82987e1850a16f16e22c96ef53608c0b03d9097b
[safe/jmp/linux-2.6] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "1.0.0"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
90         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92         {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102         {0x3223103C, "Smart Array P800", &SA5_access},
103         {0x3234103C, "Smart Array P400", &SA5_access},
104         {0x323d103c, "Smart Array P700M", &SA5_access},
105         {0x3241103C, "Smart Array P212", &SA5_access},
106         {0x3243103C, "Smart Array P410", &SA5_access},
107         {0x3245103C, "Smart Array P410i", &SA5_access},
108         {0x3247103C, "Smart Array P411", &SA5_access},
109         {0x3249103C, "Smart Array P812", &SA5_access},
110         {0x324a103C, "Smart Array P712m", &SA5_access},
111         {0x324b103C, "Smart Array P711m", &SA5_access},
112         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
113 };
114
115 static int number_of_controllers;
116
117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119 static void start_io(struct ctlr_info *h);
120
121 #ifdef CONFIG_COMPAT
122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123 #endif
124
125 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127 static struct CommandList *cmd_alloc(struct ctlr_info *h);
128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
129 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
130         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
131         int cmd_type);
132
133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134                 void (*done)(struct scsi_cmnd *));
135
136 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
137 static int hpsa_slave_alloc(struct scsi_device *sdev);
138 static void hpsa_slave_destroy(struct scsi_device *sdev);
139
140 static ssize_t raid_level_show(struct device *dev,
141         struct device_attribute *attr, char *buf);
142 static ssize_t lunid_show(struct device *dev,
143         struct device_attribute *attr, char *buf);
144 static ssize_t unique_id_show(struct device *dev,
145         struct device_attribute *attr, char *buf);
146 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
147 static ssize_t host_store_rescan(struct device *dev,
148          struct device_attribute *attr, const char *buf, size_t count);
149 static int check_for_unit_attention(struct ctlr_info *h,
150         struct CommandList *c);
151 static void check_ioctl_unit_attention(struct ctlr_info *h,
152         struct CommandList *c);
153
154 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
155 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
156 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
157 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
158
159 static struct device_attribute *hpsa_sdev_attrs[] = {
160         &dev_attr_raid_level,
161         &dev_attr_lunid,
162         &dev_attr_unique_id,
163         NULL,
164 };
165
166 static struct device_attribute *hpsa_shost_attrs[] = {
167         &dev_attr_rescan,
168         NULL,
169 };
170
171 static struct scsi_host_template hpsa_driver_template = {
172         .module                 = THIS_MODULE,
173         .name                   = "hpsa",
174         .proc_name              = "hpsa",
175         .queuecommand           = hpsa_scsi_queue_command,
176         .can_queue              = 512,
177         .this_id                = -1,
178         .sg_tablesize           = MAXSGENTRIES,
179         .cmd_per_lun            = 512,
180         .use_clustering         = ENABLE_CLUSTERING,
181         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
182         .ioctl                  = hpsa_ioctl,
183         .slave_alloc            = hpsa_slave_alloc,
184         .slave_destroy          = hpsa_slave_destroy,
185 #ifdef CONFIG_COMPAT
186         .compat_ioctl           = hpsa_compat_ioctl,
187 #endif
188         .sdev_attrs = hpsa_sdev_attrs,
189         .shost_attrs = hpsa_shost_attrs,
190 };
191
192 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
193 {
194         unsigned long *priv = shost_priv(sdev->host);
195         return (struct ctlr_info *) *priv;
196 }
197
198 static struct task_struct *hpsa_scan_thread;
199 static DEFINE_MUTEX(hpsa_scan_mutex);
200 static LIST_HEAD(hpsa_scan_q);
201 static int hpsa_scan_func(void *data);
202
203 /**
204  * add_to_scan_list() - add controller to rescan queue
205  * @h:                Pointer to the controller.
206  *
207  * Adds the controller to the rescan queue if not already on the queue.
208  *
209  * returns 1 if added to the queue, 0 if skipped (could be on the
210  * queue already, or the controller could be initializing or shutting
211  * down).
212  **/
213 static int add_to_scan_list(struct ctlr_info *h)
214 {
215         struct ctlr_info *test_h;
216         int found = 0;
217         int ret = 0;
218
219         if (h->busy_initializing)
220                 return 0;
221
222         /*
223          * If we don't get the lock, it means the driver is unloading
224          * and there's no point in scheduling a new scan.
225          */
226         if (!mutex_trylock(&h->busy_shutting_down))
227                 return 0;
228
229         mutex_lock(&hpsa_scan_mutex);
230         list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
231                 if (test_h == h) {
232                         found = 1;
233                         break;
234                 }
235         }
236         if (!found && !h->busy_scanning) {
237                 INIT_COMPLETION(h->scan_wait);
238                 list_add_tail(&h->scan_list, &hpsa_scan_q);
239                 ret = 1;
240         }
241         mutex_unlock(&hpsa_scan_mutex);
242         mutex_unlock(&h->busy_shutting_down);
243
244         return ret;
245 }
246
247 /**
248  * remove_from_scan_list() - remove controller from rescan queue
249  * @h:                     Pointer to the controller.
250  *
251  * Removes the controller from the rescan queue if present. Blocks if
252  * the controller is currently conducting a rescan.  The controller
253  * can be in one of three states:
254  * 1. Doesn't need a scan
255  * 2. On the scan list, but not scanning yet (we remove it)
256  * 3. Busy scanning (and not on the list). In this case we want to wait for
257  *    the scan to complete to make sure the scanning thread for this
258  *    controller is completely idle.
259  **/
260 static void remove_from_scan_list(struct ctlr_info *h)
261 {
262         struct ctlr_info *test_h, *tmp_h;
263
264         mutex_lock(&hpsa_scan_mutex);
265         list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
266                 if (test_h == h) { /* state 2. */
267                         list_del(&h->scan_list);
268                         complete_all(&h->scan_wait);
269                         mutex_unlock(&hpsa_scan_mutex);
270                         return;
271                 }
272         }
273         if (h->busy_scanning) { /* state 3. */
274                 mutex_unlock(&hpsa_scan_mutex);
275                 wait_for_completion(&h->scan_wait);
276         } else { /* state 1, nothing to do. */
277                 mutex_unlock(&hpsa_scan_mutex);
278         }
279 }
280
281 /* hpsa_scan_func() - kernel thread used to rescan controllers
282  * @data:        Ignored.
283  *
284  * A kernel thread used scan for drive topology changes on
285  * controllers. The thread processes only one controller at a time
286  * using a queue.  Controllers are added to the queue using
287  * add_to_scan_list() and removed from the queue either after done
288  * processing or using remove_from_scan_list().
289  *
290  * returns 0.
291  **/
292 static int hpsa_scan_func(__attribute__((unused)) void *data)
293 {
294         struct ctlr_info *h;
295         int host_no;
296
297         while (1) {
298                 set_current_state(TASK_INTERRUPTIBLE);
299                 schedule();
300                 if (kthread_should_stop())
301                         break;
302
303                 while (1) {
304                         mutex_lock(&hpsa_scan_mutex);
305                         if (list_empty(&hpsa_scan_q)) {
306                                 mutex_unlock(&hpsa_scan_mutex);
307                                 break;
308                         }
309                         h = list_entry(hpsa_scan_q.next, struct ctlr_info,
310                                         scan_list);
311                         list_del(&h->scan_list);
312                         h->busy_scanning = 1;
313                         mutex_unlock(&hpsa_scan_mutex);
314                         host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
315                         hpsa_update_scsi_devices(h, host_no);
316                         complete_all(&h->scan_wait);
317                         mutex_lock(&hpsa_scan_mutex);
318                         h->busy_scanning = 0;
319                         mutex_unlock(&hpsa_scan_mutex);
320                 }
321         }
322         return 0;
323 }
324
325 static int check_for_unit_attention(struct ctlr_info *h,
326         struct CommandList *c)
327 {
328         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
329                 return 0;
330
331         switch (c->err_info->SenseInfo[12]) {
332         case STATE_CHANGED:
333                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
334                         "detected, command retried\n", h->ctlr);
335                 break;
336         case LUN_FAILED:
337                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
338                         "detected, action required\n", h->ctlr);
339                 break;
340         case REPORT_LUNS_CHANGED:
341                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
342                         "changed\n", h->ctlr);
343         /*
344          * Here, we could call add_to_scan_list and wake up the scan thread,
345          * except that it's quite likely that we will get more than one
346          * REPORT_LUNS_CHANGED condition in quick succession, which means
347          * that those which occur after the first one will likely happen
348          * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
349          * robust enough to restart in the middle, undoing what it has already
350          * done, and it's not clear that it's even possible to do this, since
351          * part of what it does is notify the SCSI mid layer, which starts
352          * doing it's own i/o to read partition tables and so on, and the
353          * driver doesn't have visibility to know what might need undoing.
354          * In any event, if possible, it is horribly complicated to get right
355          * so we just don't do it for now.
356          *
357          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
358          */
359                 break;
360         case POWER_OR_RESET:
361                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
362                         "or device reset detected\n", h->ctlr);
363                 break;
364         case UNIT_ATTENTION_CLEARED:
365                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
366                     "cleared by another initiator\n", h->ctlr);
367                 break;
368         default:
369                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
370                         "unit attention detected\n", h->ctlr);
371                 break;
372         }
373         return 1;
374 }
375
376 static ssize_t host_store_rescan(struct device *dev,
377                                  struct device_attribute *attr,
378                                  const char *buf, size_t count)
379 {
380         struct ctlr_info *h;
381         struct Scsi_Host *shost = class_to_shost(dev);
382         unsigned long *priv = shost_priv(shost);
383         h = (struct ctlr_info *) *priv;
384         if (add_to_scan_list(h)) {
385                 wake_up_process(hpsa_scan_thread);
386                 wait_for_completion_interruptible(&h->scan_wait);
387         }
388         return count;
389 }
390
391 /* Enqueuing and dequeuing functions for cmdlists. */
392 static inline void addQ(struct hlist_head *list, struct CommandList *c)
393 {
394         hlist_add_head(&c->list, list);
395 }
396
397 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
398         struct CommandList *c)
399 {
400         unsigned long flags;
401         spin_lock_irqsave(&h->lock, flags);
402         addQ(&h->reqQ, c);
403         h->Qdepth++;
404         start_io(h);
405         spin_unlock_irqrestore(&h->lock, flags);
406 }
407
408 static inline void removeQ(struct CommandList *c)
409 {
410         if (WARN_ON(hlist_unhashed(&c->list)))
411                 return;
412         hlist_del_init(&c->list);
413 }
414
415 static inline int is_hba_lunid(unsigned char scsi3addr[])
416 {
417         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
418 }
419
420 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
421 {
422         return (scsi3addr[3] & 0xC0) == 0x40;
423 }
424
425 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
426         "UNKNOWN"
427 };
428 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
429
430 static ssize_t raid_level_show(struct device *dev,
431              struct device_attribute *attr, char *buf)
432 {
433         ssize_t l = 0;
434         unsigned char rlevel;
435         struct ctlr_info *h;
436         struct scsi_device *sdev;
437         struct hpsa_scsi_dev_t *hdev;
438         unsigned long flags;
439
440         sdev = to_scsi_device(dev);
441         h = sdev_to_hba(sdev);
442         spin_lock_irqsave(&h->lock, flags);
443         hdev = sdev->hostdata;
444         if (!hdev) {
445                 spin_unlock_irqrestore(&h->lock, flags);
446                 return -ENODEV;
447         }
448
449         /* Is this even a logical drive? */
450         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
451                 spin_unlock_irqrestore(&h->lock, flags);
452                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
453                 return l;
454         }
455
456         rlevel = hdev->raid_level;
457         spin_unlock_irqrestore(&h->lock, flags);
458         if (rlevel > RAID_UNKNOWN)
459                 rlevel = RAID_UNKNOWN;
460         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
461         return l;
462 }
463
464 static ssize_t lunid_show(struct device *dev,
465              struct device_attribute *attr, char *buf)
466 {
467         struct ctlr_info *h;
468         struct scsi_device *sdev;
469         struct hpsa_scsi_dev_t *hdev;
470         unsigned long flags;
471         unsigned char lunid[8];
472
473         sdev = to_scsi_device(dev);
474         h = sdev_to_hba(sdev);
475         spin_lock_irqsave(&h->lock, flags);
476         hdev = sdev->hostdata;
477         if (!hdev) {
478                 spin_unlock_irqrestore(&h->lock, flags);
479                 return -ENODEV;
480         }
481         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
482         spin_unlock_irqrestore(&h->lock, flags);
483         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
484                 lunid[0], lunid[1], lunid[2], lunid[3],
485                 lunid[4], lunid[5], lunid[6], lunid[7]);
486 }
487
488 static ssize_t unique_id_show(struct device *dev,
489              struct device_attribute *attr, char *buf)
490 {
491         struct ctlr_info *h;
492         struct scsi_device *sdev;
493         struct hpsa_scsi_dev_t *hdev;
494         unsigned long flags;
495         unsigned char sn[16];
496
497         sdev = to_scsi_device(dev);
498         h = sdev_to_hba(sdev);
499         spin_lock_irqsave(&h->lock, flags);
500         hdev = sdev->hostdata;
501         if (!hdev) {
502                 spin_unlock_irqrestore(&h->lock, flags);
503                 return -ENODEV;
504         }
505         memcpy(sn, hdev->device_id, sizeof(sn));
506         spin_unlock_irqrestore(&h->lock, flags);
507         return snprintf(buf, 16 * 2 + 2,
508                         "%02X%02X%02X%02X%02X%02X%02X%02X"
509                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
510                         sn[0], sn[1], sn[2], sn[3],
511                         sn[4], sn[5], sn[6], sn[7],
512                         sn[8], sn[9], sn[10], sn[11],
513                         sn[12], sn[13], sn[14], sn[15]);
514 }
515
516 static int hpsa_find_target_lun(struct ctlr_info *h,
517         unsigned char scsi3addr[], int bus, int *target, int *lun)
518 {
519         /* finds an unused bus, target, lun for a new physical device
520          * assumes h->devlock is held
521          */
522         int i, found = 0;
523         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
524
525         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
526
527         for (i = 0; i < h->ndevices; i++) {
528                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
529                         set_bit(h->dev[i]->target, lun_taken);
530         }
531
532         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
533                 if (!test_bit(i, lun_taken)) {
534                         /* *bus = 1; */
535                         *target = i;
536                         *lun = 0;
537                         found = 1;
538                         break;
539                 }
540         }
541         return !found;
542 }
543
544 /* Add an entry into h->dev[] array. */
545 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
546                 struct hpsa_scsi_dev_t *device,
547                 struct hpsa_scsi_dev_t *added[], int *nadded)
548 {
549         /* assumes h->devlock is held */
550         int n = h->ndevices;
551         int i;
552         unsigned char addr1[8], addr2[8];
553         struct hpsa_scsi_dev_t *sd;
554
555         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
556                 dev_err(&h->pdev->dev, "too many devices, some will be "
557                         "inaccessible.\n");
558                 return -1;
559         }
560
561         /* physical devices do not have lun or target assigned until now. */
562         if (device->lun != -1)
563                 /* Logical device, lun is already assigned. */
564                 goto lun_assigned;
565
566         /* If this device a non-zero lun of a multi-lun device
567          * byte 4 of the 8-byte LUN addr will contain the logical
568          * unit no, zero otherise.
569          */
570         if (device->scsi3addr[4] == 0) {
571                 /* This is not a non-zero lun of a multi-lun device */
572                 if (hpsa_find_target_lun(h, device->scsi3addr,
573                         device->bus, &device->target, &device->lun) != 0)
574                         return -1;
575                 goto lun_assigned;
576         }
577
578         /* This is a non-zero lun of a multi-lun device.
579          * Search through our list and find the device which
580          * has the same 8 byte LUN address, excepting byte 4.
581          * Assign the same bus and target for this new LUN.
582          * Use the logical unit number from the firmware.
583          */
584         memcpy(addr1, device->scsi3addr, 8);
585         addr1[4] = 0;
586         for (i = 0; i < n; i++) {
587                 sd = h->dev[i];
588                 memcpy(addr2, sd->scsi3addr, 8);
589                 addr2[4] = 0;
590                 /* differ only in byte 4? */
591                 if (memcmp(addr1, addr2, 8) == 0) {
592                         device->bus = sd->bus;
593                         device->target = sd->target;
594                         device->lun = device->scsi3addr[4];
595                         break;
596                 }
597         }
598         if (device->lun == -1) {
599                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
600                         " suspect firmware bug or unsupported hardware "
601                         "configuration.\n");
602                         return -1;
603         }
604
605 lun_assigned:
606
607         h->dev[n] = device;
608         h->ndevices++;
609         added[*nadded] = device;
610         (*nadded)++;
611
612         /* initially, (before registering with scsi layer) we don't
613          * know our hostno and we don't want to print anything first
614          * time anyway (the scsi layer's inquiries will show that info)
615          */
616         /* if (hostno != -1) */
617                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
618                         scsi_device_type(device->devtype), hostno,
619                         device->bus, device->target, device->lun);
620         return 0;
621 }
622
623 /* Remove an entry from h->dev[] array. */
624 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
625         struct hpsa_scsi_dev_t *removed[], int *nremoved)
626 {
627         /* assumes h->devlock is held */
628         int i;
629         struct hpsa_scsi_dev_t *sd;
630
631         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
632
633         sd = h->dev[entry];
634         removed[*nremoved] = h->dev[entry];
635         (*nremoved)++;
636
637         for (i = entry; i < h->ndevices-1; i++)
638                 h->dev[i] = h->dev[i+1];
639         h->ndevices--;
640         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
641                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
642                 sd->lun);
643 }
644
645 #define SCSI3ADDR_EQ(a, b) ( \
646         (a)[7] == (b)[7] && \
647         (a)[6] == (b)[6] && \
648         (a)[5] == (b)[5] && \
649         (a)[4] == (b)[4] && \
650         (a)[3] == (b)[3] && \
651         (a)[2] == (b)[2] && \
652         (a)[1] == (b)[1] && \
653         (a)[0] == (b)[0])
654
655 static void fixup_botched_add(struct ctlr_info *h,
656         struct hpsa_scsi_dev_t *added)
657 {
658         /* called when scsi_add_device fails in order to re-adjust
659          * h->dev[] to match the mid layer's view.
660          */
661         unsigned long flags;
662         int i, j;
663
664         spin_lock_irqsave(&h->lock, flags);
665         for (i = 0; i < h->ndevices; i++) {
666                 if (h->dev[i] == added) {
667                         for (j = i; j < h->ndevices-1; j++)
668                                 h->dev[j] = h->dev[j+1];
669                         h->ndevices--;
670                         break;
671                 }
672         }
673         spin_unlock_irqrestore(&h->lock, flags);
674         kfree(added);
675 }
676
677 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
678         struct hpsa_scsi_dev_t *dev2)
679 {
680         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
681                 (dev1->lun != -1 && dev2->lun != -1)) &&
682                 dev1->devtype != 0x0C)
683                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
684
685         /* we compare everything except lun and target as these
686          * are not yet assigned.  Compare parts likely
687          * to differ first
688          */
689         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
690                 sizeof(dev1->scsi3addr)) != 0)
691                 return 0;
692         if (memcmp(dev1->device_id, dev2->device_id,
693                 sizeof(dev1->device_id)) != 0)
694                 return 0;
695         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
696                 return 0;
697         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
698                 return 0;
699         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
700                 return 0;
701         if (dev1->devtype != dev2->devtype)
702                 return 0;
703         if (dev1->raid_level != dev2->raid_level)
704                 return 0;
705         if (dev1->bus != dev2->bus)
706                 return 0;
707         return 1;
708 }
709
710 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
711  * and return needle location in *index.  If scsi3addr matches, but not
712  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
713  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
714  */
715 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
716         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
717         int *index)
718 {
719         int i;
720 #define DEVICE_NOT_FOUND 0
721 #define DEVICE_CHANGED 1
722 #define DEVICE_SAME 2
723         for (i = 0; i < haystack_size; i++) {
724                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
725                         *index = i;
726                         if (device_is_the_same(needle, haystack[i]))
727                                 return DEVICE_SAME;
728                         else
729                                 return DEVICE_CHANGED;
730                 }
731         }
732         *index = -1;
733         return DEVICE_NOT_FOUND;
734 }
735
736 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
737         struct hpsa_scsi_dev_t *sd[], int nsds)
738 {
739         /* sd contains scsi3 addresses and devtypes, and inquiry
740          * data.  This function takes what's in sd to be the current
741          * reality and updates h->dev[] to reflect that reality.
742          */
743         int i, entry, device_change, changes = 0;
744         struct hpsa_scsi_dev_t *csd;
745         unsigned long flags;
746         struct hpsa_scsi_dev_t **added, **removed;
747         int nadded, nremoved;
748         struct Scsi_Host *sh = NULL;
749
750         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
751                 GFP_KERNEL);
752         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
753                 GFP_KERNEL);
754
755         if (!added || !removed) {
756                 dev_warn(&h->pdev->dev, "out of memory in "
757                         "adjust_hpsa_scsi_table\n");
758                 goto free_and_out;
759         }
760
761         spin_lock_irqsave(&h->devlock, flags);
762
763         /* find any devices in h->dev[] that are not in
764          * sd[] and remove them from h->dev[], and for any
765          * devices which have changed, remove the old device
766          * info and add the new device info.
767          */
768         i = 0;
769         nremoved = 0;
770         nadded = 0;
771         while (i < h->ndevices) {
772                 csd = h->dev[i];
773                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
774                 if (device_change == DEVICE_NOT_FOUND) {
775                         changes++;
776                         hpsa_scsi_remove_entry(h, hostno, i,
777                                 removed, &nremoved);
778                         continue; /* remove ^^^, hence i not incremented */
779                 } else if (device_change == DEVICE_CHANGED) {
780                         changes++;
781                         hpsa_scsi_remove_entry(h, hostno, i,
782                                 removed, &nremoved);
783                         (void) hpsa_scsi_add_entry(h, hostno, sd[entry],
784                                 added, &nadded);
785                         /* add can't fail, we just removed one. */
786                         sd[entry] = NULL; /* prevent it from being freed */
787                 }
788                 i++;
789         }
790
791         /* Now, make sure every device listed in sd[] is also
792          * listed in h->dev[], adding them if they aren't found
793          */
794
795         for (i = 0; i < nsds; i++) {
796                 if (!sd[i]) /* if already added above. */
797                         continue;
798                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
799                                         h->ndevices, &entry);
800                 if (device_change == DEVICE_NOT_FOUND) {
801                         changes++;
802                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
803                                 added, &nadded) != 0)
804                                 break;
805                         sd[i] = NULL; /* prevent from being freed later. */
806                 } else if (device_change == DEVICE_CHANGED) {
807                         /* should never happen... */
808                         changes++;
809                         dev_warn(&h->pdev->dev,
810                                 "device unexpectedly changed.\n");
811                         /* but if it does happen, we just ignore that device */
812                 }
813         }
814         spin_unlock_irqrestore(&h->devlock, flags);
815
816         /* Don't notify scsi mid layer of any changes the first time through
817          * (or if there are no changes) scsi_scan_host will do it later the
818          * first time through.
819          */
820         if (hostno == -1 || !changes)
821                 goto free_and_out;
822
823         sh = h->scsi_host;
824         /* Notify scsi mid layer of any removed devices */
825         for (i = 0; i < nremoved; i++) {
826                 struct scsi_device *sdev =
827                         scsi_device_lookup(sh, removed[i]->bus,
828                                 removed[i]->target, removed[i]->lun);
829                 if (sdev != NULL) {
830                         scsi_remove_device(sdev);
831                         scsi_device_put(sdev);
832                 } else {
833                         /* We don't expect to get here.
834                          * future cmds to this device will get selection
835                          * timeout as if the device was gone.
836                          */
837                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
838                                 " for removal.", hostno, removed[i]->bus,
839                                 removed[i]->target, removed[i]->lun);
840                 }
841                 kfree(removed[i]);
842                 removed[i] = NULL;
843         }
844
845         /* Notify scsi mid layer of any added devices */
846         for (i = 0; i < nadded; i++) {
847                 if (scsi_add_device(sh, added[i]->bus,
848                         added[i]->target, added[i]->lun) == 0)
849                         continue;
850                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
851                         "device not added.\n", hostno, added[i]->bus,
852                         added[i]->target, added[i]->lun);
853                 /* now we have to remove it from h->dev,
854                  * since it didn't get added to scsi mid layer
855                  */
856                 fixup_botched_add(h, added[i]);
857         }
858
859 free_and_out:
860         kfree(added);
861         kfree(removed);
862 }
863
864 /*
865  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
866  * Assume's h->devlock is held.
867  */
868 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
869         int bus, int target, int lun)
870 {
871         int i;
872         struct hpsa_scsi_dev_t *sd;
873
874         for (i = 0; i < h->ndevices; i++) {
875                 sd = h->dev[i];
876                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
877                         return sd;
878         }
879         return NULL;
880 }
881
882 /* link sdev->hostdata to our per-device structure. */
883 static int hpsa_slave_alloc(struct scsi_device *sdev)
884 {
885         struct hpsa_scsi_dev_t *sd;
886         unsigned long flags;
887         struct ctlr_info *h;
888
889         h = sdev_to_hba(sdev);
890         spin_lock_irqsave(&h->devlock, flags);
891         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
892                 sdev_id(sdev), sdev->lun);
893         if (sd != NULL)
894                 sdev->hostdata = sd;
895         spin_unlock_irqrestore(&h->devlock, flags);
896         return 0;
897 }
898
899 static void hpsa_slave_destroy(struct scsi_device *sdev)
900 {
901         /* nothing to do. */
902 }
903
904 static void hpsa_scsi_setup(struct ctlr_info *h)
905 {
906         h->ndevices = 0;
907         h->scsi_host = NULL;
908         spin_lock_init(&h->devlock);
909 }
910
911 static void complete_scsi_command(struct CommandList *cp,
912         int timeout, u32 tag)
913 {
914         struct scsi_cmnd *cmd;
915         struct ctlr_info *h;
916         struct ErrorInfo *ei;
917
918         unsigned char sense_key;
919         unsigned char asc;      /* additional sense code */
920         unsigned char ascq;     /* additional sense code qualifier */
921
922         ei = cp->err_info;
923         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
924         h = cp->h;
925
926         scsi_dma_unmap(cmd); /* undo the DMA mappings */
927
928         cmd->result = (DID_OK << 16);           /* host byte */
929         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
930         cmd->result |= (ei->ScsiStatus << 1);
931
932         /* copy the sense data whether we need to or not. */
933         memcpy(cmd->sense_buffer, ei->SenseInfo,
934                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
935                         SCSI_SENSE_BUFFERSIZE :
936                         ei->SenseLen);
937         scsi_set_resid(cmd, ei->ResidualCnt);
938
939         if (ei->CommandStatus == 0) {
940                 cmd->scsi_done(cmd);
941                 cmd_free(h, cp);
942                 return;
943         }
944
945         /* an error has occurred */
946         switch (ei->CommandStatus) {
947
948         case CMD_TARGET_STATUS:
949                 if (ei->ScsiStatus) {
950                         /* Get sense key */
951                         sense_key = 0xf & ei->SenseInfo[2];
952                         /* Get additional sense code */
953                         asc = ei->SenseInfo[12];
954                         /* Get addition sense code qualifier */
955                         ascq = ei->SenseInfo[13];
956                 }
957
958                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
959                         if (check_for_unit_attention(h, cp)) {
960                                 cmd->result = DID_SOFT_ERROR << 16;
961                                 break;
962                         }
963                         if (sense_key == ILLEGAL_REQUEST) {
964                                 /*
965                                  * SCSI REPORT_LUNS is commonly unsupported on
966                                  * Smart Array.  Suppress noisy complaint.
967                                  */
968                                 if (cp->Request.CDB[0] == REPORT_LUNS)
969                                         break;
970
971                                 /* If ASC/ASCQ indicate Logical Unit
972                                  * Not Supported condition,
973                                  */
974                                 if ((asc == 0x25) && (ascq == 0x0)) {
975                                         dev_warn(&h->pdev->dev, "cp %p "
976                                                 "has check condition\n", cp);
977                                         break;
978                                 }
979                         }
980
981                         if (sense_key == NOT_READY) {
982                                 /* If Sense is Not Ready, Logical Unit
983                                  * Not ready, Manual Intervention
984                                  * required
985                                  */
986                                 if ((asc == 0x04) && (ascq == 0x03)) {
987                                         cmd->result = DID_NO_CONNECT << 16;
988                                         dev_warn(&h->pdev->dev, "cp %p "
989                                                 "has check condition: unit "
990                                                 "not ready, manual "
991                                                 "intervention required\n", cp);
992                                         break;
993                                 }
994                         }
995
996
997                         /* Must be some other type of check condition */
998                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
999                                         "unknown type: "
1000                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1001                                         "Returning result: 0x%x, "
1002                                         "cmd=[%02x %02x %02x %02x %02x "
1003                                         "%02x %02x %02x %02x %02x]\n",
1004                                         cp, sense_key, asc, ascq,
1005                                         cmd->result,
1006                                         cmd->cmnd[0], cmd->cmnd[1],
1007                                         cmd->cmnd[2], cmd->cmnd[3],
1008                                         cmd->cmnd[4], cmd->cmnd[5],
1009                                         cmd->cmnd[6], cmd->cmnd[7],
1010                                         cmd->cmnd[8], cmd->cmnd[9]);
1011                         break;
1012                 }
1013
1014
1015                 /* Problem was not a check condition
1016                  * Pass it up to the upper layers...
1017                  */
1018                 if (ei->ScsiStatus) {
1019                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1020                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1021                                 "Returning result: 0x%x\n",
1022                                 cp, ei->ScsiStatus,
1023                                 sense_key, asc, ascq,
1024                                 cmd->result);
1025                 } else {  /* scsi status is zero??? How??? */
1026                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1027                                 "Returning no connection.\n", cp),
1028
1029                         /* Ordinarily, this case should never happen,
1030                          * but there is a bug in some released firmware
1031                          * revisions that allows it to happen if, for
1032                          * example, a 4100 backplane loses power and
1033                          * the tape drive is in it.  We assume that
1034                          * it's a fatal error of some kind because we
1035                          * can't show that it wasn't. We will make it
1036                          * look like selection timeout since that is
1037                          * the most common reason for this to occur,
1038                          * and it's severe enough.
1039                          */
1040
1041                         cmd->result = DID_NO_CONNECT << 16;
1042                 }
1043                 break;
1044
1045         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1046                 break;
1047         case CMD_DATA_OVERRUN:
1048                 dev_warn(&h->pdev->dev, "cp %p has"
1049                         " completed with data overrun "
1050                         "reported\n", cp);
1051                 break;
1052         case CMD_INVALID: {
1053                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1054                 print_cmd(cp); */
1055                 /* We get CMD_INVALID if you address a non-existent device
1056                  * instead of a selection timeout (no response).  You will
1057                  * see this if you yank out a drive, then try to access it.
1058                  * This is kind of a shame because it means that any other
1059                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1060                  * missing target. */
1061                 cmd->result = DID_NO_CONNECT << 16;
1062         }
1063                 break;
1064         case CMD_PROTOCOL_ERR:
1065                 dev_warn(&h->pdev->dev, "cp %p has "
1066                         "protocol error \n", cp);
1067                 break;
1068         case CMD_HARDWARE_ERR:
1069                 cmd->result = DID_ERROR << 16;
1070                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1071                 break;
1072         case CMD_CONNECTION_LOST:
1073                 cmd->result = DID_ERROR << 16;
1074                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1075                 break;
1076         case CMD_ABORTED:
1077                 cmd->result = DID_ABORT << 16;
1078                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1079                                 cp, ei->ScsiStatus);
1080                 break;
1081         case CMD_ABORT_FAILED:
1082                 cmd->result = DID_ERROR << 16;
1083                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1084                 break;
1085         case CMD_UNSOLICITED_ABORT:
1086                 cmd->result = DID_ABORT << 16;
1087                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1088                         "abort\n", cp);
1089                 break;
1090         case CMD_TIMEOUT:
1091                 cmd->result = DID_TIME_OUT << 16;
1092                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1093                 break;
1094         default:
1095                 cmd->result = DID_ERROR << 16;
1096                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1097                                 cp, ei->CommandStatus);
1098         }
1099         cmd->scsi_done(cmd);
1100         cmd_free(h, cp);
1101 }
1102
1103 static int hpsa_scsi_detect(struct ctlr_info *h)
1104 {
1105         struct Scsi_Host *sh;
1106         int error;
1107
1108         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1109         if (sh == NULL)
1110                 goto fail;
1111
1112         sh->io_port = 0;
1113         sh->n_io_port = 0;
1114         sh->this_id = -1;
1115         sh->max_channel = 3;
1116         sh->max_cmd_len = MAX_COMMAND_SIZE;
1117         sh->max_lun = HPSA_MAX_LUN;
1118         sh->max_id = HPSA_MAX_LUN;
1119         h->scsi_host = sh;
1120         sh->hostdata[0] = (unsigned long) h;
1121         sh->irq = h->intr[SIMPLE_MODE_INT];
1122         sh->unique_id = sh->irq;
1123         error = scsi_add_host(sh, &h->pdev->dev);
1124         if (error)
1125                 goto fail_host_put;
1126         scsi_scan_host(sh);
1127         return 0;
1128
1129  fail_host_put:
1130         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1131                 " failed for controller %d\n", h->ctlr);
1132         scsi_host_put(sh);
1133         return error;
1134  fail:
1135         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1136                 " failed for controller %d\n", h->ctlr);
1137         return -ENOMEM;
1138 }
1139
1140 static void hpsa_pci_unmap(struct pci_dev *pdev,
1141         struct CommandList *c, int sg_used, int data_direction)
1142 {
1143         int i;
1144         union u64bit addr64;
1145
1146         for (i = 0; i < sg_used; i++) {
1147                 addr64.val32.lower = c->SG[i].Addr.lower;
1148                 addr64.val32.upper = c->SG[i].Addr.upper;
1149                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1150                         data_direction);
1151         }
1152 }
1153
1154 static void hpsa_map_one(struct pci_dev *pdev,
1155                 struct CommandList *cp,
1156                 unsigned char *buf,
1157                 size_t buflen,
1158                 int data_direction)
1159 {
1160         u64 addr64;
1161
1162         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1163                 cp->Header.SGList = 0;
1164                 cp->Header.SGTotal = 0;
1165                 return;
1166         }
1167
1168         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1169         cp->SG[0].Addr.lower =
1170           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1171         cp->SG[0].Addr.upper =
1172           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1173         cp->SG[0].Len = buflen;
1174         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1175         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1176 }
1177
1178 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1179         struct CommandList *c)
1180 {
1181         DECLARE_COMPLETION_ONSTACK(wait);
1182
1183         c->waiting = &wait;
1184         enqueue_cmd_and_start_io(h, c);
1185         wait_for_completion(&wait);
1186 }
1187
1188 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1189         struct CommandList *c, int data_direction)
1190 {
1191         int retry_count = 0;
1192
1193         do {
1194                 memset(c->err_info, 0, sizeof(c->err_info));
1195                 hpsa_scsi_do_simple_cmd_core(h, c);
1196                 retry_count++;
1197         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1198         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1199 }
1200
1201 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1202 {
1203         struct ErrorInfo *ei;
1204         struct device *d = &cp->h->pdev->dev;
1205
1206         ei = cp->err_info;
1207         switch (ei->CommandStatus) {
1208         case CMD_TARGET_STATUS:
1209                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1210                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1211                                 ei->ScsiStatus);
1212                 if (ei->ScsiStatus == 0)
1213                         dev_warn(d, "SCSI status is abnormally zero.  "
1214                         "(probably indicates selection timeout "
1215                         "reported incorrectly due to a known "
1216                         "firmware bug, circa July, 2001.)\n");
1217                 break;
1218         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1219                         dev_info(d, "UNDERRUN\n");
1220                 break;
1221         case CMD_DATA_OVERRUN:
1222                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1223                 break;
1224         case CMD_INVALID: {
1225                 /* controller unfortunately reports SCSI passthru's
1226                  * to non-existent targets as invalid commands.
1227                  */
1228                 dev_warn(d, "cp %p is reported invalid (probably means "
1229                         "target device no longer present)\n", cp);
1230                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1231                 print_cmd(cp);  */
1232                 }
1233                 break;
1234         case CMD_PROTOCOL_ERR:
1235                 dev_warn(d, "cp %p has protocol error \n", cp);
1236                 break;
1237         case CMD_HARDWARE_ERR:
1238                 /* cmd->result = DID_ERROR << 16; */
1239                 dev_warn(d, "cp %p had hardware error\n", cp);
1240                 break;
1241         case CMD_CONNECTION_LOST:
1242                 dev_warn(d, "cp %p had connection lost\n", cp);
1243                 break;
1244         case CMD_ABORTED:
1245                 dev_warn(d, "cp %p was aborted\n", cp);
1246                 break;
1247         case CMD_ABORT_FAILED:
1248                 dev_warn(d, "cp %p reports abort failed\n", cp);
1249                 break;
1250         case CMD_UNSOLICITED_ABORT:
1251                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1252                 break;
1253         case CMD_TIMEOUT:
1254                 dev_warn(d, "cp %p timed out\n", cp);
1255                 break;
1256         default:
1257                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1258                                 ei->CommandStatus);
1259         }
1260 }
1261
1262 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1263                         unsigned char page, unsigned char *buf,
1264                         unsigned char bufsize)
1265 {
1266         int rc = IO_OK;
1267         struct CommandList *c;
1268         struct ErrorInfo *ei;
1269
1270         c = cmd_special_alloc(h);
1271
1272         if (c == NULL) {                        /* trouble... */
1273                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1274                 return -ENOMEM;
1275         }
1276
1277         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1278         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1279         ei = c->err_info;
1280         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1281                 hpsa_scsi_interpret_error(c);
1282                 rc = -1;
1283         }
1284         cmd_special_free(h, c);
1285         return rc;
1286 }
1287
1288 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1289 {
1290         int rc = IO_OK;
1291         struct CommandList *c;
1292         struct ErrorInfo *ei;
1293
1294         c = cmd_special_alloc(h);
1295
1296         if (c == NULL) {                        /* trouble... */
1297                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1298                 return -1;
1299         }
1300
1301         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1302         hpsa_scsi_do_simple_cmd_core(h, c);
1303         /* no unmap needed here because no data xfer. */
1304
1305         ei = c->err_info;
1306         if (ei->CommandStatus != 0) {
1307                 hpsa_scsi_interpret_error(c);
1308                 rc = -1;
1309         }
1310         cmd_special_free(h, c);
1311         return rc;
1312 }
1313
1314 static void hpsa_get_raid_level(struct ctlr_info *h,
1315         unsigned char *scsi3addr, unsigned char *raid_level)
1316 {
1317         int rc;
1318         unsigned char *buf;
1319
1320         *raid_level = RAID_UNKNOWN;
1321         buf = kzalloc(64, GFP_KERNEL);
1322         if (!buf)
1323                 return;
1324         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1325         if (rc == 0)
1326                 *raid_level = buf[8];
1327         if (*raid_level > RAID_UNKNOWN)
1328                 *raid_level = RAID_UNKNOWN;
1329         kfree(buf);
1330         return;
1331 }
1332
1333 /* Get the device id from inquiry page 0x83 */
1334 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1335         unsigned char *device_id, int buflen)
1336 {
1337         int rc;
1338         unsigned char *buf;
1339
1340         if (buflen > 16)
1341                 buflen = 16;
1342         buf = kzalloc(64, GFP_KERNEL);
1343         if (!buf)
1344                 return -1;
1345         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1346         if (rc == 0)
1347                 memcpy(device_id, &buf[8], buflen);
1348         kfree(buf);
1349         return rc != 0;
1350 }
1351
1352 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1353                 struct ReportLUNdata *buf, int bufsize,
1354                 int extended_response)
1355 {
1356         int rc = IO_OK;
1357         struct CommandList *c;
1358         unsigned char scsi3addr[8];
1359         struct ErrorInfo *ei;
1360
1361         c = cmd_special_alloc(h);
1362         if (c == NULL) {                        /* trouble... */
1363                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1364                 return -1;
1365         }
1366         /* address the controller */
1367         memset(scsi3addr, 0, sizeof(scsi3addr));
1368         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1369                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1370         if (extended_response)
1371                 c->Request.CDB[1] = extended_response;
1372         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1373         ei = c->err_info;
1374         if (ei->CommandStatus != 0 &&
1375             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1376                 hpsa_scsi_interpret_error(c);
1377                 rc = -1;
1378         }
1379         cmd_special_free(h, c);
1380         return rc;
1381 }
1382
1383 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1384                 struct ReportLUNdata *buf,
1385                 int bufsize, int extended_response)
1386 {
1387         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1388 }
1389
1390 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1391                 struct ReportLUNdata *buf, int bufsize)
1392 {
1393         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1394 }
1395
1396 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1397         int bus, int target, int lun)
1398 {
1399         device->bus = bus;
1400         device->target = target;
1401         device->lun = lun;
1402 }
1403
1404 static int hpsa_update_device_info(struct ctlr_info *h,
1405         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1406 {
1407 #define OBDR_TAPE_INQ_SIZE 49
1408         unsigned char *inq_buff;
1409
1410         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1411         if (!inq_buff)
1412                 goto bail_out;
1413
1414         /* Do an inquiry to the device to see what it is. */
1415         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1416                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1417                 /* Inquiry failed (msg printed already) */
1418                 dev_err(&h->pdev->dev,
1419                         "hpsa_update_device_info: inquiry failed\n");
1420                 goto bail_out;
1421         }
1422
1423         /* As a side effect, record the firmware version number
1424          * if we happen to be talking to the RAID controller.
1425          */
1426         if (is_hba_lunid(scsi3addr))
1427                 memcpy(h->firm_ver, &inq_buff[32], 4);
1428
1429         this_device->devtype = (inq_buff[0] & 0x1f);
1430         memcpy(this_device->scsi3addr, scsi3addr, 8);
1431         memcpy(this_device->vendor, &inq_buff[8],
1432                 sizeof(this_device->vendor));
1433         memcpy(this_device->model, &inq_buff[16],
1434                 sizeof(this_device->model));
1435         memcpy(this_device->revision, &inq_buff[32],
1436                 sizeof(this_device->revision));
1437         memset(this_device->device_id, 0,
1438                 sizeof(this_device->device_id));
1439         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1440                 sizeof(this_device->device_id));
1441
1442         if (this_device->devtype == TYPE_DISK &&
1443                 is_logical_dev_addr_mode(scsi3addr))
1444                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1445         else
1446                 this_device->raid_level = RAID_UNKNOWN;
1447
1448         kfree(inq_buff);
1449         return 0;
1450
1451 bail_out:
1452         kfree(inq_buff);
1453         return 1;
1454 }
1455
1456 static unsigned char *msa2xxx_model[] = {
1457         "MSA2012",
1458         "MSA2024",
1459         "MSA2312",
1460         "MSA2324",
1461         NULL,
1462 };
1463
1464 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1465 {
1466         int i;
1467
1468         for (i = 0; msa2xxx_model[i]; i++)
1469                 if (strncmp(device->model, msa2xxx_model[i],
1470                         strlen(msa2xxx_model[i])) == 0)
1471                         return 1;
1472         return 0;
1473 }
1474
1475 /* Helper function to assign bus, target, lun mapping of devices.
1476  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1477  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1478  * Logical drive target and lun are assigned at this time, but
1479  * physical device lun and target assignment are deferred (assigned
1480  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1481  */
1482 static void figure_bus_target_lun(struct ctlr_info *h,
1483         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1484         struct hpsa_scsi_dev_t *device)
1485 {
1486         u32 lunid;
1487
1488         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1489                 /* logical device */
1490                 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1491                 if (is_msa2xxx(h, device)) {
1492                         *bus = 1;
1493                         *target = (lunid >> 16) & 0x3fff;
1494                         *lun = lunid & 0x00ff;
1495                 } else {
1496                         *bus = 0;
1497                         *lun = 0;
1498                         *target = lunid & 0x3fff;
1499                 }
1500         } else {
1501                 /* physical device */
1502                 if (is_hba_lunid(lunaddrbytes))
1503                         *bus = 3;
1504                 else
1505                         *bus = 2;
1506                 *target = -1;
1507                 *lun = -1; /* we will fill these in later. */
1508         }
1509 }
1510
1511 /*
1512  * If there is no lun 0 on a target, linux won't find any devices.
1513  * For the MSA2xxx boxes, we have to manually detect the enclosure
1514  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1515  * it for some reason.  *tmpdevice is the target we're adding,
1516  * this_device is a pointer into the current element of currentsd[]
1517  * that we're building up in update_scsi_devices(), below.
1518  * lunzerobits is a bitmap that tracks which targets already have a
1519  * lun 0 assigned.
1520  * Returns 1 if an enclosure was added, 0 if not.
1521  */
1522 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1523         struct hpsa_scsi_dev_t *tmpdevice,
1524         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1525         int bus, int target, int lun, unsigned long lunzerobits[],
1526         int *nmsa2xxx_enclosures)
1527 {
1528         unsigned char scsi3addr[8];
1529
1530         if (test_bit(target, lunzerobits))
1531                 return 0; /* There is already a lun 0 on this target. */
1532
1533         if (!is_logical_dev_addr_mode(lunaddrbytes))
1534                 return 0; /* It's the logical targets that may lack lun 0. */
1535
1536         if (!is_msa2xxx(h, tmpdevice))
1537                 return 0; /* It's only the MSA2xxx that have this problem. */
1538
1539         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1540                 return 0;
1541
1542         if (is_hba_lunid(scsi3addr))
1543                 return 0; /* Don't add the RAID controller here. */
1544
1545 #define MAX_MSA2XXX_ENCLOSURES 32
1546         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1547                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1548                         "enclosures exceeded.  Check your hardware "
1549                         "configuration.");
1550                 return 0;
1551         }
1552
1553         memset(scsi3addr, 0, 8);
1554         scsi3addr[3] = target;
1555         if (hpsa_update_device_info(h, scsi3addr, this_device))
1556                 return 0;
1557         (*nmsa2xxx_enclosures)++;
1558         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1559         set_bit(target, lunzerobits);
1560         return 1;
1561 }
1562
1563 /*
1564  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1565  * logdev.  The number of luns in physdev and logdev are returned in
1566  * *nphysicals and *nlogicals, respectively.
1567  * Returns 0 on success, -1 otherwise.
1568  */
1569 static int hpsa_gather_lun_info(struct ctlr_info *h,
1570         int reportlunsize,
1571         struct ReportLUNdata *physdev, u32 *nphysicals,
1572         struct ReportLUNdata *logdev, u32 *nlogicals)
1573 {
1574         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1575                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1576                 return -1;
1577         }
1578         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1579         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1580                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1581                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1582                         *nphysicals - HPSA_MAX_PHYS_LUN);
1583                 *nphysicals = HPSA_MAX_PHYS_LUN;
1584         }
1585         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1586                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1587                 return -1;
1588         }
1589         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1590         /* Reject Logicals in excess of our max capability. */
1591         if (*nlogicals > HPSA_MAX_LUN) {
1592                 dev_warn(&h->pdev->dev,
1593                         "maximum logical LUNs (%d) exceeded.  "
1594                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1595                         *nlogicals - HPSA_MAX_LUN);
1596                         *nlogicals = HPSA_MAX_LUN;
1597         }
1598         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1599                 dev_warn(&h->pdev->dev,
1600                         "maximum logical + physical LUNs (%d) exceeded. "
1601                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1602                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1603                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1604         }
1605         return 0;
1606 }
1607
1608 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1609 {
1610         /* the idea here is we could get notified
1611          * that some devices have changed, so we do a report
1612          * physical luns and report logical luns cmd, and adjust
1613          * our list of devices accordingly.
1614          *
1615          * The scsi3addr's of devices won't change so long as the
1616          * adapter is not reset.  That means we can rescan and
1617          * tell which devices we already know about, vs. new
1618          * devices, vs.  disappearing devices.
1619          */
1620         struct ReportLUNdata *physdev_list = NULL;
1621         struct ReportLUNdata *logdev_list = NULL;
1622         unsigned char *inq_buff = NULL;
1623         u32 nphysicals = 0;
1624         u32 nlogicals = 0;
1625         u32 ndev_allocated = 0;
1626         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1627         int ncurrent = 0;
1628         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1629         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1630         int bus, target, lun;
1631         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1632
1633         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1634                 GFP_KERNEL);
1635         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1636         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1637         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1638         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1639
1640         if (!currentsd || !physdev_list || !logdev_list ||
1641                 !inq_buff || !tmpdevice) {
1642                 dev_err(&h->pdev->dev, "out of memory\n");
1643                 goto out;
1644         }
1645         memset(lunzerobits, 0, sizeof(lunzerobits));
1646
1647         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1648                         logdev_list, &nlogicals))
1649                 goto out;
1650
1651         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1652          * but each of them 4 times through different paths.  The plus 1
1653          * is for the RAID controller.
1654          */
1655         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1656
1657         /* Allocate the per device structures */
1658         for (i = 0; i < ndevs_to_allocate; i++) {
1659                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1660                 if (!currentsd[i]) {
1661                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1662                                 __FILE__, __LINE__);
1663                         goto out;
1664                 }
1665                 ndev_allocated++;
1666         }
1667
1668         /* adjust our table of devices */
1669         nmsa2xxx_enclosures = 0;
1670         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1671                 u8 *lunaddrbytes;
1672
1673                 /* Figure out where the LUN ID info is coming from */
1674                 if (i < nphysicals)
1675                         lunaddrbytes = &physdev_list->LUN[i][0];
1676                 else
1677                         if (i < nphysicals + nlogicals)
1678                                 lunaddrbytes =
1679                                         &logdev_list->LUN[i-nphysicals][0];
1680                         else /* jam in the RAID controller at the end */
1681                                 lunaddrbytes = RAID_CTLR_LUNID;
1682
1683                 /* skip masked physical devices. */
1684                 if (lunaddrbytes[3] & 0xC0 && i < nphysicals)
1685                         continue;
1686
1687                 /* Get device type, vendor, model, device id */
1688                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1689                         continue; /* skip it if we can't talk to it. */
1690                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1691                         tmpdevice);
1692                 this_device = currentsd[ncurrent];
1693
1694                 /*
1695                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1696                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1697                  * is nonetheless an enclosure device there.  We have to
1698                  * present that otherwise linux won't find anything if
1699                  * there is no lun 0.
1700                  */
1701                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1702                                 lunaddrbytes, bus, target, lun, lunzerobits,
1703                                 &nmsa2xxx_enclosures)) {
1704                         ncurrent++;
1705                         this_device = currentsd[ncurrent];
1706                 }
1707
1708                 *this_device = *tmpdevice;
1709                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1710
1711                 switch (this_device->devtype) {
1712                 case TYPE_ROM: {
1713                         /* We don't *really* support actual CD-ROM devices,
1714                          * just "One Button Disaster Recovery" tape drive
1715                          * which temporarily pretends to be a CD-ROM drive.
1716                          * So we check that the device is really an OBDR tape
1717                          * device by checking for "$DR-10" in bytes 43-48 of
1718                          * the inquiry data.
1719                          */
1720                                 char obdr_sig[7];
1721 #define OBDR_TAPE_SIG "$DR-10"
1722                                 strncpy(obdr_sig, &inq_buff[43], 6);
1723                                 obdr_sig[6] = '\0';
1724                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1725                                         /* Not OBDR device, ignore it. */
1726                                         break;
1727                         }
1728                         ncurrent++;
1729                         break;
1730                 case TYPE_DISK:
1731                         if (i < nphysicals)
1732                                 break;
1733                         ncurrent++;
1734                         break;
1735                 case TYPE_TAPE:
1736                 case TYPE_MEDIUM_CHANGER:
1737                         ncurrent++;
1738                         break;
1739                 case TYPE_RAID:
1740                         /* Only present the Smartarray HBA as a RAID controller.
1741                          * If it's a RAID controller other than the HBA itself
1742                          * (an external RAID controller, MSA500 or similar)
1743                          * don't present it.
1744                          */
1745                         if (!is_hba_lunid(lunaddrbytes))
1746                                 break;
1747                         ncurrent++;
1748                         break;
1749                 default:
1750                         break;
1751                 }
1752                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1753                         break;
1754         }
1755         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1756 out:
1757         kfree(tmpdevice);
1758         for (i = 0; i < ndev_allocated; i++)
1759                 kfree(currentsd[i]);
1760         kfree(currentsd);
1761         kfree(inq_buff);
1762         kfree(physdev_list);
1763         kfree(logdev_list);
1764 }
1765
1766 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1767  * dma mapping  and fills in the scatter gather entries of the
1768  * hpsa command, cp.
1769  */
1770 static int hpsa_scatter_gather(struct pci_dev *pdev,
1771                 struct CommandList *cp,
1772                 struct scsi_cmnd *cmd)
1773 {
1774         unsigned int len;
1775         struct scatterlist *sg;
1776         u64 addr64;
1777         int use_sg, i;
1778
1779         BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1780
1781         use_sg = scsi_dma_map(cmd);
1782         if (use_sg < 0)
1783                 return use_sg;
1784
1785         if (!use_sg)
1786                 goto sglist_finished;
1787
1788         scsi_for_each_sg(cmd, sg, use_sg, i) {
1789                 addr64 = (u64) sg_dma_address(sg);
1790                 len  = sg_dma_len(sg);
1791                 cp->SG[i].Addr.lower =
1792                         (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1793                 cp->SG[i].Addr.upper =
1794                         (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1795                 cp->SG[i].Len = len;
1796                 cp->SG[i].Ext = 0;  /* we are not chaining */
1797         }
1798
1799 sglist_finished:
1800
1801         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1802         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1803         return 0;
1804 }
1805
1806
1807 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1808         void (*done)(struct scsi_cmnd *))
1809 {
1810         struct ctlr_info *h;
1811         struct hpsa_scsi_dev_t *dev;
1812         unsigned char scsi3addr[8];
1813         struct CommandList *c;
1814         unsigned long flags;
1815
1816         /* Get the ptr to our adapter structure out of cmd->host. */
1817         h = sdev_to_hba(cmd->device);
1818         dev = cmd->device->hostdata;
1819         if (!dev) {
1820                 cmd->result = DID_NO_CONNECT << 16;
1821                 done(cmd);
1822                 return 0;
1823         }
1824         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1825
1826         /* Need a lock as this is being allocated from the pool */
1827         spin_lock_irqsave(&h->lock, flags);
1828         c = cmd_alloc(h);
1829         spin_unlock_irqrestore(&h->lock, flags);
1830         if (c == NULL) {                        /* trouble... */
1831                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1832                 return SCSI_MLQUEUE_HOST_BUSY;
1833         }
1834
1835         /* Fill in the command list header */
1836
1837         cmd->scsi_done = done;    /* save this for use by completion code */
1838
1839         /* save c in case we have to abort it  */
1840         cmd->host_scribble = (unsigned char *) c;
1841
1842         c->cmd_type = CMD_SCSI;
1843         c->scsi_cmd = cmd;
1844         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1845         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1846         c->Header.Tag.lower = c->busaddr;  /* Use k. address of cmd as tag */
1847
1848         /* Fill in the request block... */
1849
1850         c->Request.Timeout = 0;
1851         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1852         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1853         c->Request.CDBLen = cmd->cmd_len;
1854         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1855         c->Request.Type.Type = TYPE_CMD;
1856         c->Request.Type.Attribute = ATTR_SIMPLE;
1857         switch (cmd->sc_data_direction) {
1858         case DMA_TO_DEVICE:
1859                 c->Request.Type.Direction = XFER_WRITE;
1860                 break;
1861         case DMA_FROM_DEVICE:
1862                 c->Request.Type.Direction = XFER_READ;
1863                 break;
1864         case DMA_NONE:
1865                 c->Request.Type.Direction = XFER_NONE;
1866                 break;
1867         case DMA_BIDIRECTIONAL:
1868                 /* This can happen if a buggy application does a scsi passthru
1869                  * and sets both inlen and outlen to non-zero. ( see
1870                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1871                  */
1872
1873                 c->Request.Type.Direction = XFER_RSVD;
1874                 /* This is technically wrong, and hpsa controllers should
1875                  * reject it with CMD_INVALID, which is the most correct
1876                  * response, but non-fibre backends appear to let it
1877                  * slide by, and give the same results as if this field
1878                  * were set correctly.  Either way is acceptable for
1879                  * our purposes here.
1880                  */
1881
1882                 break;
1883
1884         default:
1885                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1886                         cmd->sc_data_direction);
1887                 BUG();
1888                 break;
1889         }
1890
1891         if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
1892                 cmd_free(h, c);
1893                 return SCSI_MLQUEUE_HOST_BUSY;
1894         }
1895         enqueue_cmd_and_start_io(h, c);
1896         /* the cmd'll come back via intr handler in complete_scsi_command()  */
1897         return 0;
1898 }
1899
1900 static void hpsa_unregister_scsi(struct ctlr_info *h)
1901 {
1902         /* we are being forcibly unloaded, and may not refuse. */
1903         scsi_remove_host(h->scsi_host);
1904         scsi_host_put(h->scsi_host);
1905         h->scsi_host = NULL;
1906 }
1907
1908 static int hpsa_register_scsi(struct ctlr_info *h)
1909 {
1910         int rc;
1911
1912         hpsa_update_scsi_devices(h, -1);
1913         rc = hpsa_scsi_detect(h);
1914         if (rc != 0)
1915                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
1916                         " hpsa_scsi_detect(), rc is %d\n", rc);
1917         return rc;
1918 }
1919
1920 static int wait_for_device_to_become_ready(struct ctlr_info *h,
1921         unsigned char lunaddr[])
1922 {
1923         int rc = 0;
1924         int count = 0;
1925         int waittime = 1; /* seconds */
1926         struct CommandList *c;
1927
1928         c = cmd_special_alloc(h);
1929         if (!c) {
1930                 dev_warn(&h->pdev->dev, "out of memory in "
1931                         "wait_for_device_to_become_ready.\n");
1932                 return IO_ERROR;
1933         }
1934
1935         /* Send test unit ready until device ready, or give up. */
1936         while (count < HPSA_TUR_RETRY_LIMIT) {
1937
1938                 /* Wait for a bit.  do this first, because if we send
1939                  * the TUR right away, the reset will just abort it.
1940                  */
1941                 msleep(1000 * waittime);
1942                 count++;
1943
1944                 /* Increase wait time with each try, up to a point. */
1945                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
1946                         waittime = waittime * 2;
1947
1948                 /* Send the Test Unit Ready */
1949                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
1950                 hpsa_scsi_do_simple_cmd_core(h, c);
1951                 /* no unmap needed here because no data xfer. */
1952
1953                 if (c->err_info->CommandStatus == CMD_SUCCESS)
1954                         break;
1955
1956                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1957                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
1958                         (c->err_info->SenseInfo[2] == NO_SENSE ||
1959                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
1960                         break;
1961
1962                 dev_warn(&h->pdev->dev, "waiting %d secs "
1963                         "for device to become ready.\n", waittime);
1964                 rc = 1; /* device not ready. */
1965         }
1966
1967         if (rc)
1968                 dev_warn(&h->pdev->dev, "giving up on device.\n");
1969         else
1970                 dev_warn(&h->pdev->dev, "device is ready.\n");
1971
1972         cmd_special_free(h, c);
1973         return rc;
1974 }
1975
1976 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
1977  * complaining.  Doing a host- or bus-reset can't do anything good here.
1978  */
1979 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
1980 {
1981         int rc;
1982         struct ctlr_info *h;
1983         struct hpsa_scsi_dev_t *dev;
1984
1985         /* find the controller to which the command to be aborted was sent */
1986         h = sdev_to_hba(scsicmd->device);
1987         if (h == NULL) /* paranoia */
1988                 return FAILED;
1989         dev_warn(&h->pdev->dev, "resetting drive\n");
1990
1991         dev = scsicmd->device->hostdata;
1992         if (!dev) {
1993                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
1994                         "device lookup failed.\n");
1995                 return FAILED;
1996         }
1997         /* send a reset to the SCSI LUN which the command was sent to */
1998         rc = hpsa_send_reset(h, dev->scsi3addr);
1999         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2000                 return SUCCESS;
2001
2002         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2003         return FAILED;
2004 }
2005
2006 /*
2007  * For operations that cannot sleep, a command block is allocated at init,
2008  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2009  * which ones are free or in use.  Lock must be held when calling this.
2010  * cmd_free() is the complement.
2011  */
2012 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2013 {
2014         struct CommandList *c;
2015         int i;
2016         union u64bit temp64;
2017         dma_addr_t cmd_dma_handle, err_dma_handle;
2018
2019         do {
2020                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2021                 if (i == h->nr_cmds)
2022                         return NULL;
2023         } while (test_and_set_bit
2024                  (i & (BITS_PER_LONG - 1),
2025                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2026         c = h->cmd_pool + i;
2027         memset(c, 0, sizeof(*c));
2028         cmd_dma_handle = h->cmd_pool_dhandle
2029             + i * sizeof(*c);
2030         c->err_info = h->errinfo_pool + i;
2031         memset(c->err_info, 0, sizeof(*c->err_info));
2032         err_dma_handle = h->errinfo_pool_dhandle
2033             + i * sizeof(*c->err_info);
2034         h->nr_allocs++;
2035
2036         c->cmdindex = i;
2037
2038         INIT_HLIST_NODE(&c->list);
2039         c->busaddr = (u32) cmd_dma_handle;
2040         temp64.val = (u64) err_dma_handle;
2041         c->ErrDesc.Addr.lower = temp64.val32.lower;
2042         c->ErrDesc.Addr.upper = temp64.val32.upper;
2043         c->ErrDesc.Len = sizeof(*c->err_info);
2044
2045         c->h = h;
2046         return c;
2047 }
2048
2049 /* For operations that can wait for kmalloc to possibly sleep,
2050  * this routine can be called. Lock need not be held to call
2051  * cmd_special_alloc. cmd_special_free() is the complement.
2052  */
2053 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2054 {
2055         struct CommandList *c;
2056         union u64bit temp64;
2057         dma_addr_t cmd_dma_handle, err_dma_handle;
2058
2059         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2060         if (c == NULL)
2061                 return NULL;
2062         memset(c, 0, sizeof(*c));
2063
2064         c->cmdindex = -1;
2065
2066         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2067                     &err_dma_handle);
2068
2069         if (c->err_info == NULL) {
2070                 pci_free_consistent(h->pdev,
2071                         sizeof(*c), c, cmd_dma_handle);
2072                 return NULL;
2073         }
2074         memset(c->err_info, 0, sizeof(*c->err_info));
2075
2076         INIT_HLIST_NODE(&c->list);
2077         c->busaddr = (u32) cmd_dma_handle;
2078         temp64.val = (u64) err_dma_handle;
2079         c->ErrDesc.Addr.lower = temp64.val32.lower;
2080         c->ErrDesc.Addr.upper = temp64.val32.upper;
2081         c->ErrDesc.Len = sizeof(*c->err_info);
2082
2083         c->h = h;
2084         return c;
2085 }
2086
2087 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2088 {
2089         int i;
2090
2091         i = c - h->cmd_pool;
2092         clear_bit(i & (BITS_PER_LONG - 1),
2093                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2094         h->nr_frees++;
2095 }
2096
2097 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2098 {
2099         union u64bit temp64;
2100
2101         temp64.val32.lower = c->ErrDesc.Addr.lower;
2102         temp64.val32.upper = c->ErrDesc.Addr.upper;
2103         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2104                             c->err_info, (dma_addr_t) temp64.val);
2105         pci_free_consistent(h->pdev, sizeof(*c),
2106                             c, (dma_addr_t) c->busaddr);
2107 }
2108
2109 #ifdef CONFIG_COMPAT
2110
2111 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2112 {
2113         int ret;
2114
2115         lock_kernel();
2116         ret = hpsa_ioctl(dev, cmd, arg);
2117         unlock_kernel();
2118         return ret;
2119 }
2120
2121 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2122 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2123         int cmd, void *arg);
2124
2125 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2126 {
2127         switch (cmd) {
2128         case CCISS_GETPCIINFO:
2129         case CCISS_GETINTINFO:
2130         case CCISS_SETINTINFO:
2131         case CCISS_GETNODENAME:
2132         case CCISS_SETNODENAME:
2133         case CCISS_GETHEARTBEAT:
2134         case CCISS_GETBUSTYPES:
2135         case CCISS_GETFIRMVER:
2136         case CCISS_GETDRIVVER:
2137         case CCISS_REVALIDVOLS:
2138         case CCISS_DEREGDISK:
2139         case CCISS_REGNEWDISK:
2140         case CCISS_REGNEWD:
2141         case CCISS_RESCANDISK:
2142         case CCISS_GETLUNINFO:
2143                 return do_ioctl(dev, cmd, arg);
2144
2145         case CCISS_PASSTHRU32:
2146                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2147         case CCISS_BIG_PASSTHRU32:
2148                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2149
2150         default:
2151                 return -ENOIOCTLCMD;
2152         }
2153 }
2154
2155 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2156 {
2157         IOCTL32_Command_struct __user *arg32 =
2158             (IOCTL32_Command_struct __user *) arg;
2159         IOCTL_Command_struct arg64;
2160         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2161         int err;
2162         u32 cp;
2163
2164         err = 0;
2165         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2166                            sizeof(arg64.LUN_info));
2167         err |= copy_from_user(&arg64.Request, &arg32->Request,
2168                            sizeof(arg64.Request));
2169         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2170                            sizeof(arg64.error_info));
2171         err |= get_user(arg64.buf_size, &arg32->buf_size);
2172         err |= get_user(cp, &arg32->buf);
2173         arg64.buf = compat_ptr(cp);
2174         err |= copy_to_user(p, &arg64, sizeof(arg64));
2175
2176         if (err)
2177                 return -EFAULT;
2178
2179         err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2180         if (err)
2181                 return err;
2182         err |= copy_in_user(&arg32->error_info, &p->error_info,
2183                          sizeof(arg32->error_info));
2184         if (err)
2185                 return -EFAULT;
2186         return err;
2187 }
2188
2189 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2190         int cmd, void *arg)
2191 {
2192         BIG_IOCTL32_Command_struct __user *arg32 =
2193             (BIG_IOCTL32_Command_struct __user *) arg;
2194         BIG_IOCTL_Command_struct arg64;
2195         BIG_IOCTL_Command_struct __user *p =
2196             compat_alloc_user_space(sizeof(arg64));
2197         int err;
2198         u32 cp;
2199
2200         err = 0;
2201         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2202                            sizeof(arg64.LUN_info));
2203         err |= copy_from_user(&arg64.Request, &arg32->Request,
2204                            sizeof(arg64.Request));
2205         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2206                            sizeof(arg64.error_info));
2207         err |= get_user(arg64.buf_size, &arg32->buf_size);
2208         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2209         err |= get_user(cp, &arg32->buf);
2210         arg64.buf = compat_ptr(cp);
2211         err |= copy_to_user(p, &arg64, sizeof(arg64));
2212
2213         if (err)
2214                 return -EFAULT;
2215
2216         err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2217         if (err)
2218                 return err;
2219         err |= copy_in_user(&arg32->error_info, &p->error_info,
2220                          sizeof(arg32->error_info));
2221         if (err)
2222                 return -EFAULT;
2223         return err;
2224 }
2225 #endif
2226
2227 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2228 {
2229         struct hpsa_pci_info pciinfo;
2230
2231         if (!argp)
2232                 return -EINVAL;
2233         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2234         pciinfo.bus = h->pdev->bus->number;
2235         pciinfo.dev_fn = h->pdev->devfn;
2236         pciinfo.board_id = h->board_id;
2237         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2238                 return -EFAULT;
2239         return 0;
2240 }
2241
2242 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2243 {
2244         DriverVer_type DriverVer;
2245         unsigned char vmaj, vmin, vsubmin;
2246         int rc;
2247
2248         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2249                 &vmaj, &vmin, &vsubmin);
2250         if (rc != 3) {
2251                 dev_info(&h->pdev->dev, "driver version string '%s' "
2252                         "unrecognized.", HPSA_DRIVER_VERSION);
2253                 vmaj = 0;
2254                 vmin = 0;
2255                 vsubmin = 0;
2256         }
2257         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2258         if (!argp)
2259                 return -EINVAL;
2260         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2261                 return -EFAULT;
2262         return 0;
2263 }
2264
2265 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2266 {
2267         IOCTL_Command_struct iocommand;
2268         struct CommandList *c;
2269         char *buff = NULL;
2270         union u64bit temp64;
2271
2272         if (!argp)
2273                 return -EINVAL;
2274         if (!capable(CAP_SYS_RAWIO))
2275                 return -EPERM;
2276         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2277                 return -EFAULT;
2278         if ((iocommand.buf_size < 1) &&
2279             (iocommand.Request.Type.Direction != XFER_NONE)) {
2280                 return -EINVAL;
2281         }
2282         if (iocommand.buf_size > 0) {
2283                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2284                 if (buff == NULL)
2285                         return -EFAULT;
2286         }
2287         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2288                 /* Copy the data into the buffer we created */
2289                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2290                         kfree(buff);
2291                         return -EFAULT;
2292                 }
2293         } else
2294                 memset(buff, 0, iocommand.buf_size);
2295         c = cmd_special_alloc(h);
2296         if (c == NULL) {
2297                 kfree(buff);
2298                 return -ENOMEM;
2299         }
2300         /* Fill in the command type */
2301         c->cmd_type = CMD_IOCTL_PEND;
2302         /* Fill in Command Header */
2303         c->Header.ReplyQueue = 0; /* unused in simple mode */
2304         if (iocommand.buf_size > 0) {   /* buffer to fill */
2305                 c->Header.SGList = 1;
2306                 c->Header.SGTotal = 1;
2307         } else  { /* no buffers to fill */
2308                 c->Header.SGList = 0;
2309                 c->Header.SGTotal = 0;
2310         }
2311         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2312         /* use the kernel address the cmd block for tag */
2313         c->Header.Tag.lower = c->busaddr;
2314
2315         /* Fill in Request block */
2316         memcpy(&c->Request, &iocommand.Request,
2317                 sizeof(c->Request));
2318
2319         /* Fill in the scatter gather information */
2320         if (iocommand.buf_size > 0) {
2321                 temp64.val = pci_map_single(h->pdev, buff,
2322                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2323                 c->SG[0].Addr.lower = temp64.val32.lower;
2324                 c->SG[0].Addr.upper = temp64.val32.upper;
2325                 c->SG[0].Len = iocommand.buf_size;
2326                 c->SG[0].Ext = 0; /* we are not chaining*/
2327         }
2328         hpsa_scsi_do_simple_cmd_core(h, c);
2329         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2330         check_ioctl_unit_attention(h, c);
2331
2332         /* Copy the error information out */
2333         memcpy(&iocommand.error_info, c->err_info,
2334                 sizeof(iocommand.error_info));
2335         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2336                 kfree(buff);
2337                 cmd_special_free(h, c);
2338                 return -EFAULT;
2339         }
2340
2341         if (iocommand.Request.Type.Direction == XFER_READ) {
2342                 /* Copy the data out of the buffer we created */
2343                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2344                         kfree(buff);
2345                         cmd_special_free(h, c);
2346                         return -EFAULT;
2347                 }
2348         }
2349         kfree(buff);
2350         cmd_special_free(h, c);
2351         return 0;
2352 }
2353
2354 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2355 {
2356         BIG_IOCTL_Command_struct *ioc;
2357         struct CommandList *c;
2358         unsigned char **buff = NULL;
2359         int *buff_size = NULL;
2360         union u64bit temp64;
2361         BYTE sg_used = 0;
2362         int status = 0;
2363         int i;
2364         u32 left;
2365         u32 sz;
2366         BYTE __user *data_ptr;
2367
2368         if (!argp)
2369                 return -EINVAL;
2370         if (!capable(CAP_SYS_RAWIO))
2371                 return -EPERM;
2372         ioc = (BIG_IOCTL_Command_struct *)
2373             kmalloc(sizeof(*ioc), GFP_KERNEL);
2374         if (!ioc) {
2375                 status = -ENOMEM;
2376                 goto cleanup1;
2377         }
2378         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2379                 status = -EFAULT;
2380                 goto cleanup1;
2381         }
2382         if ((ioc->buf_size < 1) &&
2383             (ioc->Request.Type.Direction != XFER_NONE)) {
2384                 status = -EINVAL;
2385                 goto cleanup1;
2386         }
2387         /* Check kmalloc limits  using all SGs */
2388         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2389                 status = -EINVAL;
2390                 goto cleanup1;
2391         }
2392         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2393                 status = -EINVAL;
2394                 goto cleanup1;
2395         }
2396         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2397         if (!buff) {
2398                 status = -ENOMEM;
2399                 goto cleanup1;
2400         }
2401         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2402         if (!buff_size) {
2403                 status = -ENOMEM;
2404                 goto cleanup1;
2405         }
2406         left = ioc->buf_size;
2407         data_ptr = ioc->buf;
2408         while (left) {
2409                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2410                 buff_size[sg_used] = sz;
2411                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2412                 if (buff[sg_used] == NULL) {
2413                         status = -ENOMEM;
2414                         goto cleanup1;
2415                 }
2416                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2417                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2418                                 status = -ENOMEM;
2419                                 goto cleanup1;
2420                         }
2421                 } else
2422                         memset(buff[sg_used], 0, sz);
2423                 left -= sz;
2424                 data_ptr += sz;
2425                 sg_used++;
2426         }
2427         c = cmd_special_alloc(h);
2428         if (c == NULL) {
2429                 status = -ENOMEM;
2430                 goto cleanup1;
2431         }
2432         c->cmd_type = CMD_IOCTL_PEND;
2433         c->Header.ReplyQueue = 0;
2434
2435         if (ioc->buf_size > 0) {
2436                 c->Header.SGList = sg_used;
2437                 c->Header.SGTotal = sg_used;
2438         } else {
2439                 c->Header.SGList = 0;
2440                 c->Header.SGTotal = 0;
2441         }
2442         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2443         c->Header.Tag.lower = c->busaddr;
2444         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2445         if (ioc->buf_size > 0) {
2446                 int i;
2447                 for (i = 0; i < sg_used; i++) {
2448                         temp64.val = pci_map_single(h->pdev, buff[i],
2449                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2450                         c->SG[i].Addr.lower = temp64.val32.lower;
2451                         c->SG[i].Addr.upper = temp64.val32.upper;
2452                         c->SG[i].Len = buff_size[i];
2453                         /* we are not chaining */
2454                         c->SG[i].Ext = 0;
2455                 }
2456         }
2457         hpsa_scsi_do_simple_cmd_core(h, c);
2458         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2459         check_ioctl_unit_attention(h, c);
2460         /* Copy the error information out */
2461         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2462         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2463                 cmd_special_free(h, c);
2464                 status = -EFAULT;
2465                 goto cleanup1;
2466         }
2467         if (ioc->Request.Type.Direction == XFER_READ) {
2468                 /* Copy the data out of the buffer we created */
2469                 BYTE __user *ptr = ioc->buf;
2470                 for (i = 0; i < sg_used; i++) {
2471                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2472                                 cmd_special_free(h, c);
2473                                 status = -EFAULT;
2474                                 goto cleanup1;
2475                         }
2476                         ptr += buff_size[i];
2477                 }
2478         }
2479         cmd_special_free(h, c);
2480         status = 0;
2481 cleanup1:
2482         if (buff) {
2483                 for (i = 0; i < sg_used; i++)
2484                         kfree(buff[i]);
2485                 kfree(buff);
2486         }
2487         kfree(buff_size);
2488         kfree(ioc);
2489         return status;
2490 }
2491
2492 static void check_ioctl_unit_attention(struct ctlr_info *h,
2493         struct CommandList *c)
2494 {
2495         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2496                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2497                 (void) check_for_unit_attention(h, c);
2498 }
2499 /*
2500  * ioctl
2501  */
2502 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2503 {
2504         struct ctlr_info *h;
2505         void __user *argp = (void __user *)arg;
2506
2507         h = sdev_to_hba(dev);
2508
2509         switch (cmd) {
2510         case CCISS_DEREGDISK:
2511         case CCISS_REGNEWDISK:
2512         case CCISS_REGNEWD:
2513                 hpsa_update_scsi_devices(h, dev->host->host_no);
2514                 return 0;
2515         case CCISS_GETPCIINFO:
2516                 return hpsa_getpciinfo_ioctl(h, argp);
2517         case CCISS_GETDRIVVER:
2518                 return hpsa_getdrivver_ioctl(h, argp);
2519         case CCISS_PASSTHRU:
2520                 return hpsa_passthru_ioctl(h, argp);
2521         case CCISS_BIG_PASSTHRU:
2522                 return hpsa_big_passthru_ioctl(h, argp);
2523         default:
2524                 return -ENOTTY;
2525         }
2526 }
2527
2528 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2529         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2530         int cmd_type)
2531 {
2532         int pci_dir = XFER_NONE;
2533
2534         c->cmd_type = CMD_IOCTL_PEND;
2535         c->Header.ReplyQueue = 0;
2536         if (buff != NULL && size > 0) {
2537                 c->Header.SGList = 1;
2538                 c->Header.SGTotal = 1;
2539         } else {
2540                 c->Header.SGList = 0;
2541                 c->Header.SGTotal = 0;
2542         }
2543         c->Header.Tag.lower = c->busaddr;
2544         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2545
2546         c->Request.Type.Type = cmd_type;
2547         if (cmd_type == TYPE_CMD) {
2548                 switch (cmd) {
2549                 case HPSA_INQUIRY:
2550                         /* are we trying to read a vital product page */
2551                         if (page_code != 0) {
2552                                 c->Request.CDB[1] = 0x01;
2553                                 c->Request.CDB[2] = page_code;
2554                         }
2555                         c->Request.CDBLen = 6;
2556                         c->Request.Type.Attribute = ATTR_SIMPLE;
2557                         c->Request.Type.Direction = XFER_READ;
2558                         c->Request.Timeout = 0;
2559                         c->Request.CDB[0] = HPSA_INQUIRY;
2560                         c->Request.CDB[4] = size & 0xFF;
2561                         break;
2562                 case HPSA_REPORT_LOG:
2563                 case HPSA_REPORT_PHYS:
2564                         /* Talking to controller so It's a physical command
2565                            mode = 00 target = 0.  Nothing to write.
2566                          */
2567                         c->Request.CDBLen = 12;
2568                         c->Request.Type.Attribute = ATTR_SIMPLE;
2569                         c->Request.Type.Direction = XFER_READ;
2570                         c->Request.Timeout = 0;
2571                         c->Request.CDB[0] = cmd;
2572                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2573                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2574                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2575                         c->Request.CDB[9] = size & 0xFF;
2576                         break;
2577
2578                 case HPSA_READ_CAPACITY:
2579                         c->Request.CDBLen = 10;
2580                         c->Request.Type.Attribute = ATTR_SIMPLE;
2581                         c->Request.Type.Direction = XFER_READ;
2582                         c->Request.Timeout = 0;
2583                         c->Request.CDB[0] = cmd;
2584                         break;
2585                 case HPSA_CACHE_FLUSH:
2586                         c->Request.CDBLen = 12;
2587                         c->Request.Type.Attribute = ATTR_SIMPLE;
2588                         c->Request.Type.Direction = XFER_WRITE;
2589                         c->Request.Timeout = 0;
2590                         c->Request.CDB[0] = BMIC_WRITE;
2591                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2592                         break;
2593                 case TEST_UNIT_READY:
2594                         c->Request.CDBLen = 6;
2595                         c->Request.Type.Attribute = ATTR_SIMPLE;
2596                         c->Request.Type.Direction = XFER_NONE;
2597                         c->Request.Timeout = 0;
2598                         break;
2599                 default:
2600                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2601                         BUG();
2602                         return;
2603                 }
2604         } else if (cmd_type == TYPE_MSG) {
2605                 switch (cmd) {
2606
2607                 case  HPSA_DEVICE_RESET_MSG:
2608                         c->Request.CDBLen = 16;
2609                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2610                         c->Request.Type.Attribute = ATTR_SIMPLE;
2611                         c->Request.Type.Direction = XFER_NONE;
2612                         c->Request.Timeout = 0; /* Don't time out */
2613                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2614                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2615                         /* If bytes 4-7 are zero, it means reset the */
2616                         /* LunID device */
2617                         c->Request.CDB[4] = 0x00;
2618                         c->Request.CDB[5] = 0x00;
2619                         c->Request.CDB[6] = 0x00;
2620                         c->Request.CDB[7] = 0x00;
2621                 break;
2622
2623                 default:
2624                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2625                                 cmd);
2626                         BUG();
2627                 }
2628         } else {
2629                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2630                 BUG();
2631         }
2632
2633         switch (c->Request.Type.Direction) {
2634         case XFER_READ:
2635                 pci_dir = PCI_DMA_FROMDEVICE;
2636                 break;
2637         case XFER_WRITE:
2638                 pci_dir = PCI_DMA_TODEVICE;
2639                 break;
2640         case XFER_NONE:
2641                 pci_dir = PCI_DMA_NONE;
2642                 break;
2643         default:
2644                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2645         }
2646
2647         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2648
2649         return;
2650 }
2651
2652 /*
2653  * Map (physical) PCI mem into (virtual) kernel space
2654  */
2655 static void __iomem *remap_pci_mem(ulong base, ulong size)
2656 {
2657         ulong page_base = ((ulong) base) & PAGE_MASK;
2658         ulong page_offs = ((ulong) base) - page_base;
2659         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2660
2661         return page_remapped ? (page_remapped + page_offs) : NULL;
2662 }
2663
2664 /* Takes cmds off the submission queue and sends them to the hardware,
2665  * then puts them on the queue of cmds waiting for completion.
2666  */
2667 static void start_io(struct ctlr_info *h)
2668 {
2669         struct CommandList *c;
2670
2671         while (!hlist_empty(&h->reqQ)) {
2672                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2673                 /* can't do anything if fifo is full */
2674                 if ((h->access.fifo_full(h))) {
2675                         dev_warn(&h->pdev->dev, "fifo full\n");
2676                         break;
2677                 }
2678
2679                 /* Get the first entry from the Request Q */
2680                 removeQ(c);
2681                 h->Qdepth--;
2682
2683                 /* Tell the controller execute command */
2684                 h->access.submit_command(h, c);
2685
2686                 /* Put job onto the completed Q */
2687                 addQ(&h->cmpQ, c);
2688         }
2689 }
2690
2691 static inline unsigned long get_next_completion(struct ctlr_info *h)
2692 {
2693         return h->access.command_completed(h);
2694 }
2695
2696 static inline int interrupt_pending(struct ctlr_info *h)
2697 {
2698         return h->access.intr_pending(h);
2699 }
2700
2701 static inline long interrupt_not_for_us(struct ctlr_info *h)
2702 {
2703         return ((h->access.intr_pending(h) == 0) ||
2704                  (h->interrupts_enabled == 0));
2705 }
2706
2707 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2708         u32 raw_tag)
2709 {
2710         if (unlikely(tag_index >= h->nr_cmds)) {
2711                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2712                 return 1;
2713         }
2714         return 0;
2715 }
2716
2717 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2718 {
2719         removeQ(c);
2720         if (likely(c->cmd_type == CMD_SCSI))
2721                 complete_scsi_command(c, 0, raw_tag);
2722         else if (c->cmd_type == CMD_IOCTL_PEND)
2723                 complete(c->waiting);
2724 }
2725
2726 static inline u32 hpsa_tag_contains_index(u32 tag)
2727 {
2728 #define DIRECT_LOOKUP_BIT 0x04
2729         return tag & DIRECT_LOOKUP_BIT;
2730 }
2731
2732 static inline u32 hpsa_tag_to_index(u32 tag)
2733 {
2734 #define DIRECT_LOOKUP_SHIFT 3
2735         return tag >> DIRECT_LOOKUP_SHIFT;
2736 }
2737
2738 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2739 {
2740 #define HPSA_ERROR_BITS 0x03
2741         return tag & ~HPSA_ERROR_BITS;
2742 }
2743
2744 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2745 {
2746         struct ctlr_info *h = dev_id;
2747         struct CommandList *c;
2748         unsigned long flags;
2749         u32 raw_tag, tag, tag_index;
2750         struct hlist_node *tmp;
2751
2752         if (interrupt_not_for_us(h))
2753                 return IRQ_NONE;
2754         spin_lock_irqsave(&h->lock, flags);
2755         while (interrupt_pending(h)) {
2756                 while ((raw_tag = get_next_completion(h)) != FIFO_EMPTY) {
2757                         if (likely(hpsa_tag_contains_index(raw_tag))) {
2758                                 tag_index = hpsa_tag_to_index(raw_tag);
2759                                 if (bad_tag(h, tag_index, raw_tag))
2760                                         return IRQ_HANDLED;
2761                                 c = h->cmd_pool + tag_index;
2762                                 finish_cmd(c, raw_tag);
2763                                 continue;
2764                         }
2765                         tag = hpsa_tag_discard_error_bits(raw_tag);
2766                         c = NULL;
2767                         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2768                                 if (c->busaddr == tag) {
2769                                         finish_cmd(c, raw_tag);
2770                                         break;
2771                                 }
2772                         }
2773                 }
2774         }
2775         spin_unlock_irqrestore(&h->lock, flags);
2776         return IRQ_HANDLED;
2777 }
2778
2779 /* Send a message CDB to the firmware. */
2780 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2781                                                 unsigned char type)
2782 {
2783         struct Command {
2784                 struct CommandListHeader CommandHeader;
2785                 struct RequestBlock Request;
2786                 struct ErrDescriptor ErrorDescriptor;
2787         };
2788         struct Command *cmd;
2789         static const size_t cmd_sz = sizeof(*cmd) +
2790                                         sizeof(cmd->ErrorDescriptor);
2791         dma_addr_t paddr64;
2792         uint32_t paddr32, tag;
2793         void __iomem *vaddr;
2794         int i, err;
2795
2796         vaddr = pci_ioremap_bar(pdev, 0);
2797         if (vaddr == NULL)
2798                 return -ENOMEM;
2799
2800         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2801          * CCISS commands, so they must be allocated from the lower 4GiB of
2802          * memory.
2803          */
2804         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2805         if (err) {
2806                 iounmap(vaddr);
2807                 return -ENOMEM;
2808         }
2809
2810         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2811         if (cmd == NULL) {
2812                 iounmap(vaddr);
2813                 return -ENOMEM;
2814         }
2815
2816         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2817          * although there's no guarantee, we assume that the address is at
2818          * least 4-byte aligned (most likely, it's page-aligned).
2819          */
2820         paddr32 = paddr64;
2821
2822         cmd->CommandHeader.ReplyQueue = 0;
2823         cmd->CommandHeader.SGList = 0;
2824         cmd->CommandHeader.SGTotal = 0;
2825         cmd->CommandHeader.Tag.lower = paddr32;
2826         cmd->CommandHeader.Tag.upper = 0;
2827         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2828
2829         cmd->Request.CDBLen = 16;
2830         cmd->Request.Type.Type = TYPE_MSG;
2831         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2832         cmd->Request.Type.Direction = XFER_NONE;
2833         cmd->Request.Timeout = 0; /* Don't time out */
2834         cmd->Request.CDB[0] = opcode;
2835         cmd->Request.CDB[1] = type;
2836         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2837         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2838         cmd->ErrorDescriptor.Addr.upper = 0;
2839         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2840
2841         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2842
2843         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2844                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2845                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
2846                         break;
2847                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2848         }
2849
2850         iounmap(vaddr);
2851
2852         /* we leak the DMA buffer here ... no choice since the controller could
2853          *  still complete the command.
2854          */
2855         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
2856                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
2857                         opcode, type);
2858                 return -ETIMEDOUT;
2859         }
2860
2861         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
2862
2863         if (tag & HPSA_ERROR_BIT) {
2864                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
2865                         opcode, type);
2866                 return -EIO;
2867         }
2868
2869         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
2870                 opcode, type);
2871         return 0;
2872 }
2873
2874 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
2875 #define hpsa_noop(p) hpsa_message(p, 3, 0)
2876
2877 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
2878 {
2879 /* the #defines are stolen from drivers/pci/msi.h. */
2880 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
2881 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
2882
2883         int pos;
2884         u16 control = 0;
2885
2886         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
2887         if (pos) {
2888                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
2889                 if (control & PCI_MSI_FLAGS_ENABLE) {
2890                         dev_info(&pdev->dev, "resetting MSI\n");
2891                         pci_write_config_word(pdev, msi_control_reg(pos),
2892                                         control & ~PCI_MSI_FLAGS_ENABLE);
2893                 }
2894         }
2895
2896         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
2897         if (pos) {
2898                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
2899                 if (control & PCI_MSIX_FLAGS_ENABLE) {
2900                         dev_info(&pdev->dev, "resetting MSI-X\n");
2901                         pci_write_config_word(pdev, msi_control_reg(pos),
2902                                         control & ~PCI_MSIX_FLAGS_ENABLE);
2903                 }
2904         }
2905
2906         return 0;
2907 }
2908
2909 /* This does a hard reset of the controller using PCI power management
2910  * states.
2911  */
2912 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
2913 {
2914         u16 pmcsr, saved_config_space[32];
2915         int i, pos;
2916
2917         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2918
2919         /* This is very nearly the same thing as
2920          *
2921          * pci_save_state(pci_dev);
2922          * pci_set_power_state(pci_dev, PCI_D3hot);
2923          * pci_set_power_state(pci_dev, PCI_D0);
2924          * pci_restore_state(pci_dev);
2925          *
2926          * but we can't use these nice canned kernel routines on
2927          * kexec, because they also check the MSI/MSI-X state in PCI
2928          * configuration space and do the wrong thing when it is
2929          * set/cleared.  Also, the pci_save/restore_state functions
2930          * violate the ordering requirements for restoring the
2931          * configuration space from the CCISS document (see the
2932          * comment below).  So we roll our own ....
2933          */
2934
2935         for (i = 0; i < 32; i++)
2936                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
2937
2938         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
2939         if (pos == 0) {
2940                 dev_err(&pdev->dev,
2941                         "hpsa_reset_controller: PCI PM not supported\n");
2942                 return -ENODEV;
2943         }
2944
2945         /* Quoting from the Open CISS Specification: "The Power
2946          * Management Control/Status Register (CSR) controls the power
2947          * state of the device.  The normal operating state is D0,
2948          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
2949          * the controller, place the interface device in D3 then to
2950          * D0, this causes a secondary PCI reset which will reset the
2951          * controller."
2952          */
2953
2954         /* enter the D3hot power management state */
2955         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
2956         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2957         pmcsr |= PCI_D3hot;
2958         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2959
2960         msleep(500);
2961
2962         /* enter the D0 power management state */
2963         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2964         pmcsr |= PCI_D0;
2965         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2966
2967         msleep(500);
2968
2969         /* Restore the PCI configuration space.  The Open CISS
2970          * Specification says, "Restore the PCI Configuration
2971          * Registers, offsets 00h through 60h. It is important to
2972          * restore the command register, 16-bits at offset 04h,
2973          * last. Do not restore the configuration status register,
2974          * 16-bits at offset 06h."  Note that the offset is 2*i.
2975          */
2976         for (i = 0; i < 32; i++) {
2977                 if (i == 2 || i == 3)
2978                         continue;
2979                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
2980         }
2981         wmb();
2982         pci_write_config_word(pdev, 4, saved_config_space[2]);
2983
2984         return 0;
2985 }
2986
2987 /*
2988  *  We cannot read the structure directly, for portability we must use
2989  *   the io functions.
2990  *   This is for debug only.
2991  */
2992 #ifdef HPSA_DEBUG
2993 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
2994 {
2995         int i;
2996         char temp_name[17];
2997
2998         dev_info(dev, "Controller Configuration information\n");
2999         dev_info(dev, "------------------------------------\n");
3000         for (i = 0; i < 4; i++)
3001                 temp_name[i] = readb(&(tb->Signature[i]));
3002         temp_name[4] = '\0';
3003         dev_info(dev, "   Signature = %s\n", temp_name);
3004         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3005         dev_info(dev, "   Transport methods supported = 0x%x\n",
3006                readl(&(tb->TransportSupport)));
3007         dev_info(dev, "   Transport methods active = 0x%x\n",
3008                readl(&(tb->TransportActive)));
3009         dev_info(dev, "   Requested transport Method = 0x%x\n",
3010                readl(&(tb->HostWrite.TransportRequest)));
3011         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3012                readl(&(tb->HostWrite.CoalIntDelay)));
3013         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3014                readl(&(tb->HostWrite.CoalIntCount)));
3015         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3016                readl(&(tb->CmdsOutMax)));
3017         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3018         for (i = 0; i < 16; i++)
3019                 temp_name[i] = readb(&(tb->ServerName[i]));
3020         temp_name[16] = '\0';
3021         dev_info(dev, "   Server Name = %s\n", temp_name);
3022         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3023                 readl(&(tb->HeartBeat)));
3024 }
3025 #endif                          /* HPSA_DEBUG */
3026
3027 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3028 {
3029         int i, offset, mem_type, bar_type;
3030
3031         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3032                 return 0;
3033         offset = 0;
3034         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3035                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3036                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3037                         offset += 4;
3038                 else {
3039                         mem_type = pci_resource_flags(pdev, i) &
3040                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3041                         switch (mem_type) {
3042                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3043                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3044                                 offset += 4;    /* 32 bit */
3045                                 break;
3046                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3047                                 offset += 8;
3048                                 break;
3049                         default:        /* reserved in PCI 2.2 */
3050                                 dev_warn(&pdev->dev,
3051                                        "base address is invalid\n");
3052                                 return -1;
3053                                 break;
3054                         }
3055                 }
3056                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3057                         return i + 1;
3058         }
3059         return -1;
3060 }
3061
3062 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3063  * controllers that are capable. If not, we use IO-APIC mode.
3064  */
3065
3066 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3067                                            struct pci_dev *pdev, u32 board_id)
3068 {
3069 #ifdef CONFIG_PCI_MSI
3070         int err;
3071         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3072         {0, 2}, {0, 3}
3073         };
3074
3075         /* Some boards advertise MSI but don't really support it */
3076         if ((board_id == 0x40700E11) ||
3077             (board_id == 0x40800E11) ||
3078             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3079                 goto default_int_mode;
3080         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3081                 dev_info(&pdev->dev, "MSIX\n");
3082                 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3083                 if (!err) {
3084                         h->intr[0] = hpsa_msix_entries[0].vector;
3085                         h->intr[1] = hpsa_msix_entries[1].vector;
3086                         h->intr[2] = hpsa_msix_entries[2].vector;
3087                         h->intr[3] = hpsa_msix_entries[3].vector;
3088                         h->msix_vector = 1;
3089                         return;
3090                 }
3091                 if (err > 0) {
3092                         dev_warn(&pdev->dev, "only %d MSI-X vectors "
3093                                "available\n", err);
3094                         goto default_int_mode;
3095                 } else {
3096                         dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3097                                err);
3098                         goto default_int_mode;
3099                 }
3100         }
3101         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3102                 dev_info(&pdev->dev, "MSI\n");
3103                 if (!pci_enable_msi(pdev))
3104                         h->msi_vector = 1;
3105                 else
3106                         dev_warn(&pdev->dev, "MSI init failed\n");
3107         }
3108 default_int_mode:
3109 #endif                          /* CONFIG_PCI_MSI */
3110         /* if we get here we're going to use the default interrupt mode */
3111         h->intr[SIMPLE_MODE_INT] = pdev->irq;
3112 }
3113
3114 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3115 {
3116         ushort subsystem_vendor_id, subsystem_device_id, command;
3117         u32 board_id, scratchpad = 0;
3118         u64 cfg_offset;
3119         u32 cfg_base_addr;
3120         u64 cfg_base_addr_index;
3121         int i, prod_index, err;
3122
3123         subsystem_vendor_id = pdev->subsystem_vendor;
3124         subsystem_device_id = pdev->subsystem_device;
3125         board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3126                     subsystem_vendor_id);
3127
3128         for (i = 0; i < ARRAY_SIZE(products); i++)
3129                 if (board_id == products[i].board_id)
3130                         break;
3131
3132         prod_index = i;
3133
3134         if (prod_index == ARRAY_SIZE(products)) {
3135                 prod_index--;
3136                 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3137                                 !hpsa_allow_any) {
3138                         dev_warn(&pdev->dev, "unrecognized board ID:"
3139                                 " 0x%08lx, ignoring.\n",
3140                                 (unsigned long) board_id);
3141                         return -ENODEV;
3142                 }
3143         }
3144         /* check to see if controller has been disabled
3145          * BEFORE trying to enable it
3146          */
3147         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3148         if (!(command & 0x02)) {
3149                 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3150                 return -ENODEV;
3151         }
3152
3153         err = pci_enable_device(pdev);
3154         if (err) {
3155                 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3156                 return err;
3157         }
3158
3159         err = pci_request_regions(pdev, "hpsa");
3160         if (err) {
3161                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3162                 return err;
3163         }
3164
3165         /* If the kernel supports MSI/MSI-X we will try to enable that,
3166          * else we use the IO-APIC interrupt assigned to us by system ROM.
3167          */
3168         hpsa_interrupt_mode(h, pdev, board_id);
3169
3170         /* find the memory BAR */
3171         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3172                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3173                         break;
3174         }
3175         if (i == DEVICE_COUNT_RESOURCE) {
3176                 dev_warn(&pdev->dev, "no memory BAR found\n");
3177                 err = -ENODEV;
3178                 goto err_out_free_res;
3179         }
3180
3181         h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3182                                                  * already removed
3183                                                  */
3184
3185         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3186
3187         /* Wait for the board to become ready.  */
3188         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3189                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3190                 if (scratchpad == HPSA_FIRMWARE_READY)
3191                         break;
3192                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3193         }
3194         if (scratchpad != HPSA_FIRMWARE_READY) {
3195                 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3196                 err = -ENODEV;
3197                 goto err_out_free_res;
3198         }
3199
3200         /* get the address index number */
3201         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3202         cfg_base_addr &= (u32) 0x0000ffff;
3203         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3204         if (cfg_base_addr_index == -1) {
3205                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3206                 err = -ENODEV;
3207                 goto err_out_free_res;
3208         }
3209
3210         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3211         h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3212                                cfg_base_addr_index) + cfg_offset,
3213                                 sizeof(h->cfgtable));
3214         h->board_id = board_id;
3215
3216         /* Query controller for max supported commands: */
3217         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3218
3219         h->product_name = products[prod_index].product_name;
3220         h->access = *(products[prod_index].access);
3221         /* Allow room for some ioctls */
3222         h->nr_cmds = h->max_commands - 4;
3223
3224         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3225             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3226             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3227             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3228                 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3229                 err = -ENODEV;
3230                 goto err_out_free_res;
3231         }
3232 #ifdef CONFIG_X86
3233         {
3234                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3235                 u32 prefetch;
3236                 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3237                 prefetch |= 0x100;
3238                 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3239         }
3240 #endif
3241
3242         /* Disabling DMA prefetch for the P600
3243          * An ASIC bug may result in a prefetch beyond
3244          * physical memory.
3245          */
3246         if (board_id == 0x3225103C) {
3247                 u32 dma_prefetch;
3248                 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3249                 dma_prefetch |= 0x8000;
3250                 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3251         }
3252
3253         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3254         /* Update the field, and then ring the doorbell */
3255         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3256         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3257
3258         /* under certain very rare conditions, this can take awhile.
3259          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3260          * as we enter this code.)
3261          */
3262         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3263                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3264                         break;
3265                 /* delay and try again */
3266                 msleep(10);
3267         }
3268
3269 #ifdef HPSA_DEBUG
3270         print_cfg_table(&pdev->dev, h->cfgtable);
3271 #endif                          /* HPSA_DEBUG */
3272
3273         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3274                 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3275                 err = -ENODEV;
3276                 goto err_out_free_res;
3277         }
3278         return 0;
3279
3280 err_out_free_res:
3281         /*
3282          * Deliberately omit pci_disable_device(): it does something nasty to
3283          * Smart Array controllers that pci_enable_device does not undo
3284          */
3285         pci_release_regions(pdev);
3286         return err;
3287 }
3288
3289 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3290                                     const struct pci_device_id *ent)
3291 {
3292         int i, rc;
3293         int dac;
3294         struct ctlr_info *h;
3295
3296         if (number_of_controllers == 0)
3297                 printk(KERN_INFO DRIVER_NAME "\n");
3298         if (reset_devices) {
3299                 /* Reset the controller with a PCI power-cycle */
3300                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3301                         return -ENODEV;
3302
3303                 /* Some devices (notably the HP Smart Array 5i Controller)
3304                    need a little pause here */
3305                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3306
3307                 /* Now try to get the controller to respond to a no-op */
3308                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3309                         if (hpsa_noop(pdev) == 0)
3310                                 break;
3311                         else
3312                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3313                                                 (i < 11 ? "; re-trying" : ""));
3314                 }
3315         }
3316
3317         BUILD_BUG_ON(sizeof(struct CommandList) % 8);
3318         h = kzalloc(sizeof(*h), GFP_KERNEL);
3319         if (!h)
3320                 return -ENOMEM;
3321
3322         h->busy_initializing = 1;
3323         INIT_HLIST_HEAD(&h->cmpQ);
3324         INIT_HLIST_HEAD(&h->reqQ);
3325         mutex_init(&h->busy_shutting_down);
3326         init_completion(&h->scan_wait);
3327         rc = hpsa_pci_init(h, pdev);
3328         if (rc != 0)
3329                 goto clean1;
3330
3331         sprintf(h->devname, "hpsa%d", number_of_controllers);
3332         h->ctlr = number_of_controllers;
3333         number_of_controllers++;
3334         h->pdev = pdev;
3335
3336         /* configure PCI DMA stuff */
3337         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3338         if (rc == 0) {
3339                 dac = 1;
3340         } else {
3341                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3342                 if (rc == 0) {
3343                         dac = 0;
3344                 } else {
3345                         dev_err(&pdev->dev, "no suitable DMA available\n");
3346                         goto clean1;
3347                 }
3348         }
3349
3350         /* make sure the board interrupts are off */
3351         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3352         rc = request_irq(h->intr[SIMPLE_MODE_INT], do_hpsa_intr,
3353                         IRQF_DISABLED | IRQF_SHARED, h->devname, h);
3354         if (rc) {
3355                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3356                        h->intr[SIMPLE_MODE_INT], h->devname);
3357                 goto clean2;
3358         }
3359
3360         dev_info(&pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3361                h->devname, pdev->device, pci_name(pdev),
3362                h->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3363
3364         h->cmd_pool_bits =
3365             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3366                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3367         h->cmd_pool = pci_alloc_consistent(h->pdev,
3368                     h->nr_cmds * sizeof(*h->cmd_pool),
3369                     &(h->cmd_pool_dhandle));
3370         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3371                     h->nr_cmds * sizeof(*h->errinfo_pool),
3372                     &(h->errinfo_pool_dhandle));
3373         if ((h->cmd_pool_bits == NULL)
3374             || (h->cmd_pool == NULL)
3375             || (h->errinfo_pool == NULL)) {
3376                 dev_err(&pdev->dev, "out of memory");
3377                 rc = -ENOMEM;
3378                 goto clean4;
3379         }
3380         spin_lock_init(&h->lock);
3381
3382         pci_set_drvdata(pdev, h);
3383         memset(h->cmd_pool_bits, 0,
3384                ((h->nr_cmds + BITS_PER_LONG -
3385                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3386
3387         hpsa_scsi_setup(h);
3388
3389         /* Turn the interrupts on so we can service requests */
3390         h->access.set_intr_mask(h, HPSA_INTR_ON);
3391
3392         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3393         h->busy_initializing = 0;
3394         return 1;
3395
3396 clean4:
3397         kfree(h->cmd_pool_bits);
3398         if (h->cmd_pool)
3399                 pci_free_consistent(h->pdev,
3400                             h->nr_cmds * sizeof(struct CommandList),
3401                             h->cmd_pool, h->cmd_pool_dhandle);
3402         if (h->errinfo_pool)
3403                 pci_free_consistent(h->pdev,
3404                             h->nr_cmds * sizeof(struct ErrorInfo),
3405                             h->errinfo_pool,
3406                             h->errinfo_pool_dhandle);
3407         free_irq(h->intr[SIMPLE_MODE_INT], h);
3408 clean2:
3409 clean1:
3410         h->busy_initializing = 0;
3411         kfree(h);
3412         return rc;
3413 }
3414
3415 static void hpsa_flush_cache(struct ctlr_info *h)
3416 {
3417         char *flush_buf;
3418         struct CommandList *c;
3419
3420         flush_buf = kzalloc(4, GFP_KERNEL);
3421         if (!flush_buf)
3422                 return;
3423
3424         c = cmd_special_alloc(h);
3425         if (!c) {
3426                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3427                 goto out_of_memory;
3428         }
3429         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3430                 RAID_CTLR_LUNID, TYPE_CMD);
3431         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3432         if (c->err_info->CommandStatus != 0)
3433                 dev_warn(&h->pdev->dev,
3434                         "error flushing cache on controller\n");
3435         cmd_special_free(h, c);
3436 out_of_memory:
3437         kfree(flush_buf);
3438 }
3439
3440 static void hpsa_shutdown(struct pci_dev *pdev)
3441 {
3442         struct ctlr_info *h;
3443
3444         h = pci_get_drvdata(pdev);
3445         /* Turn board interrupts off  and send the flush cache command
3446          * sendcmd will turn off interrupt, and send the flush...
3447          * To write all data in the battery backed cache to disks
3448          */
3449         hpsa_flush_cache(h);
3450         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3451         free_irq(h->intr[2], h);
3452 #ifdef CONFIG_PCI_MSI
3453         if (h->msix_vector)
3454                 pci_disable_msix(h->pdev);
3455         else if (h->msi_vector)
3456                 pci_disable_msi(h->pdev);
3457 #endif                          /* CONFIG_PCI_MSI */
3458 }
3459
3460 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3461 {
3462         struct ctlr_info *h;
3463
3464         if (pci_get_drvdata(pdev) == NULL) {
3465                 dev_err(&pdev->dev, "unable to remove device \n");
3466                 return;
3467         }
3468         h = pci_get_drvdata(pdev);
3469         mutex_lock(&h->busy_shutting_down);
3470         remove_from_scan_list(h);
3471         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3472         hpsa_shutdown(pdev);
3473         iounmap(h->vaddr);
3474         pci_free_consistent(h->pdev,
3475                 h->nr_cmds * sizeof(struct CommandList),
3476                 h->cmd_pool, h->cmd_pool_dhandle);
3477         pci_free_consistent(h->pdev,
3478                 h->nr_cmds * sizeof(struct ErrorInfo),
3479                 h->errinfo_pool, h->errinfo_pool_dhandle);
3480         kfree(h->cmd_pool_bits);
3481         /*
3482          * Deliberately omit pci_disable_device(): it does something nasty to
3483          * Smart Array controllers that pci_enable_device does not undo
3484          */
3485         pci_release_regions(pdev);
3486         pci_set_drvdata(pdev, NULL);
3487         mutex_unlock(&h->busy_shutting_down);
3488         kfree(h);
3489 }
3490
3491 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3492         __attribute__((unused)) pm_message_t state)
3493 {
3494         return -ENOSYS;
3495 }
3496
3497 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3498 {
3499         return -ENOSYS;
3500 }
3501
3502 static struct pci_driver hpsa_pci_driver = {
3503         .name = "hpsa",
3504         .probe = hpsa_init_one,
3505         .remove = __devexit_p(hpsa_remove_one),
3506         .id_table = hpsa_pci_device_id, /* id_table */
3507         .shutdown = hpsa_shutdown,
3508         .suspend = hpsa_suspend,
3509         .resume = hpsa_resume,
3510 };
3511
3512 /*
3513  *  This is it.  Register the PCI driver information for the cards we control
3514  *  the OS will call our registered routines when it finds one of our cards.
3515  */
3516 static int __init hpsa_init(void)
3517 {
3518         int err;
3519         /* Start the scan thread */
3520         hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3521         if (IS_ERR(hpsa_scan_thread)) {
3522                 err = PTR_ERR(hpsa_scan_thread);
3523                 return -ENODEV;
3524         }
3525         err = pci_register_driver(&hpsa_pci_driver);
3526         if (err)
3527                 kthread_stop(hpsa_scan_thread);
3528         return err;
3529 }
3530
3531 static void __exit hpsa_cleanup(void)
3532 {
3533         pci_unregister_driver(&hpsa_pci_driver);
3534         kthread_stop(hpsa_scan_thread);
3535 }
3536
3537 module_init(hpsa_init);
3538 module_exit(hpsa_cleanup);