Staging: rt2860: convert to netdev_ops
[safe/jmp/linux-2.6] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006, 2007, 2008  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <asm/rtc.h>
29
30 #define DRV_NAME        "sh-rtc"
31 #define DRV_VERSION     "0.2.1"
32
33 #define RTC_REG(r)      ((r) * rtc_reg_size)
34
35 #define R64CNT          RTC_REG(0)
36
37 #define RSECCNT         RTC_REG(1)      /* RTC sec */
38 #define RMINCNT         RTC_REG(2)      /* RTC min */
39 #define RHRCNT          RTC_REG(3)      /* RTC hour */
40 #define RWKCNT          RTC_REG(4)      /* RTC week */
41 #define RDAYCNT         RTC_REG(5)      /* RTC day */
42 #define RMONCNT         RTC_REG(6)      /* RTC month */
43 #define RYRCNT          RTC_REG(7)      /* RTC year */
44 #define RSECAR          RTC_REG(8)      /* ALARM sec */
45 #define RMINAR          RTC_REG(9)      /* ALARM min */
46 #define RHRAR           RTC_REG(10)     /* ALARM hour */
47 #define RWKAR           RTC_REG(11)     /* ALARM week */
48 #define RDAYAR          RTC_REG(12)     /* ALARM day */
49 #define RMONAR          RTC_REG(13)     /* ALARM month */
50 #define RCR1            RTC_REG(14)     /* Control */
51 #define RCR2            RTC_REG(15)     /* Control */
52
53 /*
54  * Note on RYRAR and RCR3: Up until this point most of the register
55  * definitions are consistent across all of the available parts. However,
56  * the placement of the optional RYRAR and RCR3 (the RYRAR control
57  * register used to control RYRCNT/RYRAR compare) varies considerably
58  * across various parts, occasionally being mapped in to a completely
59  * unrelated address space. For proper RYRAR support a separate resource
60  * would have to be handed off, but as this is purely optional in
61  * practice, we simply opt not to support it, thereby keeping the code
62  * quite a bit more simplified.
63  */
64
65 /* ALARM Bits - or with BCD encoded value */
66 #define AR_ENB          0x80    /* Enable for alarm cmp   */
67
68 /* Period Bits */
69 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
70 #define PF_COUNT        0x200   /* Half periodic counter */
71 #define PF_OXS          0x400   /* Periodic One x Second */
72 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
73 #define PF_MASK         0xf00
74
75 /* RCR1 Bits */
76 #define RCR1_CF         0x80    /* Carry Flag             */
77 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
78 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
79 #define RCR1_AF         0x01    /* Alarm Flag             */
80
81 /* RCR2 Bits */
82 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
83 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
84 #define RCR2_RTCEN      0x08    /* ENable RTC              */
85 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
86 #define RCR2_RESET      0x02    /* Reset bit               */
87 #define RCR2_START      0x01    /* Start bit               */
88
89 struct sh_rtc {
90         void __iomem *regbase;
91         unsigned long regsize;
92         struct resource *res;
93         int alarm_irq;
94         int periodic_irq;
95         int carry_irq;
96         struct rtc_device *rtc_dev;
97         spinlock_t lock;
98         unsigned long capabilities;     /* See asm-sh/rtc.h for cap bits */
99         unsigned short periodic_freq;
100 };
101
102 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
103 {
104         unsigned int tmp, pending;
105
106         tmp = readb(rtc->regbase + RCR1);
107         pending = tmp & RCR1_CF;
108         tmp &= ~RCR1_CF;
109         writeb(tmp, rtc->regbase + RCR1);
110
111         /* Users have requested One x Second IRQ */
112         if (pending && rtc->periodic_freq & PF_OXS)
113                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
114
115         return pending;
116 }
117
118 static int __sh_rtc_alarm(struct sh_rtc *rtc)
119 {
120         unsigned int tmp, pending;
121
122         tmp = readb(rtc->regbase + RCR1);
123         pending = tmp & RCR1_AF;
124         tmp &= ~(RCR1_AF | RCR1_AIE);
125         writeb(tmp, rtc->regbase + RCR1);
126
127         if (pending)
128                 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
129
130         return pending;
131 }
132
133 static int __sh_rtc_periodic(struct sh_rtc *rtc)
134 {
135         struct rtc_device *rtc_dev = rtc->rtc_dev;
136         struct rtc_task *irq_task;
137         unsigned int tmp, pending;
138
139         tmp = readb(rtc->regbase + RCR2);
140         pending = tmp & RCR2_PEF;
141         tmp &= ~RCR2_PEF;
142         writeb(tmp, rtc->regbase + RCR2);
143
144         if (!pending)
145                 return 0;
146
147         /* Half period enabled than one skipped and the next notified */
148         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
149                 rtc->periodic_freq &= ~PF_COUNT;
150         else {
151                 if (rtc->periodic_freq & PF_HP)
152                         rtc->periodic_freq |= PF_COUNT;
153                 if (rtc->periodic_freq & PF_KOU) {
154                         spin_lock(&rtc_dev->irq_task_lock);
155                         irq_task = rtc_dev->irq_task;
156                         if (irq_task)
157                                 irq_task->func(irq_task->private_data);
158                         spin_unlock(&rtc_dev->irq_task_lock);
159                 } else
160                         rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
161         }
162
163         return pending;
164 }
165
166 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
167 {
168         struct sh_rtc *rtc = dev_id;
169         int ret;
170
171         spin_lock(&rtc->lock);
172         ret = __sh_rtc_interrupt(rtc);
173         spin_unlock(&rtc->lock);
174
175         return IRQ_RETVAL(ret);
176 }
177
178 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
179 {
180         struct sh_rtc *rtc = dev_id;
181         int ret;
182
183         spin_lock(&rtc->lock);
184         ret = __sh_rtc_alarm(rtc);
185         spin_unlock(&rtc->lock);
186
187         return IRQ_RETVAL(ret);
188 }
189
190 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
191 {
192         struct sh_rtc *rtc = dev_id;
193         int ret;
194
195         spin_lock(&rtc->lock);
196         ret = __sh_rtc_periodic(rtc);
197         spin_unlock(&rtc->lock);
198
199         return IRQ_RETVAL(ret);
200 }
201
202 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
203 {
204         struct sh_rtc *rtc = dev_id;
205         int ret;
206
207         spin_lock(&rtc->lock);
208         ret = __sh_rtc_interrupt(rtc);
209         ret |= __sh_rtc_alarm(rtc);
210         ret |= __sh_rtc_periodic(rtc);
211         spin_unlock(&rtc->lock);
212
213         return IRQ_RETVAL(ret);
214 }
215
216 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
217 {
218         struct sh_rtc *rtc = dev_get_drvdata(dev);
219         unsigned int tmp;
220
221         spin_lock_irq(&rtc->lock);
222
223         tmp = readb(rtc->regbase + RCR2);
224
225         if (enable) {
226                 tmp &= ~RCR2_PEF;       /* Clear PES bit */
227                 tmp |= (rtc->periodic_freq & ~PF_HP);   /* Set PES2-0 */
228         } else
229                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
230
231         writeb(tmp, rtc->regbase + RCR2);
232
233         spin_unlock_irq(&rtc->lock);
234 }
235
236 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq)
237 {
238         struct sh_rtc *rtc = dev_get_drvdata(dev);
239         int tmp, ret = 0;
240
241         spin_lock_irq(&rtc->lock);
242         tmp = rtc->periodic_freq & PF_MASK;
243
244         switch (freq) {
245         case 0:
246                 rtc->periodic_freq = 0x00;
247                 break;
248         case 1:
249                 rtc->periodic_freq = 0x60;
250                 break;
251         case 2:
252                 rtc->periodic_freq = 0x50;
253                 break;
254         case 4:
255                 rtc->periodic_freq = 0x40;
256                 break;
257         case 8:
258                 rtc->periodic_freq = 0x30 | PF_HP;
259                 break;
260         case 16:
261                 rtc->periodic_freq = 0x30;
262                 break;
263         case 32:
264                 rtc->periodic_freq = 0x20 | PF_HP;
265                 break;
266         case 64:
267                 rtc->periodic_freq = 0x20;
268                 break;
269         case 128:
270                 rtc->periodic_freq = 0x10 | PF_HP;
271                 break;
272         case 256:
273                 rtc->periodic_freq = 0x10;
274                 break;
275         default:
276                 ret = -ENOTSUPP;
277         }
278
279         if (ret == 0) {
280                 rtc->periodic_freq |= tmp;
281                 rtc->rtc_dev->irq_freq = freq;
282         }
283
284         spin_unlock_irq(&rtc->lock);
285         return ret;
286 }
287
288 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
289 {
290         struct sh_rtc *rtc = dev_get_drvdata(dev);
291         unsigned int tmp;
292
293         spin_lock_irq(&rtc->lock);
294
295         tmp = readb(rtc->regbase + RCR1);
296
297         if (!enable)
298                 tmp &= ~RCR1_AIE;
299         else
300                 tmp |= RCR1_AIE;
301
302         writeb(tmp, rtc->regbase + RCR1);
303
304         spin_unlock_irq(&rtc->lock);
305 }
306
307 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
308 {
309         struct sh_rtc *rtc = dev_get_drvdata(dev);
310         unsigned int tmp;
311
312         tmp = readb(rtc->regbase + RCR1);
313         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
314
315         tmp = readb(rtc->regbase + RCR2);
316         seq_printf(seq, "periodic_IRQ\t: %s\n",
317                    (tmp & RCR2_PESMASK) ? "yes" : "no");
318
319         return 0;
320 }
321
322 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
323 {
324         struct sh_rtc *rtc = dev_get_drvdata(dev);
325         unsigned int tmp;
326
327         spin_lock_irq(&rtc->lock);
328
329         tmp = readb(rtc->regbase + RCR1);
330
331         if (!enable)
332                 tmp &= ~RCR1_CIE;
333         else
334                 tmp |= RCR1_CIE;
335
336         writeb(tmp, rtc->regbase + RCR1);
337
338         spin_unlock_irq(&rtc->lock);
339 }
340
341 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
342 {
343         struct sh_rtc *rtc = dev_get_drvdata(dev);
344         unsigned int ret = 0;
345
346         switch (cmd) {
347         case RTC_PIE_OFF:
348         case RTC_PIE_ON:
349                 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
350                 break;
351         case RTC_AIE_OFF:
352         case RTC_AIE_ON:
353                 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
354                 break;
355         case RTC_UIE_OFF:
356                 rtc->periodic_freq &= ~PF_OXS;
357                 sh_rtc_setcie(dev, 0);
358                 break;
359         case RTC_UIE_ON:
360                 rtc->periodic_freq |= PF_OXS;
361                 sh_rtc_setcie(dev, 1);
362                 break;
363         case RTC_IRQP_READ:
364                 ret = put_user(rtc->rtc_dev->irq_freq,
365                                (unsigned long __user *)arg);
366                 break;
367         case RTC_IRQP_SET:
368                 ret = sh_rtc_setfreq(dev, arg);
369                 break;
370         default:
371                 ret = -ENOIOCTLCMD;
372         }
373
374         return ret;
375 }
376
377 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
378 {
379         struct platform_device *pdev = to_platform_device(dev);
380         struct sh_rtc *rtc = platform_get_drvdata(pdev);
381         unsigned int sec128, sec2, yr, yr100, cf_bit;
382
383         do {
384                 unsigned int tmp;
385
386                 spin_lock_irq(&rtc->lock);
387
388                 tmp = readb(rtc->regbase + RCR1);
389                 tmp &= ~RCR1_CF; /* Clear CF-bit */
390                 tmp |= RCR1_CIE;
391                 writeb(tmp, rtc->regbase + RCR1);
392
393                 sec128 = readb(rtc->regbase + R64CNT);
394
395                 tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
396                 tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
397                 tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
398                 tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
399                 tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
400                 tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
401
402                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
403                         yr  = readw(rtc->regbase + RYRCNT);
404                         yr100 = bcd2bin(yr >> 8);
405                         yr &= 0xff;
406                 } else {
407                         yr  = readb(rtc->regbase + RYRCNT);
408                         yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
409                 }
410
411                 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
412
413                 sec2 = readb(rtc->regbase + R64CNT);
414                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
415
416                 spin_unlock_irq(&rtc->lock);
417         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
418
419 #if RTC_BIT_INVERTED != 0
420         if ((sec128 & RTC_BIT_INVERTED))
421                 tm->tm_sec--;
422 #endif
423
424         /* only keep the carry interrupt enabled if UIE is on */
425         if (!(rtc->periodic_freq & PF_OXS))
426                 sh_rtc_setcie(dev, 0);
427
428         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
429                 "mday=%d, mon=%d, year=%d, wday=%d\n",
430                 __func__,
431                 tm->tm_sec, tm->tm_min, tm->tm_hour,
432                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
433
434         return rtc_valid_tm(tm);
435 }
436
437 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
438 {
439         struct platform_device *pdev = to_platform_device(dev);
440         struct sh_rtc *rtc = platform_get_drvdata(pdev);
441         unsigned int tmp;
442         int year;
443
444         spin_lock_irq(&rtc->lock);
445
446         /* Reset pre-scaler & stop RTC */
447         tmp = readb(rtc->regbase + RCR2);
448         tmp |= RCR2_RESET;
449         tmp &= ~RCR2_START;
450         writeb(tmp, rtc->regbase + RCR2);
451
452         writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
453         writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
454         writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
455         writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
456         writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
457         writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
458
459         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
460                 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
461                         bin2bcd(tm->tm_year % 100);
462                 writew(year, rtc->regbase + RYRCNT);
463         } else {
464                 year = tm->tm_year % 100;
465                 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
466         }
467
468         /* Start RTC */
469         tmp = readb(rtc->regbase + RCR2);
470         tmp &= ~RCR2_RESET;
471         tmp |= RCR2_RTCEN | RCR2_START;
472         writeb(tmp, rtc->regbase + RCR2);
473
474         spin_unlock_irq(&rtc->lock);
475
476         return 0;
477 }
478
479 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
480 {
481         unsigned int byte;
482         int value = 0xff;       /* return 0xff for ignored values */
483
484         byte = readb(rtc->regbase + reg_off);
485         if (byte & AR_ENB) {
486                 byte &= ~AR_ENB;        /* strip the enable bit */
487                 value = bcd2bin(byte);
488         }
489
490         return value;
491 }
492
493 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
494 {
495         struct platform_device *pdev = to_platform_device(dev);
496         struct sh_rtc *rtc = platform_get_drvdata(pdev);
497         struct rtc_time *tm = &wkalrm->time;
498
499         spin_lock_irq(&rtc->lock);
500
501         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
502         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
503         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
504         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
505         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
506         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
507         if (tm->tm_mon > 0)
508                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
509         tm->tm_year     = 0xffff;
510
511         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
512
513         spin_unlock_irq(&rtc->lock);
514
515         return 0;
516 }
517
518 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
519                                             int value, int reg_off)
520 {
521         /* < 0 for a value that is ignored */
522         if (value < 0)
523                 writeb(0, rtc->regbase + reg_off);
524         else
525                 writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
526 }
527
528 static int sh_rtc_check_alarm(struct rtc_time *tm)
529 {
530         /*
531          * The original rtc says anything > 0xc0 is "don't care" or "match
532          * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
533          * The original rtc doesn't support years - some things use -1 and
534          * some 0xffff. We use -1 to make out tests easier.
535          */
536         if (tm->tm_year == 0xffff)
537                 tm->tm_year = -1;
538         if (tm->tm_mon >= 0xff)
539                 tm->tm_mon = -1;
540         if (tm->tm_mday >= 0xff)
541                 tm->tm_mday = -1;
542         if (tm->tm_wday >= 0xff)
543                 tm->tm_wday = -1;
544         if (tm->tm_hour >= 0xff)
545                 tm->tm_hour = -1;
546         if (tm->tm_min >= 0xff)
547                 tm->tm_min = -1;
548         if (tm->tm_sec >= 0xff)
549                 tm->tm_sec = -1;
550
551         if (tm->tm_year > 9999 ||
552                 tm->tm_mon >= 12 ||
553                 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
554                 tm->tm_wday >= 7 ||
555                 tm->tm_hour >= 24 ||
556                 tm->tm_min >= 60 ||
557                 tm->tm_sec >= 60)
558                 return -EINVAL;
559
560         return 0;
561 }
562
563 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
564 {
565         struct platform_device *pdev = to_platform_device(dev);
566         struct sh_rtc *rtc = platform_get_drvdata(pdev);
567         unsigned int rcr1;
568         struct rtc_time *tm = &wkalrm->time;
569         int mon, err;
570
571         err = sh_rtc_check_alarm(tm);
572         if (unlikely(err < 0))
573                 return err;
574
575         spin_lock_irq(&rtc->lock);
576
577         /* disable alarm interrupt and clear the alarm flag */
578         rcr1 = readb(rtc->regbase + RCR1);
579         rcr1 &= ~(RCR1_AF | RCR1_AIE);
580         writeb(rcr1, rtc->regbase + RCR1);
581
582         /* set alarm time */
583         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
584         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
585         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
586         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
587         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
588         mon = tm->tm_mon;
589         if (mon >= 0)
590                 mon += 1;
591         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
592
593         if (wkalrm->enabled) {
594                 rcr1 |= RCR1_AIE;
595                 writeb(rcr1, rtc->regbase + RCR1);
596         }
597
598         spin_unlock_irq(&rtc->lock);
599
600         return 0;
601 }
602
603 static int sh_rtc_irq_set_state(struct device *dev, int enabled)
604 {
605         struct platform_device *pdev = to_platform_device(dev);
606         struct sh_rtc *rtc = platform_get_drvdata(pdev);
607
608         if (enabled) {
609                 rtc->periodic_freq |= PF_KOU;
610                 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0);
611         } else {
612                 rtc->periodic_freq &= ~PF_KOU;
613                 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0);
614         }
615 }
616
617 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
618 {
619         if (!is_power_of_2(freq))
620                 return -EINVAL;
621         return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq);
622 }
623
624 static struct rtc_class_ops sh_rtc_ops = {
625         .ioctl          = sh_rtc_ioctl,
626         .read_time      = sh_rtc_read_time,
627         .set_time       = sh_rtc_set_time,
628         .read_alarm     = sh_rtc_read_alarm,
629         .set_alarm      = sh_rtc_set_alarm,
630         .irq_set_state  = sh_rtc_irq_set_state,
631         .irq_set_freq   = sh_rtc_irq_set_freq,
632         .proc           = sh_rtc_proc,
633 };
634
635 static int __devinit sh_rtc_probe(struct platform_device *pdev)
636 {
637         struct sh_rtc *rtc;
638         struct resource *res;
639         struct rtc_time r;
640         int ret;
641
642         rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
643         if (unlikely(!rtc))
644                 return -ENOMEM;
645
646         spin_lock_init(&rtc->lock);
647
648         /* get periodic/carry/alarm irqs */
649         ret = platform_get_irq(pdev, 0);
650         if (unlikely(ret <= 0)) {
651                 ret = -ENOENT;
652                 dev_err(&pdev->dev, "No IRQ resource\n");
653                 goto err_badres;
654         }
655         rtc->periodic_irq = ret;
656         rtc->carry_irq = platform_get_irq(pdev, 1);
657         rtc->alarm_irq = platform_get_irq(pdev, 2);
658
659         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
660         if (unlikely(res == NULL)) {
661                 ret = -ENOENT;
662                 dev_err(&pdev->dev, "No IO resource\n");
663                 goto err_badres;
664         }
665
666         rtc->regsize = res->end - res->start + 1;
667
668         rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
669         if (unlikely(!rtc->res)) {
670                 ret = -EBUSY;
671                 goto err_badres;
672         }
673
674         rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
675         if (unlikely(!rtc->regbase)) {
676                 ret = -EINVAL;
677                 goto err_badmap;
678         }
679
680         rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
681                                            &sh_rtc_ops, THIS_MODULE);
682         if (IS_ERR(rtc->rtc_dev)) {
683                 ret = PTR_ERR(rtc->rtc_dev);
684                 goto err_unmap;
685         }
686
687         rtc->capabilities = RTC_DEF_CAPABILITIES;
688         if (pdev->dev.platform_data) {
689                 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
690
691                 /*
692                  * Some CPUs have special capabilities in addition to the
693                  * default set. Add those in here.
694                  */
695                 rtc->capabilities |= pinfo->capabilities;
696         }
697
698         rtc->rtc_dev->max_user_freq = 256;
699
700         platform_set_drvdata(pdev, rtc);
701
702         if (rtc->carry_irq <= 0) {
703                 /* register shared periodic/carry/alarm irq */
704                 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
705                                   IRQF_DISABLED, "sh-rtc", rtc);
706                 if (unlikely(ret)) {
707                         dev_err(&pdev->dev,
708                                 "request IRQ failed with %d, IRQ %d\n", ret,
709                                 rtc->periodic_irq);
710                         goto err_unmap;
711                 }
712         } else {
713                 /* register periodic/carry/alarm irqs */
714                 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
715                                   IRQF_DISABLED, "sh-rtc period", rtc);
716                 if (unlikely(ret)) {
717                         dev_err(&pdev->dev,
718                                 "request period IRQ failed with %d, IRQ %d\n",
719                                 ret, rtc->periodic_irq);
720                         goto err_unmap;
721                 }
722
723                 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
724                                   IRQF_DISABLED, "sh-rtc carry", rtc);
725                 if (unlikely(ret)) {
726                         dev_err(&pdev->dev,
727                                 "request carry IRQ failed with %d, IRQ %d\n",
728                                 ret, rtc->carry_irq);
729                         free_irq(rtc->periodic_irq, rtc);
730                         goto err_unmap;
731                 }
732
733                 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
734                                   IRQF_DISABLED, "sh-rtc alarm", rtc);
735                 if (unlikely(ret)) {
736                         dev_err(&pdev->dev,
737                                 "request alarm IRQ failed with %d, IRQ %d\n",
738                                 ret, rtc->alarm_irq);
739                         free_irq(rtc->carry_irq, rtc);
740                         free_irq(rtc->periodic_irq, rtc);
741                         goto err_unmap;
742                 }
743         }
744
745         /* everything disabled by default */
746         rtc->periodic_freq = 0;
747         rtc->rtc_dev->irq_freq = 0;
748         sh_rtc_setpie(&pdev->dev, 0);
749         sh_rtc_setaie(&pdev->dev, 0);
750         sh_rtc_setcie(&pdev->dev, 0);
751
752         /* reset rtc to epoch 0 if time is invalid */
753         if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
754                 rtc_time_to_tm(0, &r);
755                 rtc_set_time(rtc->rtc_dev, &r);
756         }
757
758         device_init_wakeup(&pdev->dev, 1);
759         return 0;
760
761 err_unmap:
762         iounmap(rtc->regbase);
763 err_badmap:
764         release_resource(rtc->res);
765 err_badres:
766         kfree(rtc);
767
768         return ret;
769 }
770
771 static int __devexit sh_rtc_remove(struct platform_device *pdev)
772 {
773         struct sh_rtc *rtc = platform_get_drvdata(pdev);
774
775         if (likely(rtc->rtc_dev))
776                 rtc_device_unregister(rtc->rtc_dev);
777
778         sh_rtc_setpie(&pdev->dev, 0);
779         sh_rtc_setaie(&pdev->dev, 0);
780         sh_rtc_setcie(&pdev->dev, 0);
781
782         free_irq(rtc->periodic_irq, rtc);
783         if (rtc->carry_irq > 0) {
784                 free_irq(rtc->carry_irq, rtc);
785                 free_irq(rtc->alarm_irq, rtc);
786         }
787
788         release_resource(rtc->res);
789
790         iounmap(rtc->regbase);
791
792         platform_set_drvdata(pdev, NULL);
793
794         kfree(rtc);
795
796         return 0;
797 }
798
799 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
800 {
801         struct platform_device *pdev = to_platform_device(dev);
802         struct sh_rtc *rtc = platform_get_drvdata(pdev);
803
804         set_irq_wake(rtc->periodic_irq, enabled);
805         if (rtc->carry_irq > 0) {
806                 set_irq_wake(rtc->carry_irq, enabled);
807                 set_irq_wake(rtc->alarm_irq, enabled);
808         }
809
810 }
811
812 static int sh_rtc_suspend(struct device *dev)
813 {
814         if (device_may_wakeup(dev))
815                 sh_rtc_set_irq_wake(dev, 1);
816
817         return 0;
818 }
819
820 static int sh_rtc_resume(struct device *dev)
821 {
822         if (device_may_wakeup(dev))
823                 sh_rtc_set_irq_wake(dev, 0);
824
825         return 0;
826 }
827
828 static struct dev_pm_ops sh_rtc_dev_pm_ops = {
829         .suspend = sh_rtc_suspend,
830         .resume = sh_rtc_resume,
831 };
832
833 static struct platform_driver sh_rtc_platform_driver = {
834         .driver         = {
835                 .name   = DRV_NAME,
836                 .owner  = THIS_MODULE,
837                 .pm     = &sh_rtc_dev_pm_ops,
838         },
839         .probe          = sh_rtc_probe,
840         .remove         = __devexit_p(sh_rtc_remove),
841 };
842
843 static int __init sh_rtc_init(void)
844 {
845         return platform_driver_register(&sh_rtc_platform_driver);
846 }
847
848 static void __exit sh_rtc_exit(void)
849 {
850         platform_driver_unregister(&sh_rtc_platform_driver);
851 }
852
853 module_init(sh_rtc_init);
854 module_exit(sh_rtc_exit);
855
856 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
857 MODULE_VERSION(DRV_VERSION);
858 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
859               "Jamie Lenehan <lenehan@twibble.org>, "
860               "Angelo Castello <angelo.castello@st.com>");
861 MODULE_LICENSE("GPL");
862 MODULE_ALIAS("platform:" DRV_NAME);