[SCSI] hpsa: Add an shost_to_hba helper function.
[safe/jmp/linux-2.6] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "1.0.0"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88 #define PCI_DEVICE_ID_HP_CISSF 0x333f
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
90         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92         {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102         {0x3241103C, "Smart Array P212", &SA5_access},
103         {0x3243103C, "Smart Array P410", &SA5_access},
104         {0x3245103C, "Smart Array P410i", &SA5_access},
105         {0x3247103C, "Smart Array P411", &SA5_access},
106         {0x3249103C, "Smart Array P812", &SA5_access},
107         {0x324a103C, "Smart Array P712m", &SA5_access},
108         {0x324b103C, "Smart Array P711m", &SA5_access},
109         {0x3233103C, "StorageWorks P1210m", &SA5_access},
110         {0x333F103C, "StorageWorks P1210m", &SA5_access},
111         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
112 };
113
114 static int number_of_controllers;
115
116 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
118 static void start_io(struct ctlr_info *h);
119
120 #ifdef CONFIG_COMPAT
121 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
122 #endif
123
124 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
125 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
126 static struct CommandList *cmd_alloc(struct ctlr_info *h);
127 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
128 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
129         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
130         int cmd_type);
131
132 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
133                 void (*done)(struct scsi_cmnd *));
134
135 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
136 static int hpsa_slave_alloc(struct scsi_device *sdev);
137 static void hpsa_slave_destroy(struct scsi_device *sdev);
138
139 static ssize_t raid_level_show(struct device *dev,
140         struct device_attribute *attr, char *buf);
141 static ssize_t lunid_show(struct device *dev,
142         struct device_attribute *attr, char *buf);
143 static ssize_t unique_id_show(struct device *dev,
144         struct device_attribute *attr, char *buf);
145 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
146 static ssize_t host_store_rescan(struct device *dev,
147          struct device_attribute *attr, const char *buf, size_t count);
148 static int check_for_unit_attention(struct ctlr_info *h,
149         struct CommandList *c);
150 static void check_ioctl_unit_attention(struct ctlr_info *h,
151         struct CommandList *c);
152 /* performant mode helper functions */
153 static void calc_bucket_map(int *bucket, int num_buckets,
154         int nsgs, int *bucket_map);
155 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
156 static inline u32 next_command(struct ctlr_info *h);
157
158 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
159 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
160 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
161 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
162
163 static struct device_attribute *hpsa_sdev_attrs[] = {
164         &dev_attr_raid_level,
165         &dev_attr_lunid,
166         &dev_attr_unique_id,
167         NULL,
168 };
169
170 static struct device_attribute *hpsa_shost_attrs[] = {
171         &dev_attr_rescan,
172         NULL,
173 };
174
175 static struct scsi_host_template hpsa_driver_template = {
176         .module                 = THIS_MODULE,
177         .name                   = "hpsa",
178         .proc_name              = "hpsa",
179         .queuecommand           = hpsa_scsi_queue_command,
180         .this_id                = -1,
181         .sg_tablesize           = MAXSGENTRIES,
182         .use_clustering         = ENABLE_CLUSTERING,
183         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
184         .ioctl                  = hpsa_ioctl,
185         .slave_alloc            = hpsa_slave_alloc,
186         .slave_destroy          = hpsa_slave_destroy,
187 #ifdef CONFIG_COMPAT
188         .compat_ioctl           = hpsa_compat_ioctl,
189 #endif
190         .sdev_attrs = hpsa_sdev_attrs,
191         .shost_attrs = hpsa_shost_attrs,
192 };
193
194 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
195 {
196         unsigned long *priv = shost_priv(sdev->host);
197         return (struct ctlr_info *) *priv;
198 }
199
200 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
201 {
202         unsigned long *priv = shost_priv(sh);
203         return (struct ctlr_info *) *priv;
204 }
205
206 static struct task_struct *hpsa_scan_thread;
207 static DEFINE_MUTEX(hpsa_scan_mutex);
208 static LIST_HEAD(hpsa_scan_q);
209 static int hpsa_scan_func(void *data);
210
211 /**
212  * add_to_scan_list() - add controller to rescan queue
213  * @h:                Pointer to the controller.
214  *
215  * Adds the controller to the rescan queue if not already on the queue.
216  *
217  * returns 1 if added to the queue, 0 if skipped (could be on the
218  * queue already, or the controller could be initializing or shutting
219  * down).
220  **/
221 static int add_to_scan_list(struct ctlr_info *h)
222 {
223         struct ctlr_info *test_h;
224         int found = 0;
225         int ret = 0;
226
227         if (h->busy_initializing)
228                 return 0;
229
230         /*
231          * If we don't get the lock, it means the driver is unloading
232          * and there's no point in scheduling a new scan.
233          */
234         if (!mutex_trylock(&h->busy_shutting_down))
235                 return 0;
236
237         mutex_lock(&hpsa_scan_mutex);
238         list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
239                 if (test_h == h) {
240                         found = 1;
241                         break;
242                 }
243         }
244         if (!found && !h->busy_scanning) {
245                 INIT_COMPLETION(h->scan_wait);
246                 list_add_tail(&h->scan_list, &hpsa_scan_q);
247                 ret = 1;
248         }
249         mutex_unlock(&hpsa_scan_mutex);
250         mutex_unlock(&h->busy_shutting_down);
251
252         return ret;
253 }
254
255 /**
256  * remove_from_scan_list() - remove controller from rescan queue
257  * @h:                     Pointer to the controller.
258  *
259  * Removes the controller from the rescan queue if present. Blocks if
260  * the controller is currently conducting a rescan.  The controller
261  * can be in one of three states:
262  * 1. Doesn't need a scan
263  * 2. On the scan list, but not scanning yet (we remove it)
264  * 3. Busy scanning (and not on the list). In this case we want to wait for
265  *    the scan to complete to make sure the scanning thread for this
266  *    controller is completely idle.
267  **/
268 static void remove_from_scan_list(struct ctlr_info *h)
269 {
270         struct ctlr_info *test_h, *tmp_h;
271
272         mutex_lock(&hpsa_scan_mutex);
273         list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
274                 if (test_h == h) { /* state 2. */
275                         list_del(&h->scan_list);
276                         complete_all(&h->scan_wait);
277                         mutex_unlock(&hpsa_scan_mutex);
278                         return;
279                 }
280         }
281         if (h->busy_scanning) { /* state 3. */
282                 mutex_unlock(&hpsa_scan_mutex);
283                 wait_for_completion(&h->scan_wait);
284         } else { /* state 1, nothing to do. */
285                 mutex_unlock(&hpsa_scan_mutex);
286         }
287 }
288
289 /* hpsa_scan_func() - kernel thread used to rescan controllers
290  * @data:        Ignored.
291  *
292  * A kernel thread used scan for drive topology changes on
293  * controllers. The thread processes only one controller at a time
294  * using a queue.  Controllers are added to the queue using
295  * add_to_scan_list() and removed from the queue either after done
296  * processing or using remove_from_scan_list().
297  *
298  * returns 0.
299  **/
300 static int hpsa_scan_func(__attribute__((unused)) void *data)
301 {
302         struct ctlr_info *h;
303         int host_no;
304
305         while (1) {
306                 set_current_state(TASK_INTERRUPTIBLE);
307                 schedule();
308                 if (kthread_should_stop())
309                         break;
310
311                 while (1) {
312                         mutex_lock(&hpsa_scan_mutex);
313                         if (list_empty(&hpsa_scan_q)) {
314                                 mutex_unlock(&hpsa_scan_mutex);
315                                 break;
316                         }
317                         h = list_entry(hpsa_scan_q.next, struct ctlr_info,
318                                         scan_list);
319                         list_del(&h->scan_list);
320                         h->busy_scanning = 1;
321                         mutex_unlock(&hpsa_scan_mutex);
322                         host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
323                         hpsa_update_scsi_devices(h, host_no);
324                         complete_all(&h->scan_wait);
325                         mutex_lock(&hpsa_scan_mutex);
326                         h->busy_scanning = 0;
327                         mutex_unlock(&hpsa_scan_mutex);
328                 }
329         }
330         return 0;
331 }
332
333 static int check_for_unit_attention(struct ctlr_info *h,
334         struct CommandList *c)
335 {
336         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
337                 return 0;
338
339         switch (c->err_info->SenseInfo[12]) {
340         case STATE_CHANGED:
341                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
342                         "detected, command retried\n", h->ctlr);
343                 break;
344         case LUN_FAILED:
345                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
346                         "detected, action required\n", h->ctlr);
347                 break;
348         case REPORT_LUNS_CHANGED:
349                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
350                         "changed\n", h->ctlr);
351         /*
352          * Here, we could call add_to_scan_list and wake up the scan thread,
353          * except that it's quite likely that we will get more than one
354          * REPORT_LUNS_CHANGED condition in quick succession, which means
355          * that those which occur after the first one will likely happen
356          * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
357          * robust enough to restart in the middle, undoing what it has already
358          * done, and it's not clear that it's even possible to do this, since
359          * part of what it does is notify the SCSI mid layer, which starts
360          * doing it's own i/o to read partition tables and so on, and the
361          * driver doesn't have visibility to know what might need undoing.
362          * In any event, if possible, it is horribly complicated to get right
363          * so we just don't do it for now.
364          *
365          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
366          */
367                 break;
368         case POWER_OR_RESET:
369                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
370                         "or device reset detected\n", h->ctlr);
371                 break;
372         case UNIT_ATTENTION_CLEARED:
373                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
374                     "cleared by another initiator\n", h->ctlr);
375                 break;
376         default:
377                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
378                         "unit attention detected\n", h->ctlr);
379                 break;
380         }
381         return 1;
382 }
383
384 static ssize_t host_store_rescan(struct device *dev,
385                                  struct device_attribute *attr,
386                                  const char *buf, size_t count)
387 {
388         struct ctlr_info *h;
389         struct Scsi_Host *shost = class_to_shost(dev);
390         h = shost_to_hba(shost);
391         if (add_to_scan_list(h)) {
392                 wake_up_process(hpsa_scan_thread);
393                 wait_for_completion_interruptible(&h->scan_wait);
394         }
395         return count;
396 }
397
398 /* Enqueuing and dequeuing functions for cmdlists. */
399 static inline void addQ(struct hlist_head *list, struct CommandList *c)
400 {
401         hlist_add_head(&c->list, list);
402 }
403
404 static inline u32 next_command(struct ctlr_info *h)
405 {
406         u32 a;
407
408         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
409                 return h->access.command_completed(h);
410
411         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
412                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
413                 (h->reply_pool_head)++;
414                 h->commands_outstanding--;
415         } else {
416                 a = FIFO_EMPTY;
417         }
418         /* Check for wraparound */
419         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
420                 h->reply_pool_head = h->reply_pool;
421                 h->reply_pool_wraparound ^= 1;
422         }
423         return a;
424 }
425
426 /* set_performant_mode: Modify the tag for cciss performant
427  * set bit 0 for pull model, bits 3-1 for block fetch
428  * register number
429  */
430 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
431 {
432         if (likely(h->transMethod == CFGTBL_Trans_Performant))
433                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
434 }
435
436 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
437         struct CommandList *c)
438 {
439         unsigned long flags;
440
441         set_performant_mode(h, c);
442         spin_lock_irqsave(&h->lock, flags);
443         addQ(&h->reqQ, c);
444         h->Qdepth++;
445         start_io(h);
446         spin_unlock_irqrestore(&h->lock, flags);
447 }
448
449 static inline void removeQ(struct CommandList *c)
450 {
451         if (WARN_ON(hlist_unhashed(&c->list)))
452                 return;
453         hlist_del_init(&c->list);
454 }
455
456 static inline int is_hba_lunid(unsigned char scsi3addr[])
457 {
458         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
459 }
460
461 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
462 {
463         return (scsi3addr[3] & 0xC0) == 0x40;
464 }
465
466 static inline int is_scsi_rev_5(struct ctlr_info *h)
467 {
468         if (!h->hba_inquiry_data)
469                 return 0;
470         if ((h->hba_inquiry_data[2] & 0x07) == 5)
471                 return 1;
472         return 0;
473 }
474
475 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
476         "UNKNOWN"
477 };
478 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
479
480 static ssize_t raid_level_show(struct device *dev,
481              struct device_attribute *attr, char *buf)
482 {
483         ssize_t l = 0;
484         unsigned char rlevel;
485         struct ctlr_info *h;
486         struct scsi_device *sdev;
487         struct hpsa_scsi_dev_t *hdev;
488         unsigned long flags;
489
490         sdev = to_scsi_device(dev);
491         h = sdev_to_hba(sdev);
492         spin_lock_irqsave(&h->lock, flags);
493         hdev = sdev->hostdata;
494         if (!hdev) {
495                 spin_unlock_irqrestore(&h->lock, flags);
496                 return -ENODEV;
497         }
498
499         /* Is this even a logical drive? */
500         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
501                 spin_unlock_irqrestore(&h->lock, flags);
502                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
503                 return l;
504         }
505
506         rlevel = hdev->raid_level;
507         spin_unlock_irqrestore(&h->lock, flags);
508         if (rlevel > RAID_UNKNOWN)
509                 rlevel = RAID_UNKNOWN;
510         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
511         return l;
512 }
513
514 static ssize_t lunid_show(struct device *dev,
515              struct device_attribute *attr, char *buf)
516 {
517         struct ctlr_info *h;
518         struct scsi_device *sdev;
519         struct hpsa_scsi_dev_t *hdev;
520         unsigned long flags;
521         unsigned char lunid[8];
522
523         sdev = to_scsi_device(dev);
524         h = sdev_to_hba(sdev);
525         spin_lock_irqsave(&h->lock, flags);
526         hdev = sdev->hostdata;
527         if (!hdev) {
528                 spin_unlock_irqrestore(&h->lock, flags);
529                 return -ENODEV;
530         }
531         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
532         spin_unlock_irqrestore(&h->lock, flags);
533         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
534                 lunid[0], lunid[1], lunid[2], lunid[3],
535                 lunid[4], lunid[5], lunid[6], lunid[7]);
536 }
537
538 static ssize_t unique_id_show(struct device *dev,
539              struct device_attribute *attr, char *buf)
540 {
541         struct ctlr_info *h;
542         struct scsi_device *sdev;
543         struct hpsa_scsi_dev_t *hdev;
544         unsigned long flags;
545         unsigned char sn[16];
546
547         sdev = to_scsi_device(dev);
548         h = sdev_to_hba(sdev);
549         spin_lock_irqsave(&h->lock, flags);
550         hdev = sdev->hostdata;
551         if (!hdev) {
552                 spin_unlock_irqrestore(&h->lock, flags);
553                 return -ENODEV;
554         }
555         memcpy(sn, hdev->device_id, sizeof(sn));
556         spin_unlock_irqrestore(&h->lock, flags);
557         return snprintf(buf, 16 * 2 + 2,
558                         "%02X%02X%02X%02X%02X%02X%02X%02X"
559                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
560                         sn[0], sn[1], sn[2], sn[3],
561                         sn[4], sn[5], sn[6], sn[7],
562                         sn[8], sn[9], sn[10], sn[11],
563                         sn[12], sn[13], sn[14], sn[15]);
564 }
565
566 static int hpsa_find_target_lun(struct ctlr_info *h,
567         unsigned char scsi3addr[], int bus, int *target, int *lun)
568 {
569         /* finds an unused bus, target, lun for a new physical device
570          * assumes h->devlock is held
571          */
572         int i, found = 0;
573         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
574
575         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
576
577         for (i = 0; i < h->ndevices; i++) {
578                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
579                         set_bit(h->dev[i]->target, lun_taken);
580         }
581
582         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
583                 if (!test_bit(i, lun_taken)) {
584                         /* *bus = 1; */
585                         *target = i;
586                         *lun = 0;
587                         found = 1;
588                         break;
589                 }
590         }
591         return !found;
592 }
593
594 /* Add an entry into h->dev[] array. */
595 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
596                 struct hpsa_scsi_dev_t *device,
597                 struct hpsa_scsi_dev_t *added[], int *nadded)
598 {
599         /* assumes h->devlock is held */
600         int n = h->ndevices;
601         int i;
602         unsigned char addr1[8], addr2[8];
603         struct hpsa_scsi_dev_t *sd;
604
605         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
606                 dev_err(&h->pdev->dev, "too many devices, some will be "
607                         "inaccessible.\n");
608                 return -1;
609         }
610
611         /* physical devices do not have lun or target assigned until now. */
612         if (device->lun != -1)
613                 /* Logical device, lun is already assigned. */
614                 goto lun_assigned;
615
616         /* If this device a non-zero lun of a multi-lun device
617          * byte 4 of the 8-byte LUN addr will contain the logical
618          * unit no, zero otherise.
619          */
620         if (device->scsi3addr[4] == 0) {
621                 /* This is not a non-zero lun of a multi-lun device */
622                 if (hpsa_find_target_lun(h, device->scsi3addr,
623                         device->bus, &device->target, &device->lun) != 0)
624                         return -1;
625                 goto lun_assigned;
626         }
627
628         /* This is a non-zero lun of a multi-lun device.
629          * Search through our list and find the device which
630          * has the same 8 byte LUN address, excepting byte 4.
631          * Assign the same bus and target for this new LUN.
632          * Use the logical unit number from the firmware.
633          */
634         memcpy(addr1, device->scsi3addr, 8);
635         addr1[4] = 0;
636         for (i = 0; i < n; i++) {
637                 sd = h->dev[i];
638                 memcpy(addr2, sd->scsi3addr, 8);
639                 addr2[4] = 0;
640                 /* differ only in byte 4? */
641                 if (memcmp(addr1, addr2, 8) == 0) {
642                         device->bus = sd->bus;
643                         device->target = sd->target;
644                         device->lun = device->scsi3addr[4];
645                         break;
646                 }
647         }
648         if (device->lun == -1) {
649                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
650                         " suspect firmware bug or unsupported hardware "
651                         "configuration.\n");
652                         return -1;
653         }
654
655 lun_assigned:
656
657         h->dev[n] = device;
658         h->ndevices++;
659         added[*nadded] = device;
660         (*nadded)++;
661
662         /* initially, (before registering with scsi layer) we don't
663          * know our hostno and we don't want to print anything first
664          * time anyway (the scsi layer's inquiries will show that info)
665          */
666         /* if (hostno != -1) */
667                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
668                         scsi_device_type(device->devtype), hostno,
669                         device->bus, device->target, device->lun);
670         return 0;
671 }
672
673 /* Remove an entry from h->dev[] array. */
674 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
675         struct hpsa_scsi_dev_t *removed[], int *nremoved)
676 {
677         /* assumes h->devlock is held */
678         int i;
679         struct hpsa_scsi_dev_t *sd;
680
681         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
682
683         sd = h->dev[entry];
684         removed[*nremoved] = h->dev[entry];
685         (*nremoved)++;
686
687         for (i = entry; i < h->ndevices-1; i++)
688                 h->dev[i] = h->dev[i+1];
689         h->ndevices--;
690         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
691                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
692                 sd->lun);
693 }
694
695 #define SCSI3ADDR_EQ(a, b) ( \
696         (a)[7] == (b)[7] && \
697         (a)[6] == (b)[6] && \
698         (a)[5] == (b)[5] && \
699         (a)[4] == (b)[4] && \
700         (a)[3] == (b)[3] && \
701         (a)[2] == (b)[2] && \
702         (a)[1] == (b)[1] && \
703         (a)[0] == (b)[0])
704
705 static void fixup_botched_add(struct ctlr_info *h,
706         struct hpsa_scsi_dev_t *added)
707 {
708         /* called when scsi_add_device fails in order to re-adjust
709          * h->dev[] to match the mid layer's view.
710          */
711         unsigned long flags;
712         int i, j;
713
714         spin_lock_irqsave(&h->lock, flags);
715         for (i = 0; i < h->ndevices; i++) {
716                 if (h->dev[i] == added) {
717                         for (j = i; j < h->ndevices-1; j++)
718                                 h->dev[j] = h->dev[j+1];
719                         h->ndevices--;
720                         break;
721                 }
722         }
723         spin_unlock_irqrestore(&h->lock, flags);
724         kfree(added);
725 }
726
727 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
728         struct hpsa_scsi_dev_t *dev2)
729 {
730         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
731                 (dev1->lun != -1 && dev2->lun != -1)) &&
732                 dev1->devtype != 0x0C)
733                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
734
735         /* we compare everything except lun and target as these
736          * are not yet assigned.  Compare parts likely
737          * to differ first
738          */
739         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
740                 sizeof(dev1->scsi3addr)) != 0)
741                 return 0;
742         if (memcmp(dev1->device_id, dev2->device_id,
743                 sizeof(dev1->device_id)) != 0)
744                 return 0;
745         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
746                 return 0;
747         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
748                 return 0;
749         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
750                 return 0;
751         if (dev1->devtype != dev2->devtype)
752                 return 0;
753         if (dev1->raid_level != dev2->raid_level)
754                 return 0;
755         if (dev1->bus != dev2->bus)
756                 return 0;
757         return 1;
758 }
759
760 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
761  * and return needle location in *index.  If scsi3addr matches, but not
762  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
763  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
764  */
765 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
766         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
767         int *index)
768 {
769         int i;
770 #define DEVICE_NOT_FOUND 0
771 #define DEVICE_CHANGED 1
772 #define DEVICE_SAME 2
773         for (i = 0; i < haystack_size; i++) {
774                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
775                         *index = i;
776                         if (device_is_the_same(needle, haystack[i]))
777                                 return DEVICE_SAME;
778                         else
779                                 return DEVICE_CHANGED;
780                 }
781         }
782         *index = -1;
783         return DEVICE_NOT_FOUND;
784 }
785
786 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
787         struct hpsa_scsi_dev_t *sd[], int nsds)
788 {
789         /* sd contains scsi3 addresses and devtypes, and inquiry
790          * data.  This function takes what's in sd to be the current
791          * reality and updates h->dev[] to reflect that reality.
792          */
793         int i, entry, device_change, changes = 0;
794         struct hpsa_scsi_dev_t *csd;
795         unsigned long flags;
796         struct hpsa_scsi_dev_t **added, **removed;
797         int nadded, nremoved;
798         struct Scsi_Host *sh = NULL;
799
800         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
801                 GFP_KERNEL);
802         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
803                 GFP_KERNEL);
804
805         if (!added || !removed) {
806                 dev_warn(&h->pdev->dev, "out of memory in "
807                         "adjust_hpsa_scsi_table\n");
808                 goto free_and_out;
809         }
810
811         spin_lock_irqsave(&h->devlock, flags);
812
813         /* find any devices in h->dev[] that are not in
814          * sd[] and remove them from h->dev[], and for any
815          * devices which have changed, remove the old device
816          * info and add the new device info.
817          */
818         i = 0;
819         nremoved = 0;
820         nadded = 0;
821         while (i < h->ndevices) {
822                 csd = h->dev[i];
823                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
824                 if (device_change == DEVICE_NOT_FOUND) {
825                         changes++;
826                         hpsa_scsi_remove_entry(h, hostno, i,
827                                 removed, &nremoved);
828                         continue; /* remove ^^^, hence i not incremented */
829                 } else if (device_change == DEVICE_CHANGED) {
830                         changes++;
831                         hpsa_scsi_remove_entry(h, hostno, i,
832                                 removed, &nremoved);
833                         (void) hpsa_scsi_add_entry(h, hostno, sd[entry],
834                                 added, &nadded);
835                         /* add can't fail, we just removed one. */
836                         sd[entry] = NULL; /* prevent it from being freed */
837                 }
838                 i++;
839         }
840
841         /* Now, make sure every device listed in sd[] is also
842          * listed in h->dev[], adding them if they aren't found
843          */
844
845         for (i = 0; i < nsds; i++) {
846                 if (!sd[i]) /* if already added above. */
847                         continue;
848                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
849                                         h->ndevices, &entry);
850                 if (device_change == DEVICE_NOT_FOUND) {
851                         changes++;
852                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
853                                 added, &nadded) != 0)
854                                 break;
855                         sd[i] = NULL; /* prevent from being freed later. */
856                 } else if (device_change == DEVICE_CHANGED) {
857                         /* should never happen... */
858                         changes++;
859                         dev_warn(&h->pdev->dev,
860                                 "device unexpectedly changed.\n");
861                         /* but if it does happen, we just ignore that device */
862                 }
863         }
864         spin_unlock_irqrestore(&h->devlock, flags);
865
866         /* Don't notify scsi mid layer of any changes the first time through
867          * (or if there are no changes) scsi_scan_host will do it later the
868          * first time through.
869          */
870         if (hostno == -1 || !changes)
871                 goto free_and_out;
872
873         sh = h->scsi_host;
874         /* Notify scsi mid layer of any removed devices */
875         for (i = 0; i < nremoved; i++) {
876                 struct scsi_device *sdev =
877                         scsi_device_lookup(sh, removed[i]->bus,
878                                 removed[i]->target, removed[i]->lun);
879                 if (sdev != NULL) {
880                         scsi_remove_device(sdev);
881                         scsi_device_put(sdev);
882                 } else {
883                         /* We don't expect to get here.
884                          * future cmds to this device will get selection
885                          * timeout as if the device was gone.
886                          */
887                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
888                                 " for removal.", hostno, removed[i]->bus,
889                                 removed[i]->target, removed[i]->lun);
890                 }
891                 kfree(removed[i]);
892                 removed[i] = NULL;
893         }
894
895         /* Notify scsi mid layer of any added devices */
896         for (i = 0; i < nadded; i++) {
897                 if (scsi_add_device(sh, added[i]->bus,
898                         added[i]->target, added[i]->lun) == 0)
899                         continue;
900                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
901                         "device not added.\n", hostno, added[i]->bus,
902                         added[i]->target, added[i]->lun);
903                 /* now we have to remove it from h->dev,
904                  * since it didn't get added to scsi mid layer
905                  */
906                 fixup_botched_add(h, added[i]);
907         }
908
909 free_and_out:
910         kfree(added);
911         kfree(removed);
912 }
913
914 /*
915  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
916  * Assume's h->devlock is held.
917  */
918 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
919         int bus, int target, int lun)
920 {
921         int i;
922         struct hpsa_scsi_dev_t *sd;
923
924         for (i = 0; i < h->ndevices; i++) {
925                 sd = h->dev[i];
926                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
927                         return sd;
928         }
929         return NULL;
930 }
931
932 /* link sdev->hostdata to our per-device structure. */
933 static int hpsa_slave_alloc(struct scsi_device *sdev)
934 {
935         struct hpsa_scsi_dev_t *sd;
936         unsigned long flags;
937         struct ctlr_info *h;
938
939         h = sdev_to_hba(sdev);
940         spin_lock_irqsave(&h->devlock, flags);
941         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
942                 sdev_id(sdev), sdev->lun);
943         if (sd != NULL)
944                 sdev->hostdata = sd;
945         spin_unlock_irqrestore(&h->devlock, flags);
946         return 0;
947 }
948
949 static void hpsa_slave_destroy(struct scsi_device *sdev)
950 {
951         /* nothing to do. */
952 }
953
954 static void hpsa_scsi_setup(struct ctlr_info *h)
955 {
956         h->ndevices = 0;
957         h->scsi_host = NULL;
958         spin_lock_init(&h->devlock);
959 }
960
961 static void complete_scsi_command(struct CommandList *cp,
962         int timeout, u32 tag)
963 {
964         struct scsi_cmnd *cmd;
965         struct ctlr_info *h;
966         struct ErrorInfo *ei;
967
968         unsigned char sense_key;
969         unsigned char asc;      /* additional sense code */
970         unsigned char ascq;     /* additional sense code qualifier */
971
972         ei = cp->err_info;
973         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
974         h = cp->h;
975
976         scsi_dma_unmap(cmd); /* undo the DMA mappings */
977
978         cmd->result = (DID_OK << 16);           /* host byte */
979         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
980         cmd->result |= (ei->ScsiStatus << 1);
981
982         /* copy the sense data whether we need to or not. */
983         memcpy(cmd->sense_buffer, ei->SenseInfo,
984                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
985                         SCSI_SENSE_BUFFERSIZE :
986                         ei->SenseLen);
987         scsi_set_resid(cmd, ei->ResidualCnt);
988
989         if (ei->CommandStatus == 0) {
990                 cmd->scsi_done(cmd);
991                 cmd_free(h, cp);
992                 return;
993         }
994
995         /* an error has occurred */
996         switch (ei->CommandStatus) {
997
998         case CMD_TARGET_STATUS:
999                 if (ei->ScsiStatus) {
1000                         /* Get sense key */
1001                         sense_key = 0xf & ei->SenseInfo[2];
1002                         /* Get additional sense code */
1003                         asc = ei->SenseInfo[12];
1004                         /* Get addition sense code qualifier */
1005                         ascq = ei->SenseInfo[13];
1006                 }
1007
1008                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1009                         if (check_for_unit_attention(h, cp)) {
1010                                 cmd->result = DID_SOFT_ERROR << 16;
1011                                 break;
1012                         }
1013                         if (sense_key == ILLEGAL_REQUEST) {
1014                                 /*
1015                                  * SCSI REPORT_LUNS is commonly unsupported on
1016                                  * Smart Array.  Suppress noisy complaint.
1017                                  */
1018                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1019                                         break;
1020
1021                                 /* If ASC/ASCQ indicate Logical Unit
1022                                  * Not Supported condition,
1023                                  */
1024                                 if ((asc == 0x25) && (ascq == 0x0)) {
1025                                         dev_warn(&h->pdev->dev, "cp %p "
1026                                                 "has check condition\n", cp);
1027                                         break;
1028                                 }
1029                         }
1030
1031                         if (sense_key == NOT_READY) {
1032                                 /* If Sense is Not Ready, Logical Unit
1033                                  * Not ready, Manual Intervention
1034                                  * required
1035                                  */
1036                                 if ((asc == 0x04) && (ascq == 0x03)) {
1037                                         dev_warn(&h->pdev->dev, "cp %p "
1038                                                 "has check condition: unit "
1039                                                 "not ready, manual "
1040                                                 "intervention required\n", cp);
1041                                         break;
1042                                 }
1043                         }
1044                         if (sense_key == ABORTED_COMMAND) {
1045                                 /* Aborted command is retryable */
1046                                 dev_warn(&h->pdev->dev, "cp %p "
1047                                         "has check condition: aborted command: "
1048                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1049                                         cp, asc, ascq);
1050                                 cmd->result = DID_SOFT_ERROR << 16;
1051                                 break;
1052                         }
1053                         /* Must be some other type of check condition */
1054                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1055                                         "unknown type: "
1056                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1057                                         "Returning result: 0x%x, "
1058                                         "cmd=[%02x %02x %02x %02x %02x "
1059                                         "%02x %02x %02x %02x %02x]\n",
1060                                         cp, sense_key, asc, ascq,
1061                                         cmd->result,
1062                                         cmd->cmnd[0], cmd->cmnd[1],
1063                                         cmd->cmnd[2], cmd->cmnd[3],
1064                                         cmd->cmnd[4], cmd->cmnd[5],
1065                                         cmd->cmnd[6], cmd->cmnd[7],
1066                                         cmd->cmnd[8], cmd->cmnd[9]);
1067                         break;
1068                 }
1069
1070
1071                 /* Problem was not a check condition
1072                  * Pass it up to the upper layers...
1073                  */
1074                 if (ei->ScsiStatus) {
1075                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1076                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1077                                 "Returning result: 0x%x\n",
1078                                 cp, ei->ScsiStatus,
1079                                 sense_key, asc, ascq,
1080                                 cmd->result);
1081                 } else {  /* scsi status is zero??? How??? */
1082                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1083                                 "Returning no connection.\n", cp),
1084
1085                         /* Ordinarily, this case should never happen,
1086                          * but there is a bug in some released firmware
1087                          * revisions that allows it to happen if, for
1088                          * example, a 4100 backplane loses power and
1089                          * the tape drive is in it.  We assume that
1090                          * it's a fatal error of some kind because we
1091                          * can't show that it wasn't. We will make it
1092                          * look like selection timeout since that is
1093                          * the most common reason for this to occur,
1094                          * and it's severe enough.
1095                          */
1096
1097                         cmd->result = DID_NO_CONNECT << 16;
1098                 }
1099                 break;
1100
1101         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1102                 break;
1103         case CMD_DATA_OVERRUN:
1104                 dev_warn(&h->pdev->dev, "cp %p has"
1105                         " completed with data overrun "
1106                         "reported\n", cp);
1107                 break;
1108         case CMD_INVALID: {
1109                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1110                 print_cmd(cp); */
1111                 /* We get CMD_INVALID if you address a non-existent device
1112                  * instead of a selection timeout (no response).  You will
1113                  * see this if you yank out a drive, then try to access it.
1114                  * This is kind of a shame because it means that any other
1115                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1116                  * missing target. */
1117                 cmd->result = DID_NO_CONNECT << 16;
1118         }
1119                 break;
1120         case CMD_PROTOCOL_ERR:
1121                 dev_warn(&h->pdev->dev, "cp %p has "
1122                         "protocol error \n", cp);
1123                 break;
1124         case CMD_HARDWARE_ERR:
1125                 cmd->result = DID_ERROR << 16;
1126                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1127                 break;
1128         case CMD_CONNECTION_LOST:
1129                 cmd->result = DID_ERROR << 16;
1130                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1131                 break;
1132         case CMD_ABORTED:
1133                 cmd->result = DID_ABORT << 16;
1134                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1135                                 cp, ei->ScsiStatus);
1136                 break;
1137         case CMD_ABORT_FAILED:
1138                 cmd->result = DID_ERROR << 16;
1139                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1140                 break;
1141         case CMD_UNSOLICITED_ABORT:
1142                 cmd->result = DID_RESET << 16;
1143                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1144                         "abort\n", cp);
1145                 break;
1146         case CMD_TIMEOUT:
1147                 cmd->result = DID_TIME_OUT << 16;
1148                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1149                 break;
1150         default:
1151                 cmd->result = DID_ERROR << 16;
1152                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1153                                 cp, ei->CommandStatus);
1154         }
1155         cmd->scsi_done(cmd);
1156         cmd_free(h, cp);
1157 }
1158
1159 static int hpsa_scsi_detect(struct ctlr_info *h)
1160 {
1161         struct Scsi_Host *sh;
1162         int error;
1163
1164         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1165         if (sh == NULL)
1166                 goto fail;
1167
1168         sh->io_port = 0;
1169         sh->n_io_port = 0;
1170         sh->this_id = -1;
1171         sh->max_channel = 3;
1172         sh->max_cmd_len = MAX_COMMAND_SIZE;
1173         sh->max_lun = HPSA_MAX_LUN;
1174         sh->max_id = HPSA_MAX_LUN;
1175         sh->can_queue = h->nr_cmds;
1176         sh->cmd_per_lun = h->nr_cmds;
1177         h->scsi_host = sh;
1178         sh->hostdata[0] = (unsigned long) h;
1179         sh->irq = h->intr[PERF_MODE_INT];
1180         sh->unique_id = sh->irq;
1181         error = scsi_add_host(sh, &h->pdev->dev);
1182         if (error)
1183                 goto fail_host_put;
1184         scsi_scan_host(sh);
1185         return 0;
1186
1187  fail_host_put:
1188         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1189                 " failed for controller %d\n", h->ctlr);
1190         scsi_host_put(sh);
1191         return error;
1192  fail:
1193         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1194                 " failed for controller %d\n", h->ctlr);
1195         return -ENOMEM;
1196 }
1197
1198 static void hpsa_pci_unmap(struct pci_dev *pdev,
1199         struct CommandList *c, int sg_used, int data_direction)
1200 {
1201         int i;
1202         union u64bit addr64;
1203
1204         for (i = 0; i < sg_used; i++) {
1205                 addr64.val32.lower = c->SG[i].Addr.lower;
1206                 addr64.val32.upper = c->SG[i].Addr.upper;
1207                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1208                         data_direction);
1209         }
1210 }
1211
1212 static void hpsa_map_one(struct pci_dev *pdev,
1213                 struct CommandList *cp,
1214                 unsigned char *buf,
1215                 size_t buflen,
1216                 int data_direction)
1217 {
1218         u64 addr64;
1219
1220         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1221                 cp->Header.SGList = 0;
1222                 cp->Header.SGTotal = 0;
1223                 return;
1224         }
1225
1226         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1227         cp->SG[0].Addr.lower =
1228           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1229         cp->SG[0].Addr.upper =
1230           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1231         cp->SG[0].Len = buflen;
1232         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1233         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1234 }
1235
1236 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1237         struct CommandList *c)
1238 {
1239         DECLARE_COMPLETION_ONSTACK(wait);
1240
1241         c->waiting = &wait;
1242         enqueue_cmd_and_start_io(h, c);
1243         wait_for_completion(&wait);
1244 }
1245
1246 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1247         struct CommandList *c, int data_direction)
1248 {
1249         int retry_count = 0;
1250
1251         do {
1252                 memset(c->err_info, 0, sizeof(c->err_info));
1253                 hpsa_scsi_do_simple_cmd_core(h, c);
1254                 retry_count++;
1255         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1256         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1257 }
1258
1259 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1260 {
1261         struct ErrorInfo *ei;
1262         struct device *d = &cp->h->pdev->dev;
1263
1264         ei = cp->err_info;
1265         switch (ei->CommandStatus) {
1266         case CMD_TARGET_STATUS:
1267                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1268                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1269                                 ei->ScsiStatus);
1270                 if (ei->ScsiStatus == 0)
1271                         dev_warn(d, "SCSI status is abnormally zero.  "
1272                         "(probably indicates selection timeout "
1273                         "reported incorrectly due to a known "
1274                         "firmware bug, circa July, 2001.)\n");
1275                 break;
1276         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1277                         dev_info(d, "UNDERRUN\n");
1278                 break;
1279         case CMD_DATA_OVERRUN:
1280                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1281                 break;
1282         case CMD_INVALID: {
1283                 /* controller unfortunately reports SCSI passthru's
1284                  * to non-existent targets as invalid commands.
1285                  */
1286                 dev_warn(d, "cp %p is reported invalid (probably means "
1287                         "target device no longer present)\n", cp);
1288                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1289                 print_cmd(cp);  */
1290                 }
1291                 break;
1292         case CMD_PROTOCOL_ERR:
1293                 dev_warn(d, "cp %p has protocol error \n", cp);
1294                 break;
1295         case CMD_HARDWARE_ERR:
1296                 /* cmd->result = DID_ERROR << 16; */
1297                 dev_warn(d, "cp %p had hardware error\n", cp);
1298                 break;
1299         case CMD_CONNECTION_LOST:
1300                 dev_warn(d, "cp %p had connection lost\n", cp);
1301                 break;
1302         case CMD_ABORTED:
1303                 dev_warn(d, "cp %p was aborted\n", cp);
1304                 break;
1305         case CMD_ABORT_FAILED:
1306                 dev_warn(d, "cp %p reports abort failed\n", cp);
1307                 break;
1308         case CMD_UNSOLICITED_ABORT:
1309                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1310                 break;
1311         case CMD_TIMEOUT:
1312                 dev_warn(d, "cp %p timed out\n", cp);
1313                 break;
1314         default:
1315                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1316                                 ei->CommandStatus);
1317         }
1318 }
1319
1320 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1321                         unsigned char page, unsigned char *buf,
1322                         unsigned char bufsize)
1323 {
1324         int rc = IO_OK;
1325         struct CommandList *c;
1326         struct ErrorInfo *ei;
1327
1328         c = cmd_special_alloc(h);
1329
1330         if (c == NULL) {                        /* trouble... */
1331                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1332                 return -ENOMEM;
1333         }
1334
1335         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1336         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1337         ei = c->err_info;
1338         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1339                 hpsa_scsi_interpret_error(c);
1340                 rc = -1;
1341         }
1342         cmd_special_free(h, c);
1343         return rc;
1344 }
1345
1346 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1347 {
1348         int rc = IO_OK;
1349         struct CommandList *c;
1350         struct ErrorInfo *ei;
1351
1352         c = cmd_special_alloc(h);
1353
1354         if (c == NULL) {                        /* trouble... */
1355                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1356                 return -1;
1357         }
1358
1359         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1360         hpsa_scsi_do_simple_cmd_core(h, c);
1361         /* no unmap needed here because no data xfer. */
1362
1363         ei = c->err_info;
1364         if (ei->CommandStatus != 0) {
1365                 hpsa_scsi_interpret_error(c);
1366                 rc = -1;
1367         }
1368         cmd_special_free(h, c);
1369         return rc;
1370 }
1371
1372 static void hpsa_get_raid_level(struct ctlr_info *h,
1373         unsigned char *scsi3addr, unsigned char *raid_level)
1374 {
1375         int rc;
1376         unsigned char *buf;
1377
1378         *raid_level = RAID_UNKNOWN;
1379         buf = kzalloc(64, GFP_KERNEL);
1380         if (!buf)
1381                 return;
1382         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1383         if (rc == 0)
1384                 *raid_level = buf[8];
1385         if (*raid_level > RAID_UNKNOWN)
1386                 *raid_level = RAID_UNKNOWN;
1387         kfree(buf);
1388         return;
1389 }
1390
1391 /* Get the device id from inquiry page 0x83 */
1392 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1393         unsigned char *device_id, int buflen)
1394 {
1395         int rc;
1396         unsigned char *buf;
1397
1398         if (buflen > 16)
1399                 buflen = 16;
1400         buf = kzalloc(64, GFP_KERNEL);
1401         if (!buf)
1402                 return -1;
1403         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1404         if (rc == 0)
1405                 memcpy(device_id, &buf[8], buflen);
1406         kfree(buf);
1407         return rc != 0;
1408 }
1409
1410 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1411                 struct ReportLUNdata *buf, int bufsize,
1412                 int extended_response)
1413 {
1414         int rc = IO_OK;
1415         struct CommandList *c;
1416         unsigned char scsi3addr[8];
1417         struct ErrorInfo *ei;
1418
1419         c = cmd_special_alloc(h);
1420         if (c == NULL) {                        /* trouble... */
1421                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1422                 return -1;
1423         }
1424         /* address the controller */
1425         memset(scsi3addr, 0, sizeof(scsi3addr));
1426         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1427                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1428         if (extended_response)
1429                 c->Request.CDB[1] = extended_response;
1430         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1431         ei = c->err_info;
1432         if (ei->CommandStatus != 0 &&
1433             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1434                 hpsa_scsi_interpret_error(c);
1435                 rc = -1;
1436         }
1437         cmd_special_free(h, c);
1438         return rc;
1439 }
1440
1441 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1442                 struct ReportLUNdata *buf,
1443                 int bufsize, int extended_response)
1444 {
1445         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1446 }
1447
1448 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1449                 struct ReportLUNdata *buf, int bufsize)
1450 {
1451         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1452 }
1453
1454 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1455         int bus, int target, int lun)
1456 {
1457         device->bus = bus;
1458         device->target = target;
1459         device->lun = lun;
1460 }
1461
1462 static int hpsa_update_device_info(struct ctlr_info *h,
1463         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1464 {
1465 #define OBDR_TAPE_INQ_SIZE 49
1466         unsigned char *inq_buff;
1467
1468         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1469         if (!inq_buff)
1470                 goto bail_out;
1471
1472         /* Do an inquiry to the device to see what it is. */
1473         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1474                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1475                 /* Inquiry failed (msg printed already) */
1476                 dev_err(&h->pdev->dev,
1477                         "hpsa_update_device_info: inquiry failed\n");
1478                 goto bail_out;
1479         }
1480
1481         /* As a side effect, record the firmware version number
1482          * if we happen to be talking to the RAID controller.
1483          */
1484         if (is_hba_lunid(scsi3addr))
1485                 memcpy(h->firm_ver, &inq_buff[32], 4);
1486
1487         this_device->devtype = (inq_buff[0] & 0x1f);
1488         memcpy(this_device->scsi3addr, scsi3addr, 8);
1489         memcpy(this_device->vendor, &inq_buff[8],
1490                 sizeof(this_device->vendor));
1491         memcpy(this_device->model, &inq_buff[16],
1492                 sizeof(this_device->model));
1493         memcpy(this_device->revision, &inq_buff[32],
1494                 sizeof(this_device->revision));
1495         memset(this_device->device_id, 0,
1496                 sizeof(this_device->device_id));
1497         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1498                 sizeof(this_device->device_id));
1499
1500         if (this_device->devtype == TYPE_DISK &&
1501                 is_logical_dev_addr_mode(scsi3addr))
1502                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1503         else
1504                 this_device->raid_level = RAID_UNKNOWN;
1505
1506         kfree(inq_buff);
1507         return 0;
1508
1509 bail_out:
1510         kfree(inq_buff);
1511         return 1;
1512 }
1513
1514 static unsigned char *msa2xxx_model[] = {
1515         "MSA2012",
1516         "MSA2024",
1517         "MSA2312",
1518         "MSA2324",
1519         NULL,
1520 };
1521
1522 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1523 {
1524         int i;
1525
1526         for (i = 0; msa2xxx_model[i]; i++)
1527                 if (strncmp(device->model, msa2xxx_model[i],
1528                         strlen(msa2xxx_model[i])) == 0)
1529                         return 1;
1530         return 0;
1531 }
1532
1533 /* Helper function to assign bus, target, lun mapping of devices.
1534  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1535  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1536  * Logical drive target and lun are assigned at this time, but
1537  * physical device lun and target assignment are deferred (assigned
1538  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1539  */
1540 static void figure_bus_target_lun(struct ctlr_info *h,
1541         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1542         struct hpsa_scsi_dev_t *device)
1543 {
1544         u32 lunid;
1545
1546         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1547                 /* logical device */
1548                 if (unlikely(is_scsi_rev_5(h))) {
1549                         /* p1210m, logical drives lun assignments
1550                          * match SCSI REPORT LUNS data.
1551                          */
1552                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1553                         *bus = 0;
1554                         *target = 0;
1555                         *lun = (lunid & 0x3fff) + 1;
1556                 } else {
1557                         /* not p1210m... */
1558                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1559                         if (is_msa2xxx(h, device)) {
1560                                 /* msa2xxx way, put logicals on bus 1
1561                                  * and match target/lun numbers box
1562                                  * reports.
1563                                  */
1564                                 *bus = 1;
1565                                 *target = (lunid >> 16) & 0x3fff;
1566                                 *lun = lunid & 0x00ff;
1567                         } else {
1568                                 /* Traditional smart array way. */
1569                                 *bus = 0;
1570                                 *lun = 0;
1571                                 *target = lunid & 0x3fff;
1572                         }
1573                 }
1574         } else {
1575                 /* physical device */
1576                 if (is_hba_lunid(lunaddrbytes))
1577                         if (unlikely(is_scsi_rev_5(h))) {
1578                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1579                                 *target = 0;
1580                                 *lun = 0;
1581                                 return;
1582                         } else
1583                                 *bus = 3; /* traditional smartarray */
1584                 else
1585                         *bus = 2; /* physical disk */
1586                 *target = -1;
1587                 *lun = -1; /* we will fill these in later. */
1588         }
1589 }
1590
1591 /*
1592  * If there is no lun 0 on a target, linux won't find any devices.
1593  * For the MSA2xxx boxes, we have to manually detect the enclosure
1594  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1595  * it for some reason.  *tmpdevice is the target we're adding,
1596  * this_device is a pointer into the current element of currentsd[]
1597  * that we're building up in update_scsi_devices(), below.
1598  * lunzerobits is a bitmap that tracks which targets already have a
1599  * lun 0 assigned.
1600  * Returns 1 if an enclosure was added, 0 if not.
1601  */
1602 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1603         struct hpsa_scsi_dev_t *tmpdevice,
1604         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1605         int bus, int target, int lun, unsigned long lunzerobits[],
1606         int *nmsa2xxx_enclosures)
1607 {
1608         unsigned char scsi3addr[8];
1609
1610         if (test_bit(target, lunzerobits))
1611                 return 0; /* There is already a lun 0 on this target. */
1612
1613         if (!is_logical_dev_addr_mode(lunaddrbytes))
1614                 return 0; /* It's the logical targets that may lack lun 0. */
1615
1616         if (!is_msa2xxx(h, tmpdevice))
1617                 return 0; /* It's only the MSA2xxx that have this problem. */
1618
1619         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1620                 return 0;
1621
1622         if (is_hba_lunid(scsi3addr))
1623                 return 0; /* Don't add the RAID controller here. */
1624
1625         if (is_scsi_rev_5(h))
1626                 return 0; /* p1210m doesn't need to do this. */
1627
1628 #define MAX_MSA2XXX_ENCLOSURES 32
1629         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1630                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1631                         "enclosures exceeded.  Check your hardware "
1632                         "configuration.");
1633                 return 0;
1634         }
1635
1636         memset(scsi3addr, 0, 8);
1637         scsi3addr[3] = target;
1638         if (hpsa_update_device_info(h, scsi3addr, this_device))
1639                 return 0;
1640         (*nmsa2xxx_enclosures)++;
1641         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1642         set_bit(target, lunzerobits);
1643         return 1;
1644 }
1645
1646 /*
1647  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1648  * logdev.  The number of luns in physdev and logdev are returned in
1649  * *nphysicals and *nlogicals, respectively.
1650  * Returns 0 on success, -1 otherwise.
1651  */
1652 static int hpsa_gather_lun_info(struct ctlr_info *h,
1653         int reportlunsize,
1654         struct ReportLUNdata *physdev, u32 *nphysicals,
1655         struct ReportLUNdata *logdev, u32 *nlogicals)
1656 {
1657         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1658                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1659                 return -1;
1660         }
1661         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1662         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1663                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1664                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1665                         *nphysicals - HPSA_MAX_PHYS_LUN);
1666                 *nphysicals = HPSA_MAX_PHYS_LUN;
1667         }
1668         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1669                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1670                 return -1;
1671         }
1672         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1673         /* Reject Logicals in excess of our max capability. */
1674         if (*nlogicals > HPSA_MAX_LUN) {
1675                 dev_warn(&h->pdev->dev,
1676                         "maximum logical LUNs (%d) exceeded.  "
1677                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1678                         *nlogicals - HPSA_MAX_LUN);
1679                         *nlogicals = HPSA_MAX_LUN;
1680         }
1681         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1682                 dev_warn(&h->pdev->dev,
1683                         "maximum logical + physical LUNs (%d) exceeded. "
1684                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1685                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1686                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1687         }
1688         return 0;
1689 }
1690
1691 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1692         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1693         struct ReportLUNdata *logdev_list)
1694 {
1695         /* Helper function, figure out where the LUN ID info is coming from
1696          * given index i, lists of physical and logical devices, where in
1697          * the list the raid controller is supposed to appear (first or last)
1698          */
1699
1700         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1701         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1702
1703         if (i == raid_ctlr_position)
1704                 return RAID_CTLR_LUNID;
1705
1706         if (i < logicals_start)
1707                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1708
1709         if (i < last_device)
1710                 return &logdev_list->LUN[i - nphysicals -
1711                         (raid_ctlr_position == 0)][0];
1712         BUG();
1713         return NULL;
1714 }
1715
1716 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1717 {
1718         /* the idea here is we could get notified
1719          * that some devices have changed, so we do a report
1720          * physical luns and report logical luns cmd, and adjust
1721          * our list of devices accordingly.
1722          *
1723          * The scsi3addr's of devices won't change so long as the
1724          * adapter is not reset.  That means we can rescan and
1725          * tell which devices we already know about, vs. new
1726          * devices, vs.  disappearing devices.
1727          */
1728         struct ReportLUNdata *physdev_list = NULL;
1729         struct ReportLUNdata *logdev_list = NULL;
1730         unsigned char *inq_buff = NULL;
1731         u32 nphysicals = 0;
1732         u32 nlogicals = 0;
1733         u32 ndev_allocated = 0;
1734         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1735         int ncurrent = 0;
1736         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1737         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1738         int bus, target, lun;
1739         int raid_ctlr_position;
1740         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1741
1742         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1743                 GFP_KERNEL);
1744         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1745         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1746         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1747         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1748
1749         if (!currentsd || !physdev_list || !logdev_list ||
1750                 !inq_buff || !tmpdevice) {
1751                 dev_err(&h->pdev->dev, "out of memory\n");
1752                 goto out;
1753         }
1754         memset(lunzerobits, 0, sizeof(lunzerobits));
1755
1756         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1757                         logdev_list, &nlogicals))
1758                 goto out;
1759
1760         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1761          * but each of them 4 times through different paths.  The plus 1
1762          * is for the RAID controller.
1763          */
1764         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1765
1766         /* Allocate the per device structures */
1767         for (i = 0; i < ndevs_to_allocate; i++) {
1768                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1769                 if (!currentsd[i]) {
1770                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1771                                 __FILE__, __LINE__);
1772                         goto out;
1773                 }
1774                 ndev_allocated++;
1775         }
1776
1777         if (unlikely(is_scsi_rev_5(h)))
1778                 raid_ctlr_position = 0;
1779         else
1780                 raid_ctlr_position = nphysicals + nlogicals;
1781
1782         /* adjust our table of devices */
1783         nmsa2xxx_enclosures = 0;
1784         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1785                 u8 *lunaddrbytes;
1786
1787                 /* Figure out where the LUN ID info is coming from */
1788                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1789                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1790                 /* skip masked physical devices. */
1791                 if (lunaddrbytes[3] & 0xC0 &&
1792                         i < nphysicals + (raid_ctlr_position == 0))
1793                         continue;
1794
1795                 /* Get device type, vendor, model, device id */
1796                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1797                         continue; /* skip it if we can't talk to it. */
1798                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1799                         tmpdevice);
1800                 this_device = currentsd[ncurrent];
1801
1802                 /*
1803                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1804                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1805                  * is nonetheless an enclosure device there.  We have to
1806                  * present that otherwise linux won't find anything if
1807                  * there is no lun 0.
1808                  */
1809                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1810                                 lunaddrbytes, bus, target, lun, lunzerobits,
1811                                 &nmsa2xxx_enclosures)) {
1812                         ncurrent++;
1813                         this_device = currentsd[ncurrent];
1814                 }
1815
1816                 *this_device = *tmpdevice;
1817                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1818
1819                 switch (this_device->devtype) {
1820                 case TYPE_ROM: {
1821                         /* We don't *really* support actual CD-ROM devices,
1822                          * just "One Button Disaster Recovery" tape drive
1823                          * which temporarily pretends to be a CD-ROM drive.
1824                          * So we check that the device is really an OBDR tape
1825                          * device by checking for "$DR-10" in bytes 43-48 of
1826                          * the inquiry data.
1827                          */
1828                                 char obdr_sig[7];
1829 #define OBDR_TAPE_SIG "$DR-10"
1830                                 strncpy(obdr_sig, &inq_buff[43], 6);
1831                                 obdr_sig[6] = '\0';
1832                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1833                                         /* Not OBDR device, ignore it. */
1834                                         break;
1835                         }
1836                         ncurrent++;
1837                         break;
1838                 case TYPE_DISK:
1839                         if (i < nphysicals)
1840                                 break;
1841                         ncurrent++;
1842                         break;
1843                 case TYPE_TAPE:
1844                 case TYPE_MEDIUM_CHANGER:
1845                         ncurrent++;
1846                         break;
1847                 case TYPE_RAID:
1848                         /* Only present the Smartarray HBA as a RAID controller.
1849                          * If it's a RAID controller other than the HBA itself
1850                          * (an external RAID controller, MSA500 or similar)
1851                          * don't present it.
1852                          */
1853                         if (!is_hba_lunid(lunaddrbytes))
1854                                 break;
1855                         ncurrent++;
1856                         break;
1857                 default:
1858                         break;
1859                 }
1860                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1861                         break;
1862         }
1863         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1864 out:
1865         kfree(tmpdevice);
1866         for (i = 0; i < ndev_allocated; i++)
1867                 kfree(currentsd[i]);
1868         kfree(currentsd);
1869         kfree(inq_buff);
1870         kfree(physdev_list);
1871         kfree(logdev_list);
1872 }
1873
1874 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1875  * dma mapping  and fills in the scatter gather entries of the
1876  * hpsa command, cp.
1877  */
1878 static int hpsa_scatter_gather(struct pci_dev *pdev,
1879                 struct CommandList *cp,
1880                 struct scsi_cmnd *cmd)
1881 {
1882         unsigned int len;
1883         struct scatterlist *sg;
1884         u64 addr64;
1885         int use_sg, i;
1886
1887         BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1888
1889         use_sg = scsi_dma_map(cmd);
1890         if (use_sg < 0)
1891                 return use_sg;
1892
1893         if (!use_sg)
1894                 goto sglist_finished;
1895
1896         scsi_for_each_sg(cmd, sg, use_sg, i) {
1897                 addr64 = (u64) sg_dma_address(sg);
1898                 len  = sg_dma_len(sg);
1899                 cp->SG[i].Addr.lower =
1900                         (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1901                 cp->SG[i].Addr.upper =
1902                         (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1903                 cp->SG[i].Len = len;
1904                 cp->SG[i].Ext = 0;  /* we are not chaining */
1905         }
1906
1907 sglist_finished:
1908
1909         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1910         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1911         return 0;
1912 }
1913
1914
1915 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1916         void (*done)(struct scsi_cmnd *))
1917 {
1918         struct ctlr_info *h;
1919         struct hpsa_scsi_dev_t *dev;
1920         unsigned char scsi3addr[8];
1921         struct CommandList *c;
1922         unsigned long flags;
1923
1924         /* Get the ptr to our adapter structure out of cmd->host. */
1925         h = sdev_to_hba(cmd->device);
1926         dev = cmd->device->hostdata;
1927         if (!dev) {
1928                 cmd->result = DID_NO_CONNECT << 16;
1929                 done(cmd);
1930                 return 0;
1931         }
1932         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1933
1934         /* Need a lock as this is being allocated from the pool */
1935         spin_lock_irqsave(&h->lock, flags);
1936         c = cmd_alloc(h);
1937         spin_unlock_irqrestore(&h->lock, flags);
1938         if (c == NULL) {                        /* trouble... */
1939                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1940                 return SCSI_MLQUEUE_HOST_BUSY;
1941         }
1942
1943         /* Fill in the command list header */
1944
1945         cmd->scsi_done = done;    /* save this for use by completion code */
1946
1947         /* save c in case we have to abort it  */
1948         cmd->host_scribble = (unsigned char *) c;
1949
1950         c->cmd_type = CMD_SCSI;
1951         c->scsi_cmd = cmd;
1952         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1953         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1954         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1955         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1956
1957         /* Fill in the request block... */
1958
1959         c->Request.Timeout = 0;
1960         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1961         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1962         c->Request.CDBLen = cmd->cmd_len;
1963         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1964         c->Request.Type.Type = TYPE_CMD;
1965         c->Request.Type.Attribute = ATTR_SIMPLE;
1966         switch (cmd->sc_data_direction) {
1967         case DMA_TO_DEVICE:
1968                 c->Request.Type.Direction = XFER_WRITE;
1969                 break;
1970         case DMA_FROM_DEVICE:
1971                 c->Request.Type.Direction = XFER_READ;
1972                 break;
1973         case DMA_NONE:
1974                 c->Request.Type.Direction = XFER_NONE;
1975                 break;
1976         case DMA_BIDIRECTIONAL:
1977                 /* This can happen if a buggy application does a scsi passthru
1978                  * and sets both inlen and outlen to non-zero. ( see
1979                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1980                  */
1981
1982                 c->Request.Type.Direction = XFER_RSVD;
1983                 /* This is technically wrong, and hpsa controllers should
1984                  * reject it with CMD_INVALID, which is the most correct
1985                  * response, but non-fibre backends appear to let it
1986                  * slide by, and give the same results as if this field
1987                  * were set correctly.  Either way is acceptable for
1988                  * our purposes here.
1989                  */
1990
1991                 break;
1992
1993         default:
1994                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1995                         cmd->sc_data_direction);
1996                 BUG();
1997                 break;
1998         }
1999
2000         if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
2001                 cmd_free(h, c);
2002                 return SCSI_MLQUEUE_HOST_BUSY;
2003         }
2004         enqueue_cmd_and_start_io(h, c);
2005         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2006         return 0;
2007 }
2008
2009 static void hpsa_unregister_scsi(struct ctlr_info *h)
2010 {
2011         /* we are being forcibly unloaded, and may not refuse. */
2012         scsi_remove_host(h->scsi_host);
2013         scsi_host_put(h->scsi_host);
2014         h->scsi_host = NULL;
2015 }
2016
2017 static int hpsa_register_scsi(struct ctlr_info *h)
2018 {
2019         int rc;
2020
2021         hpsa_update_scsi_devices(h, -1);
2022         rc = hpsa_scsi_detect(h);
2023         if (rc != 0)
2024                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2025                         " hpsa_scsi_detect(), rc is %d\n", rc);
2026         return rc;
2027 }
2028
2029 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2030         unsigned char lunaddr[])
2031 {
2032         int rc = 0;
2033         int count = 0;
2034         int waittime = 1; /* seconds */
2035         struct CommandList *c;
2036
2037         c = cmd_special_alloc(h);
2038         if (!c) {
2039                 dev_warn(&h->pdev->dev, "out of memory in "
2040                         "wait_for_device_to_become_ready.\n");
2041                 return IO_ERROR;
2042         }
2043
2044         /* Send test unit ready until device ready, or give up. */
2045         while (count < HPSA_TUR_RETRY_LIMIT) {
2046
2047                 /* Wait for a bit.  do this first, because if we send
2048                  * the TUR right away, the reset will just abort it.
2049                  */
2050                 msleep(1000 * waittime);
2051                 count++;
2052
2053                 /* Increase wait time with each try, up to a point. */
2054                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2055                         waittime = waittime * 2;
2056
2057                 /* Send the Test Unit Ready */
2058                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2059                 hpsa_scsi_do_simple_cmd_core(h, c);
2060                 /* no unmap needed here because no data xfer. */
2061
2062                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2063                         break;
2064
2065                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2066                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2067                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2068                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2069                         break;
2070
2071                 dev_warn(&h->pdev->dev, "waiting %d secs "
2072                         "for device to become ready.\n", waittime);
2073                 rc = 1; /* device not ready. */
2074         }
2075
2076         if (rc)
2077                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2078         else
2079                 dev_warn(&h->pdev->dev, "device is ready.\n");
2080
2081         cmd_special_free(h, c);
2082         return rc;
2083 }
2084
2085 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2086  * complaining.  Doing a host- or bus-reset can't do anything good here.
2087  */
2088 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2089 {
2090         int rc;
2091         struct ctlr_info *h;
2092         struct hpsa_scsi_dev_t *dev;
2093
2094         /* find the controller to which the command to be aborted was sent */
2095         h = sdev_to_hba(scsicmd->device);
2096         if (h == NULL) /* paranoia */
2097                 return FAILED;
2098         dev_warn(&h->pdev->dev, "resetting drive\n");
2099
2100         dev = scsicmd->device->hostdata;
2101         if (!dev) {
2102                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2103                         "device lookup failed.\n");
2104                 return FAILED;
2105         }
2106         /* send a reset to the SCSI LUN which the command was sent to */
2107         rc = hpsa_send_reset(h, dev->scsi3addr);
2108         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2109                 return SUCCESS;
2110
2111         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2112         return FAILED;
2113 }
2114
2115 /*
2116  * For operations that cannot sleep, a command block is allocated at init,
2117  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2118  * which ones are free or in use.  Lock must be held when calling this.
2119  * cmd_free() is the complement.
2120  */
2121 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2122 {
2123         struct CommandList *c;
2124         int i;
2125         union u64bit temp64;
2126         dma_addr_t cmd_dma_handle, err_dma_handle;
2127
2128         do {
2129                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2130                 if (i == h->nr_cmds)
2131                         return NULL;
2132         } while (test_and_set_bit
2133                  (i & (BITS_PER_LONG - 1),
2134                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2135         c = h->cmd_pool + i;
2136         memset(c, 0, sizeof(*c));
2137         cmd_dma_handle = h->cmd_pool_dhandle
2138             + i * sizeof(*c);
2139         c->err_info = h->errinfo_pool + i;
2140         memset(c->err_info, 0, sizeof(*c->err_info));
2141         err_dma_handle = h->errinfo_pool_dhandle
2142             + i * sizeof(*c->err_info);
2143         h->nr_allocs++;
2144
2145         c->cmdindex = i;
2146
2147         INIT_HLIST_NODE(&c->list);
2148         c->busaddr = (u32) cmd_dma_handle;
2149         temp64.val = (u64) err_dma_handle;
2150         c->ErrDesc.Addr.lower = temp64.val32.lower;
2151         c->ErrDesc.Addr.upper = temp64.val32.upper;
2152         c->ErrDesc.Len = sizeof(*c->err_info);
2153
2154         c->h = h;
2155         return c;
2156 }
2157
2158 /* For operations that can wait for kmalloc to possibly sleep,
2159  * this routine can be called. Lock need not be held to call
2160  * cmd_special_alloc. cmd_special_free() is the complement.
2161  */
2162 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2163 {
2164         struct CommandList *c;
2165         union u64bit temp64;
2166         dma_addr_t cmd_dma_handle, err_dma_handle;
2167
2168         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2169         if (c == NULL)
2170                 return NULL;
2171         memset(c, 0, sizeof(*c));
2172
2173         c->cmdindex = -1;
2174
2175         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2176                     &err_dma_handle);
2177
2178         if (c->err_info == NULL) {
2179                 pci_free_consistent(h->pdev,
2180                         sizeof(*c), c, cmd_dma_handle);
2181                 return NULL;
2182         }
2183         memset(c->err_info, 0, sizeof(*c->err_info));
2184
2185         INIT_HLIST_NODE(&c->list);
2186         c->busaddr = (u32) cmd_dma_handle;
2187         temp64.val = (u64) err_dma_handle;
2188         c->ErrDesc.Addr.lower = temp64.val32.lower;
2189         c->ErrDesc.Addr.upper = temp64.val32.upper;
2190         c->ErrDesc.Len = sizeof(*c->err_info);
2191
2192         c->h = h;
2193         return c;
2194 }
2195
2196 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2197 {
2198         int i;
2199
2200         i = c - h->cmd_pool;
2201         clear_bit(i & (BITS_PER_LONG - 1),
2202                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2203         h->nr_frees++;
2204 }
2205
2206 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2207 {
2208         union u64bit temp64;
2209
2210         temp64.val32.lower = c->ErrDesc.Addr.lower;
2211         temp64.val32.upper = c->ErrDesc.Addr.upper;
2212         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2213                             c->err_info, (dma_addr_t) temp64.val);
2214         pci_free_consistent(h->pdev, sizeof(*c),
2215                             c, (dma_addr_t) c->busaddr);
2216 }
2217
2218 #ifdef CONFIG_COMPAT
2219
2220 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2221 {
2222         int ret;
2223
2224         lock_kernel();
2225         ret = hpsa_ioctl(dev, cmd, arg);
2226         unlock_kernel();
2227         return ret;
2228 }
2229
2230 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2231 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2232         int cmd, void *arg);
2233
2234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2235 {
2236         switch (cmd) {
2237         case CCISS_GETPCIINFO:
2238         case CCISS_GETINTINFO:
2239         case CCISS_SETINTINFO:
2240         case CCISS_GETNODENAME:
2241         case CCISS_SETNODENAME:
2242         case CCISS_GETHEARTBEAT:
2243         case CCISS_GETBUSTYPES:
2244         case CCISS_GETFIRMVER:
2245         case CCISS_GETDRIVVER:
2246         case CCISS_REVALIDVOLS:
2247         case CCISS_DEREGDISK:
2248         case CCISS_REGNEWDISK:
2249         case CCISS_REGNEWD:
2250         case CCISS_RESCANDISK:
2251         case CCISS_GETLUNINFO:
2252                 return do_ioctl(dev, cmd, arg);
2253
2254         case CCISS_PASSTHRU32:
2255                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2256         case CCISS_BIG_PASSTHRU32:
2257                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2258
2259         default:
2260                 return -ENOIOCTLCMD;
2261         }
2262 }
2263
2264 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2265 {
2266         IOCTL32_Command_struct __user *arg32 =
2267             (IOCTL32_Command_struct __user *) arg;
2268         IOCTL_Command_struct arg64;
2269         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2270         int err;
2271         u32 cp;
2272
2273         err = 0;
2274         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2275                            sizeof(arg64.LUN_info));
2276         err |= copy_from_user(&arg64.Request, &arg32->Request,
2277                            sizeof(arg64.Request));
2278         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2279                            sizeof(arg64.error_info));
2280         err |= get_user(arg64.buf_size, &arg32->buf_size);
2281         err |= get_user(cp, &arg32->buf);
2282         arg64.buf = compat_ptr(cp);
2283         err |= copy_to_user(p, &arg64, sizeof(arg64));
2284
2285         if (err)
2286                 return -EFAULT;
2287
2288         err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2289         if (err)
2290                 return err;
2291         err |= copy_in_user(&arg32->error_info, &p->error_info,
2292                          sizeof(arg32->error_info));
2293         if (err)
2294                 return -EFAULT;
2295         return err;
2296 }
2297
2298 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2299         int cmd, void *arg)
2300 {
2301         BIG_IOCTL32_Command_struct __user *arg32 =
2302             (BIG_IOCTL32_Command_struct __user *) arg;
2303         BIG_IOCTL_Command_struct arg64;
2304         BIG_IOCTL_Command_struct __user *p =
2305             compat_alloc_user_space(sizeof(arg64));
2306         int err;
2307         u32 cp;
2308
2309         err = 0;
2310         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2311                            sizeof(arg64.LUN_info));
2312         err |= copy_from_user(&arg64.Request, &arg32->Request,
2313                            sizeof(arg64.Request));
2314         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2315                            sizeof(arg64.error_info));
2316         err |= get_user(arg64.buf_size, &arg32->buf_size);
2317         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2318         err |= get_user(cp, &arg32->buf);
2319         arg64.buf = compat_ptr(cp);
2320         err |= copy_to_user(p, &arg64, sizeof(arg64));
2321
2322         if (err)
2323                 return -EFAULT;
2324
2325         err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2326         if (err)
2327                 return err;
2328         err |= copy_in_user(&arg32->error_info, &p->error_info,
2329                          sizeof(arg32->error_info));
2330         if (err)
2331                 return -EFAULT;
2332         return err;
2333 }
2334 #endif
2335
2336 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2337 {
2338         struct hpsa_pci_info pciinfo;
2339
2340         if (!argp)
2341                 return -EINVAL;
2342         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2343         pciinfo.bus = h->pdev->bus->number;
2344         pciinfo.dev_fn = h->pdev->devfn;
2345         pciinfo.board_id = h->board_id;
2346         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2347                 return -EFAULT;
2348         return 0;
2349 }
2350
2351 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2352 {
2353         DriverVer_type DriverVer;
2354         unsigned char vmaj, vmin, vsubmin;
2355         int rc;
2356
2357         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2358                 &vmaj, &vmin, &vsubmin);
2359         if (rc != 3) {
2360                 dev_info(&h->pdev->dev, "driver version string '%s' "
2361                         "unrecognized.", HPSA_DRIVER_VERSION);
2362                 vmaj = 0;
2363                 vmin = 0;
2364                 vsubmin = 0;
2365         }
2366         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2367         if (!argp)
2368                 return -EINVAL;
2369         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2370                 return -EFAULT;
2371         return 0;
2372 }
2373
2374 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2375 {
2376         IOCTL_Command_struct iocommand;
2377         struct CommandList *c;
2378         char *buff = NULL;
2379         union u64bit temp64;
2380
2381         if (!argp)
2382                 return -EINVAL;
2383         if (!capable(CAP_SYS_RAWIO))
2384                 return -EPERM;
2385         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2386                 return -EFAULT;
2387         if ((iocommand.buf_size < 1) &&
2388             (iocommand.Request.Type.Direction != XFER_NONE)) {
2389                 return -EINVAL;
2390         }
2391         if (iocommand.buf_size > 0) {
2392                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2393                 if (buff == NULL)
2394                         return -EFAULT;
2395         }
2396         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2397                 /* Copy the data into the buffer we created */
2398                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2399                         kfree(buff);
2400                         return -EFAULT;
2401                 }
2402         } else
2403                 memset(buff, 0, iocommand.buf_size);
2404         c = cmd_special_alloc(h);
2405         if (c == NULL) {
2406                 kfree(buff);
2407                 return -ENOMEM;
2408         }
2409         /* Fill in the command type */
2410         c->cmd_type = CMD_IOCTL_PEND;
2411         /* Fill in Command Header */
2412         c->Header.ReplyQueue = 0; /* unused in simple mode */
2413         if (iocommand.buf_size > 0) {   /* buffer to fill */
2414                 c->Header.SGList = 1;
2415                 c->Header.SGTotal = 1;
2416         } else  { /* no buffers to fill */
2417                 c->Header.SGList = 0;
2418                 c->Header.SGTotal = 0;
2419         }
2420         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2421         /* use the kernel address the cmd block for tag */
2422         c->Header.Tag.lower = c->busaddr;
2423
2424         /* Fill in Request block */
2425         memcpy(&c->Request, &iocommand.Request,
2426                 sizeof(c->Request));
2427
2428         /* Fill in the scatter gather information */
2429         if (iocommand.buf_size > 0) {
2430                 temp64.val = pci_map_single(h->pdev, buff,
2431                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2432                 c->SG[0].Addr.lower = temp64.val32.lower;
2433                 c->SG[0].Addr.upper = temp64.val32.upper;
2434                 c->SG[0].Len = iocommand.buf_size;
2435                 c->SG[0].Ext = 0; /* we are not chaining*/
2436         }
2437         hpsa_scsi_do_simple_cmd_core(h, c);
2438         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2439         check_ioctl_unit_attention(h, c);
2440
2441         /* Copy the error information out */
2442         memcpy(&iocommand.error_info, c->err_info,
2443                 sizeof(iocommand.error_info));
2444         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2445                 kfree(buff);
2446                 cmd_special_free(h, c);
2447                 return -EFAULT;
2448         }
2449
2450         if (iocommand.Request.Type.Direction == XFER_READ) {
2451                 /* Copy the data out of the buffer we created */
2452                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2453                         kfree(buff);
2454                         cmd_special_free(h, c);
2455                         return -EFAULT;
2456                 }
2457         }
2458         kfree(buff);
2459         cmd_special_free(h, c);
2460         return 0;
2461 }
2462
2463 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2464 {
2465         BIG_IOCTL_Command_struct *ioc;
2466         struct CommandList *c;
2467         unsigned char **buff = NULL;
2468         int *buff_size = NULL;
2469         union u64bit temp64;
2470         BYTE sg_used = 0;
2471         int status = 0;
2472         int i;
2473         u32 left;
2474         u32 sz;
2475         BYTE __user *data_ptr;
2476
2477         if (!argp)
2478                 return -EINVAL;
2479         if (!capable(CAP_SYS_RAWIO))
2480                 return -EPERM;
2481         ioc = (BIG_IOCTL_Command_struct *)
2482             kmalloc(sizeof(*ioc), GFP_KERNEL);
2483         if (!ioc) {
2484                 status = -ENOMEM;
2485                 goto cleanup1;
2486         }
2487         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2488                 status = -EFAULT;
2489                 goto cleanup1;
2490         }
2491         if ((ioc->buf_size < 1) &&
2492             (ioc->Request.Type.Direction != XFER_NONE)) {
2493                 status = -EINVAL;
2494                 goto cleanup1;
2495         }
2496         /* Check kmalloc limits  using all SGs */
2497         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2498                 status = -EINVAL;
2499                 goto cleanup1;
2500         }
2501         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2502                 status = -EINVAL;
2503                 goto cleanup1;
2504         }
2505         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2506         if (!buff) {
2507                 status = -ENOMEM;
2508                 goto cleanup1;
2509         }
2510         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2511         if (!buff_size) {
2512                 status = -ENOMEM;
2513                 goto cleanup1;
2514         }
2515         left = ioc->buf_size;
2516         data_ptr = ioc->buf;
2517         while (left) {
2518                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2519                 buff_size[sg_used] = sz;
2520                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2521                 if (buff[sg_used] == NULL) {
2522                         status = -ENOMEM;
2523                         goto cleanup1;
2524                 }
2525                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2526                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2527                                 status = -ENOMEM;
2528                                 goto cleanup1;
2529                         }
2530                 } else
2531                         memset(buff[sg_used], 0, sz);
2532                 left -= sz;
2533                 data_ptr += sz;
2534                 sg_used++;
2535         }
2536         c = cmd_special_alloc(h);
2537         if (c == NULL) {
2538                 status = -ENOMEM;
2539                 goto cleanup1;
2540         }
2541         c->cmd_type = CMD_IOCTL_PEND;
2542         c->Header.ReplyQueue = 0;
2543
2544         if (ioc->buf_size > 0) {
2545                 c->Header.SGList = sg_used;
2546                 c->Header.SGTotal = sg_used;
2547         } else {
2548                 c->Header.SGList = 0;
2549                 c->Header.SGTotal = 0;
2550         }
2551         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2552         c->Header.Tag.lower = c->busaddr;
2553         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2554         if (ioc->buf_size > 0) {
2555                 int i;
2556                 for (i = 0; i < sg_used; i++) {
2557                         temp64.val = pci_map_single(h->pdev, buff[i],
2558                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2559                         c->SG[i].Addr.lower = temp64.val32.lower;
2560                         c->SG[i].Addr.upper = temp64.val32.upper;
2561                         c->SG[i].Len = buff_size[i];
2562                         /* we are not chaining */
2563                         c->SG[i].Ext = 0;
2564                 }
2565         }
2566         hpsa_scsi_do_simple_cmd_core(h, c);
2567         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2568         check_ioctl_unit_attention(h, c);
2569         /* Copy the error information out */
2570         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2571         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2572                 cmd_special_free(h, c);
2573                 status = -EFAULT;
2574                 goto cleanup1;
2575         }
2576         if (ioc->Request.Type.Direction == XFER_READ) {
2577                 /* Copy the data out of the buffer we created */
2578                 BYTE __user *ptr = ioc->buf;
2579                 for (i = 0; i < sg_used; i++) {
2580                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2581                                 cmd_special_free(h, c);
2582                                 status = -EFAULT;
2583                                 goto cleanup1;
2584                         }
2585                         ptr += buff_size[i];
2586                 }
2587         }
2588         cmd_special_free(h, c);
2589         status = 0;
2590 cleanup1:
2591         if (buff) {
2592                 for (i = 0; i < sg_used; i++)
2593                         kfree(buff[i]);
2594                 kfree(buff);
2595         }
2596         kfree(buff_size);
2597         kfree(ioc);
2598         return status;
2599 }
2600
2601 static void check_ioctl_unit_attention(struct ctlr_info *h,
2602         struct CommandList *c)
2603 {
2604         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2605                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2606                 (void) check_for_unit_attention(h, c);
2607 }
2608 /*
2609  * ioctl
2610  */
2611 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2612 {
2613         struct ctlr_info *h;
2614         void __user *argp = (void __user *)arg;
2615
2616         h = sdev_to_hba(dev);
2617
2618         switch (cmd) {
2619         case CCISS_DEREGDISK:
2620         case CCISS_REGNEWDISK:
2621         case CCISS_REGNEWD:
2622                 hpsa_update_scsi_devices(h, dev->host->host_no);
2623                 return 0;
2624         case CCISS_GETPCIINFO:
2625                 return hpsa_getpciinfo_ioctl(h, argp);
2626         case CCISS_GETDRIVVER:
2627                 return hpsa_getdrivver_ioctl(h, argp);
2628         case CCISS_PASSTHRU:
2629                 return hpsa_passthru_ioctl(h, argp);
2630         case CCISS_BIG_PASSTHRU:
2631                 return hpsa_big_passthru_ioctl(h, argp);
2632         default:
2633                 return -ENOTTY;
2634         }
2635 }
2636
2637 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2638         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2639         int cmd_type)
2640 {
2641         int pci_dir = XFER_NONE;
2642
2643         c->cmd_type = CMD_IOCTL_PEND;
2644         c->Header.ReplyQueue = 0;
2645         if (buff != NULL && size > 0) {
2646                 c->Header.SGList = 1;
2647                 c->Header.SGTotal = 1;
2648         } else {
2649                 c->Header.SGList = 0;
2650                 c->Header.SGTotal = 0;
2651         }
2652         c->Header.Tag.lower = c->busaddr;
2653         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2654
2655         c->Request.Type.Type = cmd_type;
2656         if (cmd_type == TYPE_CMD) {
2657                 switch (cmd) {
2658                 case HPSA_INQUIRY:
2659                         /* are we trying to read a vital product page */
2660                         if (page_code != 0) {
2661                                 c->Request.CDB[1] = 0x01;
2662                                 c->Request.CDB[2] = page_code;
2663                         }
2664                         c->Request.CDBLen = 6;
2665                         c->Request.Type.Attribute = ATTR_SIMPLE;
2666                         c->Request.Type.Direction = XFER_READ;
2667                         c->Request.Timeout = 0;
2668                         c->Request.CDB[0] = HPSA_INQUIRY;
2669                         c->Request.CDB[4] = size & 0xFF;
2670                         break;
2671                 case HPSA_REPORT_LOG:
2672                 case HPSA_REPORT_PHYS:
2673                         /* Talking to controller so It's a physical command
2674                            mode = 00 target = 0.  Nothing to write.
2675                          */
2676                         c->Request.CDBLen = 12;
2677                         c->Request.Type.Attribute = ATTR_SIMPLE;
2678                         c->Request.Type.Direction = XFER_READ;
2679                         c->Request.Timeout = 0;
2680                         c->Request.CDB[0] = cmd;
2681                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2682                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2683                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2684                         c->Request.CDB[9] = size & 0xFF;
2685                         break;
2686
2687                 case HPSA_READ_CAPACITY:
2688                         c->Request.CDBLen = 10;
2689                         c->Request.Type.Attribute = ATTR_SIMPLE;
2690                         c->Request.Type.Direction = XFER_READ;
2691                         c->Request.Timeout = 0;
2692                         c->Request.CDB[0] = cmd;
2693                         break;
2694                 case HPSA_CACHE_FLUSH:
2695                         c->Request.CDBLen = 12;
2696                         c->Request.Type.Attribute = ATTR_SIMPLE;
2697                         c->Request.Type.Direction = XFER_WRITE;
2698                         c->Request.Timeout = 0;
2699                         c->Request.CDB[0] = BMIC_WRITE;
2700                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2701                         break;
2702                 case TEST_UNIT_READY:
2703                         c->Request.CDBLen = 6;
2704                         c->Request.Type.Attribute = ATTR_SIMPLE;
2705                         c->Request.Type.Direction = XFER_NONE;
2706                         c->Request.Timeout = 0;
2707                         break;
2708                 default:
2709                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2710                         BUG();
2711                         return;
2712                 }
2713         } else if (cmd_type == TYPE_MSG) {
2714                 switch (cmd) {
2715
2716                 case  HPSA_DEVICE_RESET_MSG:
2717                         c->Request.CDBLen = 16;
2718                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2719                         c->Request.Type.Attribute = ATTR_SIMPLE;
2720                         c->Request.Type.Direction = XFER_NONE;
2721                         c->Request.Timeout = 0; /* Don't time out */
2722                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2723                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2724                         /* If bytes 4-7 are zero, it means reset the */
2725                         /* LunID device */
2726                         c->Request.CDB[4] = 0x00;
2727                         c->Request.CDB[5] = 0x00;
2728                         c->Request.CDB[6] = 0x00;
2729                         c->Request.CDB[7] = 0x00;
2730                 break;
2731
2732                 default:
2733                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2734                                 cmd);
2735                         BUG();
2736                 }
2737         } else {
2738                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2739                 BUG();
2740         }
2741
2742         switch (c->Request.Type.Direction) {
2743         case XFER_READ:
2744                 pci_dir = PCI_DMA_FROMDEVICE;
2745                 break;
2746         case XFER_WRITE:
2747                 pci_dir = PCI_DMA_TODEVICE;
2748                 break;
2749         case XFER_NONE:
2750                 pci_dir = PCI_DMA_NONE;
2751                 break;
2752         default:
2753                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2754         }
2755
2756         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2757
2758         return;
2759 }
2760
2761 /*
2762  * Map (physical) PCI mem into (virtual) kernel space
2763  */
2764 static void __iomem *remap_pci_mem(ulong base, ulong size)
2765 {
2766         ulong page_base = ((ulong) base) & PAGE_MASK;
2767         ulong page_offs = ((ulong) base) - page_base;
2768         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2769
2770         return page_remapped ? (page_remapped + page_offs) : NULL;
2771 }
2772
2773 /* Takes cmds off the submission queue and sends them to the hardware,
2774  * then puts them on the queue of cmds waiting for completion.
2775  */
2776 static void start_io(struct ctlr_info *h)
2777 {
2778         struct CommandList *c;
2779
2780         while (!hlist_empty(&h->reqQ)) {
2781                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2782                 /* can't do anything if fifo is full */
2783                 if ((h->access.fifo_full(h))) {
2784                         dev_warn(&h->pdev->dev, "fifo full\n");
2785                         break;
2786                 }
2787
2788                 /* Get the first entry from the Request Q */
2789                 removeQ(c);
2790                 h->Qdepth--;
2791
2792                 /* Tell the controller execute command */
2793                 h->access.submit_command(h, c);
2794
2795                 /* Put job onto the completed Q */
2796                 addQ(&h->cmpQ, c);
2797         }
2798 }
2799
2800 static inline unsigned long get_next_completion(struct ctlr_info *h)
2801 {
2802         return h->access.command_completed(h);
2803 }
2804
2805 static inline bool interrupt_pending(struct ctlr_info *h)
2806 {
2807         return h->access.intr_pending(h);
2808 }
2809
2810 static inline long interrupt_not_for_us(struct ctlr_info *h)
2811 {
2812         return !(h->msi_vector || h->msix_vector) &&
2813                 ((h->access.intr_pending(h) == 0) ||
2814                 (h->interrupts_enabled == 0));
2815 }
2816
2817 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2818         u32 raw_tag)
2819 {
2820         if (unlikely(tag_index >= h->nr_cmds)) {
2821                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2822                 return 1;
2823         }
2824         return 0;
2825 }
2826
2827 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2828 {
2829         removeQ(c);
2830         if (likely(c->cmd_type == CMD_SCSI))
2831                 complete_scsi_command(c, 0, raw_tag);
2832         else if (c->cmd_type == CMD_IOCTL_PEND)
2833                 complete(c->waiting);
2834 }
2835
2836 static inline u32 hpsa_tag_contains_index(u32 tag)
2837 {
2838 #define DIRECT_LOOKUP_BIT 0x10
2839         return tag & DIRECT_LOOKUP_BIT;
2840 }
2841
2842 static inline u32 hpsa_tag_to_index(u32 tag)
2843 {
2844 #define DIRECT_LOOKUP_SHIFT 5
2845         return tag >> DIRECT_LOOKUP_SHIFT;
2846 }
2847
2848 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2849 {
2850 #define HPSA_ERROR_BITS 0x03
2851         return tag & ~HPSA_ERROR_BITS;
2852 }
2853
2854 /* process completion of an indexed ("direct lookup") command */
2855 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2856         u32 raw_tag)
2857 {
2858         u32 tag_index;
2859         struct CommandList *c;
2860
2861         tag_index = hpsa_tag_to_index(raw_tag);
2862         if (bad_tag(h, tag_index, raw_tag))
2863                 return next_command(h);
2864         c = h->cmd_pool + tag_index;
2865         finish_cmd(c, raw_tag);
2866         return next_command(h);
2867 }
2868
2869 /* process completion of a non-indexed command */
2870 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2871         u32 raw_tag)
2872 {
2873         u32 tag;
2874         struct CommandList *c = NULL;
2875         struct hlist_node *tmp;
2876
2877         tag = hpsa_tag_discard_error_bits(raw_tag);
2878         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2879                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2880                         finish_cmd(c, raw_tag);
2881                         return next_command(h);
2882                 }
2883         }
2884         bad_tag(h, h->nr_cmds + 1, raw_tag);
2885         return next_command(h);
2886 }
2887
2888 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2889 {
2890         struct ctlr_info *h = dev_id;
2891         unsigned long flags;
2892         u32 raw_tag;
2893
2894         if (interrupt_not_for_us(h))
2895                 return IRQ_NONE;
2896         spin_lock_irqsave(&h->lock, flags);
2897         raw_tag = get_next_completion(h);
2898         while (raw_tag != FIFO_EMPTY) {
2899                 if (hpsa_tag_contains_index(raw_tag))
2900                         raw_tag = process_indexed_cmd(h, raw_tag);
2901                 else
2902                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2903         }
2904         spin_unlock_irqrestore(&h->lock, flags);
2905         return IRQ_HANDLED;
2906 }
2907
2908 /* Send a message CDB to the firmwart. */
2909 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2910                                                 unsigned char type)
2911 {
2912         struct Command {
2913                 struct CommandListHeader CommandHeader;
2914                 struct RequestBlock Request;
2915                 struct ErrDescriptor ErrorDescriptor;
2916         };
2917         struct Command *cmd;
2918         static const size_t cmd_sz = sizeof(*cmd) +
2919                                         sizeof(cmd->ErrorDescriptor);
2920         dma_addr_t paddr64;
2921         uint32_t paddr32, tag;
2922         void __iomem *vaddr;
2923         int i, err;
2924
2925         vaddr = pci_ioremap_bar(pdev, 0);
2926         if (vaddr == NULL)
2927                 return -ENOMEM;
2928
2929         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2930          * CCISS commands, so they must be allocated from the lower 4GiB of
2931          * memory.
2932          */
2933         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2934         if (err) {
2935                 iounmap(vaddr);
2936                 return -ENOMEM;
2937         }
2938
2939         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2940         if (cmd == NULL) {
2941                 iounmap(vaddr);
2942                 return -ENOMEM;
2943         }
2944
2945         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2946          * although there's no guarantee, we assume that the address is at
2947          * least 4-byte aligned (most likely, it's page-aligned).
2948          */
2949         paddr32 = paddr64;
2950
2951         cmd->CommandHeader.ReplyQueue = 0;
2952         cmd->CommandHeader.SGList = 0;
2953         cmd->CommandHeader.SGTotal = 0;
2954         cmd->CommandHeader.Tag.lower = paddr32;
2955         cmd->CommandHeader.Tag.upper = 0;
2956         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2957
2958         cmd->Request.CDBLen = 16;
2959         cmd->Request.Type.Type = TYPE_MSG;
2960         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2961         cmd->Request.Type.Direction = XFER_NONE;
2962         cmd->Request.Timeout = 0; /* Don't time out */
2963         cmd->Request.CDB[0] = opcode;
2964         cmd->Request.CDB[1] = type;
2965         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2966         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2967         cmd->ErrorDescriptor.Addr.upper = 0;
2968         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2969
2970         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2971
2972         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2973                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2974                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
2975                         break;
2976                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2977         }
2978
2979         iounmap(vaddr);
2980
2981         /* we leak the DMA buffer here ... no choice since the controller could
2982          *  still complete the command.
2983          */
2984         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
2985                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
2986                         opcode, type);
2987                 return -ETIMEDOUT;
2988         }
2989
2990         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
2991
2992         if (tag & HPSA_ERROR_BIT) {
2993                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
2994                         opcode, type);
2995                 return -EIO;
2996         }
2997
2998         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
2999                 opcode, type);
3000         return 0;
3001 }
3002
3003 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3004 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3005
3006 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3007 {
3008 /* the #defines are stolen from drivers/pci/msi.h. */
3009 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3010 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3011
3012         int pos;
3013         u16 control = 0;
3014
3015         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3016         if (pos) {
3017                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3018                 if (control & PCI_MSI_FLAGS_ENABLE) {
3019                         dev_info(&pdev->dev, "resetting MSI\n");
3020                         pci_write_config_word(pdev, msi_control_reg(pos),
3021                                         control & ~PCI_MSI_FLAGS_ENABLE);
3022                 }
3023         }
3024
3025         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3026         if (pos) {
3027                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3028                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3029                         dev_info(&pdev->dev, "resetting MSI-X\n");
3030                         pci_write_config_word(pdev, msi_control_reg(pos),
3031                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3032                 }
3033         }
3034
3035         return 0;
3036 }
3037
3038 /* This does a hard reset of the controller using PCI power management
3039  * states.
3040  */
3041 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3042 {
3043         u16 pmcsr, saved_config_space[32];
3044         int i, pos;
3045
3046         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3047
3048         /* This is very nearly the same thing as
3049          *
3050          * pci_save_state(pci_dev);
3051          * pci_set_power_state(pci_dev, PCI_D3hot);
3052          * pci_set_power_state(pci_dev, PCI_D0);
3053          * pci_restore_state(pci_dev);
3054          *
3055          * but we can't use these nice canned kernel routines on
3056          * kexec, because they also check the MSI/MSI-X state in PCI
3057          * configuration space and do the wrong thing when it is
3058          * set/cleared.  Also, the pci_save/restore_state functions
3059          * violate the ordering requirements for restoring the
3060          * configuration space from the CCISS document (see the
3061          * comment below).  So we roll our own ....
3062          */
3063
3064         for (i = 0; i < 32; i++)
3065                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3066
3067         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3068         if (pos == 0) {
3069                 dev_err(&pdev->dev,
3070                         "hpsa_reset_controller: PCI PM not supported\n");
3071                 return -ENODEV;
3072         }
3073
3074         /* Quoting from the Open CISS Specification: "The Power
3075          * Management Control/Status Register (CSR) controls the power
3076          * state of the device.  The normal operating state is D0,
3077          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3078          * the controller, place the interface device in D3 then to
3079          * D0, this causes a secondary PCI reset which will reset the
3080          * controller."
3081          */
3082
3083         /* enter the D3hot power management state */
3084         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3085         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3086         pmcsr |= PCI_D3hot;
3087         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3088
3089         msleep(500);
3090
3091         /* enter the D0 power management state */
3092         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3093         pmcsr |= PCI_D0;
3094         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3095
3096         msleep(500);
3097
3098         /* Restore the PCI configuration space.  The Open CISS
3099          * Specification says, "Restore the PCI Configuration
3100          * Registers, offsets 00h through 60h. It is important to
3101          * restore the command register, 16-bits at offset 04h,
3102          * last. Do not restore the configuration status register,
3103          * 16-bits at offset 06h."  Note that the offset is 2*i.
3104          */
3105         for (i = 0; i < 32; i++) {
3106                 if (i == 2 || i == 3)
3107                         continue;
3108                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3109         }
3110         wmb();
3111         pci_write_config_word(pdev, 4, saved_config_space[2]);
3112
3113         return 0;
3114 }
3115
3116 /*
3117  *  We cannot read the structure directly, for portability we must use
3118  *   the io functions.
3119  *   This is for debug only.
3120  */
3121 #ifdef HPSA_DEBUG
3122 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3123 {
3124         int i;
3125         char temp_name[17];
3126
3127         dev_info(dev, "Controller Configuration information\n");
3128         dev_info(dev, "------------------------------------\n");
3129         for (i = 0; i < 4; i++)
3130                 temp_name[i] = readb(&(tb->Signature[i]));
3131         temp_name[4] = '\0';
3132         dev_info(dev, "   Signature = %s\n", temp_name);
3133         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3134         dev_info(dev, "   Transport methods supported = 0x%x\n",
3135                readl(&(tb->TransportSupport)));
3136         dev_info(dev, "   Transport methods active = 0x%x\n",
3137                readl(&(tb->TransportActive)));
3138         dev_info(dev, "   Requested transport Method = 0x%x\n",
3139                readl(&(tb->HostWrite.TransportRequest)));
3140         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3141                readl(&(tb->HostWrite.CoalIntDelay)));
3142         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3143                readl(&(tb->HostWrite.CoalIntCount)));
3144         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3145                readl(&(tb->CmdsOutMax)));
3146         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3147         for (i = 0; i < 16; i++)
3148                 temp_name[i] = readb(&(tb->ServerName[i]));
3149         temp_name[16] = '\0';
3150         dev_info(dev, "   Server Name = %s\n", temp_name);
3151         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3152                 readl(&(tb->HeartBeat)));
3153 }
3154 #endif                          /* HPSA_DEBUG */
3155
3156 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3157 {
3158         int i, offset, mem_type, bar_type;
3159
3160         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3161                 return 0;
3162         offset = 0;
3163         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3164                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3165                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3166                         offset += 4;
3167                 else {
3168                         mem_type = pci_resource_flags(pdev, i) &
3169                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3170                         switch (mem_type) {
3171                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3172                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3173                                 offset += 4;    /* 32 bit */
3174                                 break;
3175                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3176                                 offset += 8;
3177                                 break;
3178                         default:        /* reserved in PCI 2.2 */
3179                                 dev_warn(&pdev->dev,
3180                                        "base address is invalid\n");
3181                                 return -1;
3182                                 break;
3183                         }
3184                 }
3185                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3186                         return i + 1;
3187         }
3188         return -1;
3189 }
3190
3191 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3192  * controllers that are capable. If not, we use IO-APIC mode.
3193  */
3194
3195 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3196                                            struct pci_dev *pdev, u32 board_id)
3197 {
3198 #ifdef CONFIG_PCI_MSI
3199         int err;
3200         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3201         {0, 2}, {0, 3}
3202         };
3203
3204         /* Some boards advertise MSI but don't really support it */
3205         if ((board_id == 0x40700E11) ||
3206             (board_id == 0x40800E11) ||
3207             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3208                 goto default_int_mode;
3209         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3210                 dev_info(&pdev->dev, "MSIX\n");
3211                 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3212                 if (!err) {
3213                         h->intr[0] = hpsa_msix_entries[0].vector;
3214                         h->intr[1] = hpsa_msix_entries[1].vector;
3215                         h->intr[2] = hpsa_msix_entries[2].vector;
3216                         h->intr[3] = hpsa_msix_entries[3].vector;
3217                         h->msix_vector = 1;
3218                         return;
3219                 }
3220                 if (err > 0) {
3221                         dev_warn(&pdev->dev, "only %d MSI-X vectors "
3222                                "available\n", err);
3223                         goto default_int_mode;
3224                 } else {
3225                         dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3226                                err);
3227                         goto default_int_mode;
3228                 }
3229         }
3230         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3231                 dev_info(&pdev->dev, "MSI\n");
3232                 if (!pci_enable_msi(pdev))
3233                         h->msi_vector = 1;
3234                 else
3235                         dev_warn(&pdev->dev, "MSI init failed\n");
3236         }
3237 default_int_mode:
3238 #endif                          /* CONFIG_PCI_MSI */
3239         /* if we get here we're going to use the default interrupt mode */
3240         h->intr[PERF_MODE_INT] = pdev->irq;
3241 }
3242
3243 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3244 {
3245         ushort subsystem_vendor_id, subsystem_device_id, command;
3246         u32 board_id, scratchpad = 0;
3247         u64 cfg_offset;
3248         u32 cfg_base_addr;
3249         u64 cfg_base_addr_index;
3250         u32 trans_offset;
3251         int i, prod_index, err;
3252
3253         subsystem_vendor_id = pdev->subsystem_vendor;
3254         subsystem_device_id = pdev->subsystem_device;
3255         board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3256                     subsystem_vendor_id);
3257
3258         for (i = 0; i < ARRAY_SIZE(products); i++)
3259                 if (board_id == products[i].board_id)
3260                         break;
3261
3262         prod_index = i;
3263
3264         if (prod_index == ARRAY_SIZE(products)) {
3265                 prod_index--;
3266                 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3267                                 !hpsa_allow_any) {
3268                         dev_warn(&pdev->dev, "unrecognized board ID:"
3269                                 " 0x%08lx, ignoring.\n",
3270                                 (unsigned long) board_id);
3271                         return -ENODEV;
3272                 }
3273         }
3274         /* check to see if controller has been disabled
3275          * BEFORE trying to enable it
3276          */
3277         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3278         if (!(command & 0x02)) {
3279                 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3280                 return -ENODEV;
3281         }
3282
3283         err = pci_enable_device(pdev);
3284         if (err) {
3285                 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3286                 return err;
3287         }
3288
3289         err = pci_request_regions(pdev, "hpsa");
3290         if (err) {
3291                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3292                 return err;
3293         }
3294
3295         /* If the kernel supports MSI/MSI-X we will try to enable that,
3296          * else we use the IO-APIC interrupt assigned to us by system ROM.
3297          */
3298         hpsa_interrupt_mode(h, pdev, board_id);
3299
3300         /* find the memory BAR */
3301         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3302                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3303                         break;
3304         }
3305         if (i == DEVICE_COUNT_RESOURCE) {
3306                 dev_warn(&pdev->dev, "no memory BAR found\n");
3307                 err = -ENODEV;
3308                 goto err_out_free_res;
3309         }
3310
3311         h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3312                                                  * already removed
3313                                                  */
3314
3315         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3316
3317         /* Wait for the board to become ready.  */
3318         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3319                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3320                 if (scratchpad == HPSA_FIRMWARE_READY)
3321                         break;
3322                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3323         }
3324         if (scratchpad != HPSA_FIRMWARE_READY) {
3325                 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3326                 err = -ENODEV;
3327                 goto err_out_free_res;
3328         }
3329
3330         /* get the address index number */
3331         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3332         cfg_base_addr &= (u32) 0x0000ffff;
3333         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3334         if (cfg_base_addr_index == -1) {
3335                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3336                 err = -ENODEV;
3337                 goto err_out_free_res;
3338         }
3339
3340         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3341         h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3342                                cfg_base_addr_index) + cfg_offset,
3343                                 sizeof(h->cfgtable));
3344         /* Find performant mode table. */
3345         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3346         h->transtable = remap_pci_mem(pci_resource_start(pdev,
3347                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3348                                 sizeof(*h->transtable));
3349
3350         h->board_id = board_id;
3351         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3352         h->product_name = products[prod_index].product_name;
3353         h->access = *(products[prod_index].access);
3354         /* Allow room for some ioctls */
3355         h->nr_cmds = h->max_commands - 4;
3356
3357         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3358             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3359             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3360             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3361                 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3362                 err = -ENODEV;
3363                 goto err_out_free_res;
3364         }
3365 #ifdef CONFIG_X86
3366         {
3367                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3368                 u32 prefetch;
3369                 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3370                 prefetch |= 0x100;
3371                 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3372         }
3373 #endif
3374
3375         /* Disabling DMA prefetch for the P600
3376          * An ASIC bug may result in a prefetch beyond
3377          * physical memory.
3378          */
3379         if (board_id == 0x3225103C) {
3380                 u32 dma_prefetch;
3381                 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3382                 dma_prefetch |= 0x8000;
3383                 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3384         }
3385
3386         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3387         /* Update the field, and then ring the doorbell */
3388         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3389         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3390
3391         /* under certain very rare conditions, this can take awhile.
3392          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3393          * as we enter this code.)
3394          */
3395         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3396                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3397                         break;
3398                 /* delay and try again */
3399                 msleep(10);
3400         }
3401
3402 #ifdef HPSA_DEBUG
3403         print_cfg_table(&pdev->dev, h->cfgtable);
3404 #endif                          /* HPSA_DEBUG */
3405
3406         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3407                 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3408                 err = -ENODEV;
3409                 goto err_out_free_res;
3410         }
3411         return 0;
3412
3413 err_out_free_res:
3414         /*
3415          * Deliberately omit pci_disable_device(): it does something nasty to
3416          * Smart Array controllers that pci_enable_device does not undo
3417          */
3418         pci_release_regions(pdev);
3419         return err;
3420 }
3421
3422 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3423 {
3424         int rc;
3425
3426 #define HBA_INQUIRY_BYTE_COUNT 64
3427         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3428         if (!h->hba_inquiry_data)
3429                 return;
3430         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3431                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3432         if (rc != 0) {
3433                 kfree(h->hba_inquiry_data);
3434                 h->hba_inquiry_data = NULL;
3435         }
3436 }
3437
3438 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3439                                     const struct pci_device_id *ent)
3440 {
3441         int i, rc;
3442         int dac;
3443         struct ctlr_info *h;
3444
3445         if (number_of_controllers == 0)
3446                 printk(KERN_INFO DRIVER_NAME "\n");
3447         if (reset_devices) {
3448                 /* Reset the controller with a PCI power-cycle */
3449                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3450                         return -ENODEV;
3451
3452                 /* Some devices (notably the HP Smart Array 5i Controller)
3453                    need a little pause here */
3454                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3455
3456                 /* Now try to get the controller to respond to a no-op */
3457                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3458                         if (hpsa_noop(pdev) == 0)
3459                                 break;
3460                         else
3461                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3462                                                 (i < 11 ? "; re-trying" : ""));
3463                 }
3464         }
3465
3466         /* Command structures must be aligned on a 32-byte boundary because
3467          * the 5 lower bits of the address are used by the hardware. and by
3468          * the driver.  See comments in hpsa.h for more info.
3469          */
3470 #define COMMANDLIST_ALIGNMENT 32
3471         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3472         h = kzalloc(sizeof(*h), GFP_KERNEL);
3473         if (!h)
3474                 return -ENOMEM;
3475
3476         h->busy_initializing = 1;
3477         INIT_HLIST_HEAD(&h->cmpQ);
3478         INIT_HLIST_HEAD(&h->reqQ);
3479         mutex_init(&h->busy_shutting_down);
3480         init_completion(&h->scan_wait);
3481         rc = hpsa_pci_init(h, pdev);
3482         if (rc != 0)
3483                 goto clean1;
3484
3485         sprintf(h->devname, "hpsa%d", number_of_controllers);
3486         h->ctlr = number_of_controllers;
3487         number_of_controllers++;
3488         h->pdev = pdev;
3489
3490         /* configure PCI DMA stuff */
3491         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3492         if (rc == 0) {
3493                 dac = 1;
3494         } else {
3495                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3496                 if (rc == 0) {
3497                         dac = 0;
3498                 } else {
3499                         dev_err(&pdev->dev, "no suitable DMA available\n");
3500                         goto clean1;
3501                 }
3502         }
3503
3504         /* make sure the board interrupts are off */
3505         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3506         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3507                         IRQF_DISABLED, h->devname, h);
3508         if (rc) {
3509                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3510                        h->intr[PERF_MODE_INT], h->devname);
3511                 goto clean2;
3512         }
3513
3514         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3515                h->devname, pdev->device,
3516                h->intr[PERF_MODE_INT], dac ? "" : " not");
3517
3518         h->cmd_pool_bits =
3519             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3520                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3521         h->cmd_pool = pci_alloc_consistent(h->pdev,
3522                     h->nr_cmds * sizeof(*h->cmd_pool),
3523                     &(h->cmd_pool_dhandle));
3524         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3525                     h->nr_cmds * sizeof(*h->errinfo_pool),
3526                     &(h->errinfo_pool_dhandle));
3527         if ((h->cmd_pool_bits == NULL)
3528             || (h->cmd_pool == NULL)
3529             || (h->errinfo_pool == NULL)) {
3530                 dev_err(&pdev->dev, "out of memory");
3531                 rc = -ENOMEM;
3532                 goto clean4;
3533         }
3534         spin_lock_init(&h->lock);
3535
3536         pci_set_drvdata(pdev, h);
3537         memset(h->cmd_pool_bits, 0,
3538                ((h->nr_cmds + BITS_PER_LONG -
3539                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3540
3541         hpsa_scsi_setup(h);
3542
3543         /* Turn the interrupts on so we can service requests */
3544         h->access.set_intr_mask(h, HPSA_INTR_ON);
3545
3546         hpsa_put_ctlr_into_performant_mode(h);
3547         hpsa_hba_inquiry(h);
3548         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3549         h->busy_initializing = 0;
3550         return 1;
3551
3552 clean4:
3553         kfree(h->cmd_pool_bits);
3554         if (h->cmd_pool)
3555                 pci_free_consistent(h->pdev,
3556                             h->nr_cmds * sizeof(struct CommandList),
3557                             h->cmd_pool, h->cmd_pool_dhandle);
3558         if (h->errinfo_pool)
3559                 pci_free_consistent(h->pdev,
3560                             h->nr_cmds * sizeof(struct ErrorInfo),
3561                             h->errinfo_pool,
3562                             h->errinfo_pool_dhandle);
3563         free_irq(h->intr[PERF_MODE_INT], h);
3564 clean2:
3565 clean1:
3566         h->busy_initializing = 0;
3567         kfree(h);
3568         return rc;
3569 }
3570
3571 static void hpsa_flush_cache(struct ctlr_info *h)
3572 {
3573         char *flush_buf;
3574         struct CommandList *c;
3575
3576         flush_buf = kzalloc(4, GFP_KERNEL);
3577         if (!flush_buf)
3578                 return;
3579
3580         c = cmd_special_alloc(h);
3581         if (!c) {
3582                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3583                 goto out_of_memory;
3584         }
3585         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3586                 RAID_CTLR_LUNID, TYPE_CMD);
3587         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3588         if (c->err_info->CommandStatus != 0)
3589                 dev_warn(&h->pdev->dev,
3590                         "error flushing cache on controller\n");
3591         cmd_special_free(h, c);
3592 out_of_memory:
3593         kfree(flush_buf);
3594 }
3595
3596 static void hpsa_shutdown(struct pci_dev *pdev)
3597 {
3598         struct ctlr_info *h;
3599
3600         h = pci_get_drvdata(pdev);
3601         /* Turn board interrupts off  and send the flush cache command
3602          * sendcmd will turn off interrupt, and send the flush...
3603          * To write all data in the battery backed cache to disks
3604          */
3605         hpsa_flush_cache(h);
3606         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3607         free_irq(h->intr[PERF_MODE_INT], h);
3608 #ifdef CONFIG_PCI_MSI
3609         if (h->msix_vector)
3610                 pci_disable_msix(h->pdev);
3611         else if (h->msi_vector)
3612                 pci_disable_msi(h->pdev);
3613 #endif                          /* CONFIG_PCI_MSI */
3614 }
3615
3616 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3617 {
3618         struct ctlr_info *h;
3619
3620         if (pci_get_drvdata(pdev) == NULL) {
3621                 dev_err(&pdev->dev, "unable to remove device \n");
3622                 return;
3623         }
3624         h = pci_get_drvdata(pdev);
3625         mutex_lock(&h->busy_shutting_down);
3626         remove_from_scan_list(h);
3627         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3628         hpsa_shutdown(pdev);
3629         iounmap(h->vaddr);
3630         pci_free_consistent(h->pdev,
3631                 h->nr_cmds * sizeof(struct CommandList),
3632                 h->cmd_pool, h->cmd_pool_dhandle);
3633         pci_free_consistent(h->pdev,
3634                 h->nr_cmds * sizeof(struct ErrorInfo),
3635                 h->errinfo_pool, h->errinfo_pool_dhandle);
3636         pci_free_consistent(h->pdev, h->reply_pool_size,
3637                 h->reply_pool, h->reply_pool_dhandle);
3638         kfree(h->cmd_pool_bits);
3639         kfree(h->blockFetchTable);
3640         kfree(h->hba_inquiry_data);
3641         /*
3642          * Deliberately omit pci_disable_device(): it does something nasty to
3643          * Smart Array controllers that pci_enable_device does not undo
3644          */
3645         pci_release_regions(pdev);
3646         pci_set_drvdata(pdev, NULL);
3647         mutex_unlock(&h->busy_shutting_down);
3648         kfree(h);
3649 }
3650
3651 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3652         __attribute__((unused)) pm_message_t state)
3653 {
3654         return -ENOSYS;
3655 }
3656
3657 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3658 {
3659         return -ENOSYS;
3660 }
3661
3662 static struct pci_driver hpsa_pci_driver = {
3663         .name = "hpsa",
3664         .probe = hpsa_init_one,
3665         .remove = __devexit_p(hpsa_remove_one),
3666         .id_table = hpsa_pci_device_id, /* id_table */
3667         .shutdown = hpsa_shutdown,
3668         .suspend = hpsa_suspend,
3669         .resume = hpsa_resume,
3670 };
3671
3672 /* Fill in bucket_map[], given nsgs (the max number of
3673  * scatter gather elements supported) and bucket[],
3674  * which is an array of 8 integers.  The bucket[] array
3675  * contains 8 different DMA transfer sizes (in 16
3676  * byte increments) which the controller uses to fetch
3677  * commands.  This function fills in bucket_map[], which
3678  * maps a given number of scatter gather elements to one of
3679  * the 8 DMA transfer sizes.  The point of it is to allow the
3680  * controller to only do as much DMA as needed to fetch the
3681  * command, with the DMA transfer size encoded in the lower
3682  * bits of the command address.
3683  */
3684 static void  calc_bucket_map(int bucket[], int num_buckets,
3685         int nsgs, int *bucket_map)
3686 {
3687         int i, j, b, size;
3688
3689         /* even a command with 0 SGs requires 4 blocks */
3690 #define MINIMUM_TRANSFER_BLOCKS 4
3691 #define NUM_BUCKETS 8
3692         /* Note, bucket_map must have nsgs+1 entries. */
3693         for (i = 0; i <= nsgs; i++) {
3694                 /* Compute size of a command with i SG entries */
3695                 size = i + MINIMUM_TRANSFER_BLOCKS;
3696                 b = num_buckets; /* Assume the biggest bucket */
3697                 /* Find the bucket that is just big enough */
3698                 for (j = 0; j < 8; j++) {
3699                         if (bucket[j] >= size) {
3700                                 b = j;
3701                                 break;
3702                         }
3703                 }
3704                 /* for a command with i SG entries, use bucket b. */
3705                 bucket_map[i] = b;
3706         }
3707 }
3708
3709 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3710 {
3711         u32 trans_support;
3712         u64 trans_offset;
3713         /*  5 = 1 s/g entry or 4k
3714          *  6 = 2 s/g entry or 8k
3715          *  8 = 4 s/g entry or 16k
3716          * 10 = 6 s/g entry or 24k
3717          */
3718         int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3719         int i = 0;
3720         int l = 0;
3721         unsigned long register_value;
3722
3723         trans_support = readl(&(h->cfgtable->TransportSupport));
3724         if (!(trans_support & PERFORMANT_MODE))
3725                 return;
3726
3727         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3728         h->max_sg_entries = 32;
3729         /* Performant mode ring buffer and supporting data structures */
3730         h->reply_pool_size = h->max_commands * sizeof(u64);
3731         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3732                                 &(h->reply_pool_dhandle));
3733
3734         /* Need a block fetch table for performant mode */
3735         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3736                                 sizeof(u32)), GFP_KERNEL);
3737
3738         if ((h->reply_pool == NULL)
3739                 || (h->blockFetchTable == NULL))
3740                 goto clean_up;
3741
3742         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3743
3744         /* Controller spec: zero out this buffer. */
3745         memset(h->reply_pool, 0, h->reply_pool_size);
3746         h->reply_pool_head = h->reply_pool;
3747
3748         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3749         bft[7] = h->max_sg_entries + 4;
3750         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3751         for (i = 0; i < 8; i++)
3752                 writel(bft[i], &h->transtable->BlockFetch[i]);
3753
3754         /* size of controller ring buffer */
3755         writel(h->max_commands, &h->transtable->RepQSize);
3756         writel(1, &h->transtable->RepQCount);
3757         writel(0, &h->transtable->RepQCtrAddrLow32);
3758         writel(0, &h->transtable->RepQCtrAddrHigh32);
3759         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3760         writel(0, &h->transtable->RepQAddr0High32);
3761         writel(CFGTBL_Trans_Performant,
3762                 &(h->cfgtable->HostWrite.TransportRequest));
3763         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3764         /* under certain very rare conditions, this can take awhile.
3765          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3766          * as we enter this code.) */
3767         for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3768                 register_value = readl(h->vaddr + SA5_DOORBELL);
3769                 if (!(register_value & CFGTBL_ChangeReq))
3770                         break;
3771                 /* delay and try again */
3772                 set_current_state(TASK_INTERRUPTIBLE);
3773                 schedule_timeout(10);
3774         }
3775         register_value = readl(&(h->cfgtable->TransportActive));
3776         if (!(register_value & CFGTBL_Trans_Performant)) {
3777                 dev_warn(&h->pdev->dev, "unable to get board into"
3778                                         " performant mode\n");
3779                 return;
3780         }
3781
3782         /* Change the access methods to the performant access methods */
3783         h->access = SA5_performant_access;
3784         h->transMethod = CFGTBL_Trans_Performant;
3785
3786         return;
3787
3788 clean_up:
3789         if (h->reply_pool)
3790                 pci_free_consistent(h->pdev, h->reply_pool_size,
3791                         h->reply_pool, h->reply_pool_dhandle);
3792         kfree(h->blockFetchTable);
3793 }
3794
3795 /*
3796  *  This is it.  Register the PCI driver information for the cards we control
3797  *  the OS will call our registered routines when it finds one of our cards.
3798  */
3799 static int __init hpsa_init(void)
3800 {
3801         int err;
3802         /* Start the scan thread */
3803         hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3804         if (IS_ERR(hpsa_scan_thread)) {
3805                 err = PTR_ERR(hpsa_scan_thread);
3806                 return -ENODEV;
3807         }
3808         err = pci_register_driver(&hpsa_pci_driver);
3809         if (err)
3810                 kthread_stop(hpsa_scan_thread);
3811         return err;
3812 }
3813
3814 static void __exit hpsa_cleanup(void)
3815 {
3816         pci_unregister_driver(&hpsa_pci_driver);
3817         kthread_stop(hpsa_scan_thread);
3818 }
3819
3820 module_init(hpsa_init);
3821 module_exit(hpsa_cleanup);