SCSI: support for allocating large scatterlists
[safe/jmp/linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 struct scsi_host_sg_pool {
38         size_t          size;
39         char            *name;
40         struct kmem_cache       *slab;
41         mempool_t       *pool;
42 };
43
44 #define SP(x) { x, "sgpool-" #x }
45 static struct scsi_host_sg_pool scsi_sg_pools[] = {
46         SP(8),
47         SP(16),
48         SP(32),
49         SP(64),
50         SP(128),
51 };
52 #undef SP
53
54 static void scsi_run_queue(struct request_queue *q);
55
56 /*
57  * Function:    scsi_unprep_request()
58  *
59  * Purpose:     Remove all preparation done for a request, including its
60  *              associated scsi_cmnd, so that it can be requeued.
61  *
62  * Arguments:   req     - request to unprepare
63  *
64  * Lock status: Assumed that no locks are held upon entry.
65  *
66  * Returns:     Nothing.
67  */
68 static void scsi_unprep_request(struct request *req)
69 {
70         struct scsi_cmnd *cmd = req->special;
71
72         req->cmd_flags &= ~REQ_DONTPREP;
73         req->special = NULL;
74
75         scsi_put_command(cmd);
76 }
77
78 /*
79  * Function:    scsi_queue_insert()
80  *
81  * Purpose:     Insert a command in the midlevel queue.
82  *
83  * Arguments:   cmd    - command that we are adding to queue.
84  *              reason - why we are inserting command to queue.
85  *
86  * Lock status: Assumed that lock is not held upon entry.
87  *
88  * Returns:     Nothing.
89  *
90  * Notes:       We do this for one of two cases.  Either the host is busy
91  *              and it cannot accept any more commands for the time being,
92  *              or the device returned QUEUE_FULL and can accept no more
93  *              commands.
94  * Notes:       This could be called either from an interrupt context or a
95  *              normal process context.
96  */
97 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
98 {
99         struct Scsi_Host *host = cmd->device->host;
100         struct scsi_device *device = cmd->device;
101         struct request_queue *q = device->request_queue;
102         unsigned long flags;
103
104         SCSI_LOG_MLQUEUE(1,
105                  printk("Inserting command %p into mlqueue\n", cmd));
106
107         /*
108          * Set the appropriate busy bit for the device/host.
109          *
110          * If the host/device isn't busy, assume that something actually
111          * completed, and that we should be able to queue a command now.
112          *
113          * Note that the prior mid-layer assumption that any host could
114          * always queue at least one command is now broken.  The mid-layer
115          * will implement a user specifiable stall (see
116          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
117          * if a command is requeued with no other commands outstanding
118          * either for the device or for the host.
119          */
120         if (reason == SCSI_MLQUEUE_HOST_BUSY)
121                 host->host_blocked = host->max_host_blocked;
122         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
123                 device->device_blocked = device->max_device_blocked;
124
125         /*
126          * Decrement the counters, since these commands are no longer
127          * active on the host/device.
128          */
129         scsi_device_unbusy(device);
130
131         /*
132          * Requeue this command.  It will go before all other commands
133          * that are already in the queue.
134          *
135          * NOTE: there is magic here about the way the queue is plugged if
136          * we have no outstanding commands.
137          * 
138          * Although we *don't* plug the queue, we call the request
139          * function.  The SCSI request function detects the blocked condition
140          * and plugs the queue appropriately.
141          */
142         spin_lock_irqsave(q->queue_lock, flags);
143         blk_requeue_request(q, cmd->request);
144         spin_unlock_irqrestore(q->queue_lock, flags);
145
146         scsi_run_queue(q);
147
148         return 0;
149 }
150
151 /**
152  * scsi_execute - insert request and wait for the result
153  * @sdev:       scsi device
154  * @cmd:        scsi command
155  * @data_direction: data direction
156  * @buffer:     data buffer
157  * @bufflen:    len of buffer
158  * @sense:      optional sense buffer
159  * @timeout:    request timeout in seconds
160  * @retries:    number of times to retry request
161  * @flags:      or into request flags;
162  *
163  * returns the req->errors value which is the scsi_cmnd result
164  * field.
165  **/
166 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
167                  int data_direction, void *buffer, unsigned bufflen,
168                  unsigned char *sense, int timeout, int retries, int flags)
169 {
170         struct request *req;
171         int write = (data_direction == DMA_TO_DEVICE);
172         int ret = DRIVER_ERROR << 24;
173
174         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
175
176         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
177                                         buffer, bufflen, __GFP_WAIT))
178                 goto out;
179
180         req->cmd_len = COMMAND_SIZE(cmd[0]);
181         memcpy(req->cmd, cmd, req->cmd_len);
182         req->sense = sense;
183         req->sense_len = 0;
184         req->retries = retries;
185         req->timeout = timeout;
186         req->cmd_type = REQ_TYPE_BLOCK_PC;
187         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
188
189         /*
190          * head injection *required* here otherwise quiesce won't work
191          */
192         blk_execute_rq(req->q, NULL, req, 1);
193
194         ret = req->errors;
195  out:
196         blk_put_request(req);
197
198         return ret;
199 }
200 EXPORT_SYMBOL(scsi_execute);
201
202
203 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
204                      int data_direction, void *buffer, unsigned bufflen,
205                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
206 {
207         char *sense = NULL;
208         int result;
209         
210         if (sshdr) {
211                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
212                 if (!sense)
213                         return DRIVER_ERROR << 24;
214         }
215         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
216                               sense, timeout, retries, 0);
217         if (sshdr)
218                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
219
220         kfree(sense);
221         return result;
222 }
223 EXPORT_SYMBOL(scsi_execute_req);
224
225 struct scsi_io_context {
226         void *data;
227         void (*done)(void *data, char *sense, int result, int resid);
228         char sense[SCSI_SENSE_BUFFERSIZE];
229 };
230
231 static struct kmem_cache *scsi_io_context_cache;
232
233 static void scsi_end_async(struct request *req, int uptodate)
234 {
235         struct scsi_io_context *sioc = req->end_io_data;
236
237         if (sioc->done)
238                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
239
240         kmem_cache_free(scsi_io_context_cache, sioc);
241         __blk_put_request(req->q, req);
242 }
243
244 static int scsi_merge_bio(struct request *rq, struct bio *bio)
245 {
246         struct request_queue *q = rq->q;
247
248         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
249         if (rq_data_dir(rq) == WRITE)
250                 bio->bi_rw |= (1 << BIO_RW);
251         blk_queue_bounce(q, &bio);
252
253         return blk_rq_append_bio(q, rq, bio);
254 }
255
256 static void scsi_bi_endio(struct bio *bio, int error)
257 {
258         bio_put(bio);
259 }
260
261 /**
262  * scsi_req_map_sg - map a scatterlist into a request
263  * @rq:         request to fill
264  * @sg:         scatterlist
265  * @nsegs:      number of elements
266  * @bufflen:    len of buffer
267  * @gfp:        memory allocation flags
268  *
269  * scsi_req_map_sg maps a scatterlist into a request so that the
270  * request can be sent to the block layer. We do not trust the scatterlist
271  * sent to use, as some ULDs use that struct to only organize the pages.
272  */
273 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
274                            int nsegs, unsigned bufflen, gfp_t gfp)
275 {
276         struct request_queue *q = rq->q;
277         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
278         unsigned int data_len = bufflen, len, bytes, off;
279         struct scatterlist *sg;
280         struct page *page;
281         struct bio *bio = NULL;
282         int i, err, nr_vecs = 0;
283
284         for_each_sg(sgl, sg, nsegs, i) {
285                 page = sg->page;
286                 off = sg->offset;
287                 len = sg->length;
288                 data_len += len;
289
290                 while (len > 0 && data_len > 0) {
291                         /*
292                          * sg sends a scatterlist that is larger than
293                          * the data_len it wants transferred for certain
294                          * IO sizes
295                          */
296                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
297                         bytes = min(bytes, data_len);
298
299                         if (!bio) {
300                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
301                                 nr_pages -= nr_vecs;
302
303                                 bio = bio_alloc(gfp, nr_vecs);
304                                 if (!bio) {
305                                         err = -ENOMEM;
306                                         goto free_bios;
307                                 }
308                                 bio->bi_end_io = scsi_bi_endio;
309                         }
310
311                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
312                             bytes) {
313                                 bio_put(bio);
314                                 err = -EINVAL;
315                                 goto free_bios;
316                         }
317
318                         if (bio->bi_vcnt >= nr_vecs) {
319                                 err = scsi_merge_bio(rq, bio);
320                                 if (err) {
321                                         bio_endio(bio, 0);
322                                         goto free_bios;
323                                 }
324                                 bio = NULL;
325                         }
326
327                         page++;
328                         len -= bytes;
329                         data_len -=bytes;
330                         off = 0;
331                 }
332         }
333
334         rq->buffer = rq->data = NULL;
335         rq->data_len = bufflen;
336         return 0;
337
338 free_bios:
339         while ((bio = rq->bio) != NULL) {
340                 rq->bio = bio->bi_next;
341                 /*
342                  * call endio instead of bio_put incase it was bounced
343                  */
344                 bio_endio(bio, 0);
345         }
346
347         return err;
348 }
349
350 /**
351  * scsi_execute_async - insert request
352  * @sdev:       scsi device
353  * @cmd:        scsi command
354  * @cmd_len:    length of scsi cdb
355  * @data_direction: data direction
356  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
357  * @bufflen:    len of buffer
358  * @use_sg:     if buffer is a scatterlist this is the number of elements
359  * @timeout:    request timeout in seconds
360  * @retries:    number of times to retry request
361  * @flags:      or into request flags
362  **/
363 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
364                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
365                        int use_sg, int timeout, int retries, void *privdata,
366                        void (*done)(void *, char *, int, int), gfp_t gfp)
367 {
368         struct request *req;
369         struct scsi_io_context *sioc;
370         int err = 0;
371         int write = (data_direction == DMA_TO_DEVICE);
372
373         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
374         if (!sioc)
375                 return DRIVER_ERROR << 24;
376
377         req = blk_get_request(sdev->request_queue, write, gfp);
378         if (!req)
379                 goto free_sense;
380         req->cmd_type = REQ_TYPE_BLOCK_PC;
381         req->cmd_flags |= REQ_QUIET;
382
383         if (use_sg)
384                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
385         else if (bufflen)
386                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
387
388         if (err)
389                 goto free_req;
390
391         req->cmd_len = cmd_len;
392         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
393         memcpy(req->cmd, cmd, req->cmd_len);
394         req->sense = sioc->sense;
395         req->sense_len = 0;
396         req->timeout = timeout;
397         req->retries = retries;
398         req->end_io_data = sioc;
399
400         sioc->data = privdata;
401         sioc->done = done;
402
403         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
404         return 0;
405
406 free_req:
407         blk_put_request(req);
408 free_sense:
409         kmem_cache_free(scsi_io_context_cache, sioc);
410         return DRIVER_ERROR << 24;
411 }
412 EXPORT_SYMBOL_GPL(scsi_execute_async);
413
414 /*
415  * Function:    scsi_init_cmd_errh()
416  *
417  * Purpose:     Initialize cmd fields related to error handling.
418  *
419  * Arguments:   cmd     - command that is ready to be queued.
420  *
421  * Notes:       This function has the job of initializing a number of
422  *              fields related to error handling.   Typically this will
423  *              be called once for each command, as required.
424  */
425 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
426 {
427         cmd->serial_number = 0;
428         cmd->resid = 0;
429         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
430         if (cmd->cmd_len == 0)
431                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
432 }
433
434 void scsi_device_unbusy(struct scsi_device *sdev)
435 {
436         struct Scsi_Host *shost = sdev->host;
437         unsigned long flags;
438
439         spin_lock_irqsave(shost->host_lock, flags);
440         shost->host_busy--;
441         if (unlikely(scsi_host_in_recovery(shost) &&
442                      (shost->host_failed || shost->host_eh_scheduled)))
443                 scsi_eh_wakeup(shost);
444         spin_unlock(shost->host_lock);
445         spin_lock(sdev->request_queue->queue_lock);
446         sdev->device_busy--;
447         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
448 }
449
450 /*
451  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
452  * and call blk_run_queue for all the scsi_devices on the target -
453  * including current_sdev first.
454  *
455  * Called with *no* scsi locks held.
456  */
457 static void scsi_single_lun_run(struct scsi_device *current_sdev)
458 {
459         struct Scsi_Host *shost = current_sdev->host;
460         struct scsi_device *sdev, *tmp;
461         struct scsi_target *starget = scsi_target(current_sdev);
462         unsigned long flags;
463
464         spin_lock_irqsave(shost->host_lock, flags);
465         starget->starget_sdev_user = NULL;
466         spin_unlock_irqrestore(shost->host_lock, flags);
467
468         /*
469          * Call blk_run_queue for all LUNs on the target, starting with
470          * current_sdev. We race with others (to set starget_sdev_user),
471          * but in most cases, we will be first. Ideally, each LU on the
472          * target would get some limited time or requests on the target.
473          */
474         blk_run_queue(current_sdev->request_queue);
475
476         spin_lock_irqsave(shost->host_lock, flags);
477         if (starget->starget_sdev_user)
478                 goto out;
479         list_for_each_entry_safe(sdev, tmp, &starget->devices,
480                         same_target_siblings) {
481                 if (sdev == current_sdev)
482                         continue;
483                 if (scsi_device_get(sdev))
484                         continue;
485
486                 spin_unlock_irqrestore(shost->host_lock, flags);
487                 blk_run_queue(sdev->request_queue);
488                 spin_lock_irqsave(shost->host_lock, flags);
489         
490                 scsi_device_put(sdev);
491         }
492  out:
493         spin_unlock_irqrestore(shost->host_lock, flags);
494 }
495
496 /*
497  * Function:    scsi_run_queue()
498  *
499  * Purpose:     Select a proper request queue to serve next
500  *
501  * Arguments:   q       - last request's queue
502  *
503  * Returns:     Nothing
504  *
505  * Notes:       The previous command was completely finished, start
506  *              a new one if possible.
507  */
508 static void scsi_run_queue(struct request_queue *q)
509 {
510         struct scsi_device *sdev = q->queuedata;
511         struct Scsi_Host *shost = sdev->host;
512         unsigned long flags;
513
514         if (sdev->single_lun)
515                 scsi_single_lun_run(sdev);
516
517         spin_lock_irqsave(shost->host_lock, flags);
518         while (!list_empty(&shost->starved_list) &&
519                !shost->host_blocked && !shost->host_self_blocked &&
520                 !((shost->can_queue > 0) &&
521                   (shost->host_busy >= shost->can_queue))) {
522                 /*
523                  * As long as shost is accepting commands and we have
524                  * starved queues, call blk_run_queue. scsi_request_fn
525                  * drops the queue_lock and can add us back to the
526                  * starved_list.
527                  *
528                  * host_lock protects the starved_list and starved_entry.
529                  * scsi_request_fn must get the host_lock before checking
530                  * or modifying starved_list or starved_entry.
531                  */
532                 sdev = list_entry(shost->starved_list.next,
533                                           struct scsi_device, starved_entry);
534                 list_del_init(&sdev->starved_entry);
535                 spin_unlock_irqrestore(shost->host_lock, flags);
536
537
538                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
539                     !test_and_set_bit(QUEUE_FLAG_REENTER,
540                                       &sdev->request_queue->queue_flags)) {
541                         blk_run_queue(sdev->request_queue);
542                         clear_bit(QUEUE_FLAG_REENTER,
543                                   &sdev->request_queue->queue_flags);
544                 } else
545                         blk_run_queue(sdev->request_queue);
546
547                 spin_lock_irqsave(shost->host_lock, flags);
548                 if (unlikely(!list_empty(&sdev->starved_entry)))
549                         /*
550                          * sdev lost a race, and was put back on the
551                          * starved list. This is unlikely but without this
552                          * in theory we could loop forever.
553                          */
554                         break;
555         }
556         spin_unlock_irqrestore(shost->host_lock, flags);
557
558         blk_run_queue(q);
559 }
560
561 /*
562  * Function:    scsi_requeue_command()
563  *
564  * Purpose:     Handle post-processing of completed commands.
565  *
566  * Arguments:   q       - queue to operate on
567  *              cmd     - command that may need to be requeued.
568  *
569  * Returns:     Nothing
570  *
571  * Notes:       After command completion, there may be blocks left
572  *              over which weren't finished by the previous command
573  *              this can be for a number of reasons - the main one is
574  *              I/O errors in the middle of the request, in which case
575  *              we need to request the blocks that come after the bad
576  *              sector.
577  * Notes:       Upon return, cmd is a stale pointer.
578  */
579 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
580 {
581         struct request *req = cmd->request;
582         unsigned long flags;
583
584         scsi_unprep_request(req);
585         spin_lock_irqsave(q->queue_lock, flags);
586         blk_requeue_request(q, req);
587         spin_unlock_irqrestore(q->queue_lock, flags);
588
589         scsi_run_queue(q);
590 }
591
592 void scsi_next_command(struct scsi_cmnd *cmd)
593 {
594         struct scsi_device *sdev = cmd->device;
595         struct request_queue *q = sdev->request_queue;
596
597         /* need to hold a reference on the device before we let go of the cmd */
598         get_device(&sdev->sdev_gendev);
599
600         scsi_put_command(cmd);
601         scsi_run_queue(q);
602
603         /* ok to remove device now */
604         put_device(&sdev->sdev_gendev);
605 }
606
607 void scsi_run_host_queues(struct Scsi_Host *shost)
608 {
609         struct scsi_device *sdev;
610
611         shost_for_each_device(sdev, shost)
612                 scsi_run_queue(sdev->request_queue);
613 }
614
615 /*
616  * Function:    scsi_end_request()
617  *
618  * Purpose:     Post-processing of completed commands (usually invoked at end
619  *              of upper level post-processing and scsi_io_completion).
620  *
621  * Arguments:   cmd      - command that is complete.
622  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
623  *              bytes    - number of bytes of completed I/O
624  *              requeue  - indicates whether we should requeue leftovers.
625  *
626  * Lock status: Assumed that lock is not held upon entry.
627  *
628  * Returns:     cmd if requeue required, NULL otherwise.
629  *
630  * Notes:       This is called for block device requests in order to
631  *              mark some number of sectors as complete.
632  * 
633  *              We are guaranteeing that the request queue will be goosed
634  *              at some point during this call.
635  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
636  */
637 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
638                                           int bytes, int requeue)
639 {
640         struct request_queue *q = cmd->device->request_queue;
641         struct request *req = cmd->request;
642         unsigned long flags;
643
644         /*
645          * If there are blocks left over at the end, set up the command
646          * to queue the remainder of them.
647          */
648         if (end_that_request_chunk(req, uptodate, bytes)) {
649                 int leftover = (req->hard_nr_sectors << 9);
650
651                 if (blk_pc_request(req))
652                         leftover = req->data_len;
653
654                 /* kill remainder if no retrys */
655                 if (!uptodate && blk_noretry_request(req))
656                         end_that_request_chunk(req, 0, leftover);
657                 else {
658                         if (requeue) {
659                                 /*
660                                  * Bleah.  Leftovers again.  Stick the
661                                  * leftovers in the front of the
662                                  * queue, and goose the queue again.
663                                  */
664                                 scsi_requeue_command(q, cmd);
665                                 cmd = NULL;
666                         }
667                         return cmd;
668                 }
669         }
670
671         add_disk_randomness(req->rq_disk);
672
673         spin_lock_irqsave(q->queue_lock, flags);
674         if (blk_rq_tagged(req))
675                 blk_queue_end_tag(q, req);
676         end_that_request_last(req, uptodate);
677         spin_unlock_irqrestore(q->queue_lock, flags);
678
679         /*
680          * This will goose the queue request function at the end, so we don't
681          * need to worry about launching another command.
682          */
683         scsi_next_command(cmd);
684         return NULL;
685 }
686
687 /*
688  * The maximum number of SG segments that we will put inside a scatterlist
689  * (unless chaining is used). Should ideally fit inside a single page, to
690  * avoid a higher order allocation.
691  */
692 #define SCSI_MAX_SG_SEGMENTS    128
693
694 /*
695  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
696  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
697  */
698 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
699
700 static inline unsigned int scsi_sgtable_index(unsigned short nents)
701 {
702         unsigned int index;
703
704         switch (nents) {
705         case 1 ... 8:
706                 index = 0;
707                 break;
708         case 9 ... 16:
709                 index = 1;
710                 break;
711         case 17 ... 32:
712                 index = 2;
713                 break;
714         case 33 ... 64:
715                 index = 3;
716                 break;
717         case 65 ... SCSI_MAX_SG_SEGMENTS:
718                 index = 4;
719                 break;
720         default:
721                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
722                 BUG();
723         }
724
725         return index;
726 }
727
728 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
729 {
730         struct scsi_host_sg_pool *sgp;
731         struct scatterlist *sgl, *prev, *ret;
732         unsigned int index;
733         int this, left;
734
735         BUG_ON(!cmd->use_sg);
736
737         left = cmd->use_sg;
738         ret = prev = NULL;
739         do {
740                 this = left;
741                 if (this > SCSI_MAX_SG_SEGMENTS) {
742                         this = SCSI_MAX_SG_SEGMENTS - 1;
743                         index = SG_MEMPOOL_NR - 1;
744                 } else
745                         index = scsi_sgtable_index(this);
746
747                 left -= this;
748
749                 sgp = scsi_sg_pools + index;
750
751                 sgl = mempool_alloc(sgp->pool, gfp_mask);
752                 if (unlikely(!sgl))
753                         goto enomem;
754
755                 memset(sgl, 0, sizeof(*sgl) * sgp->size);
756
757                 /*
758                  * first loop through, set initial index and return value
759                  */
760                 if (!ret) {
761                         cmd->sglist_len = index;
762                         ret = sgl;
763                 }
764
765                 /*
766                  * chain previous sglist, if any. we know the previous
767                  * sglist must be the biggest one, or we would not have
768                  * ended up doing another loop.
769                  */
770                 if (prev)
771                         sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
772
773                 /*
774                  * don't allow subsequent mempool allocs to sleep, it would
775                  * violate the mempool principle.
776                  */
777                 gfp_mask &= ~__GFP_WAIT;
778                 gfp_mask |= __GFP_HIGH;
779                 prev = sgl;
780         } while (left);
781
782         /*
783          * ->use_sg may get modified after dma mapping has potentially
784          * shrunk the number of segments, so keep a copy of it for free.
785          */
786         cmd->__use_sg = cmd->use_sg;
787         return ret;
788 enomem:
789         if (ret) {
790                 /*
791                  * Free entries chained off ret. Since we were trying to
792                  * allocate another sglist, we know that all entries are of
793                  * the max size.
794                  */
795                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
796                 prev = ret;
797                 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
798
799                 while ((sgl = sg_chain_ptr(ret)) != NULL) {
800                         ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
801                         mempool_free(sgl, sgp->pool);
802                 }
803
804                 mempool_free(prev, sgp->pool);
805         }
806         return NULL;
807 }
808
809 EXPORT_SYMBOL(scsi_alloc_sgtable);
810
811 void scsi_free_sgtable(struct scsi_cmnd *cmd)
812 {
813         struct scatterlist *sgl = cmd->request_buffer;
814         struct scsi_host_sg_pool *sgp;
815
816         BUG_ON(cmd->sglist_len >= SG_MEMPOOL_NR);
817
818         /*
819          * if this is the biggest size sglist, check if we have
820          * chained parts we need to free
821          */
822         if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
823                 unsigned short this, left;
824                 struct scatterlist *next;
825                 unsigned int index;
826
827                 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
828                 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
829                 while (left && next) {
830                         sgl = next;
831                         this = left;
832                         if (this > SCSI_MAX_SG_SEGMENTS) {
833                                 this = SCSI_MAX_SG_SEGMENTS - 1;
834                                 index = SG_MEMPOOL_NR - 1;
835                         } else
836                                 index = scsi_sgtable_index(this);
837
838                         left -= this;
839
840                         sgp = scsi_sg_pools + index;
841
842                         if (left)
843                                 next = sg_chain_ptr(&sgl[sgp->size - 1]);
844
845                         mempool_free(sgl, sgp->pool);
846                 }
847
848                 /*
849                  * Restore original, will be freed below
850                  */
851                 sgl = cmd->request_buffer;
852         }
853
854         sgp = scsi_sg_pools + cmd->sglist_len;
855         mempool_free(sgl, sgp->pool);
856 }
857
858 EXPORT_SYMBOL(scsi_free_sgtable);
859
860 /*
861  * Function:    scsi_release_buffers()
862  *
863  * Purpose:     Completion processing for block device I/O requests.
864  *
865  * Arguments:   cmd     - command that we are bailing.
866  *
867  * Lock status: Assumed that no lock is held upon entry.
868  *
869  * Returns:     Nothing
870  *
871  * Notes:       In the event that an upper level driver rejects a
872  *              command, we must release resources allocated during
873  *              the __init_io() function.  Primarily this would involve
874  *              the scatter-gather table, and potentially any bounce
875  *              buffers.
876  */
877 static void scsi_release_buffers(struct scsi_cmnd *cmd)
878 {
879         if (cmd->use_sg)
880                 scsi_free_sgtable(cmd);
881
882         /*
883          * Zero these out.  They now point to freed memory, and it is
884          * dangerous to hang onto the pointers.
885          */
886         cmd->request_buffer = NULL;
887         cmd->request_bufflen = 0;
888 }
889
890 /*
891  * Function:    scsi_io_completion()
892  *
893  * Purpose:     Completion processing for block device I/O requests.
894  *
895  * Arguments:   cmd   - command that is finished.
896  *
897  * Lock status: Assumed that no lock is held upon entry.
898  *
899  * Returns:     Nothing
900  *
901  * Notes:       This function is matched in terms of capabilities to
902  *              the function that created the scatter-gather list.
903  *              In other words, if there are no bounce buffers
904  *              (the normal case for most drivers), we don't need
905  *              the logic to deal with cleaning up afterwards.
906  *
907  *              We must do one of several things here:
908  *
909  *              a) Call scsi_end_request.  This will finish off the
910  *                 specified number of sectors.  If we are done, the
911  *                 command block will be released, and the queue
912  *                 function will be goosed.  If we are not done, then
913  *                 scsi_end_request will directly goose the queue.
914  *
915  *              b) We can just use scsi_requeue_command() here.  This would
916  *                 be used if we just wanted to retry, for example.
917  */
918 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
919 {
920         int result = cmd->result;
921         int this_count = cmd->request_bufflen;
922         struct request_queue *q = cmd->device->request_queue;
923         struct request *req = cmd->request;
924         int clear_errors = 1;
925         struct scsi_sense_hdr sshdr;
926         int sense_valid = 0;
927         int sense_deferred = 0;
928
929         scsi_release_buffers(cmd);
930
931         if (result) {
932                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
933                 if (sense_valid)
934                         sense_deferred = scsi_sense_is_deferred(&sshdr);
935         }
936
937         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
938                 req->errors = result;
939                 if (result) {
940                         clear_errors = 0;
941                         if (sense_valid && req->sense) {
942                                 /*
943                                  * SG_IO wants current and deferred errors
944                                  */
945                                 int len = 8 + cmd->sense_buffer[7];
946
947                                 if (len > SCSI_SENSE_BUFFERSIZE)
948                                         len = SCSI_SENSE_BUFFERSIZE;
949                                 memcpy(req->sense, cmd->sense_buffer,  len);
950                                 req->sense_len = len;
951                         }
952                 }
953                 req->data_len = cmd->resid;
954         }
955
956         /*
957          * Next deal with any sectors which we were able to correctly
958          * handle.
959          */
960         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
961                                       "%d bytes done.\n",
962                                       req->nr_sectors, good_bytes));
963         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
964
965         if (clear_errors)
966                 req->errors = 0;
967
968         /* A number of bytes were successfully read.  If there
969          * are leftovers and there is some kind of error
970          * (result != 0), retry the rest.
971          */
972         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
973                 return;
974
975         /* good_bytes = 0, or (inclusive) there were leftovers and
976          * result = 0, so scsi_end_request couldn't retry.
977          */
978         if (sense_valid && !sense_deferred) {
979                 switch (sshdr.sense_key) {
980                 case UNIT_ATTENTION:
981                         if (cmd->device->removable) {
982                                 /* Detected disc change.  Set a bit
983                                  * and quietly refuse further access.
984                                  */
985                                 cmd->device->changed = 1;
986                                 scsi_end_request(cmd, 0, this_count, 1);
987                                 return;
988                         } else {
989                                 /* Must have been a power glitch, or a
990                                  * bus reset.  Could not have been a
991                                  * media change, so we just retry the
992                                  * request and see what happens.
993                                  */
994                                 scsi_requeue_command(q, cmd);
995                                 return;
996                         }
997                         break;
998                 case ILLEGAL_REQUEST:
999                         /* If we had an ILLEGAL REQUEST returned, then
1000                          * we may have performed an unsupported
1001                          * command.  The only thing this should be
1002                          * would be a ten byte read where only a six
1003                          * byte read was supported.  Also, on a system
1004                          * where READ CAPACITY failed, we may have
1005                          * read past the end of the disk.
1006                          */
1007                         if ((cmd->device->use_10_for_rw &&
1008                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1009                             (cmd->cmnd[0] == READ_10 ||
1010                              cmd->cmnd[0] == WRITE_10)) {
1011                                 cmd->device->use_10_for_rw = 0;
1012                                 /* This will cause a retry with a
1013                                  * 6-byte command.
1014                                  */
1015                                 scsi_requeue_command(q, cmd);
1016                                 return;
1017                         } else {
1018                                 scsi_end_request(cmd, 0, this_count, 1);
1019                                 return;
1020                         }
1021                         break;
1022                 case NOT_READY:
1023                         /* If the device is in the process of becoming
1024                          * ready, or has a temporary blockage, retry.
1025                          */
1026                         if (sshdr.asc == 0x04) {
1027                                 switch (sshdr.ascq) {
1028                                 case 0x01: /* becoming ready */
1029                                 case 0x04: /* format in progress */
1030                                 case 0x05: /* rebuild in progress */
1031                                 case 0x06: /* recalculation in progress */
1032                                 case 0x07: /* operation in progress */
1033                                 case 0x08: /* Long write in progress */
1034                                 case 0x09: /* self test in progress */
1035                                         scsi_requeue_command(q, cmd);
1036                                         return;
1037                                 default:
1038                                         break;
1039                                 }
1040                         }
1041                         if (!(req->cmd_flags & REQ_QUIET))
1042                                 scsi_cmd_print_sense_hdr(cmd,
1043                                                          "Device not ready",
1044                                                          &sshdr);
1045
1046                         scsi_end_request(cmd, 0, this_count, 1);
1047                         return;
1048                 case VOLUME_OVERFLOW:
1049                         if (!(req->cmd_flags & REQ_QUIET)) {
1050                                 scmd_printk(KERN_INFO, cmd,
1051                                             "Volume overflow, CDB: ");
1052                                 __scsi_print_command(cmd->cmnd);
1053                                 scsi_print_sense("", cmd);
1054                         }
1055                         /* See SSC3rXX or current. */
1056                         scsi_end_request(cmd, 0, this_count, 1);
1057                         return;
1058                 default:
1059                         break;
1060                 }
1061         }
1062         if (host_byte(result) == DID_RESET) {
1063                 /* Third party bus reset or reset for error recovery
1064                  * reasons.  Just retry the request and see what
1065                  * happens.
1066                  */
1067                 scsi_requeue_command(q, cmd);
1068                 return;
1069         }
1070         if (result) {
1071                 if (!(req->cmd_flags & REQ_QUIET)) {
1072                         scsi_print_result(cmd);
1073                         if (driver_byte(result) & DRIVER_SENSE)
1074                                 scsi_print_sense("", cmd);
1075                 }
1076         }
1077         scsi_end_request(cmd, 0, this_count, !result);
1078 }
1079
1080 /*
1081  * Function:    scsi_init_io()
1082  *
1083  * Purpose:     SCSI I/O initialize function.
1084  *
1085  * Arguments:   cmd   - Command descriptor we wish to initialize
1086  *
1087  * Returns:     0 on success
1088  *              BLKPREP_DEFER if the failure is retryable
1089  *              BLKPREP_KILL if the failure is fatal
1090  */
1091 static int scsi_init_io(struct scsi_cmnd *cmd)
1092 {
1093         struct request     *req = cmd->request;
1094         int                count;
1095
1096         /*
1097          * We used to not use scatter-gather for single segment request,
1098          * but now we do (it makes highmem I/O easier to support without
1099          * kmapping pages)
1100          */
1101         cmd->use_sg = req->nr_phys_segments;
1102
1103         /*
1104          * If sg table allocation fails, requeue request later.
1105          */
1106         cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1107         if (unlikely(!cmd->request_buffer)) {
1108                 scsi_unprep_request(req);
1109                 return BLKPREP_DEFER;
1110         }
1111
1112         req->buffer = NULL;
1113         if (blk_pc_request(req))
1114                 cmd->request_bufflen = req->data_len;
1115         else
1116                 cmd->request_bufflen = req->nr_sectors << 9;
1117
1118         /* 
1119          * Next, walk the list, and fill in the addresses and sizes of
1120          * each segment.
1121          */
1122         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1123         if (likely(count <= cmd->use_sg)) {
1124                 cmd->use_sg = count;
1125                 return BLKPREP_OK;
1126         }
1127
1128         printk(KERN_ERR "Incorrect number of segments after building list\n");
1129         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1130         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1131                         req->current_nr_sectors);
1132
1133         return BLKPREP_KILL;
1134 }
1135
1136 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1137                 struct request *req)
1138 {
1139         struct scsi_cmnd *cmd;
1140
1141         if (!req->special) {
1142                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1143                 if (unlikely(!cmd))
1144                         return NULL;
1145                 req->special = cmd;
1146         } else {
1147                 cmd = req->special;
1148         }
1149
1150         /* pull a tag out of the request if we have one */
1151         cmd->tag = req->tag;
1152         cmd->request = req;
1153
1154         return cmd;
1155 }
1156
1157 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1158 {
1159         struct scsi_cmnd *cmd;
1160         int ret = scsi_prep_state_check(sdev, req);
1161
1162         if (ret != BLKPREP_OK)
1163                 return ret;
1164
1165         cmd = scsi_get_cmd_from_req(sdev, req);
1166         if (unlikely(!cmd))
1167                 return BLKPREP_DEFER;
1168
1169         /*
1170          * BLOCK_PC requests may transfer data, in which case they must
1171          * a bio attached to them.  Or they might contain a SCSI command
1172          * that does not transfer data, in which case they may optionally
1173          * submit a request without an attached bio.
1174          */
1175         if (req->bio) {
1176                 int ret;
1177
1178                 BUG_ON(!req->nr_phys_segments);
1179
1180                 ret = scsi_init_io(cmd);
1181                 if (unlikely(ret))
1182                         return ret;
1183         } else {
1184                 BUG_ON(req->data_len);
1185                 BUG_ON(req->data);
1186
1187                 cmd->request_bufflen = 0;
1188                 cmd->request_buffer = NULL;
1189                 cmd->use_sg = 0;
1190                 req->buffer = NULL;
1191         }
1192
1193         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1194         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1195         cmd->cmd_len = req->cmd_len;
1196         if (!req->data_len)
1197                 cmd->sc_data_direction = DMA_NONE;
1198         else if (rq_data_dir(req) == WRITE)
1199                 cmd->sc_data_direction = DMA_TO_DEVICE;
1200         else
1201                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1202         
1203         cmd->transfersize = req->data_len;
1204         cmd->allowed = req->retries;
1205         cmd->timeout_per_command = req->timeout;
1206         return BLKPREP_OK;
1207 }
1208 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1209
1210 /*
1211  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1212  * from filesystems that still need to be translated to SCSI CDBs from
1213  * the ULD.
1214  */
1215 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1216 {
1217         struct scsi_cmnd *cmd;
1218         int ret = scsi_prep_state_check(sdev, req);
1219
1220         if (ret != BLKPREP_OK)
1221                 return ret;
1222         /*
1223          * Filesystem requests must transfer data.
1224          */
1225         BUG_ON(!req->nr_phys_segments);
1226
1227         cmd = scsi_get_cmd_from_req(sdev, req);
1228         if (unlikely(!cmd))
1229                 return BLKPREP_DEFER;
1230
1231         return scsi_init_io(cmd);
1232 }
1233 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1234
1235 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1236 {
1237         int ret = BLKPREP_OK;
1238
1239         /*
1240          * If the device is not in running state we will reject some
1241          * or all commands.
1242          */
1243         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1244                 switch (sdev->sdev_state) {
1245                 case SDEV_OFFLINE:
1246                         /*
1247                          * If the device is offline we refuse to process any
1248                          * commands.  The device must be brought online
1249                          * before trying any recovery commands.
1250                          */
1251                         sdev_printk(KERN_ERR, sdev,
1252                                     "rejecting I/O to offline device\n");
1253                         ret = BLKPREP_KILL;
1254                         break;
1255                 case SDEV_DEL:
1256                         /*
1257                          * If the device is fully deleted, we refuse to
1258                          * process any commands as well.
1259                          */
1260                         sdev_printk(KERN_ERR, sdev,
1261                                     "rejecting I/O to dead device\n");
1262                         ret = BLKPREP_KILL;
1263                         break;
1264                 case SDEV_QUIESCE:
1265                 case SDEV_BLOCK:
1266                         /*
1267                          * If the devices is blocked we defer normal commands.
1268                          */
1269                         if (!(req->cmd_flags & REQ_PREEMPT))
1270                                 ret = BLKPREP_DEFER;
1271                         break;
1272                 default:
1273                         /*
1274                          * For any other not fully online state we only allow
1275                          * special commands.  In particular any user initiated
1276                          * command is not allowed.
1277                          */
1278                         if (!(req->cmd_flags & REQ_PREEMPT))
1279                                 ret = BLKPREP_KILL;
1280                         break;
1281                 }
1282         }
1283         return ret;
1284 }
1285 EXPORT_SYMBOL(scsi_prep_state_check);
1286
1287 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1288 {
1289         struct scsi_device *sdev = q->queuedata;
1290
1291         switch (ret) {
1292         case BLKPREP_KILL:
1293                 req->errors = DID_NO_CONNECT << 16;
1294                 /* release the command and kill it */
1295                 if (req->special) {
1296                         struct scsi_cmnd *cmd = req->special;
1297                         scsi_release_buffers(cmd);
1298                         scsi_put_command(cmd);
1299                         req->special = NULL;
1300                 }
1301                 break;
1302         case BLKPREP_DEFER:
1303                 /*
1304                  * If we defer, the elv_next_request() returns NULL, but the
1305                  * queue must be restarted, so we plug here if no returning
1306                  * command will automatically do that.
1307                  */
1308                 if (sdev->device_busy == 0)
1309                         blk_plug_device(q);
1310                 break;
1311         default:
1312                 req->cmd_flags |= REQ_DONTPREP;
1313         }
1314
1315         return ret;
1316 }
1317 EXPORT_SYMBOL(scsi_prep_return);
1318
1319 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1320 {
1321         struct scsi_device *sdev = q->queuedata;
1322         int ret = BLKPREP_KILL;
1323
1324         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1325                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1326         return scsi_prep_return(q, req, ret);
1327 }
1328
1329 /*
1330  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1331  * return 0.
1332  *
1333  * Called with the queue_lock held.
1334  */
1335 static inline int scsi_dev_queue_ready(struct request_queue *q,
1336                                   struct scsi_device *sdev)
1337 {
1338         if (sdev->device_busy >= sdev->queue_depth)
1339                 return 0;
1340         if (sdev->device_busy == 0 && sdev->device_blocked) {
1341                 /*
1342                  * unblock after device_blocked iterates to zero
1343                  */
1344                 if (--sdev->device_blocked == 0) {
1345                         SCSI_LOG_MLQUEUE(3,
1346                                    sdev_printk(KERN_INFO, sdev,
1347                                    "unblocking device at zero depth\n"));
1348                 } else {
1349                         blk_plug_device(q);
1350                         return 0;
1351                 }
1352         }
1353         if (sdev->device_blocked)
1354                 return 0;
1355
1356         return 1;
1357 }
1358
1359 /*
1360  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1361  * return 0. We must end up running the queue again whenever 0 is
1362  * returned, else IO can hang.
1363  *
1364  * Called with host_lock held.
1365  */
1366 static inline int scsi_host_queue_ready(struct request_queue *q,
1367                                    struct Scsi_Host *shost,
1368                                    struct scsi_device *sdev)
1369 {
1370         if (scsi_host_in_recovery(shost))
1371                 return 0;
1372         if (shost->host_busy == 0 && shost->host_blocked) {
1373                 /*
1374                  * unblock after host_blocked iterates to zero
1375                  */
1376                 if (--shost->host_blocked == 0) {
1377                         SCSI_LOG_MLQUEUE(3,
1378                                 printk("scsi%d unblocking host at zero depth\n",
1379                                         shost->host_no));
1380                 } else {
1381                         blk_plug_device(q);
1382                         return 0;
1383                 }
1384         }
1385         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1386             shost->host_blocked || shost->host_self_blocked) {
1387                 if (list_empty(&sdev->starved_entry))
1388                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1389                 return 0;
1390         }
1391
1392         /* We're OK to process the command, so we can't be starved */
1393         if (!list_empty(&sdev->starved_entry))
1394                 list_del_init(&sdev->starved_entry);
1395
1396         return 1;
1397 }
1398
1399 /*
1400  * Kill a request for a dead device
1401  */
1402 static void scsi_kill_request(struct request *req, struct request_queue *q)
1403 {
1404         struct scsi_cmnd *cmd = req->special;
1405         struct scsi_device *sdev = cmd->device;
1406         struct Scsi_Host *shost = sdev->host;
1407
1408         blkdev_dequeue_request(req);
1409
1410         if (unlikely(cmd == NULL)) {
1411                 printk(KERN_CRIT "impossible request in %s.\n",
1412                                  __FUNCTION__);
1413                 BUG();
1414         }
1415
1416         scsi_init_cmd_errh(cmd);
1417         cmd->result = DID_NO_CONNECT << 16;
1418         atomic_inc(&cmd->device->iorequest_cnt);
1419
1420         /*
1421          * SCSI request completion path will do scsi_device_unbusy(),
1422          * bump busy counts.  To bump the counters, we need to dance
1423          * with the locks as normal issue path does.
1424          */
1425         sdev->device_busy++;
1426         spin_unlock(sdev->request_queue->queue_lock);
1427         spin_lock(shost->host_lock);
1428         shost->host_busy++;
1429         spin_unlock(shost->host_lock);
1430         spin_lock(sdev->request_queue->queue_lock);
1431
1432         __scsi_done(cmd);
1433 }
1434
1435 static void scsi_softirq_done(struct request *rq)
1436 {
1437         struct scsi_cmnd *cmd = rq->completion_data;
1438         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1439         int disposition;
1440
1441         INIT_LIST_HEAD(&cmd->eh_entry);
1442
1443         disposition = scsi_decide_disposition(cmd);
1444         if (disposition != SUCCESS &&
1445             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1446                 sdev_printk(KERN_ERR, cmd->device,
1447                             "timing out command, waited %lus\n",
1448                             wait_for/HZ);
1449                 disposition = SUCCESS;
1450         }
1451                         
1452         scsi_log_completion(cmd, disposition);
1453
1454         switch (disposition) {
1455                 case SUCCESS:
1456                         scsi_finish_command(cmd);
1457                         break;
1458                 case NEEDS_RETRY:
1459                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1460                         break;
1461                 case ADD_TO_MLQUEUE:
1462                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1463                         break;
1464                 default:
1465                         if (!scsi_eh_scmd_add(cmd, 0))
1466                                 scsi_finish_command(cmd);
1467         }
1468 }
1469
1470 /*
1471  * Function:    scsi_request_fn()
1472  *
1473  * Purpose:     Main strategy routine for SCSI.
1474  *
1475  * Arguments:   q       - Pointer to actual queue.
1476  *
1477  * Returns:     Nothing
1478  *
1479  * Lock status: IO request lock assumed to be held when called.
1480  */
1481 static void scsi_request_fn(struct request_queue *q)
1482 {
1483         struct scsi_device *sdev = q->queuedata;
1484         struct Scsi_Host *shost;
1485         struct scsi_cmnd *cmd;
1486         struct request *req;
1487
1488         if (!sdev) {
1489                 printk("scsi: killing requests for dead queue\n");
1490                 while ((req = elv_next_request(q)) != NULL)
1491                         scsi_kill_request(req, q);
1492                 return;
1493         }
1494
1495         if(!get_device(&sdev->sdev_gendev))
1496                 /* We must be tearing the block queue down already */
1497                 return;
1498
1499         /*
1500          * To start with, we keep looping until the queue is empty, or until
1501          * the host is no longer able to accept any more requests.
1502          */
1503         shost = sdev->host;
1504         while (!blk_queue_plugged(q)) {
1505                 int rtn;
1506                 /*
1507                  * get next queueable request.  We do this early to make sure
1508                  * that the request is fully prepared even if we cannot 
1509                  * accept it.
1510                  */
1511                 req = elv_next_request(q);
1512                 if (!req || !scsi_dev_queue_ready(q, sdev))
1513                         break;
1514
1515                 if (unlikely(!scsi_device_online(sdev))) {
1516                         sdev_printk(KERN_ERR, sdev,
1517                                     "rejecting I/O to offline device\n");
1518                         scsi_kill_request(req, q);
1519                         continue;
1520                 }
1521
1522
1523                 /*
1524                  * Remove the request from the request list.
1525                  */
1526                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1527                         blkdev_dequeue_request(req);
1528                 sdev->device_busy++;
1529
1530                 spin_unlock(q->queue_lock);
1531                 cmd = req->special;
1532                 if (unlikely(cmd == NULL)) {
1533                         printk(KERN_CRIT "impossible request in %s.\n"
1534                                          "please mail a stack trace to "
1535                                          "linux-scsi@vger.kernel.org\n",
1536                                          __FUNCTION__);
1537                         blk_dump_rq_flags(req, "foo");
1538                         BUG();
1539                 }
1540                 spin_lock(shost->host_lock);
1541
1542                 if (!scsi_host_queue_ready(q, shost, sdev))
1543                         goto not_ready;
1544                 if (sdev->single_lun) {
1545                         if (scsi_target(sdev)->starget_sdev_user &&
1546                             scsi_target(sdev)->starget_sdev_user != sdev)
1547                                 goto not_ready;
1548                         scsi_target(sdev)->starget_sdev_user = sdev;
1549                 }
1550                 shost->host_busy++;
1551
1552                 /*
1553                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1554                  *              take the lock again.
1555                  */
1556                 spin_unlock_irq(shost->host_lock);
1557
1558                 /*
1559                  * Finally, initialize any error handling parameters, and set up
1560                  * the timers for timeouts.
1561                  */
1562                 scsi_init_cmd_errh(cmd);
1563
1564                 /*
1565                  * Dispatch the command to the low-level driver.
1566                  */
1567                 rtn = scsi_dispatch_cmd(cmd);
1568                 spin_lock_irq(q->queue_lock);
1569                 if(rtn) {
1570                         /* we're refusing the command; because of
1571                          * the way locks get dropped, we need to 
1572                          * check here if plugging is required */
1573                         if(sdev->device_busy == 0)
1574                                 blk_plug_device(q);
1575
1576                         break;
1577                 }
1578         }
1579
1580         goto out;
1581
1582  not_ready:
1583         spin_unlock_irq(shost->host_lock);
1584
1585         /*
1586          * lock q, handle tag, requeue req, and decrement device_busy. We
1587          * must return with queue_lock held.
1588          *
1589          * Decrementing device_busy without checking it is OK, as all such
1590          * cases (host limits or settings) should run the queue at some
1591          * later time.
1592          */
1593         spin_lock_irq(q->queue_lock);
1594         blk_requeue_request(q, req);
1595         sdev->device_busy--;
1596         if(sdev->device_busy == 0)
1597                 blk_plug_device(q);
1598  out:
1599         /* must be careful here...if we trigger the ->remove() function
1600          * we cannot be holding the q lock */
1601         spin_unlock_irq(q->queue_lock);
1602         put_device(&sdev->sdev_gendev);
1603         spin_lock_irq(q->queue_lock);
1604 }
1605
1606 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1607 {
1608         struct device *host_dev;
1609         u64 bounce_limit = 0xffffffff;
1610
1611         if (shost->unchecked_isa_dma)
1612                 return BLK_BOUNCE_ISA;
1613         /*
1614          * Platforms with virtual-DMA translation
1615          * hardware have no practical limit.
1616          */
1617         if (!PCI_DMA_BUS_IS_PHYS)
1618                 return BLK_BOUNCE_ANY;
1619
1620         host_dev = scsi_get_device(shost);
1621         if (host_dev && host_dev->dma_mask)
1622                 bounce_limit = *host_dev->dma_mask;
1623
1624         return bounce_limit;
1625 }
1626 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1627
1628 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1629                                          request_fn_proc *request_fn)
1630 {
1631         struct request_queue *q;
1632
1633         q = blk_init_queue(request_fn, NULL);
1634         if (!q)
1635                 return NULL;
1636
1637         /*
1638          * this limit is imposed by hardware restrictions
1639          */
1640         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1641
1642         /*
1643          * In the future, sg chaining support will be mandatory and this
1644          * ifdef can then go away. Right now we don't have all archs
1645          * converted, so better keep it safe.
1646          */
1647 #ifdef ARCH_HAS_SG_CHAIN
1648         blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1649 #else
1650         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1651 #endif
1652
1653         blk_queue_max_sectors(q, shost->max_sectors);
1654         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1655         blk_queue_segment_boundary(q, shost->dma_boundary);
1656
1657         if (!shost->use_clustering)
1658                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1659         return q;
1660 }
1661 EXPORT_SYMBOL(__scsi_alloc_queue);
1662
1663 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1664 {
1665         struct request_queue *q;
1666
1667         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1668         if (!q)
1669                 return NULL;
1670
1671         blk_queue_prep_rq(q, scsi_prep_fn);
1672         blk_queue_softirq_done(q, scsi_softirq_done);
1673         return q;
1674 }
1675
1676 void scsi_free_queue(struct request_queue *q)
1677 {
1678         blk_cleanup_queue(q);
1679 }
1680
1681 /*
1682  * Function:    scsi_block_requests()
1683  *
1684  * Purpose:     Utility function used by low-level drivers to prevent further
1685  *              commands from being queued to the device.
1686  *
1687  * Arguments:   shost       - Host in question
1688  *
1689  * Returns:     Nothing
1690  *
1691  * Lock status: No locks are assumed held.
1692  *
1693  * Notes:       There is no timer nor any other means by which the requests
1694  *              get unblocked other than the low-level driver calling
1695  *              scsi_unblock_requests().
1696  */
1697 void scsi_block_requests(struct Scsi_Host *shost)
1698 {
1699         shost->host_self_blocked = 1;
1700 }
1701 EXPORT_SYMBOL(scsi_block_requests);
1702
1703 /*
1704  * Function:    scsi_unblock_requests()
1705  *
1706  * Purpose:     Utility function used by low-level drivers to allow further
1707  *              commands from being queued to the device.
1708  *
1709  * Arguments:   shost       - Host in question
1710  *
1711  * Returns:     Nothing
1712  *
1713  * Lock status: No locks are assumed held.
1714  *
1715  * Notes:       There is no timer nor any other means by which the requests
1716  *              get unblocked other than the low-level driver calling
1717  *              scsi_unblock_requests().
1718  *
1719  *              This is done as an API function so that changes to the
1720  *              internals of the scsi mid-layer won't require wholesale
1721  *              changes to drivers that use this feature.
1722  */
1723 void scsi_unblock_requests(struct Scsi_Host *shost)
1724 {
1725         shost->host_self_blocked = 0;
1726         scsi_run_host_queues(shost);
1727 }
1728 EXPORT_SYMBOL(scsi_unblock_requests);
1729
1730 int __init scsi_init_queue(void)
1731 {
1732         int i;
1733
1734         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1735                                         sizeof(struct scsi_io_context),
1736                                         0, 0, NULL);
1737         if (!scsi_io_context_cache) {
1738                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1739                 return -ENOMEM;
1740         }
1741
1742         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1743                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1744                 int size = sgp->size * sizeof(struct scatterlist);
1745
1746                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1747                                 SLAB_HWCACHE_ALIGN, NULL);
1748                 if (!sgp->slab) {
1749                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1750                                         sgp->name);
1751                 }
1752
1753                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1754                                                      sgp->slab);
1755                 if (!sgp->pool) {
1756                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1757                                         sgp->name);
1758                 }
1759         }
1760
1761         return 0;
1762 }
1763
1764 void scsi_exit_queue(void)
1765 {
1766         int i;
1767
1768         kmem_cache_destroy(scsi_io_context_cache);
1769
1770         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1771                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1772                 mempool_destroy(sgp->pool);
1773                 kmem_cache_destroy(sgp->slab);
1774         }
1775 }
1776
1777 /**
1778  *      scsi_mode_select - issue a mode select
1779  *      @sdev:  SCSI device to be queried
1780  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1781  *      @sp:    Save page bit (0 == don't save, 1 == save)
1782  *      @modepage: mode page being requested
1783  *      @buffer: request buffer (may not be smaller than eight bytes)
1784  *      @len:   length of request buffer.
1785  *      @timeout: command timeout
1786  *      @retries: number of retries before failing
1787  *      @data: returns a structure abstracting the mode header data
1788  *      @sense: place to put sense data (or NULL if no sense to be collected).
1789  *              must be SCSI_SENSE_BUFFERSIZE big.
1790  *
1791  *      Returns zero if successful; negative error number or scsi
1792  *      status on error
1793  *
1794  */
1795 int
1796 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1797                  unsigned char *buffer, int len, int timeout, int retries,
1798                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1799 {
1800         unsigned char cmd[10];
1801         unsigned char *real_buffer;
1802         int ret;
1803
1804         memset(cmd, 0, sizeof(cmd));
1805         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1806
1807         if (sdev->use_10_for_ms) {
1808                 if (len > 65535)
1809                         return -EINVAL;
1810                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1811                 if (!real_buffer)
1812                         return -ENOMEM;
1813                 memcpy(real_buffer + 8, buffer, len);
1814                 len += 8;
1815                 real_buffer[0] = 0;
1816                 real_buffer[1] = 0;
1817                 real_buffer[2] = data->medium_type;
1818                 real_buffer[3] = data->device_specific;
1819                 real_buffer[4] = data->longlba ? 0x01 : 0;
1820                 real_buffer[5] = 0;
1821                 real_buffer[6] = data->block_descriptor_length >> 8;
1822                 real_buffer[7] = data->block_descriptor_length;
1823
1824                 cmd[0] = MODE_SELECT_10;
1825                 cmd[7] = len >> 8;
1826                 cmd[8] = len;
1827         } else {
1828                 if (len > 255 || data->block_descriptor_length > 255 ||
1829                     data->longlba)
1830                         return -EINVAL;
1831
1832                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1833                 if (!real_buffer)
1834                         return -ENOMEM;
1835                 memcpy(real_buffer + 4, buffer, len);
1836                 len += 4;
1837                 real_buffer[0] = 0;
1838                 real_buffer[1] = data->medium_type;
1839                 real_buffer[2] = data->device_specific;
1840                 real_buffer[3] = data->block_descriptor_length;
1841                 
1842
1843                 cmd[0] = MODE_SELECT;
1844                 cmd[4] = len;
1845         }
1846
1847         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1848                                sshdr, timeout, retries);
1849         kfree(real_buffer);
1850         return ret;
1851 }
1852 EXPORT_SYMBOL_GPL(scsi_mode_select);
1853
1854 /**
1855  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1856  *              six bytes if necessary.
1857  *      @sdev:  SCSI device to be queried
1858  *      @dbd:   set if mode sense will allow block descriptors to be returned
1859  *      @modepage: mode page being requested
1860  *      @buffer: request buffer (may not be smaller than eight bytes)
1861  *      @len:   length of request buffer.
1862  *      @timeout: command timeout
1863  *      @retries: number of retries before failing
1864  *      @data: returns a structure abstracting the mode header data
1865  *      @sense: place to put sense data (or NULL if no sense to be collected).
1866  *              must be SCSI_SENSE_BUFFERSIZE big.
1867  *
1868  *      Returns zero if unsuccessful, or the header offset (either 4
1869  *      or 8 depending on whether a six or ten byte command was
1870  *      issued) if successful.
1871  **/
1872 int
1873 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1874                   unsigned char *buffer, int len, int timeout, int retries,
1875                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1876 {
1877         unsigned char cmd[12];
1878         int use_10_for_ms;
1879         int header_length;
1880         int result;
1881         struct scsi_sense_hdr my_sshdr;
1882
1883         memset(data, 0, sizeof(*data));
1884         memset(&cmd[0], 0, 12);
1885         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1886         cmd[2] = modepage;
1887
1888         /* caller might not be interested in sense, but we need it */
1889         if (!sshdr)
1890                 sshdr = &my_sshdr;
1891
1892  retry:
1893         use_10_for_ms = sdev->use_10_for_ms;
1894
1895         if (use_10_for_ms) {
1896                 if (len < 8)
1897                         len = 8;
1898
1899                 cmd[0] = MODE_SENSE_10;
1900                 cmd[8] = len;
1901                 header_length = 8;
1902         } else {
1903                 if (len < 4)
1904                         len = 4;
1905
1906                 cmd[0] = MODE_SENSE;
1907                 cmd[4] = len;
1908                 header_length = 4;
1909         }
1910
1911         memset(buffer, 0, len);
1912
1913         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1914                                   sshdr, timeout, retries);
1915
1916         /* This code looks awful: what it's doing is making sure an
1917          * ILLEGAL REQUEST sense return identifies the actual command
1918          * byte as the problem.  MODE_SENSE commands can return
1919          * ILLEGAL REQUEST if the code page isn't supported */
1920
1921         if (use_10_for_ms && !scsi_status_is_good(result) &&
1922             (driver_byte(result) & DRIVER_SENSE)) {
1923                 if (scsi_sense_valid(sshdr)) {
1924                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1925                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1926                                 /* 
1927                                  * Invalid command operation code
1928                                  */
1929                                 sdev->use_10_for_ms = 0;
1930                                 goto retry;
1931                         }
1932                 }
1933         }
1934
1935         if(scsi_status_is_good(result)) {
1936                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1937                              (modepage == 6 || modepage == 8))) {
1938                         /* Initio breakage? */
1939                         header_length = 0;
1940                         data->length = 13;
1941                         data->medium_type = 0;
1942                         data->device_specific = 0;
1943                         data->longlba = 0;
1944                         data->block_descriptor_length = 0;
1945                 } else if(use_10_for_ms) {
1946                         data->length = buffer[0]*256 + buffer[1] + 2;
1947                         data->medium_type = buffer[2];
1948                         data->device_specific = buffer[3];
1949                         data->longlba = buffer[4] & 0x01;
1950                         data->block_descriptor_length = buffer[6]*256
1951                                 + buffer[7];
1952                 } else {
1953                         data->length = buffer[0] + 1;
1954                         data->medium_type = buffer[1];
1955                         data->device_specific = buffer[2];
1956                         data->block_descriptor_length = buffer[3];
1957                 }
1958                 data->header_length = header_length;
1959         }
1960
1961         return result;
1962 }
1963 EXPORT_SYMBOL(scsi_mode_sense);
1964
1965 int
1966 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1967 {
1968         char cmd[] = {
1969                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1970         };
1971         struct scsi_sense_hdr sshdr;
1972         int result;
1973         
1974         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1975                                   timeout, retries);
1976
1977         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1978
1979                 if ((scsi_sense_valid(&sshdr)) &&
1980                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1981                      (sshdr.sense_key == NOT_READY))) {
1982                         sdev->changed = 1;
1983                         result = 0;
1984                 }
1985         }
1986         return result;
1987 }
1988 EXPORT_SYMBOL(scsi_test_unit_ready);
1989
1990 /**
1991  *      scsi_device_set_state - Take the given device through the device
1992  *              state model.
1993  *      @sdev:  scsi device to change the state of.
1994  *      @state: state to change to.
1995  *
1996  *      Returns zero if unsuccessful or an error if the requested 
1997  *      transition is illegal.
1998  **/
1999 int
2000 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2001 {
2002         enum scsi_device_state oldstate = sdev->sdev_state;
2003
2004         if (state == oldstate)
2005                 return 0;
2006
2007         switch (state) {
2008         case SDEV_CREATED:
2009                 /* There are no legal states that come back to
2010                  * created.  This is the manually initialised start
2011                  * state */
2012                 goto illegal;
2013                         
2014         case SDEV_RUNNING:
2015                 switch (oldstate) {
2016                 case SDEV_CREATED:
2017                 case SDEV_OFFLINE:
2018                 case SDEV_QUIESCE:
2019                 case SDEV_BLOCK:
2020                         break;
2021                 default:
2022                         goto illegal;
2023                 }
2024                 break;
2025
2026         case SDEV_QUIESCE:
2027                 switch (oldstate) {
2028                 case SDEV_RUNNING:
2029                 case SDEV_OFFLINE:
2030                         break;
2031                 default:
2032                         goto illegal;
2033                 }
2034                 break;
2035
2036         case SDEV_OFFLINE:
2037                 switch (oldstate) {
2038                 case SDEV_CREATED:
2039                 case SDEV_RUNNING:
2040                 case SDEV_QUIESCE:
2041                 case SDEV_BLOCK:
2042                         break;
2043                 default:
2044                         goto illegal;
2045                 }
2046                 break;
2047
2048         case SDEV_BLOCK:
2049                 switch (oldstate) {
2050                 case SDEV_CREATED:
2051                 case SDEV_RUNNING:
2052                         break;
2053                 default:
2054                         goto illegal;
2055                 }
2056                 break;
2057
2058         case SDEV_CANCEL:
2059                 switch (oldstate) {
2060                 case SDEV_CREATED:
2061                 case SDEV_RUNNING:
2062                 case SDEV_QUIESCE:
2063                 case SDEV_OFFLINE:
2064                 case SDEV_BLOCK:
2065                         break;
2066                 default:
2067                         goto illegal;
2068                 }
2069                 break;
2070
2071         case SDEV_DEL:
2072                 switch (oldstate) {
2073                 case SDEV_CREATED:
2074                 case SDEV_RUNNING:
2075                 case SDEV_OFFLINE:
2076                 case SDEV_CANCEL:
2077                         break;
2078                 default:
2079                         goto illegal;
2080                 }
2081                 break;
2082
2083         }
2084         sdev->sdev_state = state;
2085         return 0;
2086
2087  illegal:
2088         SCSI_LOG_ERROR_RECOVERY(1, 
2089                                 sdev_printk(KERN_ERR, sdev,
2090                                             "Illegal state transition %s->%s\n",
2091                                             scsi_device_state_name(oldstate),
2092                                             scsi_device_state_name(state))
2093                                 );
2094         return -EINVAL;
2095 }
2096 EXPORT_SYMBOL(scsi_device_set_state);
2097
2098 /**
2099  *      scsi_device_quiesce - Block user issued commands.
2100  *      @sdev:  scsi device to quiesce.
2101  *
2102  *      This works by trying to transition to the SDEV_QUIESCE state
2103  *      (which must be a legal transition).  When the device is in this
2104  *      state, only special requests will be accepted, all others will
2105  *      be deferred.  Since special requests may also be requeued requests,
2106  *      a successful return doesn't guarantee the device will be 
2107  *      totally quiescent.
2108  *
2109  *      Must be called with user context, may sleep.
2110  *
2111  *      Returns zero if unsuccessful or an error if not.
2112  **/
2113 int
2114 scsi_device_quiesce(struct scsi_device *sdev)
2115 {
2116         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2117         if (err)
2118                 return err;
2119
2120         scsi_run_queue(sdev->request_queue);
2121         while (sdev->device_busy) {
2122                 msleep_interruptible(200);
2123                 scsi_run_queue(sdev->request_queue);
2124         }
2125         return 0;
2126 }
2127 EXPORT_SYMBOL(scsi_device_quiesce);
2128
2129 /**
2130  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2131  *      @sdev:  scsi device to resume.
2132  *
2133  *      Moves the device from quiesced back to running and restarts the
2134  *      queues.
2135  *
2136  *      Must be called with user context, may sleep.
2137  **/
2138 void
2139 scsi_device_resume(struct scsi_device *sdev)
2140 {
2141         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2142                 return;
2143         scsi_run_queue(sdev->request_queue);
2144 }
2145 EXPORT_SYMBOL(scsi_device_resume);
2146
2147 static void
2148 device_quiesce_fn(struct scsi_device *sdev, void *data)
2149 {
2150         scsi_device_quiesce(sdev);
2151 }
2152
2153 void
2154 scsi_target_quiesce(struct scsi_target *starget)
2155 {
2156         starget_for_each_device(starget, NULL, device_quiesce_fn);
2157 }
2158 EXPORT_SYMBOL(scsi_target_quiesce);
2159
2160 static void
2161 device_resume_fn(struct scsi_device *sdev, void *data)
2162 {
2163         scsi_device_resume(sdev);
2164 }
2165
2166 void
2167 scsi_target_resume(struct scsi_target *starget)
2168 {
2169         starget_for_each_device(starget, NULL, device_resume_fn);
2170 }
2171 EXPORT_SYMBOL(scsi_target_resume);
2172
2173 /**
2174  * scsi_internal_device_block - internal function to put a device
2175  *                              temporarily into the SDEV_BLOCK state
2176  * @sdev:       device to block
2177  *
2178  * Block request made by scsi lld's to temporarily stop all
2179  * scsi commands on the specified device.  Called from interrupt
2180  * or normal process context.
2181  *
2182  * Returns zero if successful or error if not
2183  *
2184  * Notes:       
2185  *      This routine transitions the device to the SDEV_BLOCK state
2186  *      (which must be a legal transition).  When the device is in this
2187  *      state, all commands are deferred until the scsi lld reenables
2188  *      the device with scsi_device_unblock or device_block_tmo fires.
2189  *      This routine assumes the host_lock is held on entry.
2190  **/
2191 int
2192 scsi_internal_device_block(struct scsi_device *sdev)
2193 {
2194         struct request_queue *q = sdev->request_queue;
2195         unsigned long flags;
2196         int err = 0;
2197
2198         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2199         if (err)
2200                 return err;
2201
2202         /* 
2203          * The device has transitioned to SDEV_BLOCK.  Stop the
2204          * block layer from calling the midlayer with this device's
2205          * request queue. 
2206          */
2207         spin_lock_irqsave(q->queue_lock, flags);
2208         blk_stop_queue(q);
2209         spin_unlock_irqrestore(q->queue_lock, flags);
2210
2211         return 0;
2212 }
2213 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2214  
2215 /**
2216  * scsi_internal_device_unblock - resume a device after a block request
2217  * @sdev:       device to resume
2218  *
2219  * Called by scsi lld's or the midlayer to restart the device queue
2220  * for the previously suspended scsi device.  Called from interrupt or
2221  * normal process context.
2222  *
2223  * Returns zero if successful or error if not.
2224  *
2225  * Notes:       
2226  *      This routine transitions the device to the SDEV_RUNNING state
2227  *      (which must be a legal transition) allowing the midlayer to
2228  *      goose the queue for this device.  This routine assumes the 
2229  *      host_lock is held upon entry.
2230  **/
2231 int
2232 scsi_internal_device_unblock(struct scsi_device *sdev)
2233 {
2234         struct request_queue *q = sdev->request_queue; 
2235         int err;
2236         unsigned long flags;
2237         
2238         /* 
2239          * Try to transition the scsi device to SDEV_RUNNING
2240          * and goose the device queue if successful.  
2241          */
2242         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2243         if (err)
2244                 return err;
2245
2246         spin_lock_irqsave(q->queue_lock, flags);
2247         blk_start_queue(q);
2248         spin_unlock_irqrestore(q->queue_lock, flags);
2249
2250         return 0;
2251 }
2252 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2253
2254 static void
2255 device_block(struct scsi_device *sdev, void *data)
2256 {
2257         scsi_internal_device_block(sdev);
2258 }
2259
2260 static int
2261 target_block(struct device *dev, void *data)
2262 {
2263         if (scsi_is_target_device(dev))
2264                 starget_for_each_device(to_scsi_target(dev), NULL,
2265                                         device_block);
2266         return 0;
2267 }
2268
2269 void
2270 scsi_target_block(struct device *dev)
2271 {
2272         if (scsi_is_target_device(dev))
2273                 starget_for_each_device(to_scsi_target(dev), NULL,
2274                                         device_block);
2275         else
2276                 device_for_each_child(dev, NULL, target_block);
2277 }
2278 EXPORT_SYMBOL_GPL(scsi_target_block);
2279
2280 static void
2281 device_unblock(struct scsi_device *sdev, void *data)
2282 {
2283         scsi_internal_device_unblock(sdev);
2284 }
2285
2286 static int
2287 target_unblock(struct device *dev, void *data)
2288 {
2289         if (scsi_is_target_device(dev))
2290                 starget_for_each_device(to_scsi_target(dev), NULL,
2291                                         device_unblock);
2292         return 0;
2293 }
2294
2295 void
2296 scsi_target_unblock(struct device *dev)
2297 {
2298         if (scsi_is_target_device(dev))
2299                 starget_for_each_device(to_scsi_target(dev), NULL,
2300                                         device_unblock);
2301         else
2302                 device_for_each_child(dev, NULL, target_unblock);
2303 }
2304 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2305
2306 /**
2307  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2308  * @sg:         scatter-gather list
2309  * @sg_count:   number of segments in sg
2310  * @offset:     offset in bytes into sg, on return offset into the mapped area
2311  * @len:        bytes to map, on return number of bytes mapped
2312  *
2313  * Returns virtual address of the start of the mapped page
2314  */
2315 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2316                           size_t *offset, size_t *len)
2317 {
2318         int i;
2319         size_t sg_len = 0, len_complete = 0;
2320         struct scatterlist *sg;
2321         struct page *page;
2322
2323         WARN_ON(!irqs_disabled());
2324
2325         for_each_sg(sgl, sg, sg_count, i) {
2326                 len_complete = sg_len; /* Complete sg-entries */
2327                 sg_len += sg->length;
2328                 if (sg_len > *offset)
2329                         break;
2330         }
2331
2332         if (unlikely(i == sg_count)) {
2333                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2334                         "elements %d\n",
2335                        __FUNCTION__, sg_len, *offset, sg_count);
2336                 WARN_ON(1);
2337                 return NULL;
2338         }
2339
2340         /* Offset starting from the beginning of first page in this sg-entry */
2341         *offset = *offset - len_complete + sg->offset;
2342
2343         /* Assumption: contiguous pages can be accessed as "page + i" */
2344         page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2345         *offset &= ~PAGE_MASK;
2346
2347         /* Bytes in this sg-entry from *offset to the end of the page */
2348         sg_len = PAGE_SIZE - *offset;
2349         if (*len > sg_len)
2350                 *len = sg_len;
2351
2352         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2353 }
2354 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2355
2356 /**
2357  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2358  *                         mapped with scsi_kmap_atomic_sg
2359  * @virt:       virtual address to be unmapped
2360  */
2361 void scsi_kunmap_atomic_sg(void *virt)
2362 {
2363         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2364 }
2365 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);