[SCSI] hpsa: when resetting devices, print out which device
[safe/jmp/linux-2.6] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "1.0.0"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88 #define PCI_DEVICE_ID_HP_CISSF 0x333f
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
90         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92         {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102         {0x3241103C, "Smart Array P212", &SA5_access},
103         {0x3243103C, "Smart Array P410", &SA5_access},
104         {0x3245103C, "Smart Array P410i", &SA5_access},
105         {0x3247103C, "Smart Array P411", &SA5_access},
106         {0x3249103C, "Smart Array P812", &SA5_access},
107         {0x324a103C, "Smart Array P712m", &SA5_access},
108         {0x324b103C, "Smart Array P711m", &SA5_access},
109         {0x3233103C, "StorageWorks P1210m", &SA5_access},
110         {0x333F103C, "StorageWorks P1210m", &SA5_access},
111         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
112 };
113
114 static int number_of_controllers;
115
116 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
118 static void start_io(struct ctlr_info *h);
119
120 #ifdef CONFIG_COMPAT
121 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
122 #endif
123
124 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
125 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
126 static struct CommandList *cmd_alloc(struct ctlr_info *h);
127 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
128 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
129         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
130         int cmd_type);
131
132 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
133                 void (*done)(struct scsi_cmnd *));
134 static void hpsa_scan_start(struct Scsi_Host *);
135 static int hpsa_scan_finished(struct Scsi_Host *sh,
136         unsigned long elapsed_time);
137
138 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
139 static int hpsa_slave_alloc(struct scsi_device *sdev);
140 static void hpsa_slave_destroy(struct scsi_device *sdev);
141
142 static ssize_t raid_level_show(struct device *dev,
143         struct device_attribute *attr, char *buf);
144 static ssize_t lunid_show(struct device *dev,
145         struct device_attribute *attr, char *buf);
146 static ssize_t unique_id_show(struct device *dev,
147         struct device_attribute *attr, char *buf);
148 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
149 static ssize_t host_store_rescan(struct device *dev,
150          struct device_attribute *attr, const char *buf, size_t count);
151 static int check_for_unit_attention(struct ctlr_info *h,
152         struct CommandList *c);
153 static void check_ioctl_unit_attention(struct ctlr_info *h,
154         struct CommandList *c);
155 /* performant mode helper functions */
156 static void calc_bucket_map(int *bucket, int num_buckets,
157         int nsgs, int *bucket_map);
158 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
159 static inline u32 next_command(struct ctlr_info *h);
160
161 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
162 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
163 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
164 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
165
166 static struct device_attribute *hpsa_sdev_attrs[] = {
167         &dev_attr_raid_level,
168         &dev_attr_lunid,
169         &dev_attr_unique_id,
170         NULL,
171 };
172
173 static struct device_attribute *hpsa_shost_attrs[] = {
174         &dev_attr_rescan,
175         NULL,
176 };
177
178 static struct scsi_host_template hpsa_driver_template = {
179         .module                 = THIS_MODULE,
180         .name                   = "hpsa",
181         .proc_name              = "hpsa",
182         .queuecommand           = hpsa_scsi_queue_command,
183         .scan_start             = hpsa_scan_start,
184         .scan_finished          = hpsa_scan_finished,
185         .this_id                = -1,
186         .sg_tablesize           = MAXSGENTRIES,
187         .use_clustering         = ENABLE_CLUSTERING,
188         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
189         .ioctl                  = hpsa_ioctl,
190         .slave_alloc            = hpsa_slave_alloc,
191         .slave_destroy          = hpsa_slave_destroy,
192 #ifdef CONFIG_COMPAT
193         .compat_ioctl           = hpsa_compat_ioctl,
194 #endif
195         .sdev_attrs = hpsa_sdev_attrs,
196         .shost_attrs = hpsa_shost_attrs,
197 };
198
199 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
200 {
201         unsigned long *priv = shost_priv(sdev->host);
202         return (struct ctlr_info *) *priv;
203 }
204
205 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
206 {
207         unsigned long *priv = shost_priv(sh);
208         return (struct ctlr_info *) *priv;
209 }
210
211 static struct task_struct *hpsa_scan_thread;
212 static DEFINE_MUTEX(hpsa_scan_mutex);
213 static LIST_HEAD(hpsa_scan_q);
214 static int hpsa_scan_func(void *data);
215
216 /**
217  * add_to_scan_list() - add controller to rescan queue
218  * @h:                Pointer to the controller.
219  *
220  * Adds the controller to the rescan queue if not already on the queue.
221  *
222  * returns 1 if added to the queue, 0 if skipped (could be on the
223  * queue already, or the controller could be initializing or shutting
224  * down).
225  **/
226 static int add_to_scan_list(struct ctlr_info *h)
227 {
228         struct ctlr_info *test_h;
229         int found = 0;
230         int ret = 0;
231
232         if (h->busy_initializing)
233                 return 0;
234
235         /*
236          * If we don't get the lock, it means the driver is unloading
237          * and there's no point in scheduling a new scan.
238          */
239         if (!mutex_trylock(&h->busy_shutting_down))
240                 return 0;
241
242         mutex_lock(&hpsa_scan_mutex);
243         list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
244                 if (test_h == h) {
245                         found = 1;
246                         break;
247                 }
248         }
249         if (!found && !h->busy_scanning) {
250                 INIT_COMPLETION(h->scan_wait);
251                 list_add_tail(&h->scan_list, &hpsa_scan_q);
252                 ret = 1;
253         }
254         mutex_unlock(&hpsa_scan_mutex);
255         mutex_unlock(&h->busy_shutting_down);
256
257         return ret;
258 }
259
260 /**
261  * remove_from_scan_list() - remove controller from rescan queue
262  * @h:                     Pointer to the controller.
263  *
264  * Removes the controller from the rescan queue if present. Blocks if
265  * the controller is currently conducting a rescan.  The controller
266  * can be in one of three states:
267  * 1. Doesn't need a scan
268  * 2. On the scan list, but not scanning yet (we remove it)
269  * 3. Busy scanning (and not on the list). In this case we want to wait for
270  *    the scan to complete to make sure the scanning thread for this
271  *    controller is completely idle.
272  **/
273 static void remove_from_scan_list(struct ctlr_info *h)
274 {
275         struct ctlr_info *test_h, *tmp_h;
276
277         mutex_lock(&hpsa_scan_mutex);
278         list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
279                 if (test_h == h) { /* state 2. */
280                         list_del(&h->scan_list);
281                         complete_all(&h->scan_wait);
282                         mutex_unlock(&hpsa_scan_mutex);
283                         return;
284                 }
285         }
286         if (h->busy_scanning) { /* state 3. */
287                 mutex_unlock(&hpsa_scan_mutex);
288                 wait_for_completion(&h->scan_wait);
289         } else { /* state 1, nothing to do. */
290                 mutex_unlock(&hpsa_scan_mutex);
291         }
292 }
293
294 /* hpsa_scan_func() - kernel thread used to rescan controllers
295  * @data:        Ignored.
296  *
297  * A kernel thread used scan for drive topology changes on
298  * controllers. The thread processes only one controller at a time
299  * using a queue.  Controllers are added to the queue using
300  * add_to_scan_list() and removed from the queue either after done
301  * processing or using remove_from_scan_list().
302  *
303  * returns 0.
304  **/
305 static int hpsa_scan_func(__attribute__((unused)) void *data)
306 {
307         struct ctlr_info *h;
308         int host_no;
309
310         while (1) {
311                 set_current_state(TASK_INTERRUPTIBLE);
312                 schedule();
313                 if (kthread_should_stop())
314                         break;
315
316                 while (1) {
317                         mutex_lock(&hpsa_scan_mutex);
318                         if (list_empty(&hpsa_scan_q)) {
319                                 mutex_unlock(&hpsa_scan_mutex);
320                                 break;
321                         }
322                         h = list_entry(hpsa_scan_q.next, struct ctlr_info,
323                                         scan_list);
324                         list_del(&h->scan_list);
325                         h->busy_scanning = 1;
326                         mutex_unlock(&hpsa_scan_mutex);
327                         host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
328                         hpsa_scan_start(h->scsi_host);
329                         complete_all(&h->scan_wait);
330                         mutex_lock(&hpsa_scan_mutex);
331                         h->busy_scanning = 0;
332                         mutex_unlock(&hpsa_scan_mutex);
333                 }
334         }
335         return 0;
336 }
337
338 static int check_for_unit_attention(struct ctlr_info *h,
339         struct CommandList *c)
340 {
341         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
342                 return 0;
343
344         switch (c->err_info->SenseInfo[12]) {
345         case STATE_CHANGED:
346                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
347                         "detected, command retried\n", h->ctlr);
348                 break;
349         case LUN_FAILED:
350                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
351                         "detected, action required\n", h->ctlr);
352                 break;
353         case REPORT_LUNS_CHANGED:
354                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
355                         "changed\n", h->ctlr);
356         /*
357          * Here, we could call add_to_scan_list and wake up the scan thread,
358          * except that it's quite likely that we will get more than one
359          * REPORT_LUNS_CHANGED condition in quick succession, which means
360          * that those which occur after the first one will likely happen
361          * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
362          * robust enough to restart in the middle, undoing what it has already
363          * done, and it's not clear that it's even possible to do this, since
364          * part of what it does is notify the SCSI mid layer, which starts
365          * doing it's own i/o to read partition tables and so on, and the
366          * driver doesn't have visibility to know what might need undoing.
367          * In any event, if possible, it is horribly complicated to get right
368          * so we just don't do it for now.
369          *
370          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
371          */
372                 break;
373         case POWER_OR_RESET:
374                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
375                         "or device reset detected\n", h->ctlr);
376                 break;
377         case UNIT_ATTENTION_CLEARED:
378                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
379                     "cleared by another initiator\n", h->ctlr);
380                 break;
381         default:
382                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
383                         "unit attention detected\n", h->ctlr);
384                 break;
385         }
386         return 1;
387 }
388
389 static ssize_t host_store_rescan(struct device *dev,
390                                  struct device_attribute *attr,
391                                  const char *buf, size_t count)
392 {
393         struct ctlr_info *h;
394         struct Scsi_Host *shost = class_to_shost(dev);
395         h = shost_to_hba(shost);
396         if (add_to_scan_list(h)) {
397                 wake_up_process(hpsa_scan_thread);
398                 wait_for_completion_interruptible(&h->scan_wait);
399         }
400         return count;
401 }
402
403 /* Enqueuing and dequeuing functions for cmdlists. */
404 static inline void addQ(struct hlist_head *list, struct CommandList *c)
405 {
406         hlist_add_head(&c->list, list);
407 }
408
409 static inline u32 next_command(struct ctlr_info *h)
410 {
411         u32 a;
412
413         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
414                 return h->access.command_completed(h);
415
416         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
417                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
418                 (h->reply_pool_head)++;
419                 h->commands_outstanding--;
420         } else {
421                 a = FIFO_EMPTY;
422         }
423         /* Check for wraparound */
424         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
425                 h->reply_pool_head = h->reply_pool;
426                 h->reply_pool_wraparound ^= 1;
427         }
428         return a;
429 }
430
431 /* set_performant_mode: Modify the tag for cciss performant
432  * set bit 0 for pull model, bits 3-1 for block fetch
433  * register number
434  */
435 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
436 {
437         if (likely(h->transMethod == CFGTBL_Trans_Performant))
438                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
439 }
440
441 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
442         struct CommandList *c)
443 {
444         unsigned long flags;
445
446         set_performant_mode(h, c);
447         spin_lock_irqsave(&h->lock, flags);
448         addQ(&h->reqQ, c);
449         h->Qdepth++;
450         start_io(h);
451         spin_unlock_irqrestore(&h->lock, flags);
452 }
453
454 static inline void removeQ(struct CommandList *c)
455 {
456         if (WARN_ON(hlist_unhashed(&c->list)))
457                 return;
458         hlist_del_init(&c->list);
459 }
460
461 static inline int is_hba_lunid(unsigned char scsi3addr[])
462 {
463         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
464 }
465
466 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
467 {
468         return (scsi3addr[3] & 0xC0) == 0x40;
469 }
470
471 static inline int is_scsi_rev_5(struct ctlr_info *h)
472 {
473         if (!h->hba_inquiry_data)
474                 return 0;
475         if ((h->hba_inquiry_data[2] & 0x07) == 5)
476                 return 1;
477         return 0;
478 }
479
480 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
481         "UNKNOWN"
482 };
483 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
484
485 static ssize_t raid_level_show(struct device *dev,
486              struct device_attribute *attr, char *buf)
487 {
488         ssize_t l = 0;
489         unsigned char rlevel;
490         struct ctlr_info *h;
491         struct scsi_device *sdev;
492         struct hpsa_scsi_dev_t *hdev;
493         unsigned long flags;
494
495         sdev = to_scsi_device(dev);
496         h = sdev_to_hba(sdev);
497         spin_lock_irqsave(&h->lock, flags);
498         hdev = sdev->hostdata;
499         if (!hdev) {
500                 spin_unlock_irqrestore(&h->lock, flags);
501                 return -ENODEV;
502         }
503
504         /* Is this even a logical drive? */
505         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
506                 spin_unlock_irqrestore(&h->lock, flags);
507                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
508                 return l;
509         }
510
511         rlevel = hdev->raid_level;
512         spin_unlock_irqrestore(&h->lock, flags);
513         if (rlevel > RAID_UNKNOWN)
514                 rlevel = RAID_UNKNOWN;
515         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
516         return l;
517 }
518
519 static ssize_t lunid_show(struct device *dev,
520              struct device_attribute *attr, char *buf)
521 {
522         struct ctlr_info *h;
523         struct scsi_device *sdev;
524         struct hpsa_scsi_dev_t *hdev;
525         unsigned long flags;
526         unsigned char lunid[8];
527
528         sdev = to_scsi_device(dev);
529         h = sdev_to_hba(sdev);
530         spin_lock_irqsave(&h->lock, flags);
531         hdev = sdev->hostdata;
532         if (!hdev) {
533                 spin_unlock_irqrestore(&h->lock, flags);
534                 return -ENODEV;
535         }
536         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
537         spin_unlock_irqrestore(&h->lock, flags);
538         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
539                 lunid[0], lunid[1], lunid[2], lunid[3],
540                 lunid[4], lunid[5], lunid[6], lunid[7]);
541 }
542
543 static ssize_t unique_id_show(struct device *dev,
544              struct device_attribute *attr, char *buf)
545 {
546         struct ctlr_info *h;
547         struct scsi_device *sdev;
548         struct hpsa_scsi_dev_t *hdev;
549         unsigned long flags;
550         unsigned char sn[16];
551
552         sdev = to_scsi_device(dev);
553         h = sdev_to_hba(sdev);
554         spin_lock_irqsave(&h->lock, flags);
555         hdev = sdev->hostdata;
556         if (!hdev) {
557                 spin_unlock_irqrestore(&h->lock, flags);
558                 return -ENODEV;
559         }
560         memcpy(sn, hdev->device_id, sizeof(sn));
561         spin_unlock_irqrestore(&h->lock, flags);
562         return snprintf(buf, 16 * 2 + 2,
563                         "%02X%02X%02X%02X%02X%02X%02X%02X"
564                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
565                         sn[0], sn[1], sn[2], sn[3],
566                         sn[4], sn[5], sn[6], sn[7],
567                         sn[8], sn[9], sn[10], sn[11],
568                         sn[12], sn[13], sn[14], sn[15]);
569 }
570
571 static int hpsa_find_target_lun(struct ctlr_info *h,
572         unsigned char scsi3addr[], int bus, int *target, int *lun)
573 {
574         /* finds an unused bus, target, lun for a new physical device
575          * assumes h->devlock is held
576          */
577         int i, found = 0;
578         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
579
580         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
581
582         for (i = 0; i < h->ndevices; i++) {
583                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
584                         set_bit(h->dev[i]->target, lun_taken);
585         }
586
587         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
588                 if (!test_bit(i, lun_taken)) {
589                         /* *bus = 1; */
590                         *target = i;
591                         *lun = 0;
592                         found = 1;
593                         break;
594                 }
595         }
596         return !found;
597 }
598
599 /* Add an entry into h->dev[] array. */
600 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
601                 struct hpsa_scsi_dev_t *device,
602                 struct hpsa_scsi_dev_t *added[], int *nadded)
603 {
604         /* assumes h->devlock is held */
605         int n = h->ndevices;
606         int i;
607         unsigned char addr1[8], addr2[8];
608         struct hpsa_scsi_dev_t *sd;
609
610         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
611                 dev_err(&h->pdev->dev, "too many devices, some will be "
612                         "inaccessible.\n");
613                 return -1;
614         }
615
616         /* physical devices do not have lun or target assigned until now. */
617         if (device->lun != -1)
618                 /* Logical device, lun is already assigned. */
619                 goto lun_assigned;
620
621         /* If this device a non-zero lun of a multi-lun device
622          * byte 4 of the 8-byte LUN addr will contain the logical
623          * unit no, zero otherise.
624          */
625         if (device->scsi3addr[4] == 0) {
626                 /* This is not a non-zero lun of a multi-lun device */
627                 if (hpsa_find_target_lun(h, device->scsi3addr,
628                         device->bus, &device->target, &device->lun) != 0)
629                         return -1;
630                 goto lun_assigned;
631         }
632
633         /* This is a non-zero lun of a multi-lun device.
634          * Search through our list and find the device which
635          * has the same 8 byte LUN address, excepting byte 4.
636          * Assign the same bus and target for this new LUN.
637          * Use the logical unit number from the firmware.
638          */
639         memcpy(addr1, device->scsi3addr, 8);
640         addr1[4] = 0;
641         for (i = 0; i < n; i++) {
642                 sd = h->dev[i];
643                 memcpy(addr2, sd->scsi3addr, 8);
644                 addr2[4] = 0;
645                 /* differ only in byte 4? */
646                 if (memcmp(addr1, addr2, 8) == 0) {
647                         device->bus = sd->bus;
648                         device->target = sd->target;
649                         device->lun = device->scsi3addr[4];
650                         break;
651                 }
652         }
653         if (device->lun == -1) {
654                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
655                         " suspect firmware bug or unsupported hardware "
656                         "configuration.\n");
657                         return -1;
658         }
659
660 lun_assigned:
661
662         h->dev[n] = device;
663         h->ndevices++;
664         added[*nadded] = device;
665         (*nadded)++;
666
667         /* initially, (before registering with scsi layer) we don't
668          * know our hostno and we don't want to print anything first
669          * time anyway (the scsi layer's inquiries will show that info)
670          */
671         /* if (hostno != -1) */
672                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
673                         scsi_device_type(device->devtype), hostno,
674                         device->bus, device->target, device->lun);
675         return 0;
676 }
677
678 /* Remove an entry from h->dev[] array. */
679 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
680         struct hpsa_scsi_dev_t *removed[], int *nremoved)
681 {
682         /* assumes h->devlock is held */
683         int i;
684         struct hpsa_scsi_dev_t *sd;
685
686         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
687
688         sd = h->dev[entry];
689         removed[*nremoved] = h->dev[entry];
690         (*nremoved)++;
691
692         for (i = entry; i < h->ndevices-1; i++)
693                 h->dev[i] = h->dev[i+1];
694         h->ndevices--;
695         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
696                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
697                 sd->lun);
698 }
699
700 #define SCSI3ADDR_EQ(a, b) ( \
701         (a)[7] == (b)[7] && \
702         (a)[6] == (b)[6] && \
703         (a)[5] == (b)[5] && \
704         (a)[4] == (b)[4] && \
705         (a)[3] == (b)[3] && \
706         (a)[2] == (b)[2] && \
707         (a)[1] == (b)[1] && \
708         (a)[0] == (b)[0])
709
710 static void fixup_botched_add(struct ctlr_info *h,
711         struct hpsa_scsi_dev_t *added)
712 {
713         /* called when scsi_add_device fails in order to re-adjust
714          * h->dev[] to match the mid layer's view.
715          */
716         unsigned long flags;
717         int i, j;
718
719         spin_lock_irqsave(&h->lock, flags);
720         for (i = 0; i < h->ndevices; i++) {
721                 if (h->dev[i] == added) {
722                         for (j = i; j < h->ndevices-1; j++)
723                                 h->dev[j] = h->dev[j+1];
724                         h->ndevices--;
725                         break;
726                 }
727         }
728         spin_unlock_irqrestore(&h->lock, flags);
729         kfree(added);
730 }
731
732 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
733         struct hpsa_scsi_dev_t *dev2)
734 {
735         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
736                 (dev1->lun != -1 && dev2->lun != -1)) &&
737                 dev1->devtype != 0x0C)
738                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
739
740         /* we compare everything except lun and target as these
741          * are not yet assigned.  Compare parts likely
742          * to differ first
743          */
744         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
745                 sizeof(dev1->scsi3addr)) != 0)
746                 return 0;
747         if (memcmp(dev1->device_id, dev2->device_id,
748                 sizeof(dev1->device_id)) != 0)
749                 return 0;
750         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
751                 return 0;
752         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
753                 return 0;
754         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
755                 return 0;
756         if (dev1->devtype != dev2->devtype)
757                 return 0;
758         if (dev1->raid_level != dev2->raid_level)
759                 return 0;
760         if (dev1->bus != dev2->bus)
761                 return 0;
762         return 1;
763 }
764
765 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
766  * and return needle location in *index.  If scsi3addr matches, but not
767  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
769  */
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772         int *index)
773 {
774         int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778         for (i = 0; i < haystack_size; i++) {
779                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
780                         *index = i;
781                         if (device_is_the_same(needle, haystack[i]))
782                                 return DEVICE_SAME;
783                         else
784                                 return DEVICE_CHANGED;
785                 }
786         }
787         *index = -1;
788         return DEVICE_NOT_FOUND;
789 }
790
791 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
792         struct hpsa_scsi_dev_t *sd[], int nsds)
793 {
794         /* sd contains scsi3 addresses and devtypes, and inquiry
795          * data.  This function takes what's in sd to be the current
796          * reality and updates h->dev[] to reflect that reality.
797          */
798         int i, entry, device_change, changes = 0;
799         struct hpsa_scsi_dev_t *csd;
800         unsigned long flags;
801         struct hpsa_scsi_dev_t **added, **removed;
802         int nadded, nremoved;
803         struct Scsi_Host *sh = NULL;
804
805         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
806                 GFP_KERNEL);
807         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808                 GFP_KERNEL);
809
810         if (!added || !removed) {
811                 dev_warn(&h->pdev->dev, "out of memory in "
812                         "adjust_hpsa_scsi_table\n");
813                 goto free_and_out;
814         }
815
816         spin_lock_irqsave(&h->devlock, flags);
817
818         /* find any devices in h->dev[] that are not in
819          * sd[] and remove them from h->dev[], and for any
820          * devices which have changed, remove the old device
821          * info and add the new device info.
822          */
823         i = 0;
824         nremoved = 0;
825         nadded = 0;
826         while (i < h->ndevices) {
827                 csd = h->dev[i];
828                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
829                 if (device_change == DEVICE_NOT_FOUND) {
830                         changes++;
831                         hpsa_scsi_remove_entry(h, hostno, i,
832                                 removed, &nremoved);
833                         continue; /* remove ^^^, hence i not incremented */
834                 } else if (device_change == DEVICE_CHANGED) {
835                         changes++;
836                         hpsa_scsi_remove_entry(h, hostno, i,
837                                 removed, &nremoved);
838                         (void) hpsa_scsi_add_entry(h, hostno, sd[entry],
839                                 added, &nadded);
840                         /* add can't fail, we just removed one. */
841                         sd[entry] = NULL; /* prevent it from being freed */
842                 }
843                 i++;
844         }
845
846         /* Now, make sure every device listed in sd[] is also
847          * listed in h->dev[], adding them if they aren't found
848          */
849
850         for (i = 0; i < nsds; i++) {
851                 if (!sd[i]) /* if already added above. */
852                         continue;
853                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
854                                         h->ndevices, &entry);
855                 if (device_change == DEVICE_NOT_FOUND) {
856                         changes++;
857                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
858                                 added, &nadded) != 0)
859                                 break;
860                         sd[i] = NULL; /* prevent from being freed later. */
861                 } else if (device_change == DEVICE_CHANGED) {
862                         /* should never happen... */
863                         changes++;
864                         dev_warn(&h->pdev->dev,
865                                 "device unexpectedly changed.\n");
866                         /* but if it does happen, we just ignore that device */
867                 }
868         }
869         spin_unlock_irqrestore(&h->devlock, flags);
870
871         /* Don't notify scsi mid layer of any changes the first time through
872          * (or if there are no changes) scsi_scan_host will do it later the
873          * first time through.
874          */
875         if (hostno == -1 || !changes)
876                 goto free_and_out;
877
878         sh = h->scsi_host;
879         /* Notify scsi mid layer of any removed devices */
880         for (i = 0; i < nremoved; i++) {
881                 struct scsi_device *sdev =
882                         scsi_device_lookup(sh, removed[i]->bus,
883                                 removed[i]->target, removed[i]->lun);
884                 if (sdev != NULL) {
885                         scsi_remove_device(sdev);
886                         scsi_device_put(sdev);
887                 } else {
888                         /* We don't expect to get here.
889                          * future cmds to this device will get selection
890                          * timeout as if the device was gone.
891                          */
892                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
893                                 " for removal.", hostno, removed[i]->bus,
894                                 removed[i]->target, removed[i]->lun);
895                 }
896                 kfree(removed[i]);
897                 removed[i] = NULL;
898         }
899
900         /* Notify scsi mid layer of any added devices */
901         for (i = 0; i < nadded; i++) {
902                 if (scsi_add_device(sh, added[i]->bus,
903                         added[i]->target, added[i]->lun) == 0)
904                         continue;
905                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
906                         "device not added.\n", hostno, added[i]->bus,
907                         added[i]->target, added[i]->lun);
908                 /* now we have to remove it from h->dev,
909                  * since it didn't get added to scsi mid layer
910                  */
911                 fixup_botched_add(h, added[i]);
912         }
913
914 free_and_out:
915         kfree(added);
916         kfree(removed);
917 }
918
919 /*
920  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
921  * Assume's h->devlock is held.
922  */
923 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
924         int bus, int target, int lun)
925 {
926         int i;
927         struct hpsa_scsi_dev_t *sd;
928
929         for (i = 0; i < h->ndevices; i++) {
930                 sd = h->dev[i];
931                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
932                         return sd;
933         }
934         return NULL;
935 }
936
937 /* link sdev->hostdata to our per-device structure. */
938 static int hpsa_slave_alloc(struct scsi_device *sdev)
939 {
940         struct hpsa_scsi_dev_t *sd;
941         unsigned long flags;
942         struct ctlr_info *h;
943
944         h = sdev_to_hba(sdev);
945         spin_lock_irqsave(&h->devlock, flags);
946         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
947                 sdev_id(sdev), sdev->lun);
948         if (sd != NULL)
949                 sdev->hostdata = sd;
950         spin_unlock_irqrestore(&h->devlock, flags);
951         return 0;
952 }
953
954 static void hpsa_slave_destroy(struct scsi_device *sdev)
955 {
956         /* nothing to do. */
957 }
958
959 static void hpsa_scsi_setup(struct ctlr_info *h)
960 {
961         h->ndevices = 0;
962         h->scsi_host = NULL;
963         spin_lock_init(&h->devlock);
964 }
965
966 static void complete_scsi_command(struct CommandList *cp,
967         int timeout, u32 tag)
968 {
969         struct scsi_cmnd *cmd;
970         struct ctlr_info *h;
971         struct ErrorInfo *ei;
972
973         unsigned char sense_key;
974         unsigned char asc;      /* additional sense code */
975         unsigned char ascq;     /* additional sense code qualifier */
976
977         ei = cp->err_info;
978         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
979         h = cp->h;
980
981         scsi_dma_unmap(cmd); /* undo the DMA mappings */
982
983         cmd->result = (DID_OK << 16);           /* host byte */
984         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
985         cmd->result |= (ei->ScsiStatus << 1);
986
987         /* copy the sense data whether we need to or not. */
988         memcpy(cmd->sense_buffer, ei->SenseInfo,
989                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
990                         SCSI_SENSE_BUFFERSIZE :
991                         ei->SenseLen);
992         scsi_set_resid(cmd, ei->ResidualCnt);
993
994         if (ei->CommandStatus == 0) {
995                 cmd->scsi_done(cmd);
996                 cmd_free(h, cp);
997                 return;
998         }
999
1000         /* an error has occurred */
1001         switch (ei->CommandStatus) {
1002
1003         case CMD_TARGET_STATUS:
1004                 if (ei->ScsiStatus) {
1005                         /* Get sense key */
1006                         sense_key = 0xf & ei->SenseInfo[2];
1007                         /* Get additional sense code */
1008                         asc = ei->SenseInfo[12];
1009                         /* Get addition sense code qualifier */
1010                         ascq = ei->SenseInfo[13];
1011                 }
1012
1013                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1014                         if (check_for_unit_attention(h, cp)) {
1015                                 cmd->result = DID_SOFT_ERROR << 16;
1016                                 break;
1017                         }
1018                         if (sense_key == ILLEGAL_REQUEST) {
1019                                 /*
1020                                  * SCSI REPORT_LUNS is commonly unsupported on
1021                                  * Smart Array.  Suppress noisy complaint.
1022                                  */
1023                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1024                                         break;
1025
1026                                 /* If ASC/ASCQ indicate Logical Unit
1027                                  * Not Supported condition,
1028                                  */
1029                                 if ((asc == 0x25) && (ascq == 0x0)) {
1030                                         dev_warn(&h->pdev->dev, "cp %p "
1031                                                 "has check condition\n", cp);
1032                                         break;
1033                                 }
1034                         }
1035
1036                         if (sense_key == NOT_READY) {
1037                                 /* If Sense is Not Ready, Logical Unit
1038                                  * Not ready, Manual Intervention
1039                                  * required
1040                                  */
1041                                 if ((asc == 0x04) && (ascq == 0x03)) {
1042                                         dev_warn(&h->pdev->dev, "cp %p "
1043                                                 "has check condition: unit "
1044                                                 "not ready, manual "
1045                                                 "intervention required\n", cp);
1046                                         break;
1047                                 }
1048                         }
1049                         if (sense_key == ABORTED_COMMAND) {
1050                                 /* Aborted command is retryable */
1051                                 dev_warn(&h->pdev->dev, "cp %p "
1052                                         "has check condition: aborted command: "
1053                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1054                                         cp, asc, ascq);
1055                                 cmd->result = DID_SOFT_ERROR << 16;
1056                                 break;
1057                         }
1058                         /* Must be some other type of check condition */
1059                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1060                                         "unknown type: "
1061                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1062                                         "Returning result: 0x%x, "
1063                                         "cmd=[%02x %02x %02x %02x %02x "
1064                                         "%02x %02x %02x %02x %02x]\n",
1065                                         cp, sense_key, asc, ascq,
1066                                         cmd->result,
1067                                         cmd->cmnd[0], cmd->cmnd[1],
1068                                         cmd->cmnd[2], cmd->cmnd[3],
1069                                         cmd->cmnd[4], cmd->cmnd[5],
1070                                         cmd->cmnd[6], cmd->cmnd[7],
1071                                         cmd->cmnd[8], cmd->cmnd[9]);
1072                         break;
1073                 }
1074
1075
1076                 /* Problem was not a check condition
1077                  * Pass it up to the upper layers...
1078                  */
1079                 if (ei->ScsiStatus) {
1080                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1081                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1082                                 "Returning result: 0x%x\n",
1083                                 cp, ei->ScsiStatus,
1084                                 sense_key, asc, ascq,
1085                                 cmd->result);
1086                 } else {  /* scsi status is zero??? How??? */
1087                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1088                                 "Returning no connection.\n", cp),
1089
1090                         /* Ordinarily, this case should never happen,
1091                          * but there is a bug in some released firmware
1092                          * revisions that allows it to happen if, for
1093                          * example, a 4100 backplane loses power and
1094                          * the tape drive is in it.  We assume that
1095                          * it's a fatal error of some kind because we
1096                          * can't show that it wasn't. We will make it
1097                          * look like selection timeout since that is
1098                          * the most common reason for this to occur,
1099                          * and it's severe enough.
1100                          */
1101
1102                         cmd->result = DID_NO_CONNECT << 16;
1103                 }
1104                 break;
1105
1106         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1107                 break;
1108         case CMD_DATA_OVERRUN:
1109                 dev_warn(&h->pdev->dev, "cp %p has"
1110                         " completed with data overrun "
1111                         "reported\n", cp);
1112                 break;
1113         case CMD_INVALID: {
1114                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1115                 print_cmd(cp); */
1116                 /* We get CMD_INVALID if you address a non-existent device
1117                  * instead of a selection timeout (no response).  You will
1118                  * see this if you yank out a drive, then try to access it.
1119                  * This is kind of a shame because it means that any other
1120                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1121                  * missing target. */
1122                 cmd->result = DID_NO_CONNECT << 16;
1123         }
1124                 break;
1125         case CMD_PROTOCOL_ERR:
1126                 dev_warn(&h->pdev->dev, "cp %p has "
1127                         "protocol error \n", cp);
1128                 break;
1129         case CMD_HARDWARE_ERR:
1130                 cmd->result = DID_ERROR << 16;
1131                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1132                 break;
1133         case CMD_CONNECTION_LOST:
1134                 cmd->result = DID_ERROR << 16;
1135                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1136                 break;
1137         case CMD_ABORTED:
1138                 cmd->result = DID_ABORT << 16;
1139                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1140                                 cp, ei->ScsiStatus);
1141                 break;
1142         case CMD_ABORT_FAILED:
1143                 cmd->result = DID_ERROR << 16;
1144                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1145                 break;
1146         case CMD_UNSOLICITED_ABORT:
1147                 cmd->result = DID_RESET << 16;
1148                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1149                         "abort\n", cp);
1150                 break;
1151         case CMD_TIMEOUT:
1152                 cmd->result = DID_TIME_OUT << 16;
1153                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1154                 break;
1155         default:
1156                 cmd->result = DID_ERROR << 16;
1157                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1158                                 cp, ei->CommandStatus);
1159         }
1160         cmd->scsi_done(cmd);
1161         cmd_free(h, cp);
1162 }
1163
1164 static int hpsa_scsi_detect(struct ctlr_info *h)
1165 {
1166         struct Scsi_Host *sh;
1167         int error;
1168
1169         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1170         if (sh == NULL)
1171                 goto fail;
1172
1173         sh->io_port = 0;
1174         sh->n_io_port = 0;
1175         sh->this_id = -1;
1176         sh->max_channel = 3;
1177         sh->max_cmd_len = MAX_COMMAND_SIZE;
1178         sh->max_lun = HPSA_MAX_LUN;
1179         sh->max_id = HPSA_MAX_LUN;
1180         sh->can_queue = h->nr_cmds;
1181         sh->cmd_per_lun = h->nr_cmds;
1182         h->scsi_host = sh;
1183         sh->hostdata[0] = (unsigned long) h;
1184         sh->irq = h->intr[PERF_MODE_INT];
1185         sh->unique_id = sh->irq;
1186         error = scsi_add_host(sh, &h->pdev->dev);
1187         if (error)
1188                 goto fail_host_put;
1189         scsi_scan_host(sh);
1190         return 0;
1191
1192  fail_host_put:
1193         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1194                 " failed for controller %d\n", h->ctlr);
1195         scsi_host_put(sh);
1196         return error;
1197  fail:
1198         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1199                 " failed for controller %d\n", h->ctlr);
1200         return -ENOMEM;
1201 }
1202
1203 static void hpsa_pci_unmap(struct pci_dev *pdev,
1204         struct CommandList *c, int sg_used, int data_direction)
1205 {
1206         int i;
1207         union u64bit addr64;
1208
1209         for (i = 0; i < sg_used; i++) {
1210                 addr64.val32.lower = c->SG[i].Addr.lower;
1211                 addr64.val32.upper = c->SG[i].Addr.upper;
1212                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1213                         data_direction);
1214         }
1215 }
1216
1217 static void hpsa_map_one(struct pci_dev *pdev,
1218                 struct CommandList *cp,
1219                 unsigned char *buf,
1220                 size_t buflen,
1221                 int data_direction)
1222 {
1223         u64 addr64;
1224
1225         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1226                 cp->Header.SGList = 0;
1227                 cp->Header.SGTotal = 0;
1228                 return;
1229         }
1230
1231         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1232         cp->SG[0].Addr.lower =
1233           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1234         cp->SG[0].Addr.upper =
1235           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1236         cp->SG[0].Len = buflen;
1237         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1238         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1239 }
1240
1241 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1242         struct CommandList *c)
1243 {
1244         DECLARE_COMPLETION_ONSTACK(wait);
1245
1246         c->waiting = &wait;
1247         enqueue_cmd_and_start_io(h, c);
1248         wait_for_completion(&wait);
1249 }
1250
1251 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1252         struct CommandList *c, int data_direction)
1253 {
1254         int retry_count = 0;
1255
1256         do {
1257                 memset(c->err_info, 0, sizeof(c->err_info));
1258                 hpsa_scsi_do_simple_cmd_core(h, c);
1259                 retry_count++;
1260         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1261         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1262 }
1263
1264 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1265 {
1266         struct ErrorInfo *ei;
1267         struct device *d = &cp->h->pdev->dev;
1268
1269         ei = cp->err_info;
1270         switch (ei->CommandStatus) {
1271         case CMD_TARGET_STATUS:
1272                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1273                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1274                                 ei->ScsiStatus);
1275                 if (ei->ScsiStatus == 0)
1276                         dev_warn(d, "SCSI status is abnormally zero.  "
1277                         "(probably indicates selection timeout "
1278                         "reported incorrectly due to a known "
1279                         "firmware bug, circa July, 2001.)\n");
1280                 break;
1281         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1282                         dev_info(d, "UNDERRUN\n");
1283                 break;
1284         case CMD_DATA_OVERRUN:
1285                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1286                 break;
1287         case CMD_INVALID: {
1288                 /* controller unfortunately reports SCSI passthru's
1289                  * to non-existent targets as invalid commands.
1290                  */
1291                 dev_warn(d, "cp %p is reported invalid (probably means "
1292                         "target device no longer present)\n", cp);
1293                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1294                 print_cmd(cp);  */
1295                 }
1296                 break;
1297         case CMD_PROTOCOL_ERR:
1298                 dev_warn(d, "cp %p has protocol error \n", cp);
1299                 break;
1300         case CMD_HARDWARE_ERR:
1301                 /* cmd->result = DID_ERROR << 16; */
1302                 dev_warn(d, "cp %p had hardware error\n", cp);
1303                 break;
1304         case CMD_CONNECTION_LOST:
1305                 dev_warn(d, "cp %p had connection lost\n", cp);
1306                 break;
1307         case CMD_ABORTED:
1308                 dev_warn(d, "cp %p was aborted\n", cp);
1309                 break;
1310         case CMD_ABORT_FAILED:
1311                 dev_warn(d, "cp %p reports abort failed\n", cp);
1312                 break;
1313         case CMD_UNSOLICITED_ABORT:
1314                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1315                 break;
1316         case CMD_TIMEOUT:
1317                 dev_warn(d, "cp %p timed out\n", cp);
1318                 break;
1319         default:
1320                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1321                                 ei->CommandStatus);
1322         }
1323 }
1324
1325 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1326                         unsigned char page, unsigned char *buf,
1327                         unsigned char bufsize)
1328 {
1329         int rc = IO_OK;
1330         struct CommandList *c;
1331         struct ErrorInfo *ei;
1332
1333         c = cmd_special_alloc(h);
1334
1335         if (c == NULL) {                        /* trouble... */
1336                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1337                 return -ENOMEM;
1338         }
1339
1340         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1341         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1342         ei = c->err_info;
1343         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1344                 hpsa_scsi_interpret_error(c);
1345                 rc = -1;
1346         }
1347         cmd_special_free(h, c);
1348         return rc;
1349 }
1350
1351 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1352 {
1353         int rc = IO_OK;
1354         struct CommandList *c;
1355         struct ErrorInfo *ei;
1356
1357         c = cmd_special_alloc(h);
1358
1359         if (c == NULL) {                        /* trouble... */
1360                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1361                 return -1;
1362         }
1363
1364         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1365         hpsa_scsi_do_simple_cmd_core(h, c);
1366         /* no unmap needed here because no data xfer. */
1367
1368         ei = c->err_info;
1369         if (ei->CommandStatus != 0) {
1370                 hpsa_scsi_interpret_error(c);
1371                 rc = -1;
1372         }
1373         cmd_special_free(h, c);
1374         return rc;
1375 }
1376
1377 static void hpsa_get_raid_level(struct ctlr_info *h,
1378         unsigned char *scsi3addr, unsigned char *raid_level)
1379 {
1380         int rc;
1381         unsigned char *buf;
1382
1383         *raid_level = RAID_UNKNOWN;
1384         buf = kzalloc(64, GFP_KERNEL);
1385         if (!buf)
1386                 return;
1387         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1388         if (rc == 0)
1389                 *raid_level = buf[8];
1390         if (*raid_level > RAID_UNKNOWN)
1391                 *raid_level = RAID_UNKNOWN;
1392         kfree(buf);
1393         return;
1394 }
1395
1396 /* Get the device id from inquiry page 0x83 */
1397 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1398         unsigned char *device_id, int buflen)
1399 {
1400         int rc;
1401         unsigned char *buf;
1402
1403         if (buflen > 16)
1404                 buflen = 16;
1405         buf = kzalloc(64, GFP_KERNEL);
1406         if (!buf)
1407                 return -1;
1408         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1409         if (rc == 0)
1410                 memcpy(device_id, &buf[8], buflen);
1411         kfree(buf);
1412         return rc != 0;
1413 }
1414
1415 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1416                 struct ReportLUNdata *buf, int bufsize,
1417                 int extended_response)
1418 {
1419         int rc = IO_OK;
1420         struct CommandList *c;
1421         unsigned char scsi3addr[8];
1422         struct ErrorInfo *ei;
1423
1424         c = cmd_special_alloc(h);
1425         if (c == NULL) {                        /* trouble... */
1426                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1427                 return -1;
1428         }
1429         /* address the controller */
1430         memset(scsi3addr, 0, sizeof(scsi3addr));
1431         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1432                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1433         if (extended_response)
1434                 c->Request.CDB[1] = extended_response;
1435         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1436         ei = c->err_info;
1437         if (ei->CommandStatus != 0 &&
1438             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1439                 hpsa_scsi_interpret_error(c);
1440                 rc = -1;
1441         }
1442         cmd_special_free(h, c);
1443         return rc;
1444 }
1445
1446 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1447                 struct ReportLUNdata *buf,
1448                 int bufsize, int extended_response)
1449 {
1450         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1451 }
1452
1453 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1454                 struct ReportLUNdata *buf, int bufsize)
1455 {
1456         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1457 }
1458
1459 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1460         int bus, int target, int lun)
1461 {
1462         device->bus = bus;
1463         device->target = target;
1464         device->lun = lun;
1465 }
1466
1467 static int hpsa_update_device_info(struct ctlr_info *h,
1468         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1469 {
1470 #define OBDR_TAPE_INQ_SIZE 49
1471         unsigned char *inq_buff;
1472
1473         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1474         if (!inq_buff)
1475                 goto bail_out;
1476
1477         /* Do an inquiry to the device to see what it is. */
1478         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1479                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1480                 /* Inquiry failed (msg printed already) */
1481                 dev_err(&h->pdev->dev,
1482                         "hpsa_update_device_info: inquiry failed\n");
1483                 goto bail_out;
1484         }
1485
1486         /* As a side effect, record the firmware version number
1487          * if we happen to be talking to the RAID controller.
1488          */
1489         if (is_hba_lunid(scsi3addr))
1490                 memcpy(h->firm_ver, &inq_buff[32], 4);
1491
1492         this_device->devtype = (inq_buff[0] & 0x1f);
1493         memcpy(this_device->scsi3addr, scsi3addr, 8);
1494         memcpy(this_device->vendor, &inq_buff[8],
1495                 sizeof(this_device->vendor));
1496         memcpy(this_device->model, &inq_buff[16],
1497                 sizeof(this_device->model));
1498         memcpy(this_device->revision, &inq_buff[32],
1499                 sizeof(this_device->revision));
1500         memset(this_device->device_id, 0,
1501                 sizeof(this_device->device_id));
1502         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1503                 sizeof(this_device->device_id));
1504
1505         if (this_device->devtype == TYPE_DISK &&
1506                 is_logical_dev_addr_mode(scsi3addr))
1507                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1508         else
1509                 this_device->raid_level = RAID_UNKNOWN;
1510
1511         kfree(inq_buff);
1512         return 0;
1513
1514 bail_out:
1515         kfree(inq_buff);
1516         return 1;
1517 }
1518
1519 static unsigned char *msa2xxx_model[] = {
1520         "MSA2012",
1521         "MSA2024",
1522         "MSA2312",
1523         "MSA2324",
1524         NULL,
1525 };
1526
1527 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1528 {
1529         int i;
1530
1531         for (i = 0; msa2xxx_model[i]; i++)
1532                 if (strncmp(device->model, msa2xxx_model[i],
1533                         strlen(msa2xxx_model[i])) == 0)
1534                         return 1;
1535         return 0;
1536 }
1537
1538 /* Helper function to assign bus, target, lun mapping of devices.
1539  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1540  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1541  * Logical drive target and lun are assigned at this time, but
1542  * physical device lun and target assignment are deferred (assigned
1543  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1544  */
1545 static void figure_bus_target_lun(struct ctlr_info *h,
1546         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1547         struct hpsa_scsi_dev_t *device)
1548 {
1549         u32 lunid;
1550
1551         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1552                 /* logical device */
1553                 if (unlikely(is_scsi_rev_5(h))) {
1554                         /* p1210m, logical drives lun assignments
1555                          * match SCSI REPORT LUNS data.
1556                          */
1557                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1558                         *bus = 0;
1559                         *target = 0;
1560                         *lun = (lunid & 0x3fff) + 1;
1561                 } else {
1562                         /* not p1210m... */
1563                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1564                         if (is_msa2xxx(h, device)) {
1565                                 /* msa2xxx way, put logicals on bus 1
1566                                  * and match target/lun numbers box
1567                                  * reports.
1568                                  */
1569                                 *bus = 1;
1570                                 *target = (lunid >> 16) & 0x3fff;
1571                                 *lun = lunid & 0x00ff;
1572                         } else {
1573                                 /* Traditional smart array way. */
1574                                 *bus = 0;
1575                                 *lun = 0;
1576                                 *target = lunid & 0x3fff;
1577                         }
1578                 }
1579         } else {
1580                 /* physical device */
1581                 if (is_hba_lunid(lunaddrbytes))
1582                         if (unlikely(is_scsi_rev_5(h))) {
1583                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1584                                 *target = 0;
1585                                 *lun = 0;
1586                                 return;
1587                         } else
1588                                 *bus = 3; /* traditional smartarray */
1589                 else
1590                         *bus = 2; /* physical disk */
1591                 *target = -1;
1592                 *lun = -1; /* we will fill these in later. */
1593         }
1594 }
1595
1596 /*
1597  * If there is no lun 0 on a target, linux won't find any devices.
1598  * For the MSA2xxx boxes, we have to manually detect the enclosure
1599  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1600  * it for some reason.  *tmpdevice is the target we're adding,
1601  * this_device is a pointer into the current element of currentsd[]
1602  * that we're building up in update_scsi_devices(), below.
1603  * lunzerobits is a bitmap that tracks which targets already have a
1604  * lun 0 assigned.
1605  * Returns 1 if an enclosure was added, 0 if not.
1606  */
1607 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1608         struct hpsa_scsi_dev_t *tmpdevice,
1609         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1610         int bus, int target, int lun, unsigned long lunzerobits[],
1611         int *nmsa2xxx_enclosures)
1612 {
1613         unsigned char scsi3addr[8];
1614
1615         if (test_bit(target, lunzerobits))
1616                 return 0; /* There is already a lun 0 on this target. */
1617
1618         if (!is_logical_dev_addr_mode(lunaddrbytes))
1619                 return 0; /* It's the logical targets that may lack lun 0. */
1620
1621         if (!is_msa2xxx(h, tmpdevice))
1622                 return 0; /* It's only the MSA2xxx that have this problem. */
1623
1624         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1625                 return 0;
1626
1627         if (is_hba_lunid(scsi3addr))
1628                 return 0; /* Don't add the RAID controller here. */
1629
1630         if (is_scsi_rev_5(h))
1631                 return 0; /* p1210m doesn't need to do this. */
1632
1633 #define MAX_MSA2XXX_ENCLOSURES 32
1634         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1635                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1636                         "enclosures exceeded.  Check your hardware "
1637                         "configuration.");
1638                 return 0;
1639         }
1640
1641         memset(scsi3addr, 0, 8);
1642         scsi3addr[3] = target;
1643         if (hpsa_update_device_info(h, scsi3addr, this_device))
1644                 return 0;
1645         (*nmsa2xxx_enclosures)++;
1646         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1647         set_bit(target, lunzerobits);
1648         return 1;
1649 }
1650
1651 /*
1652  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1653  * logdev.  The number of luns in physdev and logdev are returned in
1654  * *nphysicals and *nlogicals, respectively.
1655  * Returns 0 on success, -1 otherwise.
1656  */
1657 static int hpsa_gather_lun_info(struct ctlr_info *h,
1658         int reportlunsize,
1659         struct ReportLUNdata *physdev, u32 *nphysicals,
1660         struct ReportLUNdata *logdev, u32 *nlogicals)
1661 {
1662         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1663                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1664                 return -1;
1665         }
1666         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1667         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1668                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1669                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1670                         *nphysicals - HPSA_MAX_PHYS_LUN);
1671                 *nphysicals = HPSA_MAX_PHYS_LUN;
1672         }
1673         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1674                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1675                 return -1;
1676         }
1677         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1678         /* Reject Logicals in excess of our max capability. */
1679         if (*nlogicals > HPSA_MAX_LUN) {
1680                 dev_warn(&h->pdev->dev,
1681                         "maximum logical LUNs (%d) exceeded.  "
1682                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1683                         *nlogicals - HPSA_MAX_LUN);
1684                         *nlogicals = HPSA_MAX_LUN;
1685         }
1686         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1687                 dev_warn(&h->pdev->dev,
1688                         "maximum logical + physical LUNs (%d) exceeded. "
1689                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1690                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1691                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1692         }
1693         return 0;
1694 }
1695
1696 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1697         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1698         struct ReportLUNdata *logdev_list)
1699 {
1700         /* Helper function, figure out where the LUN ID info is coming from
1701          * given index i, lists of physical and logical devices, where in
1702          * the list the raid controller is supposed to appear (first or last)
1703          */
1704
1705         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1706         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1707
1708         if (i == raid_ctlr_position)
1709                 return RAID_CTLR_LUNID;
1710
1711         if (i < logicals_start)
1712                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1713
1714         if (i < last_device)
1715                 return &logdev_list->LUN[i - nphysicals -
1716                         (raid_ctlr_position == 0)][0];
1717         BUG();
1718         return NULL;
1719 }
1720
1721 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1722 {
1723         /* the idea here is we could get notified
1724          * that some devices have changed, so we do a report
1725          * physical luns and report logical luns cmd, and adjust
1726          * our list of devices accordingly.
1727          *
1728          * The scsi3addr's of devices won't change so long as the
1729          * adapter is not reset.  That means we can rescan and
1730          * tell which devices we already know about, vs. new
1731          * devices, vs.  disappearing devices.
1732          */
1733         struct ReportLUNdata *physdev_list = NULL;
1734         struct ReportLUNdata *logdev_list = NULL;
1735         unsigned char *inq_buff = NULL;
1736         u32 nphysicals = 0;
1737         u32 nlogicals = 0;
1738         u32 ndev_allocated = 0;
1739         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1740         int ncurrent = 0;
1741         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1742         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1743         int bus, target, lun;
1744         int raid_ctlr_position;
1745         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1746
1747         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1748                 GFP_KERNEL);
1749         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1750         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1751         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1752         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1753
1754         if (!currentsd || !physdev_list || !logdev_list ||
1755                 !inq_buff || !tmpdevice) {
1756                 dev_err(&h->pdev->dev, "out of memory\n");
1757                 goto out;
1758         }
1759         memset(lunzerobits, 0, sizeof(lunzerobits));
1760
1761         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1762                         logdev_list, &nlogicals))
1763                 goto out;
1764
1765         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1766          * but each of them 4 times through different paths.  The plus 1
1767          * is for the RAID controller.
1768          */
1769         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1770
1771         /* Allocate the per device structures */
1772         for (i = 0; i < ndevs_to_allocate; i++) {
1773                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1774                 if (!currentsd[i]) {
1775                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1776                                 __FILE__, __LINE__);
1777                         goto out;
1778                 }
1779                 ndev_allocated++;
1780         }
1781
1782         if (unlikely(is_scsi_rev_5(h)))
1783                 raid_ctlr_position = 0;
1784         else
1785                 raid_ctlr_position = nphysicals + nlogicals;
1786
1787         /* adjust our table of devices */
1788         nmsa2xxx_enclosures = 0;
1789         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1790                 u8 *lunaddrbytes;
1791
1792                 /* Figure out where the LUN ID info is coming from */
1793                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1794                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1795                 /* skip masked physical devices. */
1796                 if (lunaddrbytes[3] & 0xC0 &&
1797                         i < nphysicals + (raid_ctlr_position == 0))
1798                         continue;
1799
1800                 /* Get device type, vendor, model, device id */
1801                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1802                         continue; /* skip it if we can't talk to it. */
1803                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1804                         tmpdevice);
1805                 this_device = currentsd[ncurrent];
1806
1807                 /*
1808                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1809                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1810                  * is nonetheless an enclosure device there.  We have to
1811                  * present that otherwise linux won't find anything if
1812                  * there is no lun 0.
1813                  */
1814                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1815                                 lunaddrbytes, bus, target, lun, lunzerobits,
1816                                 &nmsa2xxx_enclosures)) {
1817                         ncurrent++;
1818                         this_device = currentsd[ncurrent];
1819                 }
1820
1821                 *this_device = *tmpdevice;
1822                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1823
1824                 switch (this_device->devtype) {
1825                 case TYPE_ROM: {
1826                         /* We don't *really* support actual CD-ROM devices,
1827                          * just "One Button Disaster Recovery" tape drive
1828                          * which temporarily pretends to be a CD-ROM drive.
1829                          * So we check that the device is really an OBDR tape
1830                          * device by checking for "$DR-10" in bytes 43-48 of
1831                          * the inquiry data.
1832                          */
1833                                 char obdr_sig[7];
1834 #define OBDR_TAPE_SIG "$DR-10"
1835                                 strncpy(obdr_sig, &inq_buff[43], 6);
1836                                 obdr_sig[6] = '\0';
1837                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1838                                         /* Not OBDR device, ignore it. */
1839                                         break;
1840                         }
1841                         ncurrent++;
1842                         break;
1843                 case TYPE_DISK:
1844                         if (i < nphysicals)
1845                                 break;
1846                         ncurrent++;
1847                         break;
1848                 case TYPE_TAPE:
1849                 case TYPE_MEDIUM_CHANGER:
1850                         ncurrent++;
1851                         break;
1852                 case TYPE_RAID:
1853                         /* Only present the Smartarray HBA as a RAID controller.
1854                          * If it's a RAID controller other than the HBA itself
1855                          * (an external RAID controller, MSA500 or similar)
1856                          * don't present it.
1857                          */
1858                         if (!is_hba_lunid(lunaddrbytes))
1859                                 break;
1860                         ncurrent++;
1861                         break;
1862                 default:
1863                         break;
1864                 }
1865                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1866                         break;
1867         }
1868         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1869 out:
1870         kfree(tmpdevice);
1871         for (i = 0; i < ndev_allocated; i++)
1872                 kfree(currentsd[i]);
1873         kfree(currentsd);
1874         kfree(inq_buff);
1875         kfree(physdev_list);
1876         kfree(logdev_list);
1877 }
1878
1879 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1880  * dma mapping  and fills in the scatter gather entries of the
1881  * hpsa command, cp.
1882  */
1883 static int hpsa_scatter_gather(struct pci_dev *pdev,
1884                 struct CommandList *cp,
1885                 struct scsi_cmnd *cmd)
1886 {
1887         unsigned int len;
1888         struct scatterlist *sg;
1889         u64 addr64;
1890         int use_sg, i;
1891
1892         BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1893
1894         use_sg = scsi_dma_map(cmd);
1895         if (use_sg < 0)
1896                 return use_sg;
1897
1898         if (!use_sg)
1899                 goto sglist_finished;
1900
1901         scsi_for_each_sg(cmd, sg, use_sg, i) {
1902                 addr64 = (u64) sg_dma_address(sg);
1903                 len  = sg_dma_len(sg);
1904                 cp->SG[i].Addr.lower =
1905                         (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1906                 cp->SG[i].Addr.upper =
1907                         (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1908                 cp->SG[i].Len = len;
1909                 cp->SG[i].Ext = 0;  /* we are not chaining */
1910         }
1911
1912 sglist_finished:
1913
1914         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1915         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1916         return 0;
1917 }
1918
1919
1920 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1921         void (*done)(struct scsi_cmnd *))
1922 {
1923         struct ctlr_info *h;
1924         struct hpsa_scsi_dev_t *dev;
1925         unsigned char scsi3addr[8];
1926         struct CommandList *c;
1927         unsigned long flags;
1928
1929         /* Get the ptr to our adapter structure out of cmd->host. */
1930         h = sdev_to_hba(cmd->device);
1931         dev = cmd->device->hostdata;
1932         if (!dev) {
1933                 cmd->result = DID_NO_CONNECT << 16;
1934                 done(cmd);
1935                 return 0;
1936         }
1937         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1938
1939         /* Need a lock as this is being allocated from the pool */
1940         spin_lock_irqsave(&h->lock, flags);
1941         c = cmd_alloc(h);
1942         spin_unlock_irqrestore(&h->lock, flags);
1943         if (c == NULL) {                        /* trouble... */
1944                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1945                 return SCSI_MLQUEUE_HOST_BUSY;
1946         }
1947
1948         /* Fill in the command list header */
1949
1950         cmd->scsi_done = done;    /* save this for use by completion code */
1951
1952         /* save c in case we have to abort it  */
1953         cmd->host_scribble = (unsigned char *) c;
1954
1955         c->cmd_type = CMD_SCSI;
1956         c->scsi_cmd = cmd;
1957         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1958         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1959         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1960         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1961
1962         /* Fill in the request block... */
1963
1964         c->Request.Timeout = 0;
1965         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1966         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1967         c->Request.CDBLen = cmd->cmd_len;
1968         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1969         c->Request.Type.Type = TYPE_CMD;
1970         c->Request.Type.Attribute = ATTR_SIMPLE;
1971         switch (cmd->sc_data_direction) {
1972         case DMA_TO_DEVICE:
1973                 c->Request.Type.Direction = XFER_WRITE;
1974                 break;
1975         case DMA_FROM_DEVICE:
1976                 c->Request.Type.Direction = XFER_READ;
1977                 break;
1978         case DMA_NONE:
1979                 c->Request.Type.Direction = XFER_NONE;
1980                 break;
1981         case DMA_BIDIRECTIONAL:
1982                 /* This can happen if a buggy application does a scsi passthru
1983                  * and sets both inlen and outlen to non-zero. ( see
1984                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1985                  */
1986
1987                 c->Request.Type.Direction = XFER_RSVD;
1988                 /* This is technically wrong, and hpsa controllers should
1989                  * reject it with CMD_INVALID, which is the most correct
1990                  * response, but non-fibre backends appear to let it
1991                  * slide by, and give the same results as if this field
1992                  * were set correctly.  Either way is acceptable for
1993                  * our purposes here.
1994                  */
1995
1996                 break;
1997
1998         default:
1999                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2000                         cmd->sc_data_direction);
2001                 BUG();
2002                 break;
2003         }
2004
2005         if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
2006                 cmd_free(h, c);
2007                 return SCSI_MLQUEUE_HOST_BUSY;
2008         }
2009         enqueue_cmd_and_start_io(h, c);
2010         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2011         return 0;
2012 }
2013
2014 static void hpsa_scan_start(struct Scsi_Host *sh)
2015 {
2016         struct ctlr_info *h = shost_to_hba(sh);
2017         unsigned long flags;
2018
2019         /* wait until any scan already in progress is finished. */
2020         while (1) {
2021                 spin_lock_irqsave(&h->scan_lock, flags);
2022                 if (h->scan_finished)
2023                         break;
2024                 spin_unlock_irqrestore(&h->scan_lock, flags);
2025                 wait_event(h->scan_wait_queue, h->scan_finished);
2026                 /* Note: We don't need to worry about a race between this
2027                  * thread and driver unload because the midlayer will
2028                  * have incremented the reference count, so unload won't
2029                  * happen if we're in here.
2030                  */
2031         }
2032         h->scan_finished = 0; /* mark scan as in progress */
2033         spin_unlock_irqrestore(&h->scan_lock, flags);
2034
2035         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2036
2037         spin_lock_irqsave(&h->scan_lock, flags);
2038         h->scan_finished = 1; /* mark scan as finished. */
2039         wake_up_all(&h->scan_wait_queue);
2040         spin_unlock_irqrestore(&h->scan_lock, flags);
2041 }
2042
2043 static int hpsa_scan_finished(struct Scsi_Host *sh,
2044         unsigned long elapsed_time)
2045 {
2046         struct ctlr_info *h = shost_to_hba(sh);
2047         unsigned long flags;
2048         int finished;
2049
2050         spin_lock_irqsave(&h->scan_lock, flags);
2051         finished = h->scan_finished;
2052         spin_unlock_irqrestore(&h->scan_lock, flags);
2053         return finished;
2054 }
2055
2056 static void hpsa_unregister_scsi(struct ctlr_info *h)
2057 {
2058         /* we are being forcibly unloaded, and may not refuse. */
2059         scsi_remove_host(h->scsi_host);
2060         scsi_host_put(h->scsi_host);
2061         h->scsi_host = NULL;
2062 }
2063
2064 static int hpsa_register_scsi(struct ctlr_info *h)
2065 {
2066         int rc;
2067
2068         rc = hpsa_scsi_detect(h);
2069         if (rc != 0)
2070                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2071                         " hpsa_scsi_detect(), rc is %d\n", rc);
2072         return rc;
2073 }
2074
2075 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2076         unsigned char lunaddr[])
2077 {
2078         int rc = 0;
2079         int count = 0;
2080         int waittime = 1; /* seconds */
2081         struct CommandList *c;
2082
2083         c = cmd_special_alloc(h);
2084         if (!c) {
2085                 dev_warn(&h->pdev->dev, "out of memory in "
2086                         "wait_for_device_to_become_ready.\n");
2087                 return IO_ERROR;
2088         }
2089
2090         /* Send test unit ready until device ready, or give up. */
2091         while (count < HPSA_TUR_RETRY_LIMIT) {
2092
2093                 /* Wait for a bit.  do this first, because if we send
2094                  * the TUR right away, the reset will just abort it.
2095                  */
2096                 msleep(1000 * waittime);
2097                 count++;
2098
2099                 /* Increase wait time with each try, up to a point. */
2100                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2101                         waittime = waittime * 2;
2102
2103                 /* Send the Test Unit Ready */
2104                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2105                 hpsa_scsi_do_simple_cmd_core(h, c);
2106                 /* no unmap needed here because no data xfer. */
2107
2108                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2109                         break;
2110
2111                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2112                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2113                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2114                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2115                         break;
2116
2117                 dev_warn(&h->pdev->dev, "waiting %d secs "
2118                         "for device to become ready.\n", waittime);
2119                 rc = 1; /* device not ready. */
2120         }
2121
2122         if (rc)
2123                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2124         else
2125                 dev_warn(&h->pdev->dev, "device is ready.\n");
2126
2127         cmd_special_free(h, c);
2128         return rc;
2129 }
2130
2131 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2132  * complaining.  Doing a host- or bus-reset can't do anything good here.
2133  */
2134 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2135 {
2136         int rc;
2137         struct ctlr_info *h;
2138         struct hpsa_scsi_dev_t *dev;
2139
2140         /* find the controller to which the command to be aborted was sent */
2141         h = sdev_to_hba(scsicmd->device);
2142         if (h == NULL) /* paranoia */
2143                 return FAILED;
2144         dev = scsicmd->device->hostdata;
2145         if (!dev) {
2146                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2147                         "device lookup failed.\n");
2148                 return FAILED;
2149         }
2150         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2151                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2152         /* send a reset to the SCSI LUN which the command was sent to */
2153         rc = hpsa_send_reset(h, dev->scsi3addr);
2154         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2155                 return SUCCESS;
2156
2157         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2158         return FAILED;
2159 }
2160
2161 /*
2162  * For operations that cannot sleep, a command block is allocated at init,
2163  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2164  * which ones are free or in use.  Lock must be held when calling this.
2165  * cmd_free() is the complement.
2166  */
2167 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2168 {
2169         struct CommandList *c;
2170         int i;
2171         union u64bit temp64;
2172         dma_addr_t cmd_dma_handle, err_dma_handle;
2173
2174         do {
2175                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2176                 if (i == h->nr_cmds)
2177                         return NULL;
2178         } while (test_and_set_bit
2179                  (i & (BITS_PER_LONG - 1),
2180                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2181         c = h->cmd_pool + i;
2182         memset(c, 0, sizeof(*c));
2183         cmd_dma_handle = h->cmd_pool_dhandle
2184             + i * sizeof(*c);
2185         c->err_info = h->errinfo_pool + i;
2186         memset(c->err_info, 0, sizeof(*c->err_info));
2187         err_dma_handle = h->errinfo_pool_dhandle
2188             + i * sizeof(*c->err_info);
2189         h->nr_allocs++;
2190
2191         c->cmdindex = i;
2192
2193         INIT_HLIST_NODE(&c->list);
2194         c->busaddr = (u32) cmd_dma_handle;
2195         temp64.val = (u64) err_dma_handle;
2196         c->ErrDesc.Addr.lower = temp64.val32.lower;
2197         c->ErrDesc.Addr.upper = temp64.val32.upper;
2198         c->ErrDesc.Len = sizeof(*c->err_info);
2199
2200         c->h = h;
2201         return c;
2202 }
2203
2204 /* For operations that can wait for kmalloc to possibly sleep,
2205  * this routine can be called. Lock need not be held to call
2206  * cmd_special_alloc. cmd_special_free() is the complement.
2207  */
2208 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2209 {
2210         struct CommandList *c;
2211         union u64bit temp64;
2212         dma_addr_t cmd_dma_handle, err_dma_handle;
2213
2214         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2215         if (c == NULL)
2216                 return NULL;
2217         memset(c, 0, sizeof(*c));
2218
2219         c->cmdindex = -1;
2220
2221         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2222                     &err_dma_handle);
2223
2224         if (c->err_info == NULL) {
2225                 pci_free_consistent(h->pdev,
2226                         sizeof(*c), c, cmd_dma_handle);
2227                 return NULL;
2228         }
2229         memset(c->err_info, 0, sizeof(*c->err_info));
2230
2231         INIT_HLIST_NODE(&c->list);
2232         c->busaddr = (u32) cmd_dma_handle;
2233         temp64.val = (u64) err_dma_handle;
2234         c->ErrDesc.Addr.lower = temp64.val32.lower;
2235         c->ErrDesc.Addr.upper = temp64.val32.upper;
2236         c->ErrDesc.Len = sizeof(*c->err_info);
2237
2238         c->h = h;
2239         return c;
2240 }
2241
2242 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2243 {
2244         int i;
2245
2246         i = c - h->cmd_pool;
2247         clear_bit(i & (BITS_PER_LONG - 1),
2248                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2249         h->nr_frees++;
2250 }
2251
2252 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2253 {
2254         union u64bit temp64;
2255
2256         temp64.val32.lower = c->ErrDesc.Addr.lower;
2257         temp64.val32.upper = c->ErrDesc.Addr.upper;
2258         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2259                             c->err_info, (dma_addr_t) temp64.val);
2260         pci_free_consistent(h->pdev, sizeof(*c),
2261                             c, (dma_addr_t) c->busaddr);
2262 }
2263
2264 #ifdef CONFIG_COMPAT
2265
2266 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2267 {
2268         int ret;
2269
2270         lock_kernel();
2271         ret = hpsa_ioctl(dev, cmd, arg);
2272         unlock_kernel();
2273         return ret;
2274 }
2275
2276 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2277 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2278         int cmd, void *arg);
2279
2280 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2281 {
2282         switch (cmd) {
2283         case CCISS_GETPCIINFO:
2284         case CCISS_GETINTINFO:
2285         case CCISS_SETINTINFO:
2286         case CCISS_GETNODENAME:
2287         case CCISS_SETNODENAME:
2288         case CCISS_GETHEARTBEAT:
2289         case CCISS_GETBUSTYPES:
2290         case CCISS_GETFIRMVER:
2291         case CCISS_GETDRIVVER:
2292         case CCISS_REVALIDVOLS:
2293         case CCISS_DEREGDISK:
2294         case CCISS_REGNEWDISK:
2295         case CCISS_REGNEWD:
2296         case CCISS_RESCANDISK:
2297         case CCISS_GETLUNINFO:
2298                 return do_ioctl(dev, cmd, arg);
2299
2300         case CCISS_PASSTHRU32:
2301                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2302         case CCISS_BIG_PASSTHRU32:
2303                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2304
2305         default:
2306                 return -ENOIOCTLCMD;
2307         }
2308 }
2309
2310 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2311 {
2312         IOCTL32_Command_struct __user *arg32 =
2313             (IOCTL32_Command_struct __user *) arg;
2314         IOCTL_Command_struct arg64;
2315         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2316         int err;
2317         u32 cp;
2318
2319         err = 0;
2320         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2321                            sizeof(arg64.LUN_info));
2322         err |= copy_from_user(&arg64.Request, &arg32->Request,
2323                            sizeof(arg64.Request));
2324         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2325                            sizeof(arg64.error_info));
2326         err |= get_user(arg64.buf_size, &arg32->buf_size);
2327         err |= get_user(cp, &arg32->buf);
2328         arg64.buf = compat_ptr(cp);
2329         err |= copy_to_user(p, &arg64, sizeof(arg64));
2330
2331         if (err)
2332                 return -EFAULT;
2333
2334         err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2335         if (err)
2336                 return err;
2337         err |= copy_in_user(&arg32->error_info, &p->error_info,
2338                          sizeof(arg32->error_info));
2339         if (err)
2340                 return -EFAULT;
2341         return err;
2342 }
2343
2344 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2345         int cmd, void *arg)
2346 {
2347         BIG_IOCTL32_Command_struct __user *arg32 =
2348             (BIG_IOCTL32_Command_struct __user *) arg;
2349         BIG_IOCTL_Command_struct arg64;
2350         BIG_IOCTL_Command_struct __user *p =
2351             compat_alloc_user_space(sizeof(arg64));
2352         int err;
2353         u32 cp;
2354
2355         err = 0;
2356         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2357                            sizeof(arg64.LUN_info));
2358         err |= copy_from_user(&arg64.Request, &arg32->Request,
2359                            sizeof(arg64.Request));
2360         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2361                            sizeof(arg64.error_info));
2362         err |= get_user(arg64.buf_size, &arg32->buf_size);
2363         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2364         err |= get_user(cp, &arg32->buf);
2365         arg64.buf = compat_ptr(cp);
2366         err |= copy_to_user(p, &arg64, sizeof(arg64));
2367
2368         if (err)
2369                 return -EFAULT;
2370
2371         err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2372         if (err)
2373                 return err;
2374         err |= copy_in_user(&arg32->error_info, &p->error_info,
2375                          sizeof(arg32->error_info));
2376         if (err)
2377                 return -EFAULT;
2378         return err;
2379 }
2380 #endif
2381
2382 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2383 {
2384         struct hpsa_pci_info pciinfo;
2385
2386         if (!argp)
2387                 return -EINVAL;
2388         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2389         pciinfo.bus = h->pdev->bus->number;
2390         pciinfo.dev_fn = h->pdev->devfn;
2391         pciinfo.board_id = h->board_id;
2392         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2393                 return -EFAULT;
2394         return 0;
2395 }
2396
2397 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2398 {
2399         DriverVer_type DriverVer;
2400         unsigned char vmaj, vmin, vsubmin;
2401         int rc;
2402
2403         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2404                 &vmaj, &vmin, &vsubmin);
2405         if (rc != 3) {
2406                 dev_info(&h->pdev->dev, "driver version string '%s' "
2407                         "unrecognized.", HPSA_DRIVER_VERSION);
2408                 vmaj = 0;
2409                 vmin = 0;
2410                 vsubmin = 0;
2411         }
2412         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2413         if (!argp)
2414                 return -EINVAL;
2415         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2416                 return -EFAULT;
2417         return 0;
2418 }
2419
2420 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2421 {
2422         IOCTL_Command_struct iocommand;
2423         struct CommandList *c;
2424         char *buff = NULL;
2425         union u64bit temp64;
2426
2427         if (!argp)
2428                 return -EINVAL;
2429         if (!capable(CAP_SYS_RAWIO))
2430                 return -EPERM;
2431         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2432                 return -EFAULT;
2433         if ((iocommand.buf_size < 1) &&
2434             (iocommand.Request.Type.Direction != XFER_NONE)) {
2435                 return -EINVAL;
2436         }
2437         if (iocommand.buf_size > 0) {
2438                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2439                 if (buff == NULL)
2440                         return -EFAULT;
2441         }
2442         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2443                 /* Copy the data into the buffer we created */
2444                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2445                         kfree(buff);
2446                         return -EFAULT;
2447                 }
2448         } else
2449                 memset(buff, 0, iocommand.buf_size);
2450         c = cmd_special_alloc(h);
2451         if (c == NULL) {
2452                 kfree(buff);
2453                 return -ENOMEM;
2454         }
2455         /* Fill in the command type */
2456         c->cmd_type = CMD_IOCTL_PEND;
2457         /* Fill in Command Header */
2458         c->Header.ReplyQueue = 0; /* unused in simple mode */
2459         if (iocommand.buf_size > 0) {   /* buffer to fill */
2460                 c->Header.SGList = 1;
2461                 c->Header.SGTotal = 1;
2462         } else  { /* no buffers to fill */
2463                 c->Header.SGList = 0;
2464                 c->Header.SGTotal = 0;
2465         }
2466         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2467         /* use the kernel address the cmd block for tag */
2468         c->Header.Tag.lower = c->busaddr;
2469
2470         /* Fill in Request block */
2471         memcpy(&c->Request, &iocommand.Request,
2472                 sizeof(c->Request));
2473
2474         /* Fill in the scatter gather information */
2475         if (iocommand.buf_size > 0) {
2476                 temp64.val = pci_map_single(h->pdev, buff,
2477                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2478                 c->SG[0].Addr.lower = temp64.val32.lower;
2479                 c->SG[0].Addr.upper = temp64.val32.upper;
2480                 c->SG[0].Len = iocommand.buf_size;
2481                 c->SG[0].Ext = 0; /* we are not chaining*/
2482         }
2483         hpsa_scsi_do_simple_cmd_core(h, c);
2484         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2485         check_ioctl_unit_attention(h, c);
2486
2487         /* Copy the error information out */
2488         memcpy(&iocommand.error_info, c->err_info,
2489                 sizeof(iocommand.error_info));
2490         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2491                 kfree(buff);
2492                 cmd_special_free(h, c);
2493                 return -EFAULT;
2494         }
2495
2496         if (iocommand.Request.Type.Direction == XFER_READ) {
2497                 /* Copy the data out of the buffer we created */
2498                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2499                         kfree(buff);
2500                         cmd_special_free(h, c);
2501                         return -EFAULT;
2502                 }
2503         }
2504         kfree(buff);
2505         cmd_special_free(h, c);
2506         return 0;
2507 }
2508
2509 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2510 {
2511         BIG_IOCTL_Command_struct *ioc;
2512         struct CommandList *c;
2513         unsigned char **buff = NULL;
2514         int *buff_size = NULL;
2515         union u64bit temp64;
2516         BYTE sg_used = 0;
2517         int status = 0;
2518         int i;
2519         u32 left;
2520         u32 sz;
2521         BYTE __user *data_ptr;
2522
2523         if (!argp)
2524                 return -EINVAL;
2525         if (!capable(CAP_SYS_RAWIO))
2526                 return -EPERM;
2527         ioc = (BIG_IOCTL_Command_struct *)
2528             kmalloc(sizeof(*ioc), GFP_KERNEL);
2529         if (!ioc) {
2530                 status = -ENOMEM;
2531                 goto cleanup1;
2532         }
2533         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2534                 status = -EFAULT;
2535                 goto cleanup1;
2536         }
2537         if ((ioc->buf_size < 1) &&
2538             (ioc->Request.Type.Direction != XFER_NONE)) {
2539                 status = -EINVAL;
2540                 goto cleanup1;
2541         }
2542         /* Check kmalloc limits  using all SGs */
2543         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2544                 status = -EINVAL;
2545                 goto cleanup1;
2546         }
2547         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2548                 status = -EINVAL;
2549                 goto cleanup1;
2550         }
2551         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2552         if (!buff) {
2553                 status = -ENOMEM;
2554                 goto cleanup1;
2555         }
2556         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2557         if (!buff_size) {
2558                 status = -ENOMEM;
2559                 goto cleanup1;
2560         }
2561         left = ioc->buf_size;
2562         data_ptr = ioc->buf;
2563         while (left) {
2564                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2565                 buff_size[sg_used] = sz;
2566                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2567                 if (buff[sg_used] == NULL) {
2568                         status = -ENOMEM;
2569                         goto cleanup1;
2570                 }
2571                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2572                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2573                                 status = -ENOMEM;
2574                                 goto cleanup1;
2575                         }
2576                 } else
2577                         memset(buff[sg_used], 0, sz);
2578                 left -= sz;
2579                 data_ptr += sz;
2580                 sg_used++;
2581         }
2582         c = cmd_special_alloc(h);
2583         if (c == NULL) {
2584                 status = -ENOMEM;
2585                 goto cleanup1;
2586         }
2587         c->cmd_type = CMD_IOCTL_PEND;
2588         c->Header.ReplyQueue = 0;
2589
2590         if (ioc->buf_size > 0) {
2591                 c->Header.SGList = sg_used;
2592                 c->Header.SGTotal = sg_used;
2593         } else {
2594                 c->Header.SGList = 0;
2595                 c->Header.SGTotal = 0;
2596         }
2597         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2598         c->Header.Tag.lower = c->busaddr;
2599         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2600         if (ioc->buf_size > 0) {
2601                 int i;
2602                 for (i = 0; i < sg_used; i++) {
2603                         temp64.val = pci_map_single(h->pdev, buff[i],
2604                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2605                         c->SG[i].Addr.lower = temp64.val32.lower;
2606                         c->SG[i].Addr.upper = temp64.val32.upper;
2607                         c->SG[i].Len = buff_size[i];
2608                         /* we are not chaining */
2609                         c->SG[i].Ext = 0;
2610                 }
2611         }
2612         hpsa_scsi_do_simple_cmd_core(h, c);
2613         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2614         check_ioctl_unit_attention(h, c);
2615         /* Copy the error information out */
2616         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2617         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2618                 cmd_special_free(h, c);
2619                 status = -EFAULT;
2620                 goto cleanup1;
2621         }
2622         if (ioc->Request.Type.Direction == XFER_READ) {
2623                 /* Copy the data out of the buffer we created */
2624                 BYTE __user *ptr = ioc->buf;
2625                 for (i = 0; i < sg_used; i++) {
2626                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2627                                 cmd_special_free(h, c);
2628                                 status = -EFAULT;
2629                                 goto cleanup1;
2630                         }
2631                         ptr += buff_size[i];
2632                 }
2633         }
2634         cmd_special_free(h, c);
2635         status = 0;
2636 cleanup1:
2637         if (buff) {
2638                 for (i = 0; i < sg_used; i++)
2639                         kfree(buff[i]);
2640                 kfree(buff);
2641         }
2642         kfree(buff_size);
2643         kfree(ioc);
2644         return status;
2645 }
2646
2647 static void check_ioctl_unit_attention(struct ctlr_info *h,
2648         struct CommandList *c)
2649 {
2650         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2651                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2652                 (void) check_for_unit_attention(h, c);
2653 }
2654 /*
2655  * ioctl
2656  */
2657 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2658 {
2659         struct ctlr_info *h;
2660         void __user *argp = (void __user *)arg;
2661
2662         h = sdev_to_hba(dev);
2663
2664         switch (cmd) {
2665         case CCISS_DEREGDISK:
2666         case CCISS_REGNEWDISK:
2667         case CCISS_REGNEWD:
2668                 hpsa_scan_start(h->scsi_host);
2669                 return 0;
2670         case CCISS_GETPCIINFO:
2671                 return hpsa_getpciinfo_ioctl(h, argp);
2672         case CCISS_GETDRIVVER:
2673                 return hpsa_getdrivver_ioctl(h, argp);
2674         case CCISS_PASSTHRU:
2675                 return hpsa_passthru_ioctl(h, argp);
2676         case CCISS_BIG_PASSTHRU:
2677                 return hpsa_big_passthru_ioctl(h, argp);
2678         default:
2679                 return -ENOTTY;
2680         }
2681 }
2682
2683 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2684         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2685         int cmd_type)
2686 {
2687         int pci_dir = XFER_NONE;
2688
2689         c->cmd_type = CMD_IOCTL_PEND;
2690         c->Header.ReplyQueue = 0;
2691         if (buff != NULL && size > 0) {
2692                 c->Header.SGList = 1;
2693                 c->Header.SGTotal = 1;
2694         } else {
2695                 c->Header.SGList = 0;
2696                 c->Header.SGTotal = 0;
2697         }
2698         c->Header.Tag.lower = c->busaddr;
2699         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2700
2701         c->Request.Type.Type = cmd_type;
2702         if (cmd_type == TYPE_CMD) {
2703                 switch (cmd) {
2704                 case HPSA_INQUIRY:
2705                         /* are we trying to read a vital product page */
2706                         if (page_code != 0) {
2707                                 c->Request.CDB[1] = 0x01;
2708                                 c->Request.CDB[2] = page_code;
2709                         }
2710                         c->Request.CDBLen = 6;
2711                         c->Request.Type.Attribute = ATTR_SIMPLE;
2712                         c->Request.Type.Direction = XFER_READ;
2713                         c->Request.Timeout = 0;
2714                         c->Request.CDB[0] = HPSA_INQUIRY;
2715                         c->Request.CDB[4] = size & 0xFF;
2716                         break;
2717                 case HPSA_REPORT_LOG:
2718                 case HPSA_REPORT_PHYS:
2719                         /* Talking to controller so It's a physical command
2720                            mode = 00 target = 0.  Nothing to write.
2721                          */
2722                         c->Request.CDBLen = 12;
2723                         c->Request.Type.Attribute = ATTR_SIMPLE;
2724                         c->Request.Type.Direction = XFER_READ;
2725                         c->Request.Timeout = 0;
2726                         c->Request.CDB[0] = cmd;
2727                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2728                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2729                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2730                         c->Request.CDB[9] = size & 0xFF;
2731                         break;
2732
2733                 case HPSA_READ_CAPACITY:
2734                         c->Request.CDBLen = 10;
2735                         c->Request.Type.Attribute = ATTR_SIMPLE;
2736                         c->Request.Type.Direction = XFER_READ;
2737                         c->Request.Timeout = 0;
2738                         c->Request.CDB[0] = cmd;
2739                         break;
2740                 case HPSA_CACHE_FLUSH:
2741                         c->Request.CDBLen = 12;
2742                         c->Request.Type.Attribute = ATTR_SIMPLE;
2743                         c->Request.Type.Direction = XFER_WRITE;
2744                         c->Request.Timeout = 0;
2745                         c->Request.CDB[0] = BMIC_WRITE;
2746                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2747                         break;
2748                 case TEST_UNIT_READY:
2749                         c->Request.CDBLen = 6;
2750                         c->Request.Type.Attribute = ATTR_SIMPLE;
2751                         c->Request.Type.Direction = XFER_NONE;
2752                         c->Request.Timeout = 0;
2753                         break;
2754                 default:
2755                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2756                         BUG();
2757                         return;
2758                 }
2759         } else if (cmd_type == TYPE_MSG) {
2760                 switch (cmd) {
2761
2762                 case  HPSA_DEVICE_RESET_MSG:
2763                         c->Request.CDBLen = 16;
2764                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2765                         c->Request.Type.Attribute = ATTR_SIMPLE;
2766                         c->Request.Type.Direction = XFER_NONE;
2767                         c->Request.Timeout = 0; /* Don't time out */
2768                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2769                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2770                         /* If bytes 4-7 are zero, it means reset the */
2771                         /* LunID device */
2772                         c->Request.CDB[4] = 0x00;
2773                         c->Request.CDB[5] = 0x00;
2774                         c->Request.CDB[6] = 0x00;
2775                         c->Request.CDB[7] = 0x00;
2776                 break;
2777
2778                 default:
2779                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2780                                 cmd);
2781                         BUG();
2782                 }
2783         } else {
2784                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2785                 BUG();
2786         }
2787
2788         switch (c->Request.Type.Direction) {
2789         case XFER_READ:
2790                 pci_dir = PCI_DMA_FROMDEVICE;
2791                 break;
2792         case XFER_WRITE:
2793                 pci_dir = PCI_DMA_TODEVICE;
2794                 break;
2795         case XFER_NONE:
2796                 pci_dir = PCI_DMA_NONE;
2797                 break;
2798         default:
2799                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2800         }
2801
2802         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2803
2804         return;
2805 }
2806
2807 /*
2808  * Map (physical) PCI mem into (virtual) kernel space
2809  */
2810 static void __iomem *remap_pci_mem(ulong base, ulong size)
2811 {
2812         ulong page_base = ((ulong) base) & PAGE_MASK;
2813         ulong page_offs = ((ulong) base) - page_base;
2814         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2815
2816         return page_remapped ? (page_remapped + page_offs) : NULL;
2817 }
2818
2819 /* Takes cmds off the submission queue and sends them to the hardware,
2820  * then puts them on the queue of cmds waiting for completion.
2821  */
2822 static void start_io(struct ctlr_info *h)
2823 {
2824         struct CommandList *c;
2825
2826         while (!hlist_empty(&h->reqQ)) {
2827                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2828                 /* can't do anything if fifo is full */
2829                 if ((h->access.fifo_full(h))) {
2830                         dev_warn(&h->pdev->dev, "fifo full\n");
2831                         break;
2832                 }
2833
2834                 /* Get the first entry from the Request Q */
2835                 removeQ(c);
2836                 h->Qdepth--;
2837
2838                 /* Tell the controller execute command */
2839                 h->access.submit_command(h, c);
2840
2841                 /* Put job onto the completed Q */
2842                 addQ(&h->cmpQ, c);
2843         }
2844 }
2845
2846 static inline unsigned long get_next_completion(struct ctlr_info *h)
2847 {
2848         return h->access.command_completed(h);
2849 }
2850
2851 static inline bool interrupt_pending(struct ctlr_info *h)
2852 {
2853         return h->access.intr_pending(h);
2854 }
2855
2856 static inline long interrupt_not_for_us(struct ctlr_info *h)
2857 {
2858         return !(h->msi_vector || h->msix_vector) &&
2859                 ((h->access.intr_pending(h) == 0) ||
2860                 (h->interrupts_enabled == 0));
2861 }
2862
2863 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2864         u32 raw_tag)
2865 {
2866         if (unlikely(tag_index >= h->nr_cmds)) {
2867                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2868                 return 1;
2869         }
2870         return 0;
2871 }
2872
2873 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2874 {
2875         removeQ(c);
2876         if (likely(c->cmd_type == CMD_SCSI))
2877                 complete_scsi_command(c, 0, raw_tag);
2878         else if (c->cmd_type == CMD_IOCTL_PEND)
2879                 complete(c->waiting);
2880 }
2881
2882 static inline u32 hpsa_tag_contains_index(u32 tag)
2883 {
2884 #define DIRECT_LOOKUP_BIT 0x10
2885         return tag & DIRECT_LOOKUP_BIT;
2886 }
2887
2888 static inline u32 hpsa_tag_to_index(u32 tag)
2889 {
2890 #define DIRECT_LOOKUP_SHIFT 5
2891         return tag >> DIRECT_LOOKUP_SHIFT;
2892 }
2893
2894 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2895 {
2896 #define HPSA_ERROR_BITS 0x03
2897         return tag & ~HPSA_ERROR_BITS;
2898 }
2899
2900 /* process completion of an indexed ("direct lookup") command */
2901 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2902         u32 raw_tag)
2903 {
2904         u32 tag_index;
2905         struct CommandList *c;
2906
2907         tag_index = hpsa_tag_to_index(raw_tag);
2908         if (bad_tag(h, tag_index, raw_tag))
2909                 return next_command(h);
2910         c = h->cmd_pool + tag_index;
2911         finish_cmd(c, raw_tag);
2912         return next_command(h);
2913 }
2914
2915 /* process completion of a non-indexed command */
2916 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2917         u32 raw_tag)
2918 {
2919         u32 tag;
2920         struct CommandList *c = NULL;
2921         struct hlist_node *tmp;
2922
2923         tag = hpsa_tag_discard_error_bits(raw_tag);
2924         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2925                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2926                         finish_cmd(c, raw_tag);
2927                         return next_command(h);
2928                 }
2929         }
2930         bad_tag(h, h->nr_cmds + 1, raw_tag);
2931         return next_command(h);
2932 }
2933
2934 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2935 {
2936         struct ctlr_info *h = dev_id;
2937         unsigned long flags;
2938         u32 raw_tag;
2939
2940         if (interrupt_not_for_us(h))
2941                 return IRQ_NONE;
2942         spin_lock_irqsave(&h->lock, flags);
2943         raw_tag = get_next_completion(h);
2944         while (raw_tag != FIFO_EMPTY) {
2945                 if (hpsa_tag_contains_index(raw_tag))
2946                         raw_tag = process_indexed_cmd(h, raw_tag);
2947                 else
2948                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2949         }
2950         spin_unlock_irqrestore(&h->lock, flags);
2951         return IRQ_HANDLED;
2952 }
2953
2954 /* Send a message CDB to the firmwart. */
2955 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2956                                                 unsigned char type)
2957 {
2958         struct Command {
2959                 struct CommandListHeader CommandHeader;
2960                 struct RequestBlock Request;
2961                 struct ErrDescriptor ErrorDescriptor;
2962         };
2963         struct Command *cmd;
2964         static const size_t cmd_sz = sizeof(*cmd) +
2965                                         sizeof(cmd->ErrorDescriptor);
2966         dma_addr_t paddr64;
2967         uint32_t paddr32, tag;
2968         void __iomem *vaddr;
2969         int i, err;
2970
2971         vaddr = pci_ioremap_bar(pdev, 0);
2972         if (vaddr == NULL)
2973                 return -ENOMEM;
2974
2975         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2976          * CCISS commands, so they must be allocated from the lower 4GiB of
2977          * memory.
2978          */
2979         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2980         if (err) {
2981                 iounmap(vaddr);
2982                 return -ENOMEM;
2983         }
2984
2985         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2986         if (cmd == NULL) {
2987                 iounmap(vaddr);
2988                 return -ENOMEM;
2989         }
2990
2991         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2992          * although there's no guarantee, we assume that the address is at
2993          * least 4-byte aligned (most likely, it's page-aligned).
2994          */
2995         paddr32 = paddr64;
2996
2997         cmd->CommandHeader.ReplyQueue = 0;
2998         cmd->CommandHeader.SGList = 0;
2999         cmd->CommandHeader.SGTotal = 0;
3000         cmd->CommandHeader.Tag.lower = paddr32;
3001         cmd->CommandHeader.Tag.upper = 0;
3002         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3003
3004         cmd->Request.CDBLen = 16;
3005         cmd->Request.Type.Type = TYPE_MSG;
3006         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3007         cmd->Request.Type.Direction = XFER_NONE;
3008         cmd->Request.Timeout = 0; /* Don't time out */
3009         cmd->Request.CDB[0] = opcode;
3010         cmd->Request.CDB[1] = type;
3011         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3012         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3013         cmd->ErrorDescriptor.Addr.upper = 0;
3014         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3015
3016         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3017
3018         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3019                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3020                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3021                         break;
3022                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3023         }
3024
3025         iounmap(vaddr);
3026
3027         /* we leak the DMA buffer here ... no choice since the controller could
3028          *  still complete the command.
3029          */
3030         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3031                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3032                         opcode, type);
3033                 return -ETIMEDOUT;
3034         }
3035
3036         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3037
3038         if (tag & HPSA_ERROR_BIT) {
3039                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3040                         opcode, type);
3041                 return -EIO;
3042         }
3043
3044         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3045                 opcode, type);
3046         return 0;
3047 }
3048
3049 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3050 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3051
3052 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3053 {
3054 /* the #defines are stolen from drivers/pci/msi.h. */
3055 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3056 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3057
3058         int pos;
3059         u16 control = 0;
3060
3061         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3062         if (pos) {
3063                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3064                 if (control & PCI_MSI_FLAGS_ENABLE) {
3065                         dev_info(&pdev->dev, "resetting MSI\n");
3066                         pci_write_config_word(pdev, msi_control_reg(pos),
3067                                         control & ~PCI_MSI_FLAGS_ENABLE);
3068                 }
3069         }
3070
3071         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3072         if (pos) {
3073                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3074                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3075                         dev_info(&pdev->dev, "resetting MSI-X\n");
3076                         pci_write_config_word(pdev, msi_control_reg(pos),
3077                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3078                 }
3079         }
3080
3081         return 0;
3082 }
3083
3084 /* This does a hard reset of the controller using PCI power management
3085  * states.
3086  */
3087 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3088 {
3089         u16 pmcsr, saved_config_space[32];
3090         int i, pos;
3091
3092         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3093
3094         /* This is very nearly the same thing as
3095          *
3096          * pci_save_state(pci_dev);
3097          * pci_set_power_state(pci_dev, PCI_D3hot);
3098          * pci_set_power_state(pci_dev, PCI_D0);
3099          * pci_restore_state(pci_dev);
3100          *
3101          * but we can't use these nice canned kernel routines on
3102          * kexec, because they also check the MSI/MSI-X state in PCI
3103          * configuration space and do the wrong thing when it is
3104          * set/cleared.  Also, the pci_save/restore_state functions
3105          * violate the ordering requirements for restoring the
3106          * configuration space from the CCISS document (see the
3107          * comment below).  So we roll our own ....
3108          */
3109
3110         for (i = 0; i < 32; i++)
3111                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3112
3113         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3114         if (pos == 0) {
3115                 dev_err(&pdev->dev,
3116                         "hpsa_reset_controller: PCI PM not supported\n");
3117                 return -ENODEV;
3118         }
3119
3120         /* Quoting from the Open CISS Specification: "The Power
3121          * Management Control/Status Register (CSR) controls the power
3122          * state of the device.  The normal operating state is D0,
3123          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3124          * the controller, place the interface device in D3 then to
3125          * D0, this causes a secondary PCI reset which will reset the
3126          * controller."
3127          */
3128
3129         /* enter the D3hot power management state */
3130         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3131         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3132         pmcsr |= PCI_D3hot;
3133         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3134
3135         msleep(500);
3136
3137         /* enter the D0 power management state */
3138         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3139         pmcsr |= PCI_D0;
3140         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3141
3142         msleep(500);
3143
3144         /* Restore the PCI configuration space.  The Open CISS
3145          * Specification says, "Restore the PCI Configuration
3146          * Registers, offsets 00h through 60h. It is important to
3147          * restore the command register, 16-bits at offset 04h,
3148          * last. Do not restore the configuration status register,
3149          * 16-bits at offset 06h."  Note that the offset is 2*i.
3150          */
3151         for (i = 0; i < 32; i++) {
3152                 if (i == 2 || i == 3)
3153                         continue;
3154                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3155         }
3156         wmb();
3157         pci_write_config_word(pdev, 4, saved_config_space[2]);
3158
3159         return 0;
3160 }
3161
3162 /*
3163  *  We cannot read the structure directly, for portability we must use
3164  *   the io functions.
3165  *   This is for debug only.
3166  */
3167 #ifdef HPSA_DEBUG
3168 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3169 {
3170         int i;
3171         char temp_name[17];
3172
3173         dev_info(dev, "Controller Configuration information\n");
3174         dev_info(dev, "------------------------------------\n");
3175         for (i = 0; i < 4; i++)
3176                 temp_name[i] = readb(&(tb->Signature[i]));
3177         temp_name[4] = '\0';
3178         dev_info(dev, "   Signature = %s\n", temp_name);
3179         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3180         dev_info(dev, "   Transport methods supported = 0x%x\n",
3181                readl(&(tb->TransportSupport)));
3182         dev_info(dev, "   Transport methods active = 0x%x\n",
3183                readl(&(tb->TransportActive)));
3184         dev_info(dev, "   Requested transport Method = 0x%x\n",
3185                readl(&(tb->HostWrite.TransportRequest)));
3186         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3187                readl(&(tb->HostWrite.CoalIntDelay)));
3188         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3189                readl(&(tb->HostWrite.CoalIntCount)));
3190         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3191                readl(&(tb->CmdsOutMax)));
3192         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3193         for (i = 0; i < 16; i++)
3194                 temp_name[i] = readb(&(tb->ServerName[i]));
3195         temp_name[16] = '\0';
3196         dev_info(dev, "   Server Name = %s\n", temp_name);
3197         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3198                 readl(&(tb->HeartBeat)));
3199 }
3200 #endif                          /* HPSA_DEBUG */
3201
3202 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3203 {
3204         int i, offset, mem_type, bar_type;
3205
3206         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3207                 return 0;
3208         offset = 0;
3209         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3210                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3211                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3212                         offset += 4;
3213                 else {
3214                         mem_type = pci_resource_flags(pdev, i) &
3215                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3216                         switch (mem_type) {
3217                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3218                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3219                                 offset += 4;    /* 32 bit */
3220                                 break;
3221                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3222                                 offset += 8;
3223                                 break;
3224                         default:        /* reserved in PCI 2.2 */
3225                                 dev_warn(&pdev->dev,
3226                                        "base address is invalid\n");
3227                                 return -1;
3228                                 break;
3229                         }
3230                 }
3231                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3232                         return i + 1;
3233         }
3234         return -1;
3235 }
3236
3237 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3238  * controllers that are capable. If not, we use IO-APIC mode.
3239  */
3240
3241 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3242                                            struct pci_dev *pdev, u32 board_id)
3243 {
3244 #ifdef CONFIG_PCI_MSI
3245         int err;
3246         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3247         {0, 2}, {0, 3}
3248         };
3249
3250         /* Some boards advertise MSI but don't really support it */
3251         if ((board_id == 0x40700E11) ||
3252             (board_id == 0x40800E11) ||
3253             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3254                 goto default_int_mode;
3255         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3256                 dev_info(&pdev->dev, "MSIX\n");
3257                 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3258                 if (!err) {
3259                         h->intr[0] = hpsa_msix_entries[0].vector;
3260                         h->intr[1] = hpsa_msix_entries[1].vector;
3261                         h->intr[2] = hpsa_msix_entries[2].vector;
3262                         h->intr[3] = hpsa_msix_entries[3].vector;
3263                         h->msix_vector = 1;
3264                         return;
3265                 }
3266                 if (err > 0) {
3267                         dev_warn(&pdev->dev, "only %d MSI-X vectors "
3268                                "available\n", err);
3269                         goto default_int_mode;
3270                 } else {
3271                         dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3272                                err);
3273                         goto default_int_mode;
3274                 }
3275         }
3276         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3277                 dev_info(&pdev->dev, "MSI\n");
3278                 if (!pci_enable_msi(pdev))
3279                         h->msi_vector = 1;
3280                 else
3281                         dev_warn(&pdev->dev, "MSI init failed\n");
3282         }
3283 default_int_mode:
3284 #endif                          /* CONFIG_PCI_MSI */
3285         /* if we get here we're going to use the default interrupt mode */
3286         h->intr[PERF_MODE_INT] = pdev->irq;
3287 }
3288
3289 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3290 {
3291         ushort subsystem_vendor_id, subsystem_device_id, command;
3292         u32 board_id, scratchpad = 0;
3293         u64 cfg_offset;
3294         u32 cfg_base_addr;
3295         u64 cfg_base_addr_index;
3296         u32 trans_offset;
3297         int i, prod_index, err;
3298
3299         subsystem_vendor_id = pdev->subsystem_vendor;
3300         subsystem_device_id = pdev->subsystem_device;
3301         board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3302                     subsystem_vendor_id);
3303
3304         for (i = 0; i < ARRAY_SIZE(products); i++)
3305                 if (board_id == products[i].board_id)
3306                         break;
3307
3308         prod_index = i;
3309
3310         if (prod_index == ARRAY_SIZE(products)) {
3311                 prod_index--;
3312                 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3313                                 !hpsa_allow_any) {
3314                         dev_warn(&pdev->dev, "unrecognized board ID:"
3315                                 " 0x%08lx, ignoring.\n",
3316                                 (unsigned long) board_id);
3317                         return -ENODEV;
3318                 }
3319         }
3320         /* check to see if controller has been disabled
3321          * BEFORE trying to enable it
3322          */
3323         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3324         if (!(command & 0x02)) {
3325                 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3326                 return -ENODEV;
3327         }
3328
3329         err = pci_enable_device(pdev);
3330         if (err) {
3331                 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3332                 return err;
3333         }
3334
3335         err = pci_request_regions(pdev, "hpsa");
3336         if (err) {
3337                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3338                 return err;
3339         }
3340
3341         /* If the kernel supports MSI/MSI-X we will try to enable that,
3342          * else we use the IO-APIC interrupt assigned to us by system ROM.
3343          */
3344         hpsa_interrupt_mode(h, pdev, board_id);
3345
3346         /* find the memory BAR */
3347         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3348                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3349                         break;
3350         }
3351         if (i == DEVICE_COUNT_RESOURCE) {
3352                 dev_warn(&pdev->dev, "no memory BAR found\n");
3353                 err = -ENODEV;
3354                 goto err_out_free_res;
3355         }
3356
3357         h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3358                                                  * already removed
3359                                                  */
3360
3361         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3362
3363         /* Wait for the board to become ready.  */
3364         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3365                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3366                 if (scratchpad == HPSA_FIRMWARE_READY)
3367                         break;
3368                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3369         }
3370         if (scratchpad != HPSA_FIRMWARE_READY) {
3371                 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3372                 err = -ENODEV;
3373                 goto err_out_free_res;
3374         }
3375
3376         /* get the address index number */
3377         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3378         cfg_base_addr &= (u32) 0x0000ffff;
3379         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3380         if (cfg_base_addr_index == -1) {
3381                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3382                 err = -ENODEV;
3383                 goto err_out_free_res;
3384         }
3385
3386         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3387         h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3388                                cfg_base_addr_index) + cfg_offset,
3389                                 sizeof(h->cfgtable));
3390         /* Find performant mode table. */
3391         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3392         h->transtable = remap_pci_mem(pci_resource_start(pdev,
3393                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3394                                 sizeof(*h->transtable));
3395
3396         h->board_id = board_id;
3397         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3398         h->product_name = products[prod_index].product_name;
3399         h->access = *(products[prod_index].access);
3400         /* Allow room for some ioctls */
3401         h->nr_cmds = h->max_commands - 4;
3402
3403         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3404             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3405             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3406             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3407                 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3408                 err = -ENODEV;
3409                 goto err_out_free_res;
3410         }
3411 #ifdef CONFIG_X86
3412         {
3413                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3414                 u32 prefetch;
3415                 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3416                 prefetch |= 0x100;
3417                 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3418         }
3419 #endif
3420
3421         /* Disabling DMA prefetch for the P600
3422          * An ASIC bug may result in a prefetch beyond
3423          * physical memory.
3424          */
3425         if (board_id == 0x3225103C) {
3426                 u32 dma_prefetch;
3427                 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3428                 dma_prefetch |= 0x8000;
3429                 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3430         }
3431
3432         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3433         /* Update the field, and then ring the doorbell */
3434         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3435         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3436
3437         /* under certain very rare conditions, this can take awhile.
3438          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3439          * as we enter this code.)
3440          */
3441         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3442                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3443                         break;
3444                 /* delay and try again */
3445                 msleep(10);
3446         }
3447
3448 #ifdef HPSA_DEBUG
3449         print_cfg_table(&pdev->dev, h->cfgtable);
3450 #endif                          /* HPSA_DEBUG */
3451
3452         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3453                 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3454                 err = -ENODEV;
3455                 goto err_out_free_res;
3456         }
3457         return 0;
3458
3459 err_out_free_res:
3460         /*
3461          * Deliberately omit pci_disable_device(): it does something nasty to
3462          * Smart Array controllers that pci_enable_device does not undo
3463          */
3464         pci_release_regions(pdev);
3465         return err;
3466 }
3467
3468 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3469 {
3470         int rc;
3471
3472 #define HBA_INQUIRY_BYTE_COUNT 64
3473         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3474         if (!h->hba_inquiry_data)
3475                 return;
3476         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3477                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3478         if (rc != 0) {
3479                 kfree(h->hba_inquiry_data);
3480                 h->hba_inquiry_data = NULL;
3481         }
3482 }
3483
3484 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3485                                     const struct pci_device_id *ent)
3486 {
3487         int i, rc;
3488         int dac;
3489         struct ctlr_info *h;
3490
3491         if (number_of_controllers == 0)
3492                 printk(KERN_INFO DRIVER_NAME "\n");
3493         if (reset_devices) {
3494                 /* Reset the controller with a PCI power-cycle */
3495                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3496                         return -ENODEV;
3497
3498                 /* Some devices (notably the HP Smart Array 5i Controller)
3499                    need a little pause here */
3500                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3501
3502                 /* Now try to get the controller to respond to a no-op */
3503                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3504                         if (hpsa_noop(pdev) == 0)
3505                                 break;
3506                         else
3507                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3508                                                 (i < 11 ? "; re-trying" : ""));
3509                 }
3510         }
3511
3512         /* Command structures must be aligned on a 32-byte boundary because
3513          * the 5 lower bits of the address are used by the hardware. and by
3514          * the driver.  See comments in hpsa.h for more info.
3515          */
3516 #define COMMANDLIST_ALIGNMENT 32
3517         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3518         h = kzalloc(sizeof(*h), GFP_KERNEL);
3519         if (!h)
3520                 return -ENOMEM;
3521
3522         h->busy_initializing = 1;
3523         INIT_HLIST_HEAD(&h->cmpQ);
3524         INIT_HLIST_HEAD(&h->reqQ);
3525         mutex_init(&h->busy_shutting_down);
3526         init_completion(&h->scan_wait);
3527         rc = hpsa_pci_init(h, pdev);
3528         if (rc != 0)
3529                 goto clean1;
3530
3531         sprintf(h->devname, "hpsa%d", number_of_controllers);
3532         h->ctlr = number_of_controllers;
3533         number_of_controllers++;
3534         h->pdev = pdev;
3535
3536         /* configure PCI DMA stuff */
3537         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3538         if (rc == 0) {
3539                 dac = 1;
3540         } else {
3541                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3542                 if (rc == 0) {
3543                         dac = 0;
3544                 } else {
3545                         dev_err(&pdev->dev, "no suitable DMA available\n");
3546                         goto clean1;
3547                 }
3548         }
3549
3550         /* make sure the board interrupts are off */
3551         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3552         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3553                         IRQF_DISABLED, h->devname, h);
3554         if (rc) {
3555                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3556                        h->intr[PERF_MODE_INT], h->devname);
3557                 goto clean2;
3558         }
3559
3560         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3561                h->devname, pdev->device,
3562                h->intr[PERF_MODE_INT], dac ? "" : " not");
3563
3564         h->cmd_pool_bits =
3565             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3566                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3567         h->cmd_pool = pci_alloc_consistent(h->pdev,
3568                     h->nr_cmds * sizeof(*h->cmd_pool),
3569                     &(h->cmd_pool_dhandle));
3570         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3571                     h->nr_cmds * sizeof(*h->errinfo_pool),
3572                     &(h->errinfo_pool_dhandle));
3573         if ((h->cmd_pool_bits == NULL)
3574             || (h->cmd_pool == NULL)
3575             || (h->errinfo_pool == NULL)) {
3576                 dev_err(&pdev->dev, "out of memory");
3577                 rc = -ENOMEM;
3578                 goto clean4;
3579         }
3580         spin_lock_init(&h->lock);
3581         spin_lock_init(&h->scan_lock);
3582         init_waitqueue_head(&h->scan_wait_queue);
3583         h->scan_finished = 1; /* no scan currently in progress */
3584
3585         pci_set_drvdata(pdev, h);
3586         memset(h->cmd_pool_bits, 0,
3587                ((h->nr_cmds + BITS_PER_LONG -
3588                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3589
3590         hpsa_scsi_setup(h);
3591
3592         /* Turn the interrupts on so we can service requests */
3593         h->access.set_intr_mask(h, HPSA_INTR_ON);
3594
3595         hpsa_put_ctlr_into_performant_mode(h);
3596         hpsa_hba_inquiry(h);
3597         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3598         h->busy_initializing = 0;
3599         return 1;
3600
3601 clean4:
3602         kfree(h->cmd_pool_bits);
3603         if (h->cmd_pool)
3604                 pci_free_consistent(h->pdev,
3605                             h->nr_cmds * sizeof(struct CommandList),
3606                             h->cmd_pool, h->cmd_pool_dhandle);
3607         if (h->errinfo_pool)
3608                 pci_free_consistent(h->pdev,
3609                             h->nr_cmds * sizeof(struct ErrorInfo),
3610                             h->errinfo_pool,
3611                             h->errinfo_pool_dhandle);
3612         free_irq(h->intr[PERF_MODE_INT], h);
3613 clean2:
3614 clean1:
3615         h->busy_initializing = 0;
3616         kfree(h);
3617         return rc;
3618 }
3619
3620 static void hpsa_flush_cache(struct ctlr_info *h)
3621 {
3622         char *flush_buf;
3623         struct CommandList *c;
3624
3625         flush_buf = kzalloc(4, GFP_KERNEL);
3626         if (!flush_buf)
3627                 return;
3628
3629         c = cmd_special_alloc(h);
3630         if (!c) {
3631                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3632                 goto out_of_memory;
3633         }
3634         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3635                 RAID_CTLR_LUNID, TYPE_CMD);
3636         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3637         if (c->err_info->CommandStatus != 0)
3638                 dev_warn(&h->pdev->dev,
3639                         "error flushing cache on controller\n");
3640         cmd_special_free(h, c);
3641 out_of_memory:
3642         kfree(flush_buf);
3643 }
3644
3645 static void hpsa_shutdown(struct pci_dev *pdev)
3646 {
3647         struct ctlr_info *h;
3648
3649         h = pci_get_drvdata(pdev);
3650         /* Turn board interrupts off  and send the flush cache command
3651          * sendcmd will turn off interrupt, and send the flush...
3652          * To write all data in the battery backed cache to disks
3653          */
3654         hpsa_flush_cache(h);
3655         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3656         free_irq(h->intr[PERF_MODE_INT], h);
3657 #ifdef CONFIG_PCI_MSI
3658         if (h->msix_vector)
3659                 pci_disable_msix(h->pdev);
3660         else if (h->msi_vector)
3661                 pci_disable_msi(h->pdev);
3662 #endif                          /* CONFIG_PCI_MSI */
3663 }
3664
3665 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3666 {
3667         struct ctlr_info *h;
3668
3669         if (pci_get_drvdata(pdev) == NULL) {
3670                 dev_err(&pdev->dev, "unable to remove device \n");
3671                 return;
3672         }
3673         h = pci_get_drvdata(pdev);
3674         mutex_lock(&h->busy_shutting_down);
3675         remove_from_scan_list(h);
3676         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3677         hpsa_shutdown(pdev);
3678         iounmap(h->vaddr);
3679         pci_free_consistent(h->pdev,
3680                 h->nr_cmds * sizeof(struct CommandList),
3681                 h->cmd_pool, h->cmd_pool_dhandle);
3682         pci_free_consistent(h->pdev,
3683                 h->nr_cmds * sizeof(struct ErrorInfo),
3684                 h->errinfo_pool, h->errinfo_pool_dhandle);
3685         pci_free_consistent(h->pdev, h->reply_pool_size,
3686                 h->reply_pool, h->reply_pool_dhandle);
3687         kfree(h->cmd_pool_bits);
3688         kfree(h->blockFetchTable);
3689         kfree(h->hba_inquiry_data);
3690         /*
3691          * Deliberately omit pci_disable_device(): it does something nasty to
3692          * Smart Array controllers that pci_enable_device does not undo
3693          */
3694         pci_release_regions(pdev);
3695         pci_set_drvdata(pdev, NULL);
3696         mutex_unlock(&h->busy_shutting_down);
3697         kfree(h);
3698 }
3699
3700 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3701         __attribute__((unused)) pm_message_t state)
3702 {
3703         return -ENOSYS;
3704 }
3705
3706 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3707 {
3708         return -ENOSYS;
3709 }
3710
3711 static struct pci_driver hpsa_pci_driver = {
3712         .name = "hpsa",
3713         .probe = hpsa_init_one,
3714         .remove = __devexit_p(hpsa_remove_one),
3715         .id_table = hpsa_pci_device_id, /* id_table */
3716         .shutdown = hpsa_shutdown,
3717         .suspend = hpsa_suspend,
3718         .resume = hpsa_resume,
3719 };
3720
3721 /* Fill in bucket_map[], given nsgs (the max number of
3722  * scatter gather elements supported) and bucket[],
3723  * which is an array of 8 integers.  The bucket[] array
3724  * contains 8 different DMA transfer sizes (in 16
3725  * byte increments) which the controller uses to fetch
3726  * commands.  This function fills in bucket_map[], which
3727  * maps a given number of scatter gather elements to one of
3728  * the 8 DMA transfer sizes.  The point of it is to allow the
3729  * controller to only do as much DMA as needed to fetch the
3730  * command, with the DMA transfer size encoded in the lower
3731  * bits of the command address.
3732  */
3733 static void  calc_bucket_map(int bucket[], int num_buckets,
3734         int nsgs, int *bucket_map)
3735 {
3736         int i, j, b, size;
3737
3738         /* even a command with 0 SGs requires 4 blocks */
3739 #define MINIMUM_TRANSFER_BLOCKS 4
3740 #define NUM_BUCKETS 8
3741         /* Note, bucket_map must have nsgs+1 entries. */
3742         for (i = 0; i <= nsgs; i++) {
3743                 /* Compute size of a command with i SG entries */
3744                 size = i + MINIMUM_TRANSFER_BLOCKS;
3745                 b = num_buckets; /* Assume the biggest bucket */
3746                 /* Find the bucket that is just big enough */
3747                 for (j = 0; j < 8; j++) {
3748                         if (bucket[j] >= size) {
3749                                 b = j;
3750                                 break;
3751                         }
3752                 }
3753                 /* for a command with i SG entries, use bucket b. */
3754                 bucket_map[i] = b;
3755         }
3756 }
3757
3758 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3759 {
3760         u32 trans_support;
3761         u64 trans_offset;
3762         /*  5 = 1 s/g entry or 4k
3763          *  6 = 2 s/g entry or 8k
3764          *  8 = 4 s/g entry or 16k
3765          * 10 = 6 s/g entry or 24k
3766          */
3767         int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3768         int i = 0;
3769         int l = 0;
3770         unsigned long register_value;
3771
3772         trans_support = readl(&(h->cfgtable->TransportSupport));
3773         if (!(trans_support & PERFORMANT_MODE))
3774                 return;
3775
3776         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3777         h->max_sg_entries = 32;
3778         /* Performant mode ring buffer and supporting data structures */
3779         h->reply_pool_size = h->max_commands * sizeof(u64);
3780         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3781                                 &(h->reply_pool_dhandle));
3782
3783         /* Need a block fetch table for performant mode */
3784         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3785                                 sizeof(u32)), GFP_KERNEL);
3786
3787         if ((h->reply_pool == NULL)
3788                 || (h->blockFetchTable == NULL))
3789                 goto clean_up;
3790
3791         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3792
3793         /* Controller spec: zero out this buffer. */
3794         memset(h->reply_pool, 0, h->reply_pool_size);
3795         h->reply_pool_head = h->reply_pool;
3796
3797         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3798         bft[7] = h->max_sg_entries + 4;
3799         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3800         for (i = 0; i < 8; i++)
3801                 writel(bft[i], &h->transtable->BlockFetch[i]);
3802
3803         /* size of controller ring buffer */
3804         writel(h->max_commands, &h->transtable->RepQSize);
3805         writel(1, &h->transtable->RepQCount);
3806         writel(0, &h->transtable->RepQCtrAddrLow32);
3807         writel(0, &h->transtable->RepQCtrAddrHigh32);
3808         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3809         writel(0, &h->transtable->RepQAddr0High32);
3810         writel(CFGTBL_Trans_Performant,
3811                 &(h->cfgtable->HostWrite.TransportRequest));
3812         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3813         /* under certain very rare conditions, this can take awhile.
3814          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3815          * as we enter this code.) */
3816         for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3817                 register_value = readl(h->vaddr + SA5_DOORBELL);
3818                 if (!(register_value & CFGTBL_ChangeReq))
3819                         break;
3820                 /* delay and try again */
3821                 set_current_state(TASK_INTERRUPTIBLE);
3822                 schedule_timeout(10);
3823         }
3824         register_value = readl(&(h->cfgtable->TransportActive));
3825         if (!(register_value & CFGTBL_Trans_Performant)) {
3826                 dev_warn(&h->pdev->dev, "unable to get board into"
3827                                         " performant mode\n");
3828                 return;
3829         }
3830
3831         /* Change the access methods to the performant access methods */
3832         h->access = SA5_performant_access;
3833         h->transMethod = CFGTBL_Trans_Performant;
3834
3835         return;
3836
3837 clean_up:
3838         if (h->reply_pool)
3839                 pci_free_consistent(h->pdev, h->reply_pool_size,
3840                         h->reply_pool, h->reply_pool_dhandle);
3841         kfree(h->blockFetchTable);
3842 }
3843
3844 /*
3845  *  This is it.  Register the PCI driver information for the cards we control
3846  *  the OS will call our registered routines when it finds one of our cards.
3847  */
3848 static int __init hpsa_init(void)
3849 {
3850         int err;
3851         /* Start the scan thread */
3852         hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3853         if (IS_ERR(hpsa_scan_thread)) {
3854                 err = PTR_ERR(hpsa_scan_thread);
3855                 return -ENODEV;
3856         }
3857         err = pci_register_driver(&hpsa_pci_driver);
3858         if (err)
3859                 kthread_stop(hpsa_scan_thread);
3860         return err;
3861 }
3862
3863 static void __exit hpsa_cleanup(void)
3864 {
3865         pci_unregister_driver(&hpsa_pci_driver);
3866         kthread_stop(hpsa_scan_thread);
3867 }
3868
3869 module_init(hpsa_init);
3870 module_exit(hpsa_cleanup);