[SCSI] advansys: Move a couple of fields from struct board to struct adv_dvc
[safe/jmp/linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE         2
35
36 struct scsi_host_sg_pool {
37         size_t          size;
38         char            *name; 
39         struct kmem_cache       *slab;
40         mempool_t       *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x } 
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49         SP(8),
50         SP(16),
51         SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53         SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55         SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57         SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };      
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         if (!rq->bio)
267                 blk_rq_bio_prep(q, rq, bio);
268         else if (!ll_back_merge_fn(q, rq, bio))
269                 return -EINVAL;
270         else {
271                 rq->biotail->bi_next = bio;
272                 rq->biotail = bio;
273         }
274
275         return 0;
276 }
277
278 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
279 {
280         if (bio->bi_size)
281                 return 1;
282
283         bio_put(bio);
284         return 0;
285 }
286
287 /**
288  * scsi_req_map_sg - map a scatterlist into a request
289  * @rq:         request to fill
290  * @sg:         scatterlist
291  * @nsegs:      number of elements
292  * @bufflen:    len of buffer
293  * @gfp:        memory allocation flags
294  *
295  * scsi_req_map_sg maps a scatterlist into a request so that the
296  * request can be sent to the block layer. We do not trust the scatterlist
297  * sent to use, as some ULDs use that struct to only organize the pages.
298  */
299 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300                            int nsegs, unsigned bufflen, gfp_t gfp)
301 {
302         struct request_queue *q = rq->q;
303         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304         unsigned int data_len = bufflen, len, bytes, off;
305         struct page *page;
306         struct bio *bio = NULL;
307         int i, err, nr_vecs = 0;
308
309         for (i = 0; i < nsegs; i++) {
310                 page = sgl[i].page;
311                 off = sgl[i].offset;
312                 len = sgl[i].length;
313
314                 while (len > 0 && data_len > 0) {
315                         /*
316                          * sg sends a scatterlist that is larger than
317                          * the data_len it wants transferred for certain
318                          * IO sizes
319                          */
320                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321                         bytes = min(bytes, data_len);
322
323                         if (!bio) {
324                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
325                                 nr_pages -= nr_vecs;
326
327                                 bio = bio_alloc(gfp, nr_vecs);
328                                 if (!bio) {
329                                         err = -ENOMEM;
330                                         goto free_bios;
331                                 }
332                                 bio->bi_end_io = scsi_bi_endio;
333                         }
334
335                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
336                             bytes) {
337                                 bio_put(bio);
338                                 err = -EINVAL;
339                                 goto free_bios;
340                         }
341
342                         if (bio->bi_vcnt >= nr_vecs) {
343                                 err = scsi_merge_bio(rq, bio);
344                                 if (err) {
345                                         bio_endio(bio, bio->bi_size, 0);
346                                         goto free_bios;
347                                 }
348                                 bio = NULL;
349                         }
350
351                         page++;
352                         len -= bytes;
353                         data_len -=bytes;
354                         off = 0;
355                 }
356         }
357
358         rq->buffer = rq->data = NULL;
359         rq->data_len = bufflen;
360         return 0;
361
362 free_bios:
363         while ((bio = rq->bio) != NULL) {
364                 rq->bio = bio->bi_next;
365                 /*
366                  * call endio instead of bio_put incase it was bounced
367                  */
368                 bio_endio(bio, bio->bi_size, 0);
369         }
370
371         return err;
372 }
373
374 /**
375  * scsi_execute_async - insert request
376  * @sdev:       scsi device
377  * @cmd:        scsi command
378  * @cmd_len:    length of scsi cdb
379  * @data_direction: data direction
380  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
381  * @bufflen:    len of buffer
382  * @use_sg:     if buffer is a scatterlist this is the number of elements
383  * @timeout:    request timeout in seconds
384  * @retries:    number of times to retry request
385  * @flags:      or into request flags
386  **/
387 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
388                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
389                        int use_sg, int timeout, int retries, void *privdata,
390                        void (*done)(void *, char *, int, int), gfp_t gfp)
391 {
392         struct request *req;
393         struct scsi_io_context *sioc;
394         int err = 0;
395         int write = (data_direction == DMA_TO_DEVICE);
396
397         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
398         if (!sioc)
399                 return DRIVER_ERROR << 24;
400
401         req = blk_get_request(sdev->request_queue, write, gfp);
402         if (!req)
403                 goto free_sense;
404         req->cmd_type = REQ_TYPE_BLOCK_PC;
405         req->cmd_flags |= REQ_QUIET;
406
407         if (use_sg)
408                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
409         else if (bufflen)
410                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
411
412         if (err)
413                 goto free_req;
414
415         req->cmd_len = cmd_len;
416         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
417         memcpy(req->cmd, cmd, req->cmd_len);
418         req->sense = sioc->sense;
419         req->sense_len = 0;
420         req->timeout = timeout;
421         req->retries = retries;
422         req->end_io_data = sioc;
423
424         sioc->data = privdata;
425         sioc->done = done;
426
427         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
428         return 0;
429
430 free_req:
431         blk_put_request(req);
432 free_sense:
433         kmem_cache_free(scsi_io_context_cache, sioc);
434         return DRIVER_ERROR << 24;
435 }
436 EXPORT_SYMBOL_GPL(scsi_execute_async);
437
438 /*
439  * Function:    scsi_init_cmd_errh()
440  *
441  * Purpose:     Initialize cmd fields related to error handling.
442  *
443  * Arguments:   cmd     - command that is ready to be queued.
444  *
445  * Notes:       This function has the job of initializing a number of
446  *              fields related to error handling.   Typically this will
447  *              be called once for each command, as required.
448  */
449 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
450 {
451         cmd->serial_number = 0;
452         cmd->resid = 0;
453         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
454         if (cmd->cmd_len == 0)
455                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
456 }
457
458 void scsi_device_unbusy(struct scsi_device *sdev)
459 {
460         struct Scsi_Host *shost = sdev->host;
461         unsigned long flags;
462
463         spin_lock_irqsave(shost->host_lock, flags);
464         shost->host_busy--;
465         if (unlikely(scsi_host_in_recovery(shost) &&
466                      (shost->host_failed || shost->host_eh_scheduled)))
467                 scsi_eh_wakeup(shost);
468         spin_unlock(shost->host_lock);
469         spin_lock(sdev->request_queue->queue_lock);
470         sdev->device_busy--;
471         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
472 }
473
474 /*
475  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
476  * and call blk_run_queue for all the scsi_devices on the target -
477  * including current_sdev first.
478  *
479  * Called with *no* scsi locks held.
480  */
481 static void scsi_single_lun_run(struct scsi_device *current_sdev)
482 {
483         struct Scsi_Host *shost = current_sdev->host;
484         struct scsi_device *sdev, *tmp;
485         struct scsi_target *starget = scsi_target(current_sdev);
486         unsigned long flags;
487
488         spin_lock_irqsave(shost->host_lock, flags);
489         starget->starget_sdev_user = NULL;
490         spin_unlock_irqrestore(shost->host_lock, flags);
491
492         /*
493          * Call blk_run_queue for all LUNs on the target, starting with
494          * current_sdev. We race with others (to set starget_sdev_user),
495          * but in most cases, we will be first. Ideally, each LU on the
496          * target would get some limited time or requests on the target.
497          */
498         blk_run_queue(current_sdev->request_queue);
499
500         spin_lock_irqsave(shost->host_lock, flags);
501         if (starget->starget_sdev_user)
502                 goto out;
503         list_for_each_entry_safe(sdev, tmp, &starget->devices,
504                         same_target_siblings) {
505                 if (sdev == current_sdev)
506                         continue;
507                 if (scsi_device_get(sdev))
508                         continue;
509
510                 spin_unlock_irqrestore(shost->host_lock, flags);
511                 blk_run_queue(sdev->request_queue);
512                 spin_lock_irqsave(shost->host_lock, flags);
513         
514                 scsi_device_put(sdev);
515         }
516  out:
517         spin_unlock_irqrestore(shost->host_lock, flags);
518 }
519
520 /*
521  * Function:    scsi_run_queue()
522  *
523  * Purpose:     Select a proper request queue to serve next
524  *
525  * Arguments:   q       - last request's queue
526  *
527  * Returns:     Nothing
528  *
529  * Notes:       The previous command was completely finished, start
530  *              a new one if possible.
531  */
532 static void scsi_run_queue(struct request_queue *q)
533 {
534         struct scsi_device *sdev = q->queuedata;
535         struct Scsi_Host *shost = sdev->host;
536         unsigned long flags;
537
538         if (sdev->single_lun)
539                 scsi_single_lun_run(sdev);
540
541         spin_lock_irqsave(shost->host_lock, flags);
542         while (!list_empty(&shost->starved_list) &&
543                !shost->host_blocked && !shost->host_self_blocked &&
544                 !((shost->can_queue > 0) &&
545                   (shost->host_busy >= shost->can_queue))) {
546                 /*
547                  * As long as shost is accepting commands and we have
548                  * starved queues, call blk_run_queue. scsi_request_fn
549                  * drops the queue_lock and can add us back to the
550                  * starved_list.
551                  *
552                  * host_lock protects the starved_list and starved_entry.
553                  * scsi_request_fn must get the host_lock before checking
554                  * or modifying starved_list or starved_entry.
555                  */
556                 sdev = list_entry(shost->starved_list.next,
557                                           struct scsi_device, starved_entry);
558                 list_del_init(&sdev->starved_entry);
559                 spin_unlock_irqrestore(shost->host_lock, flags);
560
561
562                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
563                     !test_and_set_bit(QUEUE_FLAG_REENTER,
564                                       &sdev->request_queue->queue_flags)) {
565                         blk_run_queue(sdev->request_queue);
566                         clear_bit(QUEUE_FLAG_REENTER,
567                                   &sdev->request_queue->queue_flags);
568                 } else
569                         blk_run_queue(sdev->request_queue);
570
571                 spin_lock_irqsave(shost->host_lock, flags);
572                 if (unlikely(!list_empty(&sdev->starved_entry)))
573                         /*
574                          * sdev lost a race, and was put back on the
575                          * starved list. This is unlikely but without this
576                          * in theory we could loop forever.
577                          */
578                         break;
579         }
580         spin_unlock_irqrestore(shost->host_lock, flags);
581
582         blk_run_queue(q);
583 }
584
585 /*
586  * Function:    scsi_requeue_command()
587  *
588  * Purpose:     Handle post-processing of completed commands.
589  *
590  * Arguments:   q       - queue to operate on
591  *              cmd     - command that may need to be requeued.
592  *
593  * Returns:     Nothing
594  *
595  * Notes:       After command completion, there may be blocks left
596  *              over which weren't finished by the previous command
597  *              this can be for a number of reasons - the main one is
598  *              I/O errors in the middle of the request, in which case
599  *              we need to request the blocks that come after the bad
600  *              sector.
601  * Notes:       Upon return, cmd is a stale pointer.
602  */
603 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
604 {
605         struct request *req = cmd->request;
606         unsigned long flags;
607
608         scsi_unprep_request(req);
609         spin_lock_irqsave(q->queue_lock, flags);
610         blk_requeue_request(q, req);
611         spin_unlock_irqrestore(q->queue_lock, flags);
612
613         scsi_run_queue(q);
614 }
615
616 void scsi_next_command(struct scsi_cmnd *cmd)
617 {
618         struct scsi_device *sdev = cmd->device;
619         struct request_queue *q = sdev->request_queue;
620
621         /* need to hold a reference on the device before we let go of the cmd */
622         get_device(&sdev->sdev_gendev);
623
624         scsi_put_command(cmd);
625         scsi_run_queue(q);
626
627         /* ok to remove device now */
628         put_device(&sdev->sdev_gendev);
629 }
630
631 void scsi_run_host_queues(struct Scsi_Host *shost)
632 {
633         struct scsi_device *sdev;
634
635         shost_for_each_device(sdev, shost)
636                 scsi_run_queue(sdev->request_queue);
637 }
638
639 /*
640  * Function:    scsi_end_request()
641  *
642  * Purpose:     Post-processing of completed commands (usually invoked at end
643  *              of upper level post-processing and scsi_io_completion).
644  *
645  * Arguments:   cmd      - command that is complete.
646  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
647  *              bytes    - number of bytes of completed I/O
648  *              requeue  - indicates whether we should requeue leftovers.
649  *
650  * Lock status: Assumed that lock is not held upon entry.
651  *
652  * Returns:     cmd if requeue required, NULL otherwise.
653  *
654  * Notes:       This is called for block device requests in order to
655  *              mark some number of sectors as complete.
656  * 
657  *              We are guaranteeing that the request queue will be goosed
658  *              at some point during this call.
659  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
660  */
661 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
662                                           int bytes, int requeue)
663 {
664         struct request_queue *q = cmd->device->request_queue;
665         struct request *req = cmd->request;
666         unsigned long flags;
667
668         /*
669          * If there are blocks left over at the end, set up the command
670          * to queue the remainder of them.
671          */
672         if (end_that_request_chunk(req, uptodate, bytes)) {
673                 int leftover = (req->hard_nr_sectors << 9);
674
675                 if (blk_pc_request(req))
676                         leftover = req->data_len;
677
678                 /* kill remainder if no retrys */
679                 if (!uptodate && blk_noretry_request(req))
680                         end_that_request_chunk(req, 0, leftover);
681                 else {
682                         if (requeue) {
683                                 /*
684                                  * Bleah.  Leftovers again.  Stick the
685                                  * leftovers in the front of the
686                                  * queue, and goose the queue again.
687                                  */
688                                 scsi_requeue_command(q, cmd);
689                                 cmd = NULL;
690                         }
691                         return cmd;
692                 }
693         }
694
695         add_disk_randomness(req->rq_disk);
696
697         spin_lock_irqsave(q->queue_lock, flags);
698         if (blk_rq_tagged(req))
699                 blk_queue_end_tag(q, req);
700         end_that_request_last(req, uptodate);
701         spin_unlock_irqrestore(q->queue_lock, flags);
702
703         /*
704          * This will goose the queue request function at the end, so we don't
705          * need to worry about launching another command.
706          */
707         scsi_next_command(cmd);
708         return NULL;
709 }
710
711 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
712 {
713         struct scsi_host_sg_pool *sgp;
714         struct scatterlist *sgl;
715
716         BUG_ON(!cmd->use_sg);
717
718         switch (cmd->use_sg) {
719         case 1 ... 8:
720                 cmd->sglist_len = 0;
721                 break;
722         case 9 ... 16:
723                 cmd->sglist_len = 1;
724                 break;
725         case 17 ... 32:
726                 cmd->sglist_len = 2;
727                 break;
728 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
729         case 33 ... 64:
730                 cmd->sglist_len = 3;
731                 break;
732 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
733         case 65 ... 128:
734                 cmd->sglist_len = 4;
735                 break;
736 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
737         case 129 ... 256:
738                 cmd->sglist_len = 5;
739                 break;
740 #endif
741 #endif
742 #endif
743         default:
744                 return NULL;
745         }
746
747         sgp = scsi_sg_pools + cmd->sglist_len;
748         sgl = mempool_alloc(sgp->pool, gfp_mask);
749         return sgl;
750 }
751
752 EXPORT_SYMBOL(scsi_alloc_sgtable);
753
754 void scsi_free_sgtable(struct scatterlist *sgl, int index)
755 {
756         struct scsi_host_sg_pool *sgp;
757
758         BUG_ON(index >= SG_MEMPOOL_NR);
759
760         sgp = scsi_sg_pools + index;
761         mempool_free(sgl, sgp->pool);
762 }
763
764 EXPORT_SYMBOL(scsi_free_sgtable);
765
766 /*
767  * Function:    scsi_release_buffers()
768  *
769  * Purpose:     Completion processing for block device I/O requests.
770  *
771  * Arguments:   cmd     - command that we are bailing.
772  *
773  * Lock status: Assumed that no lock is held upon entry.
774  *
775  * Returns:     Nothing
776  *
777  * Notes:       In the event that an upper level driver rejects a
778  *              command, we must release resources allocated during
779  *              the __init_io() function.  Primarily this would involve
780  *              the scatter-gather table, and potentially any bounce
781  *              buffers.
782  */
783 static void scsi_release_buffers(struct scsi_cmnd *cmd)
784 {
785         if (cmd->use_sg)
786                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
787
788         /*
789          * Zero these out.  They now point to freed memory, and it is
790          * dangerous to hang onto the pointers.
791          */
792         cmd->request_buffer = NULL;
793         cmd->request_bufflen = 0;
794 }
795
796 /*
797  * Function:    scsi_io_completion()
798  *
799  * Purpose:     Completion processing for block device I/O requests.
800  *
801  * Arguments:   cmd   - command that is finished.
802  *
803  * Lock status: Assumed that no lock is held upon entry.
804  *
805  * Returns:     Nothing
806  *
807  * Notes:       This function is matched in terms of capabilities to
808  *              the function that created the scatter-gather list.
809  *              In other words, if there are no bounce buffers
810  *              (the normal case for most drivers), we don't need
811  *              the logic to deal with cleaning up afterwards.
812  *
813  *              We must do one of several things here:
814  *
815  *              a) Call scsi_end_request.  This will finish off the
816  *                 specified number of sectors.  If we are done, the
817  *                 command block will be released, and the queue
818  *                 function will be goosed.  If we are not done, then
819  *                 scsi_end_request will directly goose the queue.
820  *
821  *              b) We can just use scsi_requeue_command() here.  This would
822  *                 be used if we just wanted to retry, for example.
823  */
824 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
825 {
826         int result = cmd->result;
827         int this_count = cmd->request_bufflen;
828         struct request_queue *q = cmd->device->request_queue;
829         struct request *req = cmd->request;
830         int clear_errors = 1;
831         struct scsi_sense_hdr sshdr;
832         int sense_valid = 0;
833         int sense_deferred = 0;
834
835         scsi_release_buffers(cmd);
836
837         if (result) {
838                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
839                 if (sense_valid)
840                         sense_deferred = scsi_sense_is_deferred(&sshdr);
841         }
842
843         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
844                 req->errors = result;
845                 if (result) {
846                         clear_errors = 0;
847                         if (sense_valid && req->sense) {
848                                 /*
849                                  * SG_IO wants current and deferred errors
850                                  */
851                                 int len = 8 + cmd->sense_buffer[7];
852
853                                 if (len > SCSI_SENSE_BUFFERSIZE)
854                                         len = SCSI_SENSE_BUFFERSIZE;
855                                 memcpy(req->sense, cmd->sense_buffer,  len);
856                                 req->sense_len = len;
857                         }
858                 }
859                 req->data_len = cmd->resid;
860         }
861
862         /*
863          * Next deal with any sectors which we were able to correctly
864          * handle.
865          */
866         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
867                                       "%d bytes done.\n",
868                                       req->nr_sectors, good_bytes));
869         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
870
871         if (clear_errors)
872                 req->errors = 0;
873
874         /* A number of bytes were successfully read.  If there
875          * are leftovers and there is some kind of error
876          * (result != 0), retry the rest.
877          */
878         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
879                 return;
880
881         /* good_bytes = 0, or (inclusive) there were leftovers and
882          * result = 0, so scsi_end_request couldn't retry.
883          */
884         if (sense_valid && !sense_deferred) {
885                 switch (sshdr.sense_key) {
886                 case UNIT_ATTENTION:
887                         if (cmd->device->removable) {
888                                 /* Detected disc change.  Set a bit
889                                  * and quietly refuse further access.
890                                  */
891                                 cmd->device->changed = 1;
892                                 scsi_end_request(cmd, 0, this_count, 1);
893                                 return;
894                         } else {
895                                 /* Must have been a power glitch, or a
896                                  * bus reset.  Could not have been a
897                                  * media change, so we just retry the
898                                  * request and see what happens.
899                                  */
900                                 scsi_requeue_command(q, cmd);
901                                 return;
902                         }
903                         break;
904                 case ILLEGAL_REQUEST:
905                         /* If we had an ILLEGAL REQUEST returned, then
906                          * we may have performed an unsupported
907                          * command.  The only thing this should be
908                          * would be a ten byte read where only a six
909                          * byte read was supported.  Also, on a system
910                          * where READ CAPACITY failed, we may have
911                          * read past the end of the disk.
912                          */
913                         if ((cmd->device->use_10_for_rw &&
914                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
915                             (cmd->cmnd[0] == READ_10 ||
916                              cmd->cmnd[0] == WRITE_10)) {
917                                 cmd->device->use_10_for_rw = 0;
918                                 /* This will cause a retry with a
919                                  * 6-byte command.
920                                  */
921                                 scsi_requeue_command(q, cmd);
922                                 return;
923                         } else {
924                                 scsi_end_request(cmd, 0, this_count, 1);
925                                 return;
926                         }
927                         break;
928                 case NOT_READY:
929                         /* If the device is in the process of becoming
930                          * ready, or has a temporary blockage, retry.
931                          */
932                         if (sshdr.asc == 0x04) {
933                                 switch (sshdr.ascq) {
934                                 case 0x01: /* becoming ready */
935                                 case 0x04: /* format in progress */
936                                 case 0x05: /* rebuild in progress */
937                                 case 0x06: /* recalculation in progress */
938                                 case 0x07: /* operation in progress */
939                                 case 0x08: /* Long write in progress */
940                                 case 0x09: /* self test in progress */
941                                         scsi_requeue_command(q, cmd);
942                                         return;
943                                 default:
944                                         break;
945                                 }
946                         }
947                         if (!(req->cmd_flags & REQ_QUIET))
948                                 scsi_cmd_print_sense_hdr(cmd,
949                                                          "Device not ready",
950                                                          &sshdr);
951
952                         scsi_end_request(cmd, 0, this_count, 1);
953                         return;
954                 case VOLUME_OVERFLOW:
955                         if (!(req->cmd_flags & REQ_QUIET)) {
956                                 scmd_printk(KERN_INFO, cmd,
957                                             "Volume overflow, CDB: ");
958                                 __scsi_print_command(cmd->cmnd);
959                                 scsi_print_sense("", cmd);
960                         }
961                         /* See SSC3rXX or current. */
962                         scsi_end_request(cmd, 0, this_count, 1);
963                         return;
964                 default:
965                         break;
966                 }
967         }
968         if (host_byte(result) == DID_RESET) {
969                 /* Third party bus reset or reset for error recovery
970                  * reasons.  Just retry the request and see what
971                  * happens.
972                  */
973                 scsi_requeue_command(q, cmd);
974                 return;
975         }
976         if (result) {
977                 if (!(req->cmd_flags & REQ_QUIET)) {
978                         scsi_print_result(cmd);
979                         if (driver_byte(result) & DRIVER_SENSE)
980                                 scsi_print_sense("", cmd);
981                 }
982         }
983         scsi_end_request(cmd, 0, this_count, !result);
984 }
985
986 /*
987  * Function:    scsi_init_io()
988  *
989  * Purpose:     SCSI I/O initialize function.
990  *
991  * Arguments:   cmd   - Command descriptor we wish to initialize
992  *
993  * Returns:     0 on success
994  *              BLKPREP_DEFER if the failure is retryable
995  *              BLKPREP_KILL if the failure is fatal
996  */
997 static int scsi_init_io(struct scsi_cmnd *cmd)
998 {
999         struct request     *req = cmd->request;
1000         struct scatterlist *sgpnt;
1001         int                count;
1002
1003         /*
1004          * We used to not use scatter-gather for single segment request,
1005          * but now we do (it makes highmem I/O easier to support without
1006          * kmapping pages)
1007          */
1008         cmd->use_sg = req->nr_phys_segments;
1009
1010         /*
1011          * If sg table allocation fails, requeue request later.
1012          */
1013         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1014         if (unlikely(!sgpnt)) {
1015                 scsi_unprep_request(req);
1016                 return BLKPREP_DEFER;
1017         }
1018
1019         req->buffer = NULL;
1020         cmd->request_buffer = (char *) sgpnt;
1021         if (blk_pc_request(req))
1022                 cmd->request_bufflen = req->data_len;
1023         else
1024                 cmd->request_bufflen = req->nr_sectors << 9;
1025
1026         /* 
1027          * Next, walk the list, and fill in the addresses and sizes of
1028          * each segment.
1029          */
1030         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1031         if (likely(count <= cmd->use_sg)) {
1032                 cmd->use_sg = count;
1033                 return BLKPREP_OK;
1034         }
1035
1036         printk(KERN_ERR "Incorrect number of segments after building list\n");
1037         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1038         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1039                         req->current_nr_sectors);
1040
1041         return BLKPREP_KILL;
1042 }
1043
1044 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1045                 struct request *req)
1046 {
1047         struct scsi_cmnd *cmd;
1048
1049         if (!req->special) {
1050                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1051                 if (unlikely(!cmd))
1052                         return NULL;
1053                 req->special = cmd;
1054         } else {
1055                 cmd = req->special;
1056         }
1057
1058         /* pull a tag out of the request if we have one */
1059         cmd->tag = req->tag;
1060         cmd->request = req;
1061
1062         return cmd;
1063 }
1064
1065 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1066 {
1067         struct scsi_cmnd *cmd;
1068         int ret = scsi_prep_state_check(sdev, req);
1069
1070         if (ret != BLKPREP_OK)
1071                 return ret;
1072
1073         cmd = scsi_get_cmd_from_req(sdev, req);
1074         if (unlikely(!cmd))
1075                 return BLKPREP_DEFER;
1076
1077         /*
1078          * BLOCK_PC requests may transfer data, in which case they must
1079          * a bio attached to them.  Or they might contain a SCSI command
1080          * that does not transfer data, in which case they may optionally
1081          * submit a request without an attached bio.
1082          */
1083         if (req->bio) {
1084                 int ret;
1085
1086                 BUG_ON(!req->nr_phys_segments);
1087
1088                 ret = scsi_init_io(cmd);
1089                 if (unlikely(ret))
1090                         return ret;
1091         } else {
1092                 BUG_ON(req->data_len);
1093                 BUG_ON(req->data);
1094
1095                 cmd->request_bufflen = 0;
1096                 cmd->request_buffer = NULL;
1097                 cmd->use_sg = 0;
1098                 req->buffer = NULL;
1099         }
1100
1101         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1102         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1103         cmd->cmd_len = req->cmd_len;
1104         if (!req->data_len)
1105                 cmd->sc_data_direction = DMA_NONE;
1106         else if (rq_data_dir(req) == WRITE)
1107                 cmd->sc_data_direction = DMA_TO_DEVICE;
1108         else
1109                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1110         
1111         cmd->transfersize = req->data_len;
1112         cmd->allowed = req->retries;
1113         cmd->timeout_per_command = req->timeout;
1114         return BLKPREP_OK;
1115 }
1116 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1117
1118 /*
1119  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1120  * from filesystems that still need to be translated to SCSI CDBs from
1121  * the ULD.
1122  */
1123 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1124 {
1125         struct scsi_cmnd *cmd;
1126         int ret = scsi_prep_state_check(sdev, req);
1127
1128         if (ret != BLKPREP_OK)
1129                 return ret;
1130         /*
1131          * Filesystem requests must transfer data.
1132          */
1133         BUG_ON(!req->nr_phys_segments);
1134
1135         cmd = scsi_get_cmd_from_req(sdev, req);
1136         if (unlikely(!cmd))
1137                 return BLKPREP_DEFER;
1138
1139         return scsi_init_io(cmd);
1140 }
1141 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1142
1143 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1144 {
1145         int ret = BLKPREP_OK;
1146
1147         /*
1148          * If the device is not in running state we will reject some
1149          * or all commands.
1150          */
1151         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1152                 switch (sdev->sdev_state) {
1153                 case SDEV_OFFLINE:
1154                         /*
1155                          * If the device is offline we refuse to process any
1156                          * commands.  The device must be brought online
1157                          * before trying any recovery commands.
1158                          */
1159                         sdev_printk(KERN_ERR, sdev,
1160                                     "rejecting I/O to offline device\n");
1161                         ret = BLKPREP_KILL;
1162                         break;
1163                 case SDEV_DEL:
1164                         /*
1165                          * If the device is fully deleted, we refuse to
1166                          * process any commands as well.
1167                          */
1168                         sdev_printk(KERN_ERR, sdev,
1169                                     "rejecting I/O to dead device\n");
1170                         ret = BLKPREP_KILL;
1171                         break;
1172                 case SDEV_QUIESCE:
1173                 case SDEV_BLOCK:
1174                         /*
1175                          * If the devices is blocked we defer normal commands.
1176                          */
1177                         if (!(req->cmd_flags & REQ_PREEMPT))
1178                                 ret = BLKPREP_DEFER;
1179                         break;
1180                 default:
1181                         /*
1182                          * For any other not fully online state we only allow
1183                          * special commands.  In particular any user initiated
1184                          * command is not allowed.
1185                          */
1186                         if (!(req->cmd_flags & REQ_PREEMPT))
1187                                 ret = BLKPREP_KILL;
1188                         break;
1189                 }
1190         }
1191         return ret;
1192 }
1193 EXPORT_SYMBOL(scsi_prep_state_check);
1194
1195 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1196 {
1197         struct scsi_device *sdev = q->queuedata;
1198
1199         switch (ret) {
1200         case BLKPREP_KILL:
1201                 req->errors = DID_NO_CONNECT << 16;
1202                 /* release the command and kill it */
1203                 if (req->special) {
1204                         struct scsi_cmnd *cmd = req->special;
1205                         scsi_release_buffers(cmd);
1206                         scsi_put_command(cmd);
1207                         req->special = NULL;
1208                 }
1209                 break;
1210         case BLKPREP_DEFER:
1211                 /*
1212                  * If we defer, the elv_next_request() returns NULL, but the
1213                  * queue must be restarted, so we plug here if no returning
1214                  * command will automatically do that.
1215                  */
1216                 if (sdev->device_busy == 0)
1217                         blk_plug_device(q);
1218                 break;
1219         default:
1220                 req->cmd_flags |= REQ_DONTPREP;
1221         }
1222
1223         return ret;
1224 }
1225 EXPORT_SYMBOL(scsi_prep_return);
1226
1227 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1228 {
1229         struct scsi_device *sdev = q->queuedata;
1230         int ret = BLKPREP_KILL;
1231
1232         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1233                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1234         return scsi_prep_return(q, req, ret);
1235 }
1236
1237 /*
1238  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1239  * return 0.
1240  *
1241  * Called with the queue_lock held.
1242  */
1243 static inline int scsi_dev_queue_ready(struct request_queue *q,
1244                                   struct scsi_device *sdev)
1245 {
1246         if (sdev->device_busy >= sdev->queue_depth)
1247                 return 0;
1248         if (sdev->device_busy == 0 && sdev->device_blocked) {
1249                 /*
1250                  * unblock after device_blocked iterates to zero
1251                  */
1252                 if (--sdev->device_blocked == 0) {
1253                         SCSI_LOG_MLQUEUE(3,
1254                                    sdev_printk(KERN_INFO, sdev,
1255                                    "unblocking device at zero depth\n"));
1256                 } else {
1257                         blk_plug_device(q);
1258                         return 0;
1259                 }
1260         }
1261         if (sdev->device_blocked)
1262                 return 0;
1263
1264         return 1;
1265 }
1266
1267 /*
1268  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1269  * return 0. We must end up running the queue again whenever 0 is
1270  * returned, else IO can hang.
1271  *
1272  * Called with host_lock held.
1273  */
1274 static inline int scsi_host_queue_ready(struct request_queue *q,
1275                                    struct Scsi_Host *shost,
1276                                    struct scsi_device *sdev)
1277 {
1278         if (scsi_host_in_recovery(shost))
1279                 return 0;
1280         if (shost->host_busy == 0 && shost->host_blocked) {
1281                 /*
1282                  * unblock after host_blocked iterates to zero
1283                  */
1284                 if (--shost->host_blocked == 0) {
1285                         SCSI_LOG_MLQUEUE(3,
1286                                 printk("scsi%d unblocking host at zero depth\n",
1287                                         shost->host_no));
1288                 } else {
1289                         blk_plug_device(q);
1290                         return 0;
1291                 }
1292         }
1293         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1294             shost->host_blocked || shost->host_self_blocked) {
1295                 if (list_empty(&sdev->starved_entry))
1296                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1297                 return 0;
1298         }
1299
1300         /* We're OK to process the command, so we can't be starved */
1301         if (!list_empty(&sdev->starved_entry))
1302                 list_del_init(&sdev->starved_entry);
1303
1304         return 1;
1305 }
1306
1307 /*
1308  * Kill a request for a dead device
1309  */
1310 static void scsi_kill_request(struct request *req, struct request_queue *q)
1311 {
1312         struct scsi_cmnd *cmd = req->special;
1313         struct scsi_device *sdev = cmd->device;
1314         struct Scsi_Host *shost = sdev->host;
1315
1316         blkdev_dequeue_request(req);
1317
1318         if (unlikely(cmd == NULL)) {
1319                 printk(KERN_CRIT "impossible request in %s.\n",
1320                                  __FUNCTION__);
1321                 BUG();
1322         }
1323
1324         scsi_init_cmd_errh(cmd);
1325         cmd->result = DID_NO_CONNECT << 16;
1326         atomic_inc(&cmd->device->iorequest_cnt);
1327
1328         /*
1329          * SCSI request completion path will do scsi_device_unbusy(),
1330          * bump busy counts.  To bump the counters, we need to dance
1331          * with the locks as normal issue path does.
1332          */
1333         sdev->device_busy++;
1334         spin_unlock(sdev->request_queue->queue_lock);
1335         spin_lock(shost->host_lock);
1336         shost->host_busy++;
1337         spin_unlock(shost->host_lock);
1338         spin_lock(sdev->request_queue->queue_lock);
1339
1340         __scsi_done(cmd);
1341 }
1342
1343 static void scsi_softirq_done(struct request *rq)
1344 {
1345         struct scsi_cmnd *cmd = rq->completion_data;
1346         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1347         int disposition;
1348
1349         INIT_LIST_HEAD(&cmd->eh_entry);
1350
1351         disposition = scsi_decide_disposition(cmd);
1352         if (disposition != SUCCESS &&
1353             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1354                 sdev_printk(KERN_ERR, cmd->device,
1355                             "timing out command, waited %lus\n",
1356                             wait_for/HZ);
1357                 disposition = SUCCESS;
1358         }
1359                         
1360         scsi_log_completion(cmd, disposition);
1361
1362         switch (disposition) {
1363                 case SUCCESS:
1364                         scsi_finish_command(cmd);
1365                         break;
1366                 case NEEDS_RETRY:
1367                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1368                         break;
1369                 case ADD_TO_MLQUEUE:
1370                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1371                         break;
1372                 default:
1373                         if (!scsi_eh_scmd_add(cmd, 0))
1374                                 scsi_finish_command(cmd);
1375         }
1376 }
1377
1378 /*
1379  * Function:    scsi_request_fn()
1380  *
1381  * Purpose:     Main strategy routine for SCSI.
1382  *
1383  * Arguments:   q       - Pointer to actual queue.
1384  *
1385  * Returns:     Nothing
1386  *
1387  * Lock status: IO request lock assumed to be held when called.
1388  */
1389 static void scsi_request_fn(struct request_queue *q)
1390 {
1391         struct scsi_device *sdev = q->queuedata;
1392         struct Scsi_Host *shost;
1393         struct scsi_cmnd *cmd;
1394         struct request *req;
1395
1396         if (!sdev) {
1397                 printk("scsi: killing requests for dead queue\n");
1398                 while ((req = elv_next_request(q)) != NULL)
1399                         scsi_kill_request(req, q);
1400                 return;
1401         }
1402
1403         if(!get_device(&sdev->sdev_gendev))
1404                 /* We must be tearing the block queue down already */
1405                 return;
1406
1407         /*
1408          * To start with, we keep looping until the queue is empty, or until
1409          * the host is no longer able to accept any more requests.
1410          */
1411         shost = sdev->host;
1412         while (!blk_queue_plugged(q)) {
1413                 int rtn;
1414                 /*
1415                  * get next queueable request.  We do this early to make sure
1416                  * that the request is fully prepared even if we cannot 
1417                  * accept it.
1418                  */
1419                 req = elv_next_request(q);
1420                 if (!req || !scsi_dev_queue_ready(q, sdev))
1421                         break;
1422
1423                 if (unlikely(!scsi_device_online(sdev))) {
1424                         sdev_printk(KERN_ERR, sdev,
1425                                     "rejecting I/O to offline device\n");
1426                         scsi_kill_request(req, q);
1427                         continue;
1428                 }
1429
1430
1431                 /*
1432                  * Remove the request from the request list.
1433                  */
1434                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1435                         blkdev_dequeue_request(req);
1436                 sdev->device_busy++;
1437
1438                 spin_unlock(q->queue_lock);
1439                 cmd = req->special;
1440                 if (unlikely(cmd == NULL)) {
1441                         printk(KERN_CRIT "impossible request in %s.\n"
1442                                          "please mail a stack trace to "
1443                                          "linux-scsi@vger.kernel.org\n",
1444                                          __FUNCTION__);
1445                         blk_dump_rq_flags(req, "foo");
1446                         BUG();
1447                 }
1448                 spin_lock(shost->host_lock);
1449
1450                 if (!scsi_host_queue_ready(q, shost, sdev))
1451                         goto not_ready;
1452                 if (sdev->single_lun) {
1453                         if (scsi_target(sdev)->starget_sdev_user &&
1454                             scsi_target(sdev)->starget_sdev_user != sdev)
1455                                 goto not_ready;
1456                         scsi_target(sdev)->starget_sdev_user = sdev;
1457                 }
1458                 shost->host_busy++;
1459
1460                 /*
1461                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1462                  *              take the lock again.
1463                  */
1464                 spin_unlock_irq(shost->host_lock);
1465
1466                 /*
1467                  * Finally, initialize any error handling parameters, and set up
1468                  * the timers for timeouts.
1469                  */
1470                 scsi_init_cmd_errh(cmd);
1471
1472                 /*
1473                  * Dispatch the command to the low-level driver.
1474                  */
1475                 rtn = scsi_dispatch_cmd(cmd);
1476                 spin_lock_irq(q->queue_lock);
1477                 if(rtn) {
1478                         /* we're refusing the command; because of
1479                          * the way locks get dropped, we need to 
1480                          * check here if plugging is required */
1481                         if(sdev->device_busy == 0)
1482                                 blk_plug_device(q);
1483
1484                         break;
1485                 }
1486         }
1487
1488         goto out;
1489
1490  not_ready:
1491         spin_unlock_irq(shost->host_lock);
1492
1493         /*
1494          * lock q, handle tag, requeue req, and decrement device_busy. We
1495          * must return with queue_lock held.
1496          *
1497          * Decrementing device_busy without checking it is OK, as all such
1498          * cases (host limits or settings) should run the queue at some
1499          * later time.
1500          */
1501         spin_lock_irq(q->queue_lock);
1502         blk_requeue_request(q, req);
1503         sdev->device_busy--;
1504         if(sdev->device_busy == 0)
1505                 blk_plug_device(q);
1506  out:
1507         /* must be careful here...if we trigger the ->remove() function
1508          * we cannot be holding the q lock */
1509         spin_unlock_irq(q->queue_lock);
1510         put_device(&sdev->sdev_gendev);
1511         spin_lock_irq(q->queue_lock);
1512 }
1513
1514 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1515 {
1516         struct device *host_dev;
1517         u64 bounce_limit = 0xffffffff;
1518
1519         if (shost->unchecked_isa_dma)
1520                 return BLK_BOUNCE_ISA;
1521         /*
1522          * Platforms with virtual-DMA translation
1523          * hardware have no practical limit.
1524          */
1525         if (!PCI_DMA_BUS_IS_PHYS)
1526                 return BLK_BOUNCE_ANY;
1527
1528         host_dev = scsi_get_device(shost);
1529         if (host_dev && host_dev->dma_mask)
1530                 bounce_limit = *host_dev->dma_mask;
1531
1532         return bounce_limit;
1533 }
1534 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1535
1536 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1537                                          request_fn_proc *request_fn)
1538 {
1539         struct request_queue *q;
1540
1541         q = blk_init_queue(request_fn, NULL);
1542         if (!q)
1543                 return NULL;
1544
1545         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1546         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1547         blk_queue_max_sectors(q, shost->max_sectors);
1548         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1549         blk_queue_segment_boundary(q, shost->dma_boundary);
1550
1551         if (!shost->use_clustering)
1552                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1553         return q;
1554 }
1555 EXPORT_SYMBOL(__scsi_alloc_queue);
1556
1557 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1558 {
1559         struct request_queue *q;
1560
1561         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1562         if (!q)
1563                 return NULL;
1564
1565         blk_queue_prep_rq(q, scsi_prep_fn);
1566         blk_queue_softirq_done(q, scsi_softirq_done);
1567         return q;
1568 }
1569
1570 void scsi_free_queue(struct request_queue *q)
1571 {
1572         blk_cleanup_queue(q);
1573 }
1574
1575 /*
1576  * Function:    scsi_block_requests()
1577  *
1578  * Purpose:     Utility function used by low-level drivers to prevent further
1579  *              commands from being queued to the device.
1580  *
1581  * Arguments:   shost       - Host in question
1582  *
1583  * Returns:     Nothing
1584  *
1585  * Lock status: No locks are assumed held.
1586  *
1587  * Notes:       There is no timer nor any other means by which the requests
1588  *              get unblocked other than the low-level driver calling
1589  *              scsi_unblock_requests().
1590  */
1591 void scsi_block_requests(struct Scsi_Host *shost)
1592 {
1593         shost->host_self_blocked = 1;
1594 }
1595 EXPORT_SYMBOL(scsi_block_requests);
1596
1597 /*
1598  * Function:    scsi_unblock_requests()
1599  *
1600  * Purpose:     Utility function used by low-level drivers to allow further
1601  *              commands from being queued to the device.
1602  *
1603  * Arguments:   shost       - Host in question
1604  *
1605  * Returns:     Nothing
1606  *
1607  * Lock status: No locks are assumed held.
1608  *
1609  * Notes:       There is no timer nor any other means by which the requests
1610  *              get unblocked other than the low-level driver calling
1611  *              scsi_unblock_requests().
1612  *
1613  *              This is done as an API function so that changes to the
1614  *              internals of the scsi mid-layer won't require wholesale
1615  *              changes to drivers that use this feature.
1616  */
1617 void scsi_unblock_requests(struct Scsi_Host *shost)
1618 {
1619         shost->host_self_blocked = 0;
1620         scsi_run_host_queues(shost);
1621 }
1622 EXPORT_SYMBOL(scsi_unblock_requests);
1623
1624 int __init scsi_init_queue(void)
1625 {
1626         int i;
1627
1628         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1629                                         sizeof(struct scsi_io_context),
1630                                         0, 0, NULL);
1631         if (!scsi_io_context_cache) {
1632                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1633                 return -ENOMEM;
1634         }
1635
1636         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1637                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1638                 int size = sgp->size * sizeof(struct scatterlist);
1639
1640                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1641                                 SLAB_HWCACHE_ALIGN, NULL);
1642                 if (!sgp->slab) {
1643                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1644                                         sgp->name);
1645                 }
1646
1647                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1648                                                      sgp->slab);
1649                 if (!sgp->pool) {
1650                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1651                                         sgp->name);
1652                 }
1653         }
1654
1655         return 0;
1656 }
1657
1658 void scsi_exit_queue(void)
1659 {
1660         int i;
1661
1662         kmem_cache_destroy(scsi_io_context_cache);
1663
1664         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1665                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1666                 mempool_destroy(sgp->pool);
1667                 kmem_cache_destroy(sgp->slab);
1668         }
1669 }
1670
1671 /**
1672  *      scsi_mode_select - issue a mode select
1673  *      @sdev:  SCSI device to be queried
1674  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1675  *      @sp:    Save page bit (0 == don't save, 1 == save)
1676  *      @modepage: mode page being requested
1677  *      @buffer: request buffer (may not be smaller than eight bytes)
1678  *      @len:   length of request buffer.
1679  *      @timeout: command timeout
1680  *      @retries: number of retries before failing
1681  *      @data: returns a structure abstracting the mode header data
1682  *      @sense: place to put sense data (or NULL if no sense to be collected).
1683  *              must be SCSI_SENSE_BUFFERSIZE big.
1684  *
1685  *      Returns zero if successful; negative error number or scsi
1686  *      status on error
1687  *
1688  */
1689 int
1690 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1691                  unsigned char *buffer, int len, int timeout, int retries,
1692                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1693 {
1694         unsigned char cmd[10];
1695         unsigned char *real_buffer;
1696         int ret;
1697
1698         memset(cmd, 0, sizeof(cmd));
1699         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1700
1701         if (sdev->use_10_for_ms) {
1702                 if (len > 65535)
1703                         return -EINVAL;
1704                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1705                 if (!real_buffer)
1706                         return -ENOMEM;
1707                 memcpy(real_buffer + 8, buffer, len);
1708                 len += 8;
1709                 real_buffer[0] = 0;
1710                 real_buffer[1] = 0;
1711                 real_buffer[2] = data->medium_type;
1712                 real_buffer[3] = data->device_specific;
1713                 real_buffer[4] = data->longlba ? 0x01 : 0;
1714                 real_buffer[5] = 0;
1715                 real_buffer[6] = data->block_descriptor_length >> 8;
1716                 real_buffer[7] = data->block_descriptor_length;
1717
1718                 cmd[0] = MODE_SELECT_10;
1719                 cmd[7] = len >> 8;
1720                 cmd[8] = len;
1721         } else {
1722                 if (len > 255 || data->block_descriptor_length > 255 ||
1723                     data->longlba)
1724                         return -EINVAL;
1725
1726                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1727                 if (!real_buffer)
1728                         return -ENOMEM;
1729                 memcpy(real_buffer + 4, buffer, len);
1730                 len += 4;
1731                 real_buffer[0] = 0;
1732                 real_buffer[1] = data->medium_type;
1733                 real_buffer[2] = data->device_specific;
1734                 real_buffer[3] = data->block_descriptor_length;
1735                 
1736
1737                 cmd[0] = MODE_SELECT;
1738                 cmd[4] = len;
1739         }
1740
1741         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1742                                sshdr, timeout, retries);
1743         kfree(real_buffer);
1744         return ret;
1745 }
1746 EXPORT_SYMBOL_GPL(scsi_mode_select);
1747
1748 /**
1749  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1750  *              six bytes if necessary.
1751  *      @sdev:  SCSI device to be queried
1752  *      @dbd:   set if mode sense will allow block descriptors to be returned
1753  *      @modepage: mode page being requested
1754  *      @buffer: request buffer (may not be smaller than eight bytes)
1755  *      @len:   length of request buffer.
1756  *      @timeout: command timeout
1757  *      @retries: number of retries before failing
1758  *      @data: returns a structure abstracting the mode header data
1759  *      @sense: place to put sense data (or NULL if no sense to be collected).
1760  *              must be SCSI_SENSE_BUFFERSIZE big.
1761  *
1762  *      Returns zero if unsuccessful, or the header offset (either 4
1763  *      or 8 depending on whether a six or ten byte command was
1764  *      issued) if successful.
1765  **/
1766 int
1767 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1768                   unsigned char *buffer, int len, int timeout, int retries,
1769                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1770 {
1771         unsigned char cmd[12];
1772         int use_10_for_ms;
1773         int header_length;
1774         int result;
1775         struct scsi_sense_hdr my_sshdr;
1776
1777         memset(data, 0, sizeof(*data));
1778         memset(&cmd[0], 0, 12);
1779         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1780         cmd[2] = modepage;
1781
1782         /* caller might not be interested in sense, but we need it */
1783         if (!sshdr)
1784                 sshdr = &my_sshdr;
1785
1786  retry:
1787         use_10_for_ms = sdev->use_10_for_ms;
1788
1789         if (use_10_for_ms) {
1790                 if (len < 8)
1791                         len = 8;
1792
1793                 cmd[0] = MODE_SENSE_10;
1794                 cmd[8] = len;
1795                 header_length = 8;
1796         } else {
1797                 if (len < 4)
1798                         len = 4;
1799
1800                 cmd[0] = MODE_SENSE;
1801                 cmd[4] = len;
1802                 header_length = 4;
1803         }
1804
1805         memset(buffer, 0, len);
1806
1807         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1808                                   sshdr, timeout, retries);
1809
1810         /* This code looks awful: what it's doing is making sure an
1811          * ILLEGAL REQUEST sense return identifies the actual command
1812          * byte as the problem.  MODE_SENSE commands can return
1813          * ILLEGAL REQUEST if the code page isn't supported */
1814
1815         if (use_10_for_ms && !scsi_status_is_good(result) &&
1816             (driver_byte(result) & DRIVER_SENSE)) {
1817                 if (scsi_sense_valid(sshdr)) {
1818                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1819                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1820                                 /* 
1821                                  * Invalid command operation code
1822                                  */
1823                                 sdev->use_10_for_ms = 0;
1824                                 goto retry;
1825                         }
1826                 }
1827         }
1828
1829         if(scsi_status_is_good(result)) {
1830                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1831                              (modepage == 6 || modepage == 8))) {
1832                         /* Initio breakage? */
1833                         header_length = 0;
1834                         data->length = 13;
1835                         data->medium_type = 0;
1836                         data->device_specific = 0;
1837                         data->longlba = 0;
1838                         data->block_descriptor_length = 0;
1839                 } else if(use_10_for_ms) {
1840                         data->length = buffer[0]*256 + buffer[1] + 2;
1841                         data->medium_type = buffer[2];
1842                         data->device_specific = buffer[3];
1843                         data->longlba = buffer[4] & 0x01;
1844                         data->block_descriptor_length = buffer[6]*256
1845                                 + buffer[7];
1846                 } else {
1847                         data->length = buffer[0] + 1;
1848                         data->medium_type = buffer[1];
1849                         data->device_specific = buffer[2];
1850                         data->block_descriptor_length = buffer[3];
1851                 }
1852                 data->header_length = header_length;
1853         }
1854
1855         return result;
1856 }
1857 EXPORT_SYMBOL(scsi_mode_sense);
1858
1859 int
1860 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1861 {
1862         char cmd[] = {
1863                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1864         };
1865         struct scsi_sense_hdr sshdr;
1866         int result;
1867         
1868         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1869                                   timeout, retries);
1870
1871         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1872
1873                 if ((scsi_sense_valid(&sshdr)) &&
1874                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1875                      (sshdr.sense_key == NOT_READY))) {
1876                         sdev->changed = 1;
1877                         result = 0;
1878                 }
1879         }
1880         return result;
1881 }
1882 EXPORT_SYMBOL(scsi_test_unit_ready);
1883
1884 /**
1885  *      scsi_device_set_state - Take the given device through the device
1886  *              state model.
1887  *      @sdev:  scsi device to change the state of.
1888  *      @state: state to change to.
1889  *
1890  *      Returns zero if unsuccessful or an error if the requested 
1891  *      transition is illegal.
1892  **/
1893 int
1894 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1895 {
1896         enum scsi_device_state oldstate = sdev->sdev_state;
1897
1898         if (state == oldstate)
1899                 return 0;
1900
1901         switch (state) {
1902         case SDEV_CREATED:
1903                 /* There are no legal states that come back to
1904                  * created.  This is the manually initialised start
1905                  * state */
1906                 goto illegal;
1907                         
1908         case SDEV_RUNNING:
1909                 switch (oldstate) {
1910                 case SDEV_CREATED:
1911                 case SDEV_OFFLINE:
1912                 case SDEV_QUIESCE:
1913                 case SDEV_BLOCK:
1914                         break;
1915                 default:
1916                         goto illegal;
1917                 }
1918                 break;
1919
1920         case SDEV_QUIESCE:
1921                 switch (oldstate) {
1922                 case SDEV_RUNNING:
1923                 case SDEV_OFFLINE:
1924                         break;
1925                 default:
1926                         goto illegal;
1927                 }
1928                 break;
1929
1930         case SDEV_OFFLINE:
1931                 switch (oldstate) {
1932                 case SDEV_CREATED:
1933                 case SDEV_RUNNING:
1934                 case SDEV_QUIESCE:
1935                 case SDEV_BLOCK:
1936                         break;
1937                 default:
1938                         goto illegal;
1939                 }
1940                 break;
1941
1942         case SDEV_BLOCK:
1943                 switch (oldstate) {
1944                 case SDEV_CREATED:
1945                 case SDEV_RUNNING:
1946                         break;
1947                 default:
1948                         goto illegal;
1949                 }
1950                 break;
1951
1952         case SDEV_CANCEL:
1953                 switch (oldstate) {
1954                 case SDEV_CREATED:
1955                 case SDEV_RUNNING:
1956                 case SDEV_QUIESCE:
1957                 case SDEV_OFFLINE:
1958                 case SDEV_BLOCK:
1959                         break;
1960                 default:
1961                         goto illegal;
1962                 }
1963                 break;
1964
1965         case SDEV_DEL:
1966                 switch (oldstate) {
1967                 case SDEV_CREATED:
1968                 case SDEV_RUNNING:
1969                 case SDEV_OFFLINE:
1970                 case SDEV_CANCEL:
1971                         break;
1972                 default:
1973                         goto illegal;
1974                 }
1975                 break;
1976
1977         }
1978         sdev->sdev_state = state;
1979         return 0;
1980
1981  illegal:
1982         SCSI_LOG_ERROR_RECOVERY(1, 
1983                                 sdev_printk(KERN_ERR, sdev,
1984                                             "Illegal state transition %s->%s\n",
1985                                             scsi_device_state_name(oldstate),
1986                                             scsi_device_state_name(state))
1987                                 );
1988         return -EINVAL;
1989 }
1990 EXPORT_SYMBOL(scsi_device_set_state);
1991
1992 /**
1993  *      scsi_device_quiesce - Block user issued commands.
1994  *      @sdev:  scsi device to quiesce.
1995  *
1996  *      This works by trying to transition to the SDEV_QUIESCE state
1997  *      (which must be a legal transition).  When the device is in this
1998  *      state, only special requests will be accepted, all others will
1999  *      be deferred.  Since special requests may also be requeued requests,
2000  *      a successful return doesn't guarantee the device will be 
2001  *      totally quiescent.
2002  *
2003  *      Must be called with user context, may sleep.
2004  *
2005  *      Returns zero if unsuccessful or an error if not.
2006  **/
2007 int
2008 scsi_device_quiesce(struct scsi_device *sdev)
2009 {
2010         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2011         if (err)
2012                 return err;
2013
2014         scsi_run_queue(sdev->request_queue);
2015         while (sdev->device_busy) {
2016                 msleep_interruptible(200);
2017                 scsi_run_queue(sdev->request_queue);
2018         }
2019         return 0;
2020 }
2021 EXPORT_SYMBOL(scsi_device_quiesce);
2022
2023 /**
2024  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2025  *      @sdev:  scsi device to resume.
2026  *
2027  *      Moves the device from quiesced back to running and restarts the
2028  *      queues.
2029  *
2030  *      Must be called with user context, may sleep.
2031  **/
2032 void
2033 scsi_device_resume(struct scsi_device *sdev)
2034 {
2035         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2036                 return;
2037         scsi_run_queue(sdev->request_queue);
2038 }
2039 EXPORT_SYMBOL(scsi_device_resume);
2040
2041 static void
2042 device_quiesce_fn(struct scsi_device *sdev, void *data)
2043 {
2044         scsi_device_quiesce(sdev);
2045 }
2046
2047 void
2048 scsi_target_quiesce(struct scsi_target *starget)
2049 {
2050         starget_for_each_device(starget, NULL, device_quiesce_fn);
2051 }
2052 EXPORT_SYMBOL(scsi_target_quiesce);
2053
2054 static void
2055 device_resume_fn(struct scsi_device *sdev, void *data)
2056 {
2057         scsi_device_resume(sdev);
2058 }
2059
2060 void
2061 scsi_target_resume(struct scsi_target *starget)
2062 {
2063         starget_for_each_device(starget, NULL, device_resume_fn);
2064 }
2065 EXPORT_SYMBOL(scsi_target_resume);
2066
2067 /**
2068  * scsi_internal_device_block - internal function to put a device
2069  *                              temporarily into the SDEV_BLOCK state
2070  * @sdev:       device to block
2071  *
2072  * Block request made by scsi lld's to temporarily stop all
2073  * scsi commands on the specified device.  Called from interrupt
2074  * or normal process context.
2075  *
2076  * Returns zero if successful or error if not
2077  *
2078  * Notes:       
2079  *      This routine transitions the device to the SDEV_BLOCK state
2080  *      (which must be a legal transition).  When the device is in this
2081  *      state, all commands are deferred until the scsi lld reenables
2082  *      the device with scsi_device_unblock or device_block_tmo fires.
2083  *      This routine assumes the host_lock is held on entry.
2084  **/
2085 int
2086 scsi_internal_device_block(struct scsi_device *sdev)
2087 {
2088         struct request_queue *q = sdev->request_queue;
2089         unsigned long flags;
2090         int err = 0;
2091
2092         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2093         if (err)
2094                 return err;
2095
2096         /* 
2097          * The device has transitioned to SDEV_BLOCK.  Stop the
2098          * block layer from calling the midlayer with this device's
2099          * request queue. 
2100          */
2101         spin_lock_irqsave(q->queue_lock, flags);
2102         blk_stop_queue(q);
2103         spin_unlock_irqrestore(q->queue_lock, flags);
2104
2105         return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2108  
2109 /**
2110  * scsi_internal_device_unblock - resume a device after a block request
2111  * @sdev:       device to resume
2112  *
2113  * Called by scsi lld's or the midlayer to restart the device queue
2114  * for the previously suspended scsi device.  Called from interrupt or
2115  * normal process context.
2116  *
2117  * Returns zero if successful or error if not.
2118  *
2119  * Notes:       
2120  *      This routine transitions the device to the SDEV_RUNNING state
2121  *      (which must be a legal transition) allowing the midlayer to
2122  *      goose the queue for this device.  This routine assumes the 
2123  *      host_lock is held upon entry.
2124  **/
2125 int
2126 scsi_internal_device_unblock(struct scsi_device *sdev)
2127 {
2128         struct request_queue *q = sdev->request_queue; 
2129         int err;
2130         unsigned long flags;
2131         
2132         /* 
2133          * Try to transition the scsi device to SDEV_RUNNING
2134          * and goose the device queue if successful.  
2135          */
2136         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2137         if (err)
2138                 return err;
2139
2140         spin_lock_irqsave(q->queue_lock, flags);
2141         blk_start_queue(q);
2142         spin_unlock_irqrestore(q->queue_lock, flags);
2143
2144         return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2147
2148 static void
2149 device_block(struct scsi_device *sdev, void *data)
2150 {
2151         scsi_internal_device_block(sdev);
2152 }
2153
2154 static int
2155 target_block(struct device *dev, void *data)
2156 {
2157         if (scsi_is_target_device(dev))
2158                 starget_for_each_device(to_scsi_target(dev), NULL,
2159                                         device_block);
2160         return 0;
2161 }
2162
2163 void
2164 scsi_target_block(struct device *dev)
2165 {
2166         if (scsi_is_target_device(dev))
2167                 starget_for_each_device(to_scsi_target(dev), NULL,
2168                                         device_block);
2169         else
2170                 device_for_each_child(dev, NULL, target_block);
2171 }
2172 EXPORT_SYMBOL_GPL(scsi_target_block);
2173
2174 static void
2175 device_unblock(struct scsi_device *sdev, void *data)
2176 {
2177         scsi_internal_device_unblock(sdev);
2178 }
2179
2180 static int
2181 target_unblock(struct device *dev, void *data)
2182 {
2183         if (scsi_is_target_device(dev))
2184                 starget_for_each_device(to_scsi_target(dev), NULL,
2185                                         device_unblock);
2186         return 0;
2187 }
2188
2189 void
2190 scsi_target_unblock(struct device *dev)
2191 {
2192         if (scsi_is_target_device(dev))
2193                 starget_for_each_device(to_scsi_target(dev), NULL,
2194                                         device_unblock);
2195         else
2196                 device_for_each_child(dev, NULL, target_unblock);
2197 }
2198 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2199
2200 /**
2201  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2202  * @sg:         scatter-gather list
2203  * @sg_count:   number of segments in sg
2204  * @offset:     offset in bytes into sg, on return offset into the mapped area
2205  * @len:        bytes to map, on return number of bytes mapped
2206  *
2207  * Returns virtual address of the start of the mapped page
2208  */
2209 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2210                           size_t *offset, size_t *len)
2211 {
2212         int i;
2213         size_t sg_len = 0, len_complete = 0;
2214         struct page *page;
2215
2216         WARN_ON(!irqs_disabled());
2217
2218         for (i = 0; i < sg_count; i++) {
2219                 len_complete = sg_len; /* Complete sg-entries */
2220                 sg_len += sg[i].length;
2221                 if (sg_len > *offset)
2222                         break;
2223         }
2224
2225         if (unlikely(i == sg_count)) {
2226                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2227                         "elements %d\n",
2228                        __FUNCTION__, sg_len, *offset, sg_count);
2229                 WARN_ON(1);
2230                 return NULL;
2231         }
2232
2233         /* Offset starting from the beginning of first page in this sg-entry */
2234         *offset = *offset - len_complete + sg[i].offset;
2235
2236         /* Assumption: contiguous pages can be accessed as "page + i" */
2237         page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2238         *offset &= ~PAGE_MASK;
2239
2240         /* Bytes in this sg-entry from *offset to the end of the page */
2241         sg_len = PAGE_SIZE - *offset;
2242         if (*len > sg_len)
2243                 *len = sg_len;
2244
2245         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2246 }
2247 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2248
2249 /**
2250  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2251  *                         mapped with scsi_kmap_atomic_sg
2252  * @virt:       virtual address to be unmapped
2253  */
2254 void scsi_kunmap_atomic_sg(void *virt)
2255 {
2256         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2257 }
2258 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);