[SCSI] ibmvfc: Fix errors due to inconsistent command data
[safe/jmp/linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73  * Function:    scsi_unprep_request()
74  *
75  * Purpose:     Remove all preparation done for a request, including its
76  *              associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:   req     - request to unprepare
79  *
80  * Lock status: Assumed that no locks are held upon entry.
81  *
82  * Returns:     Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86         struct scsi_cmnd *cmd = req->special;
87
88         req->cmd_flags &= ~REQ_DONTPREP;
89         req->special = NULL;
90
91         scsi_put_command(cmd);
92 }
93
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115         struct Scsi_Host *host = cmd->device->host;
116         struct scsi_device *device = cmd->device;
117         struct scsi_target *starget = scsi_target(device);
118         struct request_queue *q = device->request_queue;
119         unsigned long flags;
120
121         SCSI_LOG_MLQUEUE(1,
122                  printk("Inserting command %p into mlqueue\n", cmd));
123
124         /*
125          * Set the appropriate busy bit for the device/host.
126          *
127          * If the host/device isn't busy, assume that something actually
128          * completed, and that we should be able to queue a command now.
129          *
130          * Note that the prior mid-layer assumption that any host could
131          * always queue at least one command is now broken.  The mid-layer
132          * will implement a user specifiable stall (see
133          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134          * if a command is requeued with no other commands outstanding
135          * either for the device or for the host.
136          */
137         switch (reason) {
138         case SCSI_MLQUEUE_HOST_BUSY:
139                 host->host_blocked = host->max_host_blocked;
140                 break;
141         case SCSI_MLQUEUE_DEVICE_BUSY:
142                 device->device_blocked = device->max_device_blocked;
143                 break;
144         case SCSI_MLQUEUE_TARGET_BUSY:
145                 starget->target_blocked = starget->max_target_blocked;
146                 break;
147         }
148
149         /*
150          * Decrement the counters, since these commands are no longer
151          * active on the host/device.
152          */
153         scsi_device_unbusy(device);
154
155         /*
156          * Requeue this command.  It will go before all other commands
157          * that are already in the queue.
158          *
159          * NOTE: there is magic here about the way the queue is plugged if
160          * we have no outstanding commands.
161          * 
162          * Although we *don't* plug the queue, we call the request
163          * function.  The SCSI request function detects the blocked condition
164          * and plugs the queue appropriately.
165          */
166         spin_lock_irqsave(q->queue_lock, flags);
167         blk_requeue_request(q, cmd->request);
168         spin_unlock_irqrestore(q->queue_lock, flags);
169
170         scsi_run_queue(q);
171
172         return 0;
173 }
174
175 /**
176  * scsi_execute - insert request and wait for the result
177  * @sdev:       scsi device
178  * @cmd:        scsi command
179  * @data_direction: data direction
180  * @buffer:     data buffer
181  * @bufflen:    len of buffer
182  * @sense:      optional sense buffer
183  * @timeout:    request timeout in seconds
184  * @retries:    number of times to retry request
185  * @flags:      or into request flags;
186  *
187  * returns the req->errors value which is the scsi_cmnd result
188  * field.
189  */
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191                  int data_direction, void *buffer, unsigned bufflen,
192                  unsigned char *sense, int timeout, int retries, int flags)
193 {
194         struct request *req;
195         int write = (data_direction == DMA_TO_DEVICE);
196         int ret = DRIVER_ERROR << 24;
197
198         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
199
200         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
201                                         buffer, bufflen, __GFP_WAIT))
202                 goto out;
203
204         req->cmd_len = COMMAND_SIZE(cmd[0]);
205         memcpy(req->cmd, cmd, req->cmd_len);
206         req->sense = sense;
207         req->sense_len = 0;
208         req->retries = retries;
209         req->timeout = timeout;
210         req->cmd_type = REQ_TYPE_BLOCK_PC;
211         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
212
213         /*
214          * head injection *required* here otherwise quiesce won't work
215          */
216         blk_execute_rq(req->q, NULL, req, 1);
217
218         /*
219          * Some devices (USB mass-storage in particular) may transfer
220          * garbage data together with a residue indicating that the data
221          * is invalid.  Prevent the garbage from being misinterpreted
222          * and prevent security leaks by zeroing out the excess data.
223          */
224         if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225                 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
226
227         ret = req->errors;
228  out:
229         blk_put_request(req);
230
231         return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234
235
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237                      int data_direction, void *buffer, unsigned bufflen,
238                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
239 {
240         char *sense = NULL;
241         int result;
242         
243         if (sshdr) {
244                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245                 if (!sense)
246                         return DRIVER_ERROR << 24;
247         }
248         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249                               sense, timeout, retries, 0);
250         if (sshdr)
251                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253         kfree(sense);
254         return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req);
257
258 struct scsi_io_context {
259         void *data;
260         void (*done)(void *data, char *sense, int result, int resid);
261         char sense[SCSI_SENSE_BUFFERSIZE];
262 };
263
264 static struct kmem_cache *scsi_io_context_cache;
265
266 static void scsi_end_async(struct request *req, int uptodate)
267 {
268         struct scsi_io_context *sioc = req->end_io_data;
269
270         if (sioc->done)
271                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
272
273         kmem_cache_free(scsi_io_context_cache, sioc);
274         __blk_put_request(req->q, req);
275 }
276
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
278 {
279         struct request_queue *q = rq->q;
280
281         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282         if (rq_data_dir(rq) == WRITE)
283                 bio->bi_rw |= (1 << BIO_RW);
284         blk_queue_bounce(q, &bio);
285
286         return blk_rq_append_bio(q, rq, bio);
287 }
288
289 static void scsi_bi_endio(struct bio *bio, int error)
290 {
291         bio_put(bio);
292 }
293
294 /**
295  * scsi_req_map_sg - map a scatterlist into a request
296  * @rq:         request to fill
297  * @sgl:        scatterlist
298  * @nsegs:      number of elements
299  * @bufflen:    len of buffer
300  * @gfp:        memory allocation flags
301  *
302  * scsi_req_map_sg maps a scatterlist into a request so that the
303  * request can be sent to the block layer. We do not trust the scatterlist
304  * sent to use, as some ULDs use that struct to only organize the pages.
305  */
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307                            int nsegs, unsigned bufflen, gfp_t gfp)
308 {
309         struct request_queue *q = rq->q;
310         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311         unsigned int data_len = bufflen, len, bytes, off;
312         struct scatterlist *sg;
313         struct page *page;
314         struct bio *bio = NULL;
315         int i, err, nr_vecs = 0;
316
317         for_each_sg(sgl, sg, nsegs, i) {
318                 page = sg_page(sg);
319                 off = sg->offset;
320                 len = sg->length;
321
322                 while (len > 0 && data_len > 0) {
323                         /*
324                          * sg sends a scatterlist that is larger than
325                          * the data_len it wants transferred for certain
326                          * IO sizes
327                          */
328                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329                         bytes = min(bytes, data_len);
330
331                         if (!bio) {
332                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333                                 nr_pages -= nr_vecs;
334
335                                 bio = bio_alloc(gfp, nr_vecs);
336                                 if (!bio) {
337                                         err = -ENOMEM;
338                                         goto free_bios;
339                                 }
340                                 bio->bi_end_io = scsi_bi_endio;
341                         }
342
343                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
344                             bytes) {
345                                 bio_put(bio);
346                                 err = -EINVAL;
347                                 goto free_bios;
348                         }
349
350                         if (bio->bi_vcnt >= nr_vecs) {
351                                 err = scsi_merge_bio(rq, bio);
352                                 if (err) {
353                                         bio_endio(bio, 0);
354                                         goto free_bios;
355                                 }
356                                 bio = NULL;
357                         }
358
359                         page++;
360                         len -= bytes;
361                         data_len -=bytes;
362                         off = 0;
363                 }
364         }
365
366         rq->buffer = rq->data = NULL;
367         rq->data_len = bufflen;
368         return 0;
369
370 free_bios:
371         while ((bio = rq->bio) != NULL) {
372                 rq->bio = bio->bi_next;
373                 /*
374                  * call endio instead of bio_put incase it was bounced
375                  */
376                 bio_endio(bio, 0);
377         }
378
379         return err;
380 }
381
382 /**
383  * scsi_execute_async - insert request
384  * @sdev:       scsi device
385  * @cmd:        scsi command
386  * @cmd_len:    length of scsi cdb
387  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
389  * @bufflen:    len of buffer
390  * @use_sg:     if buffer is a scatterlist this is the number of elements
391  * @timeout:    request timeout in seconds
392  * @retries:    number of times to retry request
393  * @privdata:   data passed to done()
394  * @done:       callback function when done
395  * @gfp:        memory allocation flags
396  */
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399                        int use_sg, int timeout, int retries, void *privdata,
400                        void (*done)(void *, char *, int, int), gfp_t gfp)
401 {
402         struct request *req;
403         struct scsi_io_context *sioc;
404         int err = 0;
405         int write = (data_direction == DMA_TO_DEVICE);
406
407         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408         if (!sioc)
409                 return DRIVER_ERROR << 24;
410
411         req = blk_get_request(sdev->request_queue, write, gfp);
412         if (!req)
413                 goto free_sense;
414         req->cmd_type = REQ_TYPE_BLOCK_PC;
415         req->cmd_flags |= REQ_QUIET;
416
417         if (use_sg)
418                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419         else if (bufflen)
420                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
421
422         if (err)
423                 goto free_req;
424
425         req->cmd_len = cmd_len;
426         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427         memcpy(req->cmd, cmd, req->cmd_len);
428         req->sense = sioc->sense;
429         req->sense_len = 0;
430         req->timeout = timeout;
431         req->retries = retries;
432         req->end_io_data = sioc;
433
434         sioc->data = privdata;
435         sioc->done = done;
436
437         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438         return 0;
439
440 free_req:
441         blk_put_request(req);
442 free_sense:
443         kmem_cache_free(scsi_io_context_cache, sioc);
444         return DRIVER_ERROR << 24;
445 }
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
447
448 /*
449  * Function:    scsi_init_cmd_errh()
450  *
451  * Purpose:     Initialize cmd fields related to error handling.
452  *
453  * Arguments:   cmd     - command that is ready to be queued.
454  *
455  * Notes:       This function has the job of initializing a number of
456  *              fields related to error handling.   Typically this will
457  *              be called once for each command, as required.
458  */
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
460 {
461         cmd->serial_number = 0;
462         scsi_set_resid(cmd, 0);
463         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464         if (cmd->cmd_len == 0)
465                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
466 }
467
468 void scsi_device_unbusy(struct scsi_device *sdev)
469 {
470         struct Scsi_Host *shost = sdev->host;
471         struct scsi_target *starget = scsi_target(sdev);
472         unsigned long flags;
473
474         spin_lock_irqsave(shost->host_lock, flags);
475         shost->host_busy--;
476         starget->target_busy--;
477         if (unlikely(scsi_host_in_recovery(shost) &&
478                      (shost->host_failed || shost->host_eh_scheduled)))
479                 scsi_eh_wakeup(shost);
480         spin_unlock(shost->host_lock);
481         spin_lock(sdev->request_queue->queue_lock);
482         sdev->device_busy--;
483         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
484 }
485
486 /*
487  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488  * and call blk_run_queue for all the scsi_devices on the target -
489  * including current_sdev first.
490  *
491  * Called with *no* scsi locks held.
492  */
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
494 {
495         struct Scsi_Host *shost = current_sdev->host;
496         struct scsi_device *sdev, *tmp;
497         struct scsi_target *starget = scsi_target(current_sdev);
498         unsigned long flags;
499
500         spin_lock_irqsave(shost->host_lock, flags);
501         starget->starget_sdev_user = NULL;
502         spin_unlock_irqrestore(shost->host_lock, flags);
503
504         /*
505          * Call blk_run_queue for all LUNs on the target, starting with
506          * current_sdev. We race with others (to set starget_sdev_user),
507          * but in most cases, we will be first. Ideally, each LU on the
508          * target would get some limited time or requests on the target.
509          */
510         blk_run_queue(current_sdev->request_queue);
511
512         spin_lock_irqsave(shost->host_lock, flags);
513         if (starget->starget_sdev_user)
514                 goto out;
515         list_for_each_entry_safe(sdev, tmp, &starget->devices,
516                         same_target_siblings) {
517                 if (sdev == current_sdev)
518                         continue;
519                 if (scsi_device_get(sdev))
520                         continue;
521
522                 spin_unlock_irqrestore(shost->host_lock, flags);
523                 blk_run_queue(sdev->request_queue);
524                 spin_lock_irqsave(shost->host_lock, flags);
525         
526                 scsi_device_put(sdev);
527         }
528  out:
529         spin_unlock_irqrestore(shost->host_lock, flags);
530 }
531
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
533 {
534         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
535                 return 1;
536
537         return 0;
538 }
539
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
541 {
542         return ((starget->can_queue > 0 &&
543                  starget->target_busy >= starget->can_queue) ||
544                  starget->target_blocked);
545 }
546
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
548 {
549         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550             shost->host_blocked || shost->host_self_blocked)
551                 return 1;
552
553         return 0;
554 }
555
556 /*
557  * Function:    scsi_run_queue()
558  *
559  * Purpose:     Select a proper request queue to serve next
560  *
561  * Arguments:   q       - last request's queue
562  *
563  * Returns:     Nothing
564  *
565  * Notes:       The previous command was completely finished, start
566  *              a new one if possible.
567  */
568 static void scsi_run_queue(struct request_queue *q)
569 {
570         struct scsi_device *sdev = q->queuedata;
571         struct Scsi_Host *shost = sdev->host;
572         LIST_HEAD(starved_list);
573         unsigned long flags;
574
575         if (scsi_target(sdev)->single_lun)
576                 scsi_single_lun_run(sdev);
577
578         spin_lock_irqsave(shost->host_lock, flags);
579         list_splice_init(&shost->starved_list, &starved_list);
580
581         while (!list_empty(&starved_list)) {
582                 int flagset;
583
584                 /*
585                  * As long as shost is accepting commands and we have
586                  * starved queues, call blk_run_queue. scsi_request_fn
587                  * drops the queue_lock and can add us back to the
588                  * starved_list.
589                  *
590                  * host_lock protects the starved_list and starved_entry.
591                  * scsi_request_fn must get the host_lock before checking
592                  * or modifying starved_list or starved_entry.
593                  */
594                 if (scsi_host_is_busy(shost))
595                         break;
596
597                 sdev = list_entry(starved_list.next,
598                                   struct scsi_device, starved_entry);
599                 list_del_init(&sdev->starved_entry);
600                 if (scsi_target_is_busy(scsi_target(sdev))) {
601                         list_move_tail(&sdev->starved_entry,
602                                        &shost->starved_list);
603                         continue;
604                 }
605
606                 spin_unlock(shost->host_lock);
607
608                 spin_lock(sdev->request_queue->queue_lock);
609                 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
610                                 !test_bit(QUEUE_FLAG_REENTER,
611                                         &sdev->request_queue->queue_flags);
612                 if (flagset)
613                         queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
614                 __blk_run_queue(sdev->request_queue);
615                 if (flagset)
616                         queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
617                 spin_unlock(sdev->request_queue->queue_lock);
618
619                 spin_lock(shost->host_lock);
620         }
621         /* put any unprocessed entries back */
622         list_splice(&starved_list, &shost->starved_list);
623         spin_unlock_irqrestore(shost->host_lock, flags);
624
625         blk_run_queue(q);
626 }
627
628 /*
629  * Function:    scsi_requeue_command()
630  *
631  * Purpose:     Handle post-processing of completed commands.
632  *
633  * Arguments:   q       - queue to operate on
634  *              cmd     - command that may need to be requeued.
635  *
636  * Returns:     Nothing
637  *
638  * Notes:       After command completion, there may be blocks left
639  *              over which weren't finished by the previous command
640  *              this can be for a number of reasons - the main one is
641  *              I/O errors in the middle of the request, in which case
642  *              we need to request the blocks that come after the bad
643  *              sector.
644  * Notes:       Upon return, cmd is a stale pointer.
645  */
646 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
647 {
648         struct request *req = cmd->request;
649         unsigned long flags;
650
651         spin_lock_irqsave(q->queue_lock, flags);
652         scsi_unprep_request(req);
653         blk_requeue_request(q, req);
654         spin_unlock_irqrestore(q->queue_lock, flags);
655
656         scsi_run_queue(q);
657 }
658
659 void scsi_next_command(struct scsi_cmnd *cmd)
660 {
661         struct scsi_device *sdev = cmd->device;
662         struct request_queue *q = sdev->request_queue;
663
664         /* need to hold a reference on the device before we let go of the cmd */
665         get_device(&sdev->sdev_gendev);
666
667         scsi_put_command(cmd);
668         scsi_run_queue(q);
669
670         /* ok to remove device now */
671         put_device(&sdev->sdev_gendev);
672 }
673
674 void scsi_run_host_queues(struct Scsi_Host *shost)
675 {
676         struct scsi_device *sdev;
677
678         shost_for_each_device(sdev, shost)
679                 scsi_run_queue(sdev->request_queue);
680 }
681
682 /*
683  * Function:    scsi_end_request()
684  *
685  * Purpose:     Post-processing of completed commands (usually invoked at end
686  *              of upper level post-processing and scsi_io_completion).
687  *
688  * Arguments:   cmd      - command that is complete.
689  *              error    - 0 if I/O indicates success, < 0 for I/O error.
690  *              bytes    - number of bytes of completed I/O
691  *              requeue  - indicates whether we should requeue leftovers.
692  *
693  * Lock status: Assumed that lock is not held upon entry.
694  *
695  * Returns:     cmd if requeue required, NULL otherwise.
696  *
697  * Notes:       This is called for block device requests in order to
698  *              mark some number of sectors as complete.
699  * 
700  *              We are guaranteeing that the request queue will be goosed
701  *              at some point during this call.
702  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
703  */
704 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
705                                           int bytes, int requeue)
706 {
707         struct request_queue *q = cmd->device->request_queue;
708         struct request *req = cmd->request;
709
710         /*
711          * If there are blocks left over at the end, set up the command
712          * to queue the remainder of them.
713          */
714         if (blk_end_request(req, error, bytes)) {
715                 int leftover = (req->hard_nr_sectors << 9);
716
717                 if (blk_pc_request(req))
718                         leftover = req->data_len;
719
720                 /* kill remainder if no retrys */
721                 if (error && scsi_noretry_cmd(cmd))
722                         blk_end_request(req, error, leftover);
723                 else {
724                         if (requeue) {
725                                 /*
726                                  * Bleah.  Leftovers again.  Stick the
727                                  * leftovers in the front of the
728                                  * queue, and goose the queue again.
729                                  */
730                                 scsi_requeue_command(q, cmd);
731                                 cmd = NULL;
732                         }
733                         return cmd;
734                 }
735         }
736
737         /*
738          * This will goose the queue request function at the end, so we don't
739          * need to worry about launching another command.
740          */
741         scsi_next_command(cmd);
742         return NULL;
743 }
744
745 static inline unsigned int scsi_sgtable_index(unsigned short nents)
746 {
747         unsigned int index;
748
749         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
750
751         if (nents <= 8)
752                 index = 0;
753         else
754                 index = get_count_order(nents) - 3;
755
756         return index;
757 }
758
759 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
760 {
761         struct scsi_host_sg_pool *sgp;
762
763         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
764         mempool_free(sgl, sgp->pool);
765 }
766
767 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
768 {
769         struct scsi_host_sg_pool *sgp;
770
771         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
772         return mempool_alloc(sgp->pool, gfp_mask);
773 }
774
775 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
776                               gfp_t gfp_mask)
777 {
778         int ret;
779
780         BUG_ON(!nents);
781
782         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
783                                gfp_mask, scsi_sg_alloc);
784         if (unlikely(ret))
785                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
786                                 scsi_sg_free);
787
788         return ret;
789 }
790
791 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
792 {
793         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
794 }
795
796 /*
797  * Function:    scsi_release_buffers()
798  *
799  * Purpose:     Completion processing for block device I/O requests.
800  *
801  * Arguments:   cmd     - command that we are bailing.
802  *
803  * Lock status: Assumed that no lock is held upon entry.
804  *
805  * Returns:     Nothing
806  *
807  * Notes:       In the event that an upper level driver rejects a
808  *              command, we must release resources allocated during
809  *              the __init_io() function.  Primarily this would involve
810  *              the scatter-gather table, and potentially any bounce
811  *              buffers.
812  */
813 void scsi_release_buffers(struct scsi_cmnd *cmd)
814 {
815         if (cmd->sdb.table.nents)
816                 scsi_free_sgtable(&cmd->sdb);
817
818         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
819
820         if (scsi_bidi_cmnd(cmd)) {
821                 struct scsi_data_buffer *bidi_sdb =
822                         cmd->request->next_rq->special;
823                 scsi_free_sgtable(bidi_sdb);
824                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
825                 cmd->request->next_rq->special = NULL;
826         }
827
828         if (scsi_prot_sg_count(cmd))
829                 scsi_free_sgtable(cmd->prot_sdb);
830 }
831 EXPORT_SYMBOL(scsi_release_buffers);
832
833 /*
834  * Bidi commands Must be complete as a whole, both sides at once.
835  * If part of the bytes were written and lld returned
836  * scsi_in()->resid and/or scsi_out()->resid this information will be left
837  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
838  * decide what to do with this information.
839  */
840 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
841 {
842         struct request *req = cmd->request;
843         unsigned int dlen = req->data_len;
844         unsigned int next_dlen = req->next_rq->data_len;
845
846         req->data_len = scsi_out(cmd)->resid;
847         req->next_rq->data_len = scsi_in(cmd)->resid;
848
849         /* The req and req->next_rq have not been completed */
850         BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
851
852         scsi_release_buffers(cmd);
853
854         /*
855          * This will goose the queue request function at the end, so we don't
856          * need to worry about launching another command.
857          */
858         scsi_next_command(cmd);
859 }
860
861 /*
862  * Function:    scsi_io_completion()
863  *
864  * Purpose:     Completion processing for block device I/O requests.
865  *
866  * Arguments:   cmd   - command that is finished.
867  *
868  * Lock status: Assumed that no lock is held upon entry.
869  *
870  * Returns:     Nothing
871  *
872  * Notes:       This function is matched in terms of capabilities to
873  *              the function that created the scatter-gather list.
874  *              In other words, if there are no bounce buffers
875  *              (the normal case for most drivers), we don't need
876  *              the logic to deal with cleaning up afterwards.
877  *
878  *              We must call scsi_end_request().  This will finish off
879  *              the specified number of sectors.  If we are done, the
880  *              command block will be released and the queue function
881  *              will be goosed.  If we are not done then we have to
882  *              figure out what to do next:
883  *
884  *              a) We can call scsi_requeue_command().  The request
885  *                 will be unprepared and put back on the queue.  Then
886  *                 a new command will be created for it.  This should
887  *                 be used if we made forward progress, or if we want
888  *                 to switch from READ(10) to READ(6) for example.
889  *
890  *              b) We can call scsi_queue_insert().  The request will
891  *                 be put back on the queue and retried using the same
892  *                 command as before, possibly after a delay.
893  *
894  *              c) We can call blk_end_request() with -EIO to fail
895  *                 the remainder of the request.
896  */
897 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
898 {
899         int result = cmd->result;
900         int this_count;
901         struct request_queue *q = cmd->device->request_queue;
902         struct request *req = cmd->request;
903         int error = 0;
904         struct scsi_sense_hdr sshdr;
905         int sense_valid = 0;
906         int sense_deferred = 0;
907         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
908               ACTION_DELAYED_RETRY} action;
909         char *description = NULL;
910
911         if (result) {
912                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
913                 if (sense_valid)
914                         sense_deferred = scsi_sense_is_deferred(&sshdr);
915         }
916
917         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
918                 req->errors = result;
919                 if (result) {
920                         if (sense_valid && req->sense) {
921                                 /*
922                                  * SG_IO wants current and deferred errors
923                                  */
924                                 int len = 8 + cmd->sense_buffer[7];
925
926                                 if (len > SCSI_SENSE_BUFFERSIZE)
927                                         len = SCSI_SENSE_BUFFERSIZE;
928                                 memcpy(req->sense, cmd->sense_buffer,  len);
929                                 req->sense_len = len;
930                         }
931                         if (!sense_deferred)
932                                 error = -EIO;
933                 }
934                 if (scsi_bidi_cmnd(cmd)) {
935                         /* will also release_buffers */
936                         scsi_end_bidi_request(cmd);
937                         return;
938                 }
939                 req->data_len = scsi_get_resid(cmd);
940         }
941
942         BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
943         scsi_release_buffers(cmd);
944
945         /*
946          * Next deal with any sectors which we were able to correctly
947          * handle.
948          */
949         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
950                                       "%d bytes done.\n",
951                                       req->nr_sectors, good_bytes));
952
953         /* A number of bytes were successfully read.  If there
954          * are leftovers and there is some kind of error
955          * (result != 0), retry the rest.
956          */
957         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
958                 return;
959         this_count = blk_rq_bytes(req);
960
961         if (host_byte(result) == DID_RESET) {
962                 /* Third party bus reset or reset for error recovery
963                  * reasons.  Just retry the command and see what
964                  * happens.
965                  */
966                 action = ACTION_RETRY;
967         } else if (sense_valid && !sense_deferred) {
968                 switch (sshdr.sense_key) {
969                 case UNIT_ATTENTION:
970                         if (cmd->device->removable) {
971                                 /* Detected disc change.  Set a bit
972                                  * and quietly refuse further access.
973                                  */
974                                 cmd->device->changed = 1;
975                                 description = "Media Changed";
976                                 action = ACTION_FAIL;
977                         } else {
978                                 /* Must have been a power glitch, or a
979                                  * bus reset.  Could not have been a
980                                  * media change, so we just retry the
981                                  * command and see what happens.
982                                  */
983                                 action = ACTION_RETRY;
984                         }
985                         break;
986                 case ILLEGAL_REQUEST:
987                         /* If we had an ILLEGAL REQUEST returned, then
988                          * we may have performed an unsupported
989                          * command.  The only thing this should be
990                          * would be a ten byte read where only a six
991                          * byte read was supported.  Also, on a system
992                          * where READ CAPACITY failed, we may have
993                          * read past the end of the disk.
994                          */
995                         if ((cmd->device->use_10_for_rw &&
996                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
997                             (cmd->cmnd[0] == READ_10 ||
998                              cmd->cmnd[0] == WRITE_10)) {
999                                 /* This will issue a new 6-byte command. */
1000                                 cmd->device->use_10_for_rw = 0;
1001                                 action = ACTION_REPREP;
1002                         } else
1003                                 action = ACTION_FAIL;
1004                         break;
1005                 case ABORTED_COMMAND:
1006                         if (sshdr.asc == 0x10) { /* DIF */
1007                                 action = ACTION_FAIL;
1008                                 description = "Data Integrity Failure";
1009                         } else
1010                                 action = ACTION_RETRY;
1011                         break;
1012                 case NOT_READY:
1013                         /* If the device is in the process of becoming
1014                          * ready, or has a temporary blockage, retry.
1015                          */
1016                         if (sshdr.asc == 0x04) {
1017                                 switch (sshdr.ascq) {
1018                                 case 0x01: /* becoming ready */
1019                                 case 0x04: /* format in progress */
1020                                 case 0x05: /* rebuild in progress */
1021                                 case 0x06: /* recalculation in progress */
1022                                 case 0x07: /* operation in progress */
1023                                 case 0x08: /* Long write in progress */
1024                                 case 0x09: /* self test in progress */
1025                                         action = ACTION_DELAYED_RETRY;
1026                                         break;
1027                                 }
1028                         } else {
1029                                 description = "Device not ready";
1030                                 action = ACTION_FAIL;
1031                         }
1032                         break;
1033                 case VOLUME_OVERFLOW:
1034                         /* See SSC3rXX or current. */
1035                         action = ACTION_FAIL;
1036                         break;
1037                 default:
1038                         description = "Unhandled sense code";
1039                         action = ACTION_FAIL;
1040                         break;
1041                 }
1042         } else {
1043                 description = "Unhandled error code";
1044                 action = ACTION_FAIL;
1045         }
1046
1047         switch (action) {
1048         case ACTION_FAIL:
1049                 /* Give up and fail the remainder of the request */
1050                 if (!(req->cmd_flags & REQ_QUIET)) {
1051                         if (description)
1052                                 scmd_printk(KERN_INFO, cmd, "%s",
1053                                             description);
1054                         scsi_print_result(cmd);
1055                         if (driver_byte(result) & DRIVER_SENSE)
1056                                 scsi_print_sense("", cmd);
1057                 }
1058                 blk_end_request(req, -EIO, blk_rq_bytes(req));
1059                 scsi_next_command(cmd);
1060                 break;
1061         case ACTION_REPREP:
1062                 /* Unprep the request and put it back at the head of the queue.
1063                  * A new command will be prepared and issued.
1064                  */
1065                 scsi_requeue_command(q, cmd);
1066                 break;
1067         case ACTION_RETRY:
1068                 /* Retry the same command immediately */
1069                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1070                 break;
1071         case ACTION_DELAYED_RETRY:
1072                 /* Retry the same command after a delay */
1073                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1074                 break;
1075         }
1076 }
1077
1078 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1079                              gfp_t gfp_mask)
1080 {
1081         int count;
1082
1083         /*
1084          * If sg table allocation fails, requeue request later.
1085          */
1086         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1087                                         gfp_mask))) {
1088                 return BLKPREP_DEFER;
1089         }
1090
1091         req->buffer = NULL;
1092
1093         /* 
1094          * Next, walk the list, and fill in the addresses and sizes of
1095          * each segment.
1096          */
1097         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1098         BUG_ON(count > sdb->table.nents);
1099         sdb->table.nents = count;
1100         if (blk_pc_request(req))
1101                 sdb->length = req->data_len;
1102         else
1103                 sdb->length = req->nr_sectors << 9;
1104         return BLKPREP_OK;
1105 }
1106
1107 /*
1108  * Function:    scsi_init_io()
1109  *
1110  * Purpose:     SCSI I/O initialize function.
1111  *
1112  * Arguments:   cmd   - Command descriptor we wish to initialize
1113  *
1114  * Returns:     0 on success
1115  *              BLKPREP_DEFER if the failure is retryable
1116  *              BLKPREP_KILL if the failure is fatal
1117  */
1118 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1119 {
1120         int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1121         if (error)
1122                 goto err_exit;
1123
1124         if (blk_bidi_rq(cmd->request)) {
1125                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1126                         scsi_sdb_cache, GFP_ATOMIC);
1127                 if (!bidi_sdb) {
1128                         error = BLKPREP_DEFER;
1129                         goto err_exit;
1130                 }
1131
1132                 cmd->request->next_rq->special = bidi_sdb;
1133                 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1134                                                                     GFP_ATOMIC);
1135                 if (error)
1136                         goto err_exit;
1137         }
1138
1139         if (blk_integrity_rq(cmd->request)) {
1140                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1141                 int ivecs, count;
1142
1143                 BUG_ON(prot_sdb == NULL);
1144                 ivecs = blk_rq_count_integrity_sg(cmd->request);
1145
1146                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1147                         error = BLKPREP_DEFER;
1148                         goto err_exit;
1149                 }
1150
1151                 count = blk_rq_map_integrity_sg(cmd->request,
1152                                                 prot_sdb->table.sgl);
1153                 BUG_ON(unlikely(count > ivecs));
1154
1155                 cmd->prot_sdb = prot_sdb;
1156                 cmd->prot_sdb->table.nents = count;
1157         }
1158
1159         return BLKPREP_OK ;
1160
1161 err_exit:
1162         scsi_release_buffers(cmd);
1163         if (error == BLKPREP_KILL)
1164                 scsi_put_command(cmd);
1165         else /* BLKPREP_DEFER */
1166                 scsi_unprep_request(cmd->request);
1167
1168         return error;
1169 }
1170 EXPORT_SYMBOL(scsi_init_io);
1171
1172 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1173                 struct request *req)
1174 {
1175         struct scsi_cmnd *cmd;
1176
1177         if (!req->special) {
1178                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1179                 if (unlikely(!cmd))
1180                         return NULL;
1181                 req->special = cmd;
1182         } else {
1183                 cmd = req->special;
1184         }
1185
1186         /* pull a tag out of the request if we have one */
1187         cmd->tag = req->tag;
1188         cmd->request = req;
1189
1190         cmd->cmnd = req->cmd;
1191
1192         return cmd;
1193 }
1194
1195 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1196 {
1197         struct scsi_cmnd *cmd;
1198         int ret = scsi_prep_state_check(sdev, req);
1199
1200         if (ret != BLKPREP_OK)
1201                 return ret;
1202
1203         cmd = scsi_get_cmd_from_req(sdev, req);
1204         if (unlikely(!cmd))
1205                 return BLKPREP_DEFER;
1206
1207         /*
1208          * BLOCK_PC requests may transfer data, in which case they must
1209          * a bio attached to them.  Or they might contain a SCSI command
1210          * that does not transfer data, in which case they may optionally
1211          * submit a request without an attached bio.
1212          */
1213         if (req->bio) {
1214                 int ret;
1215
1216                 BUG_ON(!req->nr_phys_segments);
1217
1218                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1219                 if (unlikely(ret))
1220                         return ret;
1221         } else {
1222                 BUG_ON(req->data_len);
1223                 BUG_ON(req->data);
1224
1225                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1226                 req->buffer = NULL;
1227         }
1228
1229         cmd->cmd_len = req->cmd_len;
1230         if (!req->data_len)
1231                 cmd->sc_data_direction = DMA_NONE;
1232         else if (rq_data_dir(req) == WRITE)
1233                 cmd->sc_data_direction = DMA_TO_DEVICE;
1234         else
1235                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1236         
1237         cmd->transfersize = req->data_len;
1238         cmd->allowed = req->retries;
1239         return BLKPREP_OK;
1240 }
1241 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1242
1243 /*
1244  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1245  * from filesystems that still need to be translated to SCSI CDBs from
1246  * the ULD.
1247  */
1248 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250         struct scsi_cmnd *cmd;
1251         int ret = scsi_prep_state_check(sdev, req);
1252
1253         if (ret != BLKPREP_OK)
1254                 return ret;
1255
1256         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1257                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1258                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1259                 if (ret != BLKPREP_OK)
1260                         return ret;
1261         }
1262
1263         /*
1264          * Filesystem requests must transfer data.
1265          */
1266         BUG_ON(!req->nr_phys_segments);
1267
1268         cmd = scsi_get_cmd_from_req(sdev, req);
1269         if (unlikely(!cmd))
1270                 return BLKPREP_DEFER;
1271
1272         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1273         return scsi_init_io(cmd, GFP_ATOMIC);
1274 }
1275 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1276
1277 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1278 {
1279         int ret = BLKPREP_OK;
1280
1281         /*
1282          * If the device is not in running state we will reject some
1283          * or all commands.
1284          */
1285         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1286                 switch (sdev->sdev_state) {
1287                 case SDEV_OFFLINE:
1288                         /*
1289                          * If the device is offline we refuse to process any
1290                          * commands.  The device must be brought online
1291                          * before trying any recovery commands.
1292                          */
1293                         sdev_printk(KERN_ERR, sdev,
1294                                     "rejecting I/O to offline device\n");
1295                         ret = BLKPREP_KILL;
1296                         break;
1297                 case SDEV_DEL:
1298                         /*
1299                          * If the device is fully deleted, we refuse to
1300                          * process any commands as well.
1301                          */
1302                         sdev_printk(KERN_ERR, sdev,
1303                                     "rejecting I/O to dead device\n");
1304                         ret = BLKPREP_KILL;
1305                         break;
1306                 case SDEV_QUIESCE:
1307                 case SDEV_BLOCK:
1308                 case SDEV_CREATED_BLOCK:
1309                         /*
1310                          * If the devices is blocked we defer normal commands.
1311                          */
1312                         if (!(req->cmd_flags & REQ_PREEMPT))
1313                                 ret = BLKPREP_DEFER;
1314                         break;
1315                 default:
1316                         /*
1317                          * For any other not fully online state we only allow
1318                          * special commands.  In particular any user initiated
1319                          * command is not allowed.
1320                          */
1321                         if (!(req->cmd_flags & REQ_PREEMPT))
1322                                 ret = BLKPREP_KILL;
1323                         break;
1324                 }
1325         }
1326         return ret;
1327 }
1328 EXPORT_SYMBOL(scsi_prep_state_check);
1329
1330 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1331 {
1332         struct scsi_device *sdev = q->queuedata;
1333
1334         switch (ret) {
1335         case BLKPREP_KILL:
1336                 req->errors = DID_NO_CONNECT << 16;
1337                 /* release the command and kill it */
1338                 if (req->special) {
1339                         struct scsi_cmnd *cmd = req->special;
1340                         scsi_release_buffers(cmd);
1341                         scsi_put_command(cmd);
1342                         req->special = NULL;
1343                 }
1344                 break;
1345         case BLKPREP_DEFER:
1346                 /*
1347                  * If we defer, the elv_next_request() returns NULL, but the
1348                  * queue must be restarted, so we plug here if no returning
1349                  * command will automatically do that.
1350                  */
1351                 if (sdev->device_busy == 0)
1352                         blk_plug_device(q);
1353                 break;
1354         default:
1355                 req->cmd_flags |= REQ_DONTPREP;
1356         }
1357
1358         return ret;
1359 }
1360 EXPORT_SYMBOL(scsi_prep_return);
1361
1362 int scsi_prep_fn(struct request_queue *q, struct request *req)
1363 {
1364         struct scsi_device *sdev = q->queuedata;
1365         int ret = BLKPREP_KILL;
1366
1367         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1368                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1369         return scsi_prep_return(q, req, ret);
1370 }
1371
1372 /*
1373  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1374  * return 0.
1375  *
1376  * Called with the queue_lock held.
1377  */
1378 static inline int scsi_dev_queue_ready(struct request_queue *q,
1379                                   struct scsi_device *sdev)
1380 {
1381         if (sdev->device_busy == 0 && sdev->device_blocked) {
1382                 /*
1383                  * unblock after device_blocked iterates to zero
1384                  */
1385                 if (--sdev->device_blocked == 0) {
1386                         SCSI_LOG_MLQUEUE(3,
1387                                    sdev_printk(KERN_INFO, sdev,
1388                                    "unblocking device at zero depth\n"));
1389                 } else {
1390                         blk_plug_device(q);
1391                         return 0;
1392                 }
1393         }
1394         if (scsi_device_is_busy(sdev))
1395                 return 0;
1396
1397         return 1;
1398 }
1399
1400
1401 /*
1402  * scsi_target_queue_ready: checks if there we can send commands to target
1403  * @sdev: scsi device on starget to check.
1404  *
1405  * Called with the host lock held.
1406  */
1407 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1408                                            struct scsi_device *sdev)
1409 {
1410         struct scsi_target *starget = scsi_target(sdev);
1411
1412         if (starget->single_lun) {
1413                 if (starget->starget_sdev_user &&
1414                     starget->starget_sdev_user != sdev)
1415                         return 0;
1416                 starget->starget_sdev_user = sdev;
1417         }
1418
1419         if (starget->target_busy == 0 && starget->target_blocked) {
1420                 /*
1421                  * unblock after target_blocked iterates to zero
1422                  */
1423                 if (--starget->target_blocked == 0) {
1424                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1425                                          "unblocking target at zero depth\n"));
1426                 } else {
1427                         blk_plug_device(sdev->request_queue);
1428                         return 0;
1429                 }
1430         }
1431
1432         if (scsi_target_is_busy(starget)) {
1433                 if (list_empty(&sdev->starved_entry)) {
1434                         list_add_tail(&sdev->starved_entry,
1435                                       &shost->starved_list);
1436                         return 0;
1437                 }
1438         }
1439
1440         /* We're OK to process the command, so we can't be starved */
1441         if (!list_empty(&sdev->starved_entry))
1442                 list_del_init(&sdev->starved_entry);
1443         return 1;
1444 }
1445
1446 /*
1447  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1448  * return 0. We must end up running the queue again whenever 0 is
1449  * returned, else IO can hang.
1450  *
1451  * Called with host_lock held.
1452  */
1453 static inline int scsi_host_queue_ready(struct request_queue *q,
1454                                    struct Scsi_Host *shost,
1455                                    struct scsi_device *sdev)
1456 {
1457         if (scsi_host_in_recovery(shost))
1458                 return 0;
1459         if (shost->host_busy == 0 && shost->host_blocked) {
1460                 /*
1461                  * unblock after host_blocked iterates to zero
1462                  */
1463                 if (--shost->host_blocked == 0) {
1464                         SCSI_LOG_MLQUEUE(3,
1465                                 printk("scsi%d unblocking host at zero depth\n",
1466                                         shost->host_no));
1467                 } else {
1468                         return 0;
1469                 }
1470         }
1471         if (scsi_host_is_busy(shost)) {
1472                 if (list_empty(&sdev->starved_entry))
1473                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1474                 return 0;
1475         }
1476
1477         /* We're OK to process the command, so we can't be starved */
1478         if (!list_empty(&sdev->starved_entry))
1479                 list_del_init(&sdev->starved_entry);
1480
1481         return 1;
1482 }
1483
1484 /*
1485  * Busy state exporting function for request stacking drivers.
1486  *
1487  * For efficiency, no lock is taken to check the busy state of
1488  * shost/starget/sdev, since the returned value is not guaranteed and
1489  * may be changed after request stacking drivers call the function,
1490  * regardless of taking lock or not.
1491  *
1492  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1493  * (e.g. !sdev), scsi needs to return 'not busy'.
1494  * Otherwise, request stacking drivers may hold requests forever.
1495  */
1496 static int scsi_lld_busy(struct request_queue *q)
1497 {
1498         struct scsi_device *sdev = q->queuedata;
1499         struct Scsi_Host *shost;
1500         struct scsi_target *starget;
1501
1502         if (!sdev)
1503                 return 0;
1504
1505         shost = sdev->host;
1506         starget = scsi_target(sdev);
1507
1508         if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1509             scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1510                 return 1;
1511
1512         return 0;
1513 }
1514
1515 /*
1516  * Kill a request for a dead device
1517  */
1518 static void scsi_kill_request(struct request *req, struct request_queue *q)
1519 {
1520         struct scsi_cmnd *cmd = req->special;
1521         struct scsi_device *sdev = cmd->device;
1522         struct scsi_target *starget = scsi_target(sdev);
1523         struct Scsi_Host *shost = sdev->host;
1524
1525         blkdev_dequeue_request(req);
1526
1527         if (unlikely(cmd == NULL)) {
1528                 printk(KERN_CRIT "impossible request in %s.\n",
1529                                  __func__);
1530                 BUG();
1531         }
1532
1533         scsi_init_cmd_errh(cmd);
1534         cmd->result = DID_NO_CONNECT << 16;
1535         atomic_inc(&cmd->device->iorequest_cnt);
1536
1537         /*
1538          * SCSI request completion path will do scsi_device_unbusy(),
1539          * bump busy counts.  To bump the counters, we need to dance
1540          * with the locks as normal issue path does.
1541          */
1542         sdev->device_busy++;
1543         spin_unlock(sdev->request_queue->queue_lock);
1544         spin_lock(shost->host_lock);
1545         shost->host_busy++;
1546         starget->target_busy++;
1547         spin_unlock(shost->host_lock);
1548         spin_lock(sdev->request_queue->queue_lock);
1549
1550         blk_complete_request(req);
1551 }
1552
1553 static void scsi_softirq_done(struct request *rq)
1554 {
1555         struct scsi_cmnd *cmd = rq->special;
1556         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1557         int disposition;
1558
1559         INIT_LIST_HEAD(&cmd->eh_entry);
1560
1561         /*
1562          * Set the serial numbers back to zero
1563          */
1564         cmd->serial_number = 0;
1565
1566         atomic_inc(&cmd->device->iodone_cnt);
1567         if (cmd->result)
1568                 atomic_inc(&cmd->device->ioerr_cnt);
1569
1570         disposition = scsi_decide_disposition(cmd);
1571         if (disposition != SUCCESS &&
1572             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1573                 sdev_printk(KERN_ERR, cmd->device,
1574                             "timing out command, waited %lus\n",
1575                             wait_for/HZ);
1576                 disposition = SUCCESS;
1577         }
1578                         
1579         scsi_log_completion(cmd, disposition);
1580
1581         switch (disposition) {
1582                 case SUCCESS:
1583                         scsi_finish_command(cmd);
1584                         break;
1585                 case NEEDS_RETRY:
1586                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1587                         break;
1588                 case ADD_TO_MLQUEUE:
1589                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1590                         break;
1591                 default:
1592                         if (!scsi_eh_scmd_add(cmd, 0))
1593                                 scsi_finish_command(cmd);
1594         }
1595 }
1596
1597 /*
1598  * Function:    scsi_request_fn()
1599  *
1600  * Purpose:     Main strategy routine for SCSI.
1601  *
1602  * Arguments:   q       - Pointer to actual queue.
1603  *
1604  * Returns:     Nothing
1605  *
1606  * Lock status: IO request lock assumed to be held when called.
1607  */
1608 static void scsi_request_fn(struct request_queue *q)
1609 {
1610         struct scsi_device *sdev = q->queuedata;
1611         struct Scsi_Host *shost;
1612         struct scsi_cmnd *cmd;
1613         struct request *req;
1614
1615         if (!sdev) {
1616                 printk("scsi: killing requests for dead queue\n");
1617                 while ((req = elv_next_request(q)) != NULL)
1618                         scsi_kill_request(req, q);
1619                 return;
1620         }
1621
1622         if(!get_device(&sdev->sdev_gendev))
1623                 /* We must be tearing the block queue down already */
1624                 return;
1625
1626         /*
1627          * To start with, we keep looping until the queue is empty, or until
1628          * the host is no longer able to accept any more requests.
1629          */
1630         shost = sdev->host;
1631         while (!blk_queue_plugged(q)) {
1632                 int rtn;
1633                 /*
1634                  * get next queueable request.  We do this early to make sure
1635                  * that the request is fully prepared even if we cannot 
1636                  * accept it.
1637                  */
1638                 req = elv_next_request(q);
1639                 if (!req || !scsi_dev_queue_ready(q, sdev))
1640                         break;
1641
1642                 if (unlikely(!scsi_device_online(sdev))) {
1643                         sdev_printk(KERN_ERR, sdev,
1644                                     "rejecting I/O to offline device\n");
1645                         scsi_kill_request(req, q);
1646                         continue;
1647                 }
1648
1649
1650                 /*
1651                  * Remove the request from the request list.
1652                  */
1653                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1654                         blkdev_dequeue_request(req);
1655                 sdev->device_busy++;
1656
1657                 spin_unlock(q->queue_lock);
1658                 cmd = req->special;
1659                 if (unlikely(cmd == NULL)) {
1660                         printk(KERN_CRIT "impossible request in %s.\n"
1661                                          "please mail a stack trace to "
1662                                          "linux-scsi@vger.kernel.org\n",
1663                                          __func__);
1664                         blk_dump_rq_flags(req, "foo");
1665                         BUG();
1666                 }
1667                 spin_lock(shost->host_lock);
1668
1669                 /*
1670                  * We hit this when the driver is using a host wide
1671                  * tag map. For device level tag maps the queue_depth check
1672                  * in the device ready fn would prevent us from trying
1673                  * to allocate a tag. Since the map is a shared host resource
1674                  * we add the dev to the starved list so it eventually gets
1675                  * a run when a tag is freed.
1676                  */
1677                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1678                         if (list_empty(&sdev->starved_entry))
1679                                 list_add_tail(&sdev->starved_entry,
1680                                               &shost->starved_list);
1681                         goto not_ready;
1682                 }
1683
1684                 if (!scsi_target_queue_ready(shost, sdev))
1685                         goto not_ready;
1686
1687                 if (!scsi_host_queue_ready(q, shost, sdev))
1688                         goto not_ready;
1689
1690                 scsi_target(sdev)->target_busy++;
1691                 shost->host_busy++;
1692
1693                 /*
1694                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1695                  *              take the lock again.
1696                  */
1697                 spin_unlock_irq(shost->host_lock);
1698
1699                 /*
1700                  * Finally, initialize any error handling parameters, and set up
1701                  * the timers for timeouts.
1702                  */
1703                 scsi_init_cmd_errh(cmd);
1704
1705                 /*
1706                  * Dispatch the command to the low-level driver.
1707                  */
1708                 rtn = scsi_dispatch_cmd(cmd);
1709                 spin_lock_irq(q->queue_lock);
1710                 if(rtn) {
1711                         /* we're refusing the command; because of
1712                          * the way locks get dropped, we need to 
1713                          * check here if plugging is required */
1714                         if(sdev->device_busy == 0)
1715                                 blk_plug_device(q);
1716
1717                         break;
1718                 }
1719         }
1720
1721         goto out;
1722
1723  not_ready:
1724         spin_unlock_irq(shost->host_lock);
1725
1726         /*
1727          * lock q, handle tag, requeue req, and decrement device_busy. We
1728          * must return with queue_lock held.
1729          *
1730          * Decrementing device_busy without checking it is OK, as all such
1731          * cases (host limits or settings) should run the queue at some
1732          * later time.
1733          */
1734         spin_lock_irq(q->queue_lock);
1735         blk_requeue_request(q, req);
1736         sdev->device_busy--;
1737         if(sdev->device_busy == 0)
1738                 blk_plug_device(q);
1739  out:
1740         /* must be careful here...if we trigger the ->remove() function
1741          * we cannot be holding the q lock */
1742         spin_unlock_irq(q->queue_lock);
1743         put_device(&sdev->sdev_gendev);
1744         spin_lock_irq(q->queue_lock);
1745 }
1746
1747 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1748 {
1749         struct device *host_dev;
1750         u64 bounce_limit = 0xffffffff;
1751
1752         if (shost->unchecked_isa_dma)
1753                 return BLK_BOUNCE_ISA;
1754         /*
1755          * Platforms with virtual-DMA translation
1756          * hardware have no practical limit.
1757          */
1758         if (!PCI_DMA_BUS_IS_PHYS)
1759                 return BLK_BOUNCE_ANY;
1760
1761         host_dev = scsi_get_device(shost);
1762         if (host_dev && host_dev->dma_mask)
1763                 bounce_limit = *host_dev->dma_mask;
1764
1765         return bounce_limit;
1766 }
1767 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1768
1769 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1770                                          request_fn_proc *request_fn)
1771 {
1772         struct request_queue *q;
1773         struct device *dev = shost->shost_gendev.parent;
1774
1775         q = blk_init_queue(request_fn, NULL);
1776         if (!q)
1777                 return NULL;
1778
1779         /*
1780          * this limit is imposed by hardware restrictions
1781          */
1782         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1783         blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1784
1785         blk_queue_max_sectors(q, shost->max_sectors);
1786         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1787         blk_queue_segment_boundary(q, shost->dma_boundary);
1788         dma_set_seg_boundary(dev, shost->dma_boundary);
1789
1790         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1791
1792         /* New queue, no concurrency on queue_flags */
1793         if (!shost->use_clustering)
1794                 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1795
1796         /*
1797          * set a reasonable default alignment on word boundaries: the
1798          * host and device may alter it using
1799          * blk_queue_update_dma_alignment() later.
1800          */
1801         blk_queue_dma_alignment(q, 0x03);
1802
1803         return q;
1804 }
1805 EXPORT_SYMBOL(__scsi_alloc_queue);
1806
1807 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1808 {
1809         struct request_queue *q;
1810
1811         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1812         if (!q)
1813                 return NULL;
1814
1815         blk_queue_prep_rq(q, scsi_prep_fn);
1816         blk_queue_softirq_done(q, scsi_softirq_done);
1817         blk_queue_rq_timed_out(q, scsi_times_out);
1818         blk_queue_lld_busy(q, scsi_lld_busy);
1819         return q;
1820 }
1821
1822 void scsi_free_queue(struct request_queue *q)
1823 {
1824         blk_cleanup_queue(q);
1825 }
1826
1827 /*
1828  * Function:    scsi_block_requests()
1829  *
1830  * Purpose:     Utility function used by low-level drivers to prevent further
1831  *              commands from being queued to the device.
1832  *
1833  * Arguments:   shost       - Host in question
1834  *
1835  * Returns:     Nothing
1836  *
1837  * Lock status: No locks are assumed held.
1838  *
1839  * Notes:       There is no timer nor any other means by which the requests
1840  *              get unblocked other than the low-level driver calling
1841  *              scsi_unblock_requests().
1842  */
1843 void scsi_block_requests(struct Scsi_Host *shost)
1844 {
1845         shost->host_self_blocked = 1;
1846 }
1847 EXPORT_SYMBOL(scsi_block_requests);
1848
1849 /*
1850  * Function:    scsi_unblock_requests()
1851  *
1852  * Purpose:     Utility function used by low-level drivers to allow further
1853  *              commands from being queued to the device.
1854  *
1855  * Arguments:   shost       - Host in question
1856  *
1857  * Returns:     Nothing
1858  *
1859  * Lock status: No locks are assumed held.
1860  *
1861  * Notes:       There is no timer nor any other means by which the requests
1862  *              get unblocked other than the low-level driver calling
1863  *              scsi_unblock_requests().
1864  *
1865  *              This is done as an API function so that changes to the
1866  *              internals of the scsi mid-layer won't require wholesale
1867  *              changes to drivers that use this feature.
1868  */
1869 void scsi_unblock_requests(struct Scsi_Host *shost)
1870 {
1871         shost->host_self_blocked = 0;
1872         scsi_run_host_queues(shost);
1873 }
1874 EXPORT_SYMBOL(scsi_unblock_requests);
1875
1876 int __init scsi_init_queue(void)
1877 {
1878         int i;
1879
1880         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1881                                         sizeof(struct scsi_io_context),
1882                                         0, 0, NULL);
1883         if (!scsi_io_context_cache) {
1884                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1885                 return -ENOMEM;
1886         }
1887
1888         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1889                                            sizeof(struct scsi_data_buffer),
1890                                            0, 0, NULL);
1891         if (!scsi_sdb_cache) {
1892                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1893                 goto cleanup_io_context;
1894         }
1895
1896         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1897                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1898                 int size = sgp->size * sizeof(struct scatterlist);
1899
1900                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1901                                 SLAB_HWCACHE_ALIGN, NULL);
1902                 if (!sgp->slab) {
1903                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1904                                         sgp->name);
1905                         goto cleanup_sdb;
1906                 }
1907
1908                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1909                                                      sgp->slab);
1910                 if (!sgp->pool) {
1911                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1912                                         sgp->name);
1913                         goto cleanup_sdb;
1914                 }
1915         }
1916
1917         return 0;
1918
1919 cleanup_sdb:
1920         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1921                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1922                 if (sgp->pool)
1923                         mempool_destroy(sgp->pool);
1924                 if (sgp->slab)
1925                         kmem_cache_destroy(sgp->slab);
1926         }
1927         kmem_cache_destroy(scsi_sdb_cache);
1928 cleanup_io_context:
1929         kmem_cache_destroy(scsi_io_context_cache);
1930
1931         return -ENOMEM;
1932 }
1933
1934 void scsi_exit_queue(void)
1935 {
1936         int i;
1937
1938         kmem_cache_destroy(scsi_io_context_cache);
1939         kmem_cache_destroy(scsi_sdb_cache);
1940
1941         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1942                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1943                 mempool_destroy(sgp->pool);
1944                 kmem_cache_destroy(sgp->slab);
1945         }
1946 }
1947
1948 /**
1949  *      scsi_mode_select - issue a mode select
1950  *      @sdev:  SCSI device to be queried
1951  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1952  *      @sp:    Save page bit (0 == don't save, 1 == save)
1953  *      @modepage: mode page being requested
1954  *      @buffer: request buffer (may not be smaller than eight bytes)
1955  *      @len:   length of request buffer.
1956  *      @timeout: command timeout
1957  *      @retries: number of retries before failing
1958  *      @data: returns a structure abstracting the mode header data
1959  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1960  *              must be SCSI_SENSE_BUFFERSIZE big.
1961  *
1962  *      Returns zero if successful; negative error number or scsi
1963  *      status on error
1964  *
1965  */
1966 int
1967 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1968                  unsigned char *buffer, int len, int timeout, int retries,
1969                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1970 {
1971         unsigned char cmd[10];
1972         unsigned char *real_buffer;
1973         int ret;
1974
1975         memset(cmd, 0, sizeof(cmd));
1976         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1977
1978         if (sdev->use_10_for_ms) {
1979                 if (len > 65535)
1980                         return -EINVAL;
1981                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1982                 if (!real_buffer)
1983                         return -ENOMEM;
1984                 memcpy(real_buffer + 8, buffer, len);
1985                 len += 8;
1986                 real_buffer[0] = 0;
1987                 real_buffer[1] = 0;
1988                 real_buffer[2] = data->medium_type;
1989                 real_buffer[3] = data->device_specific;
1990                 real_buffer[4] = data->longlba ? 0x01 : 0;
1991                 real_buffer[5] = 0;
1992                 real_buffer[6] = data->block_descriptor_length >> 8;
1993                 real_buffer[7] = data->block_descriptor_length;
1994
1995                 cmd[0] = MODE_SELECT_10;
1996                 cmd[7] = len >> 8;
1997                 cmd[8] = len;
1998         } else {
1999                 if (len > 255 || data->block_descriptor_length > 255 ||
2000                     data->longlba)
2001                         return -EINVAL;
2002
2003                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2004                 if (!real_buffer)
2005                         return -ENOMEM;
2006                 memcpy(real_buffer + 4, buffer, len);
2007                 len += 4;
2008                 real_buffer[0] = 0;
2009                 real_buffer[1] = data->medium_type;
2010                 real_buffer[2] = data->device_specific;
2011                 real_buffer[3] = data->block_descriptor_length;
2012                 
2013
2014                 cmd[0] = MODE_SELECT;
2015                 cmd[4] = len;
2016         }
2017
2018         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2019                                sshdr, timeout, retries);
2020         kfree(real_buffer);
2021         return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(scsi_mode_select);
2024
2025 /**
2026  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2027  *      @sdev:  SCSI device to be queried
2028  *      @dbd:   set if mode sense will allow block descriptors to be returned
2029  *      @modepage: mode page being requested
2030  *      @buffer: request buffer (may not be smaller than eight bytes)
2031  *      @len:   length of request buffer.
2032  *      @timeout: command timeout
2033  *      @retries: number of retries before failing
2034  *      @data: returns a structure abstracting the mode header data
2035  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2036  *              must be SCSI_SENSE_BUFFERSIZE big.
2037  *
2038  *      Returns zero if unsuccessful, or the header offset (either 4
2039  *      or 8 depending on whether a six or ten byte command was
2040  *      issued) if successful.
2041  */
2042 int
2043 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2044                   unsigned char *buffer, int len, int timeout, int retries,
2045                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2046 {
2047         unsigned char cmd[12];
2048         int use_10_for_ms;
2049         int header_length;
2050         int result;
2051         struct scsi_sense_hdr my_sshdr;
2052
2053         memset(data, 0, sizeof(*data));
2054         memset(&cmd[0], 0, 12);
2055         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2056         cmd[2] = modepage;
2057
2058         /* caller might not be interested in sense, but we need it */
2059         if (!sshdr)
2060                 sshdr = &my_sshdr;
2061
2062  retry:
2063         use_10_for_ms = sdev->use_10_for_ms;
2064
2065         if (use_10_for_ms) {
2066                 if (len < 8)
2067                         len = 8;
2068
2069                 cmd[0] = MODE_SENSE_10;
2070                 cmd[8] = len;
2071                 header_length = 8;
2072         } else {
2073                 if (len < 4)
2074                         len = 4;
2075
2076                 cmd[0] = MODE_SENSE;
2077                 cmd[4] = len;
2078                 header_length = 4;
2079         }
2080
2081         memset(buffer, 0, len);
2082
2083         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2084                                   sshdr, timeout, retries);
2085
2086         /* This code looks awful: what it's doing is making sure an
2087          * ILLEGAL REQUEST sense return identifies the actual command
2088          * byte as the problem.  MODE_SENSE commands can return
2089          * ILLEGAL REQUEST if the code page isn't supported */
2090
2091         if (use_10_for_ms && !scsi_status_is_good(result) &&
2092             (driver_byte(result) & DRIVER_SENSE)) {
2093                 if (scsi_sense_valid(sshdr)) {
2094                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2095                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2096                                 /* 
2097                                  * Invalid command operation code
2098                                  */
2099                                 sdev->use_10_for_ms = 0;
2100                                 goto retry;
2101                         }
2102                 }
2103         }
2104
2105         if(scsi_status_is_good(result)) {
2106                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2107                              (modepage == 6 || modepage == 8))) {
2108                         /* Initio breakage? */
2109                         header_length = 0;
2110                         data->length = 13;
2111                         data->medium_type = 0;
2112                         data->device_specific = 0;
2113                         data->longlba = 0;
2114                         data->block_descriptor_length = 0;
2115                 } else if(use_10_for_ms) {
2116                         data->length = buffer[0]*256 + buffer[1] + 2;
2117                         data->medium_type = buffer[2];
2118                         data->device_specific = buffer[3];
2119                         data->longlba = buffer[4] & 0x01;
2120                         data->block_descriptor_length = buffer[6]*256
2121                                 + buffer[7];
2122                 } else {
2123                         data->length = buffer[0] + 1;
2124                         data->medium_type = buffer[1];
2125                         data->device_specific = buffer[2];
2126                         data->block_descriptor_length = buffer[3];
2127                 }
2128                 data->header_length = header_length;
2129         }
2130
2131         return result;
2132 }
2133 EXPORT_SYMBOL(scsi_mode_sense);
2134
2135 /**
2136  *      scsi_test_unit_ready - test if unit is ready
2137  *      @sdev:  scsi device to change the state of.
2138  *      @timeout: command timeout
2139  *      @retries: number of retries before failing
2140  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2141  *              returning sense. Make sure that this is cleared before passing
2142  *              in.
2143  *
2144  *      Returns zero if unsuccessful or an error if TUR failed.  For
2145  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
2146  *      translated to success, with the ->changed flag updated.
2147  **/
2148 int
2149 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2150                      struct scsi_sense_hdr *sshdr_external)
2151 {
2152         char cmd[] = {
2153                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2154         };
2155         struct scsi_sense_hdr *sshdr;
2156         int result;
2157
2158         if (!sshdr_external)
2159                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2160         else
2161                 sshdr = sshdr_external;
2162
2163         /* try to eat the UNIT_ATTENTION if there are enough retries */
2164         do {
2165                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2166                                           timeout, retries);
2167                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2168                     sshdr->sense_key == UNIT_ATTENTION)
2169                         sdev->changed = 1;
2170         } while (scsi_sense_valid(sshdr) &&
2171                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2172
2173         if (!sshdr)
2174                 /* could not allocate sense buffer, so can't process it */
2175                 return result;
2176
2177         if (sdev->removable && scsi_sense_valid(sshdr) &&
2178             (sshdr->sense_key == UNIT_ATTENTION ||
2179              sshdr->sense_key == NOT_READY)) {
2180                 sdev->changed = 1;
2181                 result = 0;
2182         }
2183         if (!sshdr_external)
2184                 kfree(sshdr);
2185         return result;
2186 }
2187 EXPORT_SYMBOL(scsi_test_unit_ready);
2188
2189 /**
2190  *      scsi_device_set_state - Take the given device through the device state model.
2191  *      @sdev:  scsi device to change the state of.
2192  *      @state: state to change to.
2193  *
2194  *      Returns zero if unsuccessful or an error if the requested 
2195  *      transition is illegal.
2196  */
2197 int
2198 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2199 {
2200         enum scsi_device_state oldstate = sdev->sdev_state;
2201
2202         if (state == oldstate)
2203                 return 0;
2204
2205         switch (state) {
2206         case SDEV_CREATED:
2207                 switch (oldstate) {
2208                 case SDEV_CREATED_BLOCK:
2209                         break;
2210                 default:
2211                         goto illegal;
2212                 }
2213                 break;
2214                         
2215         case SDEV_RUNNING:
2216                 switch (oldstate) {
2217                 case SDEV_CREATED:
2218                 case SDEV_OFFLINE:
2219                 case SDEV_QUIESCE:
2220                 case SDEV_BLOCK:
2221                         break;
2222                 default:
2223                         goto illegal;
2224                 }
2225                 break;
2226
2227         case SDEV_QUIESCE:
2228                 switch (oldstate) {
2229                 case SDEV_RUNNING:
2230                 case SDEV_OFFLINE:
2231                         break;
2232                 default:
2233                         goto illegal;
2234                 }
2235                 break;
2236
2237         case SDEV_OFFLINE:
2238                 switch (oldstate) {
2239                 case SDEV_CREATED:
2240                 case SDEV_RUNNING:
2241                 case SDEV_QUIESCE:
2242                 case SDEV_BLOCK:
2243                         break;
2244                 default:
2245                         goto illegal;
2246                 }
2247                 break;
2248
2249         case SDEV_BLOCK:
2250                 switch (oldstate) {
2251                 case SDEV_RUNNING:
2252                 case SDEV_CREATED_BLOCK:
2253                         break;
2254                 default:
2255                         goto illegal;
2256                 }
2257                 break;
2258
2259         case SDEV_CREATED_BLOCK:
2260                 switch (oldstate) {
2261                 case SDEV_CREATED:
2262                         break;
2263                 default:
2264                         goto illegal;
2265                 }
2266                 break;
2267
2268         case SDEV_CANCEL:
2269                 switch (oldstate) {
2270                 case SDEV_CREATED:
2271                 case SDEV_RUNNING:
2272                 case SDEV_QUIESCE:
2273                 case SDEV_OFFLINE:
2274                 case SDEV_BLOCK:
2275                         break;
2276                 default:
2277                         goto illegal;
2278                 }
2279                 break;
2280
2281         case SDEV_DEL:
2282                 switch (oldstate) {
2283                 case SDEV_CREATED:
2284                 case SDEV_RUNNING:
2285                 case SDEV_OFFLINE:
2286                 case SDEV_CANCEL:
2287                         break;
2288                 default:
2289                         goto illegal;
2290                 }
2291                 break;
2292
2293         }
2294         sdev->sdev_state = state;
2295         return 0;
2296
2297  illegal:
2298         SCSI_LOG_ERROR_RECOVERY(1, 
2299                                 sdev_printk(KERN_ERR, sdev,
2300                                             "Illegal state transition %s->%s\n",
2301                                             scsi_device_state_name(oldstate),
2302                                             scsi_device_state_name(state))
2303                                 );
2304         return -EINVAL;
2305 }
2306 EXPORT_SYMBOL(scsi_device_set_state);
2307
2308 /**
2309  *      sdev_evt_emit - emit a single SCSI device uevent
2310  *      @sdev: associated SCSI device
2311  *      @evt: event to emit
2312  *
2313  *      Send a single uevent (scsi_event) to the associated scsi_device.
2314  */
2315 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2316 {
2317         int idx = 0;
2318         char *envp[3];
2319
2320         switch (evt->evt_type) {
2321         case SDEV_EVT_MEDIA_CHANGE:
2322                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2323                 break;
2324
2325         default:
2326                 /* do nothing */
2327                 break;
2328         }
2329
2330         envp[idx++] = NULL;
2331
2332         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2333 }
2334
2335 /**
2336  *      sdev_evt_thread - send a uevent for each scsi event
2337  *      @work: work struct for scsi_device
2338  *
2339  *      Dispatch queued events to their associated scsi_device kobjects
2340  *      as uevents.
2341  */
2342 void scsi_evt_thread(struct work_struct *work)
2343 {
2344         struct scsi_device *sdev;
2345         LIST_HEAD(event_list);
2346
2347         sdev = container_of(work, struct scsi_device, event_work);
2348
2349         while (1) {
2350                 struct scsi_event *evt;
2351                 struct list_head *this, *tmp;
2352                 unsigned long flags;
2353
2354                 spin_lock_irqsave(&sdev->list_lock, flags);
2355                 list_splice_init(&sdev->event_list, &event_list);
2356                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2357
2358                 if (list_empty(&event_list))
2359                         break;
2360
2361                 list_for_each_safe(this, tmp, &event_list) {
2362                         evt = list_entry(this, struct scsi_event, node);
2363                         list_del(&evt->node);
2364                         scsi_evt_emit(sdev, evt);
2365                         kfree(evt);
2366                 }
2367         }
2368 }
2369
2370 /**
2371  *      sdev_evt_send - send asserted event to uevent thread
2372  *      @sdev: scsi_device event occurred on
2373  *      @evt: event to send
2374  *
2375  *      Assert scsi device event asynchronously.
2376  */
2377 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2378 {
2379         unsigned long flags;
2380
2381 #if 0
2382         /* FIXME: currently this check eliminates all media change events
2383          * for polled devices.  Need to update to discriminate between AN
2384          * and polled events */
2385         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2386                 kfree(evt);
2387                 return;
2388         }
2389 #endif
2390
2391         spin_lock_irqsave(&sdev->list_lock, flags);
2392         list_add_tail(&evt->node, &sdev->event_list);
2393         schedule_work(&sdev->event_work);
2394         spin_unlock_irqrestore(&sdev->list_lock, flags);
2395 }
2396 EXPORT_SYMBOL_GPL(sdev_evt_send);
2397
2398 /**
2399  *      sdev_evt_alloc - allocate a new scsi event
2400  *      @evt_type: type of event to allocate
2401  *      @gfpflags: GFP flags for allocation
2402  *
2403  *      Allocates and returns a new scsi_event.
2404  */
2405 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2406                                   gfp_t gfpflags)
2407 {
2408         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2409         if (!evt)
2410                 return NULL;
2411
2412         evt->evt_type = evt_type;
2413         INIT_LIST_HEAD(&evt->node);
2414
2415         /* evt_type-specific initialization, if any */
2416         switch (evt_type) {
2417         case SDEV_EVT_MEDIA_CHANGE:
2418         default:
2419                 /* do nothing */
2420                 break;
2421         }
2422
2423         return evt;
2424 }
2425 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2426
2427 /**
2428  *      sdev_evt_send_simple - send asserted event to uevent thread
2429  *      @sdev: scsi_device event occurred on
2430  *      @evt_type: type of event to send
2431  *      @gfpflags: GFP flags for allocation
2432  *
2433  *      Assert scsi device event asynchronously, given an event type.
2434  */
2435 void sdev_evt_send_simple(struct scsi_device *sdev,
2436                           enum scsi_device_event evt_type, gfp_t gfpflags)
2437 {
2438         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2439         if (!evt) {
2440                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2441                             evt_type);
2442                 return;
2443         }
2444
2445         sdev_evt_send(sdev, evt);
2446 }
2447 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2448
2449 /**
2450  *      scsi_device_quiesce - Block user issued commands.
2451  *      @sdev:  scsi device to quiesce.
2452  *
2453  *      This works by trying to transition to the SDEV_QUIESCE state
2454  *      (which must be a legal transition).  When the device is in this
2455  *      state, only special requests will be accepted, all others will
2456  *      be deferred.  Since special requests may also be requeued requests,
2457  *      a successful return doesn't guarantee the device will be 
2458  *      totally quiescent.
2459  *
2460  *      Must be called with user context, may sleep.
2461  *
2462  *      Returns zero if unsuccessful or an error if not.
2463  */
2464 int
2465 scsi_device_quiesce(struct scsi_device *sdev)
2466 {
2467         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2468         if (err)
2469                 return err;
2470
2471         scsi_run_queue(sdev->request_queue);
2472         while (sdev->device_busy) {
2473                 msleep_interruptible(200);
2474                 scsi_run_queue(sdev->request_queue);
2475         }
2476         return 0;
2477 }
2478 EXPORT_SYMBOL(scsi_device_quiesce);
2479
2480 /**
2481  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2482  *      @sdev:  scsi device to resume.
2483  *
2484  *      Moves the device from quiesced back to running and restarts the
2485  *      queues.
2486  *
2487  *      Must be called with user context, may sleep.
2488  */
2489 void
2490 scsi_device_resume(struct scsi_device *sdev)
2491 {
2492         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2493                 return;
2494         scsi_run_queue(sdev->request_queue);
2495 }
2496 EXPORT_SYMBOL(scsi_device_resume);
2497
2498 static void
2499 device_quiesce_fn(struct scsi_device *sdev, void *data)
2500 {
2501         scsi_device_quiesce(sdev);
2502 }
2503
2504 void
2505 scsi_target_quiesce(struct scsi_target *starget)
2506 {
2507         starget_for_each_device(starget, NULL, device_quiesce_fn);
2508 }
2509 EXPORT_SYMBOL(scsi_target_quiesce);
2510
2511 static void
2512 device_resume_fn(struct scsi_device *sdev, void *data)
2513 {
2514         scsi_device_resume(sdev);
2515 }
2516
2517 void
2518 scsi_target_resume(struct scsi_target *starget)
2519 {
2520         starget_for_each_device(starget, NULL, device_resume_fn);
2521 }
2522 EXPORT_SYMBOL(scsi_target_resume);
2523
2524 /**
2525  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2526  * @sdev:       device to block
2527  *
2528  * Block request made by scsi lld's to temporarily stop all
2529  * scsi commands on the specified device.  Called from interrupt
2530  * or normal process context.
2531  *
2532  * Returns zero if successful or error if not
2533  *
2534  * Notes:       
2535  *      This routine transitions the device to the SDEV_BLOCK state
2536  *      (which must be a legal transition).  When the device is in this
2537  *      state, all commands are deferred until the scsi lld reenables
2538  *      the device with scsi_device_unblock or device_block_tmo fires.
2539  *      This routine assumes the host_lock is held on entry.
2540  */
2541 int
2542 scsi_internal_device_block(struct scsi_device *sdev)
2543 {
2544         struct request_queue *q = sdev->request_queue;
2545         unsigned long flags;
2546         int err = 0;
2547
2548         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2549         if (err) {
2550                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2551
2552                 if (err)
2553                         return err;
2554         }
2555
2556         /* 
2557          * The device has transitioned to SDEV_BLOCK.  Stop the
2558          * block layer from calling the midlayer with this device's
2559          * request queue. 
2560          */
2561         spin_lock_irqsave(q->queue_lock, flags);
2562         blk_stop_queue(q);
2563         spin_unlock_irqrestore(q->queue_lock, flags);
2564
2565         return 0;
2566 }
2567 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2568  
2569 /**
2570  * scsi_internal_device_unblock - resume a device after a block request
2571  * @sdev:       device to resume
2572  *
2573  * Called by scsi lld's or the midlayer to restart the device queue
2574  * for the previously suspended scsi device.  Called from interrupt or
2575  * normal process context.
2576  *
2577  * Returns zero if successful or error if not.
2578  *
2579  * Notes:       
2580  *      This routine transitions the device to the SDEV_RUNNING state
2581  *      (which must be a legal transition) allowing the midlayer to
2582  *      goose the queue for this device.  This routine assumes the 
2583  *      host_lock is held upon entry.
2584  */
2585 int
2586 scsi_internal_device_unblock(struct scsi_device *sdev)
2587 {
2588         struct request_queue *q = sdev->request_queue; 
2589         int err;
2590         unsigned long flags;
2591         
2592         /* 
2593          * Try to transition the scsi device to SDEV_RUNNING
2594          * and goose the device queue if successful.  
2595          */
2596         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2597         if (err) {
2598                 err = scsi_device_set_state(sdev, SDEV_CREATED);
2599
2600                 if (err)
2601                         return err;
2602         }
2603
2604         spin_lock_irqsave(q->queue_lock, flags);
2605         blk_start_queue(q);
2606         spin_unlock_irqrestore(q->queue_lock, flags);
2607
2608         return 0;
2609 }
2610 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2611
2612 static void
2613 device_block(struct scsi_device *sdev, void *data)
2614 {
2615         scsi_internal_device_block(sdev);
2616 }
2617
2618 static int
2619 target_block(struct device *dev, void *data)
2620 {
2621         if (scsi_is_target_device(dev))
2622                 starget_for_each_device(to_scsi_target(dev), NULL,
2623                                         device_block);
2624         return 0;
2625 }
2626
2627 void
2628 scsi_target_block(struct device *dev)
2629 {
2630         if (scsi_is_target_device(dev))
2631                 starget_for_each_device(to_scsi_target(dev), NULL,
2632                                         device_block);
2633         else
2634                 device_for_each_child(dev, NULL, target_block);
2635 }
2636 EXPORT_SYMBOL_GPL(scsi_target_block);
2637
2638 static void
2639 device_unblock(struct scsi_device *sdev, void *data)
2640 {
2641         scsi_internal_device_unblock(sdev);
2642 }
2643
2644 static int
2645 target_unblock(struct device *dev, void *data)
2646 {
2647         if (scsi_is_target_device(dev))
2648                 starget_for_each_device(to_scsi_target(dev), NULL,
2649                                         device_unblock);
2650         return 0;
2651 }
2652
2653 void
2654 scsi_target_unblock(struct device *dev)
2655 {
2656         if (scsi_is_target_device(dev))
2657                 starget_for_each_device(to_scsi_target(dev), NULL,
2658                                         device_unblock);
2659         else
2660                 device_for_each_child(dev, NULL, target_unblock);
2661 }
2662 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2663
2664 /**
2665  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2666  * @sgl:        scatter-gather list
2667  * @sg_count:   number of segments in sg
2668  * @offset:     offset in bytes into sg, on return offset into the mapped area
2669  * @len:        bytes to map, on return number of bytes mapped
2670  *
2671  * Returns virtual address of the start of the mapped page
2672  */
2673 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2674                           size_t *offset, size_t *len)
2675 {
2676         int i;
2677         size_t sg_len = 0, len_complete = 0;
2678         struct scatterlist *sg;
2679         struct page *page;
2680
2681         WARN_ON(!irqs_disabled());
2682
2683         for_each_sg(sgl, sg, sg_count, i) {
2684                 len_complete = sg_len; /* Complete sg-entries */
2685                 sg_len += sg->length;
2686                 if (sg_len > *offset)
2687                         break;
2688         }
2689
2690         if (unlikely(i == sg_count)) {
2691                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2692                         "elements %d\n",
2693                        __func__, sg_len, *offset, sg_count);
2694                 WARN_ON(1);
2695                 return NULL;
2696         }
2697
2698         /* Offset starting from the beginning of first page in this sg-entry */
2699         *offset = *offset - len_complete + sg->offset;
2700
2701         /* Assumption: contiguous pages can be accessed as "page + i" */
2702         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2703         *offset &= ~PAGE_MASK;
2704
2705         /* Bytes in this sg-entry from *offset to the end of the page */
2706         sg_len = PAGE_SIZE - *offset;
2707         if (*len > sg_len)
2708                 *len = sg_len;
2709
2710         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2711 }
2712 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2713
2714 /**
2715  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2716  * @virt:       virtual address to be unmapped
2717  */
2718 void scsi_kunmap_atomic_sg(void *virt)
2719 {
2720         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2721 }
2722 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);