224                 parport_release(pprt);
2225                 parport_unregister_device(pprt);
2226         }
2227         parport_unregister_driver(&panel_driver);
2228 }
2229
2230 module_init(panel_init_module);
2231 module_exit(panel_cleanup_module);
2232 MODULE_AUTHOR("Willy Tarreau");
2233 MODULE_LICENSE("GPL");
2234
2235 /*
2236  * Local variables:
2237  *  c-indent-level: 4
2238  *  tab-width: 8
2239  * End:
2240  */