regulator: Suggest use of datasheet supply or pin names for consumers
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /*
33  * struct regulator_map
34  *
35  * Used to provide symbolic supply names to devices.
36  */
37 struct regulator_map {
38         struct list_head list;
39         struct device *dev;
40         const char *supply;
41         struct regulator_dev *regulator;
42 };
43
44 /*
45  * struct regulator
46  *
47  * One for each consumer device.
48  */
49 struct regulator {
50         struct device *dev;
51         struct list_head list;
52         int uA_load;
53         int min_uV;
54         int max_uV;
55         int enabled; /* count of client enables */
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284         return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288 static ssize_t regulator_status_show(struct device *dev,
289                                    struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292         int status;
293         char *label;
294
295         status = rdev->desc->ops->get_status(rdev);
296         if (status < 0)
297                 return status;
298
299         switch (status) {
300         case REGULATOR_STATUS_OFF:
301                 label = "off";
302                 break;
303         case REGULATOR_STATUS_ON:
304                 label = "on";
305                 break;
306         case REGULATOR_STATUS_ERROR:
307                 label = "error";
308                 break;
309         case REGULATOR_STATUS_FAST:
310                 label = "fast";
311                 break;
312         case REGULATOR_STATUS_NORMAL:
313                 label = "normal";
314                 break;
315         case REGULATOR_STATUS_IDLE:
316                 label = "idle";
317                 break;
318         case REGULATOR_STATUS_STANDBY:
319                 label = "standby";
320                 break;
321         default:
322                 return -ERANGE;
323         }
324
325         return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329 static ssize_t regulator_min_uA_show(struct device *dev,
330                                     struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         if (!rdev->constraints)
335                 return sprintf(buf, "constraint not defined\n");
336
337         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341 static ssize_t regulator_max_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353 static ssize_t regulator_min_uV_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365 static ssize_t regulator_max_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377 static ssize_t regulator_total_uA_show(struct device *dev,
378                                       struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381         struct regulator *regulator;
382         int uA = 0;
383
384         mutex_lock(&rdev->mutex);
385         list_for_each_entry(regulator, &rdev->consumer_list, list)
386             uA += regulator->uA_load;
387         mutex_unlock(&rdev->mutex);
388         return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392 static ssize_t regulator_num_users_show(struct device *dev,
393                                       struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         return sprintf(buf, "%d\n", rdev->use_count);
397 }
398
399 static ssize_t regulator_type_show(struct device *dev,
400                                   struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404         switch (rdev->desc->type) {
405         case REGULATOR_VOLTAGE:
406                 return sprintf(buf, "voltage\n");
407         case REGULATOR_CURRENT:
408                 return sprintf(buf, "current\n");
409         }
410         return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421                 regulator_suspend_mem_uV_show, NULL);
422
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431                 regulator_suspend_disk_uV_show, NULL);
432
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441                 regulator_suspend_standby_uV_show, NULL);
442
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return regulator_print_opmode(buf,
449                 rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452                 regulator_suspend_mem_mode_show, NULL);
453
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463                 regulator_suspend_disk_mode_show, NULL);
464
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474                 regulator_suspend_standby_mode_show, NULL);
475
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477                                    struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_state(buf,
482                         rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485                 regulator_suspend_mem_state_show, NULL);
486
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496                 regulator_suspend_disk_state_show, NULL);
497
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507                 regulator_suspend_standby_state_show, NULL);
508
509
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515         __ATTR(name, 0444, regulator_name_show, NULL),
516         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517         __ATTR(type, 0444, regulator_type_show, NULL),
518         __ATTR_NULL,
519 };
520
521 static void regulator_dev_release(struct device *dev)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524         kfree(rdev);
525 }
526
527 static struct class regulator_class = {
528         .name = "regulator",
529         .dev_release = regulator_dev_release,
530         .dev_attrs = regulator_dev_attrs,
531 };
532
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537         struct regulator *sibling;
538         int current_uA = 0, output_uV, input_uV, err;
539         unsigned int mode;
540
541         err = regulator_check_drms(rdev);
542         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544         return;
545
546         /* get output voltage */
547         output_uV = rdev->desc->ops->get_voltage(rdev);
548         if (output_uV <= 0)
549                 return;
550
551         /* get input voltage */
552         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554         else
555                 input_uV = rdev->constraints->input_uV;
556         if (input_uV <= 0)
557                 return;
558
559         /* calc total requested load */
560         list_for_each_entry(sibling, &rdev->consumer_list, list)
561             current_uA += sibling->uA_load;
562
563         /* now get the optimum mode for our new total regulator load */
564         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565                                                   output_uV, current_uA);
566
567         /* check the new mode is allowed */
568         err = regulator_check_mode(rdev, mode);
569         if (err == 0)
570                 rdev->desc->ops->set_mode(rdev, mode);
571 }
572
573 static int suspend_set_state(struct regulator_dev *rdev,
574         struct regulator_state *rstate)
575 {
576         int ret = 0;
577
578         /* enable & disable are mandatory for suspend control */
579         if (!rdev->desc->ops->set_suspend_enable ||
580                 !rdev->desc->ops->set_suspend_disable) {
581                 printk(KERN_ERR "%s: no way to set suspend state\n",
582                         __func__);
583                 return -EINVAL;
584         }
585
586         if (rstate->enabled)
587                 ret = rdev->desc->ops->set_suspend_enable(rdev);
588         else
589                 ret = rdev->desc->ops->set_suspend_disable(rdev);
590         if (ret < 0) {
591                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592                 return ret;
593         }
594
595         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597                 if (ret < 0) {
598                         printk(KERN_ERR "%s: failed to set voltage\n",
599                                 __func__);
600                         return ret;
601                 }
602         }
603
604         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606                 if (ret < 0) {
607                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
608                         return ret;
609                 }
610         }
611         return ret;
612 }
613
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617         if (!rdev->constraints)
618                 return -EINVAL;
619
620         switch (state) {
621         case PM_SUSPEND_STANDBY:
622                 return suspend_set_state(rdev,
623                         &rdev->constraints->state_standby);
624         case PM_SUSPEND_MEM:
625                 return suspend_set_state(rdev,
626                         &rdev->constraints->state_mem);
627         case PM_SUSPEND_MAX:
628                 return suspend_set_state(rdev,
629                         &rdev->constraints->state_disk);
630         default:
631                 return -EINVAL;
632         }
633 }
634
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637         struct regulation_constraints *constraints = rdev->constraints;
638         char buf[80];
639         int count;
640
641         if (rdev->desc->type == REGULATOR_VOLTAGE) {
642                 if (constraints->min_uV == constraints->max_uV)
643                         count = sprintf(buf, "%d mV ",
644                                         constraints->min_uV / 1000);
645                 else
646                         count = sprintf(buf, "%d <--> %d mV ",
647                                         constraints->min_uV / 1000,
648                                         constraints->max_uV / 1000);
649         } else {
650                 if (constraints->min_uA == constraints->max_uA)
651                         count = sprintf(buf, "%d mA ",
652                                         constraints->min_uA / 1000);
653                 else
654                         count = sprintf(buf, "%d <--> %d mA ",
655                                         constraints->min_uA / 1000,
656                                         constraints->max_uA / 1000);
657         }
658         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659                 count += sprintf(buf + count, "fast ");
660         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661                 count += sprintf(buf + count, "normal ");
662         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663                 count += sprintf(buf + count, "idle ");
664         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665                 count += sprintf(buf + count, "standby");
666
667         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682         struct regulation_constraints *constraints)
683 {
684         int ret = 0;
685         const char *name;
686         struct regulator_ops *ops = rdev->desc->ops;
687
688         if (constraints->name)
689                 name = constraints->name;
690         else if (rdev->desc->name)
691                 name = rdev->desc->name;
692         else
693                 name = "regulator";
694
695         rdev->constraints = constraints;
696
697         /* do we need to apply the constraint voltage */
698         if (rdev->constraints->apply_uV &&
699                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
700                 ops->set_voltage) {
701                 ret = ops->set_voltage(rdev,
702                         rdev->constraints->min_uV, rdev->constraints->max_uV);
703                         if (ret < 0) {
704                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
705                                        __func__,
706                                        rdev->constraints->min_uV, name);
707                                 rdev->constraints = NULL;
708                                 goto out;
709                         }
710         }
711
712         /* are we enabled at boot time by firmware / bootloader */
713         if (rdev->constraints->boot_on)
714                 rdev->use_count = 1;
715
716         /* do we need to setup our suspend state */
717         if (constraints->initial_state) {
718                 ret = suspend_prepare(rdev, constraints->initial_state);
719                 if (ret < 0) {
720                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
721                                __func__, name);
722                         rdev->constraints = NULL;
723                         goto out;
724                 }
725         }
726
727         /* if always_on is set then turn the regulator on if it's not
728          * already on. */
729         if (constraints->always_on && ops->enable &&
730             ((ops->is_enabled && !ops->is_enabled(rdev)) ||
731              (!ops->is_enabled && !constraints->boot_on))) {
732                 ret = ops->enable(rdev);
733                 if (ret < 0) {
734                         printk(KERN_ERR "%s: failed to enable %s\n",
735                                __func__, name);
736                         rdev->constraints = NULL;
737                         goto out;
738                 }
739         }
740
741         print_constraints(rdev);
742 out:
743         return ret;
744 }
745
746 /**
747  * set_supply - set regulator supply regulator
748  * @rdev: regulator name
749  * @supply_rdev: supply regulator name
750  *
751  * Called by platform initialisation code to set the supply regulator for this
752  * regulator. This ensures that a regulators supply will also be enabled by the
753  * core if it's child is enabled.
754  */
755 static int set_supply(struct regulator_dev *rdev,
756         struct regulator_dev *supply_rdev)
757 {
758         int err;
759
760         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
761                                 "supply");
762         if (err) {
763                 printk(KERN_ERR
764                        "%s: could not add device link %s err %d\n",
765                        __func__, supply_rdev->dev.kobj.name, err);
766                        goto out;
767         }
768         rdev->supply = supply_rdev;
769         list_add(&rdev->slist, &supply_rdev->supply_list);
770 out:
771         return err;
772 }
773
774 /**
775  * set_consumer_device_supply: Bind a regulator to a symbolic supply
776  * @rdev:         regulator source
777  * @consumer_dev: device the supply applies to
778  * @supply:       symbolic name for supply
779  *
780  * Allows platform initialisation code to map physical regulator
781  * sources to symbolic names for supplies for use by devices.  Devices
782  * should use these symbolic names to request regulators, avoiding the
783  * need to provide board-specific regulator names as platform data.
784  */
785 static int set_consumer_device_supply(struct regulator_dev *rdev,
786         struct device *consumer_dev, const char *supply)
787 {
788         struct regulator_map *node;
789
790         if (supply == NULL)
791                 return -EINVAL;
792
793         list_for_each_entry(node, &regulator_map_list, list) {
794                 if (consumer_dev != node->dev)
795                         continue;
796                 if (strcmp(node->supply, supply) != 0)
797                         continue;
798
799                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
800                                 dev_name(&node->regulator->dev),
801                                 node->regulator->desc->name,
802                                 supply,
803                                 dev_name(&rdev->dev), rdev->desc->name);
804                 return -EBUSY;
805         }
806
807         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
808         if (node == NULL)
809                 return -ENOMEM;
810
811         node->regulator = rdev;
812         node->dev = consumer_dev;
813         node->supply = supply;
814
815         list_add(&node->list, &regulator_map_list);
816         return 0;
817 }
818
819 static void unset_consumer_device_supply(struct regulator_dev *rdev,
820         struct device *consumer_dev)
821 {
822         struct regulator_map *node, *n;
823
824         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
825                 if (rdev == node->regulator &&
826                         consumer_dev == node->dev) {
827                         list_del(&node->list);
828                         kfree(node);
829                         return;
830                 }
831         }
832 }
833
834 static void unset_regulator_supplies(struct regulator_dev *rdev)
835 {
836         struct regulator_map *node, *n;
837
838         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
839                 if (rdev == node->regulator) {
840                         list_del(&node->list);
841                         kfree(node);
842                         return;
843                 }
844         }
845 }
846
847 #define REG_STR_SIZE    32
848
849 static struct regulator *create_regulator(struct regulator_dev *rdev,
850                                           struct device *dev,
851                                           const char *supply_name)
852 {
853         struct regulator *regulator;
854         char buf[REG_STR_SIZE];
855         int err, size;
856
857         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
858         if (regulator == NULL)
859                 return NULL;
860
861         mutex_lock(&rdev->mutex);
862         regulator->rdev = rdev;
863         list_add(&regulator->list, &rdev->consumer_list);
864
865         if (dev) {
866                 /* create a 'requested_microamps_name' sysfs entry */
867                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
868                         supply_name);
869                 if (size >= REG_STR_SIZE)
870                         goto overflow_err;
871
872                 regulator->dev = dev;
873                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
874                 if (regulator->dev_attr.attr.name == NULL)
875                         goto attr_name_err;
876
877                 regulator->dev_attr.attr.owner = THIS_MODULE;
878                 regulator->dev_attr.attr.mode = 0444;
879                 regulator->dev_attr.show = device_requested_uA_show;
880                 err = device_create_file(dev, &regulator->dev_attr);
881                 if (err < 0) {
882                         printk(KERN_WARNING "%s: could not add regulator_dev"
883                                 " load sysfs\n", __func__);
884                         goto attr_name_err;
885                 }
886
887                 /* also add a link to the device sysfs entry */
888                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
889                                  dev->kobj.name, supply_name);
890                 if (size >= REG_STR_SIZE)
891                         goto attr_err;
892
893                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
894                 if (regulator->supply_name == NULL)
895                         goto attr_err;
896
897                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
898                                         buf);
899                 if (err) {
900                         printk(KERN_WARNING
901                                "%s: could not add device link %s err %d\n",
902                                __func__, dev->kobj.name, err);
903                         device_remove_file(dev, &regulator->dev_attr);
904                         goto link_name_err;
905                 }
906         }
907         mutex_unlock(&rdev->mutex);
908         return regulator;
909 link_name_err:
910         kfree(regulator->supply_name);
911 attr_err:
912         device_remove_file(regulator->dev, &regulator->dev_attr);
913 attr_name_err:
914         kfree(regulator->dev_attr.attr.name);
915 overflow_err:
916         list_del(&regulator->list);
917         kfree(regulator);
918         mutex_unlock(&rdev->mutex);
919         return NULL;
920 }
921
922 /**
923  * regulator_get - lookup and obtain a reference to a regulator.
924  * @dev: device for regulator "consumer"
925  * @id: Supply name or regulator ID.
926  *
927  * Returns a struct regulator corresponding to the regulator producer,
928  * or IS_ERR() condition containing errno.
929  *
930  * Use of supply names configured via regulator_set_device_supply() is
931  * strongly encouraged.  It is recommended that the supply name used
932  * should match the name used for the supply and/or the relevant
933  * device pins in the datasheet.
934  */
935 struct regulator *regulator_get(struct device *dev, const char *id)
936 {
937         struct regulator_dev *rdev;
938         struct regulator_map *map;
939         struct regulator *regulator = ERR_PTR(-ENODEV);
940
941         if (id == NULL) {
942                 printk(KERN_ERR "regulator: get() with no identifier\n");
943                 return regulator;
944         }
945
946         mutex_lock(&regulator_list_mutex);
947
948         list_for_each_entry(map, &regulator_map_list, list) {
949                 if (dev == map->dev &&
950                     strcmp(map->supply, id) == 0) {
951                         rdev = map->regulator;
952                         goto found;
953                 }
954         }
955         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
956                id);
957         mutex_unlock(&regulator_list_mutex);
958         return regulator;
959
960 found:
961         if (!try_module_get(rdev->owner))
962                 goto out;
963
964         regulator = create_regulator(rdev, dev, id);
965         if (regulator == NULL) {
966                 regulator = ERR_PTR(-ENOMEM);
967                 module_put(rdev->owner);
968         }
969
970 out:
971         mutex_unlock(&regulator_list_mutex);
972         return regulator;
973 }
974 EXPORT_SYMBOL_GPL(regulator_get);
975
976 /**
977  * regulator_put - "free" the regulator source
978  * @regulator: regulator source
979  *
980  * Note: drivers must ensure that all regulator_enable calls made on this
981  * regulator source are balanced by regulator_disable calls prior to calling
982  * this function.
983  */
984 void regulator_put(struct regulator *regulator)
985 {
986         struct regulator_dev *rdev;
987
988         if (regulator == NULL || IS_ERR(regulator))
989                 return;
990
991         mutex_lock(&regulator_list_mutex);
992         rdev = regulator->rdev;
993
994         if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
995                                regulator->supply_name))
996                 _regulator_disable(rdev);
997
998         /* remove any sysfs entries */
999         if (regulator->dev) {
1000                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1001                 kfree(regulator->supply_name);
1002                 device_remove_file(regulator->dev, &regulator->dev_attr);
1003                 kfree(regulator->dev_attr.attr.name);
1004         }
1005         list_del(&regulator->list);
1006         kfree(regulator);
1007
1008         module_put(rdev->owner);
1009         mutex_unlock(&regulator_list_mutex);
1010 }
1011 EXPORT_SYMBOL_GPL(regulator_put);
1012
1013 /* locks held by regulator_enable() */
1014 static int _regulator_enable(struct regulator_dev *rdev)
1015 {
1016         int ret = -EINVAL;
1017
1018         if (!rdev->constraints) {
1019                 printk(KERN_ERR "%s: %s has no constraints\n",
1020                        __func__, rdev->desc->name);
1021                 return ret;
1022         }
1023
1024         /* do we need to enable the supply regulator first */
1025         if (rdev->supply) {
1026                 ret = _regulator_enable(rdev->supply);
1027                 if (ret < 0) {
1028                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1029                                __func__, rdev->desc->name, ret);
1030                         return ret;
1031                 }
1032         }
1033
1034         /* check voltage and requested load before enabling */
1035         if (rdev->desc->ops->enable) {
1036
1037                 if (rdev->constraints &&
1038                         (rdev->constraints->valid_ops_mask &
1039                         REGULATOR_CHANGE_DRMS))
1040                         drms_uA_update(rdev);
1041
1042                 ret = rdev->desc->ops->enable(rdev);
1043                 if (ret < 0) {
1044                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1045                                __func__, rdev->desc->name, ret);
1046                         return ret;
1047                 }
1048                 rdev->use_count++;
1049                 return ret;
1050         }
1051
1052         return ret;
1053 }
1054
1055 /**
1056  * regulator_enable - enable regulator output
1057  * @regulator: regulator source
1058  *
1059  * Request that the regulator be enabled with the regulator output at
1060  * the predefined voltage or current value.  Calls to regulator_enable()
1061  * must be balanced with calls to regulator_disable().
1062  *
1063  * NOTE: the output value can be set by other drivers, boot loader or may be
1064  * hardwired in the regulator.
1065  */
1066 int regulator_enable(struct regulator *regulator)
1067 {
1068         struct regulator_dev *rdev = regulator->rdev;
1069         int ret = 0;
1070
1071         mutex_lock(&rdev->mutex);
1072         if (regulator->enabled == 0)
1073                 ret = _regulator_enable(rdev);
1074         else if (regulator->enabled < 0)
1075                 ret = -EIO;
1076         if (ret == 0)
1077                 regulator->enabled++;
1078         mutex_unlock(&rdev->mutex);
1079         return ret;
1080 }
1081 EXPORT_SYMBOL_GPL(regulator_enable);
1082
1083 /* locks held by regulator_disable() */
1084 static int _regulator_disable(struct regulator_dev *rdev)
1085 {
1086         int ret = 0;
1087
1088         /* are we the last user and permitted to disable ? */
1089         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1090
1091                 /* we are last user */
1092                 if (rdev->desc->ops->disable) {
1093                         ret = rdev->desc->ops->disable(rdev);
1094                         if (ret < 0) {
1095                                 printk(KERN_ERR "%s: failed to disable %s\n",
1096                                        __func__, rdev->desc->name);
1097                                 return ret;
1098                         }
1099                 }
1100
1101                 /* decrease our supplies ref count and disable if required */
1102                 if (rdev->supply)
1103                         _regulator_disable(rdev->supply);
1104
1105                 rdev->use_count = 0;
1106         } else if (rdev->use_count > 1) {
1107
1108                 if (rdev->constraints &&
1109                         (rdev->constraints->valid_ops_mask &
1110                         REGULATOR_CHANGE_DRMS))
1111                         drms_uA_update(rdev);
1112
1113                 rdev->use_count--;
1114         }
1115         return ret;
1116 }
1117
1118 /**
1119  * regulator_disable - disable regulator output
1120  * @regulator: regulator source
1121  *
1122  * Disable the regulator output voltage or current.  Calls to
1123  * regulator_enable() must be balanced with calls to
1124  * regulator_disable().
1125  *
1126  * NOTE: this will only disable the regulator output if no other consumer
1127  * devices have it enabled, the regulator device supports disabling and
1128  * machine constraints permit this operation.
1129  */
1130 int regulator_disable(struct regulator *regulator)
1131 {
1132         struct regulator_dev *rdev = regulator->rdev;
1133         int ret = 0;
1134
1135         mutex_lock(&rdev->mutex);
1136         if (regulator->enabled == 1) {
1137                 ret = _regulator_disable(rdev);
1138                 if (ret == 0)
1139                         regulator->uA_load = 0;
1140         } else if (WARN(regulator->enabled <= 0,
1141                         "unbalanced disables for supply %s\n",
1142                         regulator->supply_name))
1143                 ret = -EIO;
1144         if (ret == 0)
1145                 regulator->enabled--;
1146         mutex_unlock(&rdev->mutex);
1147         return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(regulator_disable);
1150
1151 /* locks held by regulator_force_disable() */
1152 static int _regulator_force_disable(struct regulator_dev *rdev)
1153 {
1154         int ret = 0;
1155
1156         /* force disable */
1157         if (rdev->desc->ops->disable) {
1158                 /* ah well, who wants to live forever... */
1159                 ret = rdev->desc->ops->disable(rdev);
1160                 if (ret < 0) {
1161                         printk(KERN_ERR "%s: failed to force disable %s\n",
1162                                __func__, rdev->desc->name);
1163                         return ret;
1164                 }
1165                 /* notify other consumers that power has been forced off */
1166                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1167                         NULL);
1168         }
1169
1170         /* decrease our supplies ref count and disable if required */
1171         if (rdev->supply)
1172                 _regulator_disable(rdev->supply);
1173
1174         rdev->use_count = 0;
1175         return ret;
1176 }
1177
1178 /**
1179  * regulator_force_disable - force disable regulator output
1180  * @regulator: regulator source
1181  *
1182  * Forcibly disable the regulator output voltage or current.
1183  * NOTE: this *will* disable the regulator output even if other consumer
1184  * devices have it enabled. This should be used for situations when device
1185  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1186  */
1187 int regulator_force_disable(struct regulator *regulator)
1188 {
1189         int ret;
1190
1191         mutex_lock(&regulator->rdev->mutex);
1192         regulator->enabled = 0;
1193         regulator->uA_load = 0;
1194         ret = _regulator_force_disable(regulator->rdev);
1195         mutex_unlock(&regulator->rdev->mutex);
1196         return ret;
1197 }
1198 EXPORT_SYMBOL_GPL(regulator_force_disable);
1199
1200 static int _regulator_is_enabled(struct regulator_dev *rdev)
1201 {
1202         int ret;
1203
1204         mutex_lock(&rdev->mutex);
1205
1206         /* sanity check */
1207         if (!rdev->desc->ops->is_enabled) {
1208                 ret = -EINVAL;
1209                 goto out;
1210         }
1211
1212         ret = rdev->desc->ops->is_enabled(rdev);
1213 out:
1214         mutex_unlock(&rdev->mutex);
1215         return ret;
1216 }
1217
1218 /**
1219  * regulator_is_enabled - is the regulator output enabled
1220  * @regulator: regulator source
1221  *
1222  * Returns positive if the regulator driver backing the source/client
1223  * has requested that the device be enabled, zero if it hasn't, else a
1224  * negative errno code.
1225  *
1226  * Note that the device backing this regulator handle can have multiple
1227  * users, so it might be enabled even if regulator_enable() was never
1228  * called for this particular source.
1229  */
1230 int regulator_is_enabled(struct regulator *regulator)
1231 {
1232         return _regulator_is_enabled(regulator->rdev);
1233 }
1234 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1235
1236 /**
1237  * regulator_set_voltage - set regulator output voltage
1238  * @regulator: regulator source
1239  * @min_uV: Minimum required voltage in uV
1240  * @max_uV: Maximum acceptable voltage in uV
1241  *
1242  * Sets a voltage regulator to the desired output voltage. This can be set
1243  * during any regulator state. IOW, regulator can be disabled or enabled.
1244  *
1245  * If the regulator is enabled then the voltage will change to the new value
1246  * immediately otherwise if the regulator is disabled the regulator will
1247  * output at the new voltage when enabled.
1248  *
1249  * NOTE: If the regulator is shared between several devices then the lowest
1250  * request voltage that meets the system constraints will be used.
1251  * Regulator system constraints must be set for this regulator before
1252  * calling this function otherwise this call will fail.
1253  */
1254 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1255 {
1256         struct regulator_dev *rdev = regulator->rdev;
1257         int ret;
1258
1259         mutex_lock(&rdev->mutex);
1260
1261         /* sanity check */
1262         if (!rdev->desc->ops->set_voltage) {
1263                 ret = -EINVAL;
1264                 goto out;
1265         }
1266
1267         /* constraints check */
1268         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1269         if (ret < 0)
1270                 goto out;
1271         regulator->min_uV = min_uV;
1272         regulator->max_uV = max_uV;
1273         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1274
1275 out:
1276         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1277         mutex_unlock(&rdev->mutex);
1278         return ret;
1279 }
1280 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1281
1282 static int _regulator_get_voltage(struct regulator_dev *rdev)
1283 {
1284         /* sanity check */
1285         if (rdev->desc->ops->get_voltage)
1286                 return rdev->desc->ops->get_voltage(rdev);
1287         else
1288                 return -EINVAL;
1289 }
1290
1291 /**
1292  * regulator_get_voltage - get regulator output voltage
1293  * @regulator: regulator source
1294  *
1295  * This returns the current regulator voltage in uV.
1296  *
1297  * NOTE: If the regulator is disabled it will return the voltage value. This
1298  * function should not be used to determine regulator state.
1299  */
1300 int regulator_get_voltage(struct regulator *regulator)
1301 {
1302         int ret;
1303
1304         mutex_lock(&regulator->rdev->mutex);
1305
1306         ret = _regulator_get_voltage(regulator->rdev);
1307
1308         mutex_unlock(&regulator->rdev->mutex);
1309
1310         return ret;
1311 }
1312 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1313
1314 /**
1315  * regulator_set_current_limit - set regulator output current limit
1316  * @regulator: regulator source
1317  * @min_uA: Minimuum supported current in uA
1318  * @max_uA: Maximum supported current in uA
1319  *
1320  * Sets current sink to the desired output current. This can be set during
1321  * any regulator state. IOW, regulator can be disabled or enabled.
1322  *
1323  * If the regulator is enabled then the current will change to the new value
1324  * immediately otherwise if the regulator is disabled the regulator will
1325  * output at the new current when enabled.
1326  *
1327  * NOTE: Regulator system constraints must be set for this regulator before
1328  * calling this function otherwise this call will fail.
1329  */
1330 int regulator_set_current_limit(struct regulator *regulator,
1331                                int min_uA, int max_uA)
1332 {
1333         struct regulator_dev *rdev = regulator->rdev;
1334         int ret;
1335
1336         mutex_lock(&rdev->mutex);
1337
1338         /* sanity check */
1339         if (!rdev->desc->ops->set_current_limit) {
1340                 ret = -EINVAL;
1341                 goto out;
1342         }
1343
1344         /* constraints check */
1345         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1346         if (ret < 0)
1347                 goto out;
1348
1349         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1350 out:
1351         mutex_unlock(&rdev->mutex);
1352         return ret;
1353 }
1354 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1355
1356 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1357 {
1358         int ret;
1359
1360         mutex_lock(&rdev->mutex);
1361
1362         /* sanity check */
1363         if (!rdev->desc->ops->get_current_limit) {
1364                 ret = -EINVAL;
1365                 goto out;
1366         }
1367
1368         ret = rdev->desc->ops->get_current_limit(rdev);
1369 out:
1370         mutex_unlock(&rdev->mutex);
1371         return ret;
1372 }
1373
1374 /**
1375  * regulator_get_current_limit - get regulator output current
1376  * @regulator: regulator source
1377  *
1378  * This returns the current supplied by the specified current sink in uA.
1379  *
1380  * NOTE: If the regulator is disabled it will return the current value. This
1381  * function should not be used to determine regulator state.
1382  */
1383 int regulator_get_current_limit(struct regulator *regulator)
1384 {
1385         return _regulator_get_current_limit(regulator->rdev);
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1388
1389 /**
1390  * regulator_set_mode - set regulator operating mode
1391  * @regulator: regulator source
1392  * @mode: operating mode - one of the REGULATOR_MODE constants
1393  *
1394  * Set regulator operating mode to increase regulator efficiency or improve
1395  * regulation performance.
1396  *
1397  * NOTE: Regulator system constraints must be set for this regulator before
1398  * calling this function otherwise this call will fail.
1399  */
1400 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1401 {
1402         struct regulator_dev *rdev = regulator->rdev;
1403         int ret;
1404
1405         mutex_lock(&rdev->mutex);
1406
1407         /* sanity check */
1408         if (!rdev->desc->ops->set_mode) {
1409                 ret = -EINVAL;
1410                 goto out;
1411         }
1412
1413         /* constraints check */
1414         ret = regulator_check_mode(rdev, mode);
1415         if (ret < 0)
1416                 goto out;
1417
1418         ret = rdev->desc->ops->set_mode(rdev, mode);
1419 out:
1420         mutex_unlock(&rdev->mutex);
1421         return ret;
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_set_mode);
1424
1425 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1426 {
1427         int ret;
1428
1429         mutex_lock(&rdev->mutex);
1430
1431         /* sanity check */
1432         if (!rdev->desc->ops->get_mode) {
1433                 ret = -EINVAL;
1434                 goto out;
1435         }
1436
1437         ret = rdev->desc->ops->get_mode(rdev);
1438 out:
1439         mutex_unlock(&rdev->mutex);
1440         return ret;
1441 }
1442
1443 /**
1444  * regulator_get_mode - get regulator operating mode
1445  * @regulator: regulator source
1446  *
1447  * Get the current regulator operating mode.
1448  */
1449 unsigned int regulator_get_mode(struct regulator *regulator)
1450 {
1451         return _regulator_get_mode(regulator->rdev);
1452 }
1453 EXPORT_SYMBOL_GPL(regulator_get_mode);
1454
1455 /**
1456  * regulator_set_optimum_mode - set regulator optimum operating mode
1457  * @regulator: regulator source
1458  * @uA_load: load current
1459  *
1460  * Notifies the regulator core of a new device load. This is then used by
1461  * DRMS (if enabled by constraints) to set the most efficient regulator
1462  * operating mode for the new regulator loading.
1463  *
1464  * Consumer devices notify their supply regulator of the maximum power
1465  * they will require (can be taken from device datasheet in the power
1466  * consumption tables) when they change operational status and hence power
1467  * state. Examples of operational state changes that can affect power
1468  * consumption are :-
1469  *
1470  *    o Device is opened / closed.
1471  *    o Device I/O is about to begin or has just finished.
1472  *    o Device is idling in between work.
1473  *
1474  * This information is also exported via sysfs to userspace.
1475  *
1476  * DRMS will sum the total requested load on the regulator and change
1477  * to the most efficient operating mode if platform constraints allow.
1478  *
1479  * Returns the new regulator mode or error.
1480  */
1481 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1482 {
1483         struct regulator_dev *rdev = regulator->rdev;
1484         struct regulator *consumer;
1485         int ret, output_uV, input_uV, total_uA_load = 0;
1486         unsigned int mode;
1487
1488         mutex_lock(&rdev->mutex);
1489
1490         regulator->uA_load = uA_load;
1491         ret = regulator_check_drms(rdev);
1492         if (ret < 0)
1493                 goto out;
1494         ret = -EINVAL;
1495
1496         /* sanity check */
1497         if (!rdev->desc->ops->get_optimum_mode)
1498                 goto out;
1499
1500         /* get output voltage */
1501         output_uV = rdev->desc->ops->get_voltage(rdev);
1502         if (output_uV <= 0) {
1503                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1504                         __func__, rdev->desc->name);
1505                 goto out;
1506         }
1507
1508         /* get input voltage */
1509         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1510                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1511         else
1512                 input_uV = rdev->constraints->input_uV;
1513         if (input_uV <= 0) {
1514                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1515                         __func__, rdev->desc->name);
1516                 goto out;
1517         }
1518
1519         /* calc total requested load for this regulator */
1520         list_for_each_entry(consumer, &rdev->consumer_list, list)
1521             total_uA_load += consumer->uA_load;
1522
1523         mode = rdev->desc->ops->get_optimum_mode(rdev,
1524                                                  input_uV, output_uV,
1525                                                  total_uA_load);
1526         ret = regulator_check_mode(rdev, mode);
1527         if (ret < 0) {
1528                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1529                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1530                         total_uA_load, input_uV, output_uV);
1531                 goto out;
1532         }
1533
1534         ret = rdev->desc->ops->set_mode(rdev, mode);
1535         if (ret < 0) {
1536                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1537                         __func__, mode, rdev->desc->name);
1538                 goto out;
1539         }
1540         ret = mode;
1541 out:
1542         mutex_unlock(&rdev->mutex);
1543         return ret;
1544 }
1545 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1546
1547 /**
1548  * regulator_register_notifier - register regulator event notifier
1549  * @regulator: regulator source
1550  * @nb: notifier block
1551  *
1552  * Register notifier block to receive regulator events.
1553  */
1554 int regulator_register_notifier(struct regulator *regulator,
1555                               struct notifier_block *nb)
1556 {
1557         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1558                                                 nb);
1559 }
1560 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1561
1562 /**
1563  * regulator_unregister_notifier - unregister regulator event notifier
1564  * @regulator: regulator source
1565  * @nb: notifier block
1566  *
1567  * Unregister regulator event notifier block.
1568  */
1569 int regulator_unregister_notifier(struct regulator *regulator,
1570                                 struct notifier_block *nb)
1571 {
1572         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1573                                                   nb);
1574 }
1575 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1576
1577 /* notify regulator consumers and downstream regulator consumers.
1578  * Note mutex must be held by caller.
1579  */
1580 static void _notifier_call_chain(struct regulator_dev *rdev,
1581                                   unsigned long event, void *data)
1582 {
1583         struct regulator_dev *_rdev;
1584
1585         /* call rdev chain first */
1586         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1587
1588         /* now notify regulator we supply */
1589         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1590           mutex_lock(&_rdev->mutex);
1591           _notifier_call_chain(_rdev, event, data);
1592           mutex_unlock(&_rdev->mutex);
1593         }
1594 }
1595
1596 /**
1597  * regulator_bulk_get - get multiple regulator consumers
1598  *
1599  * @dev:           Device to supply
1600  * @num_consumers: Number of consumers to register
1601  * @consumers:     Configuration of consumers; clients are stored here.
1602  *
1603  * @return 0 on success, an errno on failure.
1604  *
1605  * This helper function allows drivers to get several regulator
1606  * consumers in one operation.  If any of the regulators cannot be
1607  * acquired then any regulators that were allocated will be freed
1608  * before returning to the caller.
1609  */
1610 int regulator_bulk_get(struct device *dev, int num_consumers,
1611                        struct regulator_bulk_data *consumers)
1612 {
1613         int i;
1614         int ret;
1615
1616         for (i = 0; i < num_consumers; i++)
1617                 consumers[i].consumer = NULL;
1618
1619         for (i = 0; i < num_consumers; i++) {
1620                 consumers[i].consumer = regulator_get(dev,
1621                                                       consumers[i].supply);
1622                 if (IS_ERR(consumers[i].consumer)) {
1623                         dev_err(dev, "Failed to get supply '%s'\n",
1624                                 consumers[i].supply);
1625                         ret = PTR_ERR(consumers[i].consumer);
1626                         consumers[i].consumer = NULL;
1627                         goto err;
1628                 }
1629         }
1630
1631         return 0;
1632
1633 err:
1634         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1635                 regulator_put(consumers[i].consumer);
1636
1637         return ret;
1638 }
1639 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1640
1641 /**
1642  * regulator_bulk_enable - enable multiple regulator consumers
1643  *
1644  * @num_consumers: Number of consumers
1645  * @consumers:     Consumer data; clients are stored here.
1646  * @return         0 on success, an errno on failure
1647  *
1648  * This convenience API allows consumers to enable multiple regulator
1649  * clients in a single API call.  If any consumers cannot be enabled
1650  * then any others that were enabled will be disabled again prior to
1651  * return.
1652  */
1653 int regulator_bulk_enable(int num_consumers,
1654                           struct regulator_bulk_data *consumers)
1655 {
1656         int i;
1657         int ret;
1658
1659         for (i = 0; i < num_consumers; i++) {
1660                 ret = regulator_enable(consumers[i].consumer);
1661                 if (ret != 0)
1662                         goto err;
1663         }
1664
1665         return 0;
1666
1667 err:
1668         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1669         for (i = 0; i < num_consumers; i++)
1670                 regulator_disable(consumers[i].consumer);
1671
1672         return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1675
1676 /**
1677  * regulator_bulk_disable - disable multiple regulator consumers
1678  *
1679  * @num_consumers: Number of consumers
1680  * @consumers:     Consumer data; clients are stored here.
1681  * @return         0 on success, an errno on failure
1682  *
1683  * This convenience API allows consumers to disable multiple regulator
1684  * clients in a single API call.  If any consumers cannot be enabled
1685  * then any others that were disabled will be disabled again prior to
1686  * return.
1687  */
1688 int regulator_bulk_disable(int num_consumers,
1689                            struct regulator_bulk_data *consumers)
1690 {
1691         int i;
1692         int ret;
1693
1694         for (i = 0; i < num_consumers; i++) {
1695                 ret = regulator_disable(consumers[i].consumer);
1696                 if (ret != 0)
1697                         goto err;
1698         }
1699
1700         return 0;
1701
1702 err:
1703         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1704         for (i = 0; i < num_consumers; i++)
1705                 regulator_enable(consumers[i].consumer);
1706
1707         return ret;
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1710
1711 /**
1712  * regulator_bulk_free - free multiple regulator consumers
1713  *
1714  * @num_consumers: Number of consumers
1715  * @consumers:     Consumer data; clients are stored here.
1716  *
1717  * This convenience API allows consumers to free multiple regulator
1718  * clients in a single API call.
1719  */
1720 void regulator_bulk_free(int num_consumers,
1721                          struct regulator_bulk_data *consumers)
1722 {
1723         int i;
1724
1725         for (i = 0; i < num_consumers; i++) {
1726                 regulator_put(consumers[i].consumer);
1727                 consumers[i].consumer = NULL;
1728         }
1729 }
1730 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1731
1732 /**
1733  * regulator_notifier_call_chain - call regulator event notifier
1734  * @rdev: regulator source
1735  * @event: notifier block
1736  * @data: callback-specific data.
1737  *
1738  * Called by regulator drivers to notify clients a regulator event has
1739  * occurred. We also notify regulator clients downstream.
1740  * Note lock must be held by caller.
1741  */
1742 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1743                                   unsigned long event, void *data)
1744 {
1745         _notifier_call_chain(rdev, event, data);
1746         return NOTIFY_DONE;
1747
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1750
1751 /*
1752  * To avoid cluttering sysfs (and memory) with useless state, only
1753  * create attributes that can be meaningfully displayed.
1754  */
1755 static int add_regulator_attributes(struct regulator_dev *rdev)
1756 {
1757         struct device           *dev = &rdev->dev;
1758         struct regulator_ops    *ops = rdev->desc->ops;
1759         int                     status = 0;
1760
1761         /* some attributes need specific methods to be displayed */
1762         if (ops->get_voltage) {
1763                 status = device_create_file(dev, &dev_attr_microvolts);
1764                 if (status < 0)
1765                         return status;
1766         }
1767         if (ops->get_current_limit) {
1768                 status = device_create_file(dev, &dev_attr_microamps);
1769                 if (status < 0)
1770                         return status;
1771         }
1772         if (ops->get_mode) {
1773                 status = device_create_file(dev, &dev_attr_opmode);
1774                 if (status < 0)
1775                         return status;
1776         }
1777         if (ops->is_enabled) {
1778                 status = device_create_file(dev, &dev_attr_state);
1779                 if (status < 0)
1780                         return status;
1781         }
1782         if (ops->get_status) {
1783                 status = device_create_file(dev, &dev_attr_status);
1784                 if (status < 0)
1785                         return status;
1786         }
1787
1788         /* some attributes are type-specific */
1789         if (rdev->desc->type == REGULATOR_CURRENT) {
1790                 status = device_create_file(dev, &dev_attr_requested_microamps);
1791                 if (status < 0)
1792                         return status;
1793         }
1794
1795         /* all the other attributes exist to support constraints;
1796          * don't show them if there are no constraints, or if the
1797          * relevant supporting methods are missing.
1798          */
1799         if (!rdev->constraints)
1800                 return status;
1801
1802         /* constraints need specific supporting methods */
1803         if (ops->set_voltage) {
1804                 status = device_create_file(dev, &dev_attr_min_microvolts);
1805                 if (status < 0)
1806                         return status;
1807                 status = device_create_file(dev, &dev_attr_max_microvolts);
1808                 if (status < 0)
1809                         return status;
1810         }
1811         if (ops->set_current_limit) {
1812                 status = device_create_file(dev, &dev_attr_min_microamps);
1813                 if (status < 0)
1814                         return status;
1815                 status = device_create_file(dev, &dev_attr_max_microamps);
1816                 if (status < 0)
1817                         return status;
1818         }
1819
1820         /* suspend mode constraints need multiple supporting methods */
1821         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1822                 return status;
1823
1824         status = device_create_file(dev, &dev_attr_suspend_standby_state);
1825         if (status < 0)
1826                 return status;
1827         status = device_create_file(dev, &dev_attr_suspend_mem_state);
1828         if (status < 0)
1829                 return status;
1830         status = device_create_file(dev, &dev_attr_suspend_disk_state);
1831         if (status < 0)
1832                 return status;
1833
1834         if (ops->set_suspend_voltage) {
1835                 status = device_create_file(dev,
1836                                 &dev_attr_suspend_standby_microvolts);
1837                 if (status < 0)
1838                         return status;
1839                 status = device_create_file(dev,
1840                                 &dev_attr_suspend_mem_microvolts);
1841                 if (status < 0)
1842                         return status;
1843                 status = device_create_file(dev,
1844                                 &dev_attr_suspend_disk_microvolts);
1845                 if (status < 0)
1846                         return status;
1847         }
1848
1849         if (ops->set_suspend_mode) {
1850                 status = device_create_file(dev,
1851                                 &dev_attr_suspend_standby_mode);
1852                 if (status < 0)
1853                         return status;
1854                 status = device_create_file(dev,
1855                                 &dev_attr_suspend_mem_mode);
1856                 if (status < 0)
1857                         return status;
1858                 status = device_create_file(dev,
1859                                 &dev_attr_suspend_disk_mode);
1860                 if (status < 0)
1861                         return status;
1862         }
1863
1864         return status;
1865 }
1866
1867 /**
1868  * regulator_register - register regulator
1869  * @regulator_desc: regulator to register
1870  * @dev: struct device for the regulator
1871  * @init_data: platform provided init data, passed through by driver
1872  * @driver_data: private regulator data
1873  *
1874  * Called by regulator drivers to register a regulator.
1875  * Returns 0 on success.
1876  */
1877 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1878         struct device *dev, struct regulator_init_data *init_data,
1879         void *driver_data)
1880 {
1881         static atomic_t regulator_no = ATOMIC_INIT(0);
1882         struct regulator_dev *rdev;
1883         int ret, i;
1884
1885         if (regulator_desc == NULL)
1886                 return ERR_PTR(-EINVAL);
1887
1888         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1889                 return ERR_PTR(-EINVAL);
1890
1891         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1892             !regulator_desc->type == REGULATOR_CURRENT)
1893                 return ERR_PTR(-EINVAL);
1894
1895         if (!init_data)
1896                 return ERR_PTR(-EINVAL);
1897
1898         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1899         if (rdev == NULL)
1900                 return ERR_PTR(-ENOMEM);
1901
1902         mutex_lock(&regulator_list_mutex);
1903
1904         mutex_init(&rdev->mutex);
1905         rdev->reg_data = driver_data;
1906         rdev->owner = regulator_desc->owner;
1907         rdev->desc = regulator_desc;
1908         INIT_LIST_HEAD(&rdev->consumer_list);
1909         INIT_LIST_HEAD(&rdev->supply_list);
1910         INIT_LIST_HEAD(&rdev->list);
1911         INIT_LIST_HEAD(&rdev->slist);
1912         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1913
1914         /* preform any regulator specific init */
1915         if (init_data->regulator_init) {
1916                 ret = init_data->regulator_init(rdev->reg_data);
1917                 if (ret < 0)
1918                         goto clean;
1919         }
1920
1921         /* register with sysfs */
1922         rdev->dev.class = &regulator_class;
1923         rdev->dev.parent = dev;
1924         dev_set_name(&rdev->dev, "regulator.%d",
1925                      atomic_inc_return(&regulator_no) - 1);
1926         ret = device_register(&rdev->dev);
1927         if (ret != 0)
1928                 goto clean;
1929
1930         dev_set_drvdata(&rdev->dev, rdev);
1931
1932         /* set regulator constraints */
1933         ret = set_machine_constraints(rdev, &init_data->constraints);
1934         if (ret < 0)
1935                 goto scrub;
1936
1937         /* add attributes supported by this regulator */
1938         ret = add_regulator_attributes(rdev);
1939         if (ret < 0)
1940                 goto scrub;
1941
1942         /* set supply regulator if it exists */
1943         if (init_data->supply_regulator_dev) {
1944                 ret = set_supply(rdev,
1945                         dev_get_drvdata(init_data->supply_regulator_dev));
1946                 if (ret < 0)
1947                         goto scrub;
1948         }
1949
1950         /* add consumers devices */
1951         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1952                 ret = set_consumer_device_supply(rdev,
1953                         init_data->consumer_supplies[i].dev,
1954                         init_data->consumer_supplies[i].supply);
1955                 if (ret < 0) {
1956                         for (--i; i >= 0; i--)
1957                                 unset_consumer_device_supply(rdev,
1958                                         init_data->consumer_supplies[i].dev);
1959                         goto scrub;
1960                 }
1961         }
1962
1963         list_add(&rdev->list, &regulator_list);
1964 out:
1965         mutex_unlock(&regulator_list_mutex);
1966         return rdev;
1967
1968 scrub:
1969         device_unregister(&rdev->dev);
1970 clean:
1971         kfree(rdev);
1972         rdev = ERR_PTR(ret);
1973         goto out;
1974 }
1975 EXPORT_SYMBOL_GPL(regulator_register);
1976
1977 /**
1978  * regulator_unregister - unregister regulator
1979  * @rdev: regulator to unregister
1980  *
1981  * Called by regulator drivers to unregister a regulator.
1982  */
1983 void regulator_unregister(struct regulator_dev *rdev)
1984 {
1985         if (rdev == NULL)
1986                 return;
1987
1988         mutex_lock(&regulator_list_mutex);
1989         unset_regulator_supplies(rdev);
1990         list_del(&rdev->list);
1991         if (rdev->supply)
1992                 sysfs_remove_link(&rdev->dev.kobj, "supply");
1993         device_unregister(&rdev->dev);
1994         mutex_unlock(&regulator_list_mutex);
1995 }
1996 EXPORT_SYMBOL_GPL(regulator_unregister);
1997
1998 /**
1999  * regulator_suspend_prepare - prepare regulators for system wide suspend
2000  * @state: system suspend state
2001  *
2002  * Configure each regulator with it's suspend operating parameters for state.
2003  * This will usually be called by machine suspend code prior to supending.
2004  */
2005 int regulator_suspend_prepare(suspend_state_t state)
2006 {
2007         struct regulator_dev *rdev;
2008         int ret = 0;
2009
2010         /* ON is handled by regulator active state */
2011         if (state == PM_SUSPEND_ON)
2012                 return -EINVAL;
2013
2014         mutex_lock(&regulator_list_mutex);
2015         list_for_each_entry(rdev, &regulator_list, list) {
2016
2017                 mutex_lock(&rdev->mutex);
2018                 ret = suspend_prepare(rdev, state);
2019                 mutex_unlock(&rdev->mutex);
2020
2021                 if (ret < 0) {
2022                         printk(KERN_ERR "%s: failed to prepare %s\n",
2023                                 __func__, rdev->desc->name);
2024                         goto out;
2025                 }
2026         }
2027 out:
2028         mutex_unlock(&regulator_list_mutex);
2029         return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2032
2033 /**
2034  * rdev_get_drvdata - get rdev regulator driver data
2035  * @rdev: regulator
2036  *
2037  * Get rdev regulator driver private data. This call can be used in the
2038  * regulator driver context.
2039  */
2040 void *rdev_get_drvdata(struct regulator_dev *rdev)
2041 {
2042         return rdev->reg_data;
2043 }
2044 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2045
2046 /**
2047  * regulator_get_drvdata - get regulator driver data
2048  * @regulator: regulator
2049  *
2050  * Get regulator driver private data. This call can be used in the consumer
2051  * driver context when non API regulator specific functions need to be called.
2052  */
2053 void *regulator_get_drvdata(struct regulator *regulator)
2054 {
2055         return regulator->rdev->reg_data;
2056 }
2057 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2058
2059 /**
2060  * regulator_set_drvdata - set regulator driver data
2061  * @regulator: regulator
2062  * @data: data
2063  */
2064 void regulator_set_drvdata(struct regulator *regulator, void *data)
2065 {
2066         regulator->rdev->reg_data = data;
2067 }
2068 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2069
2070 /**
2071  * regulator_get_id - get regulator ID
2072  * @rdev: regulator
2073  */
2074 int rdev_get_id(struct regulator_dev *rdev)
2075 {
2076         return rdev->desc->id;
2077 }
2078 EXPORT_SYMBOL_GPL(rdev_get_id);
2079
2080 struct device *rdev_get_dev(struct regulator_dev *rdev)
2081 {
2082         return &rdev->dev;
2083 }
2084 EXPORT_SYMBOL_GPL(rdev_get_dev);
2085
2086 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2087 {
2088         return reg_init_data->driver_data;
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2091
2092 static int __init regulator_init(void)
2093 {
2094         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2095         return class_register(&regulator_class);
2096 }
2097
2098 /* init early to allow our consumers to complete system booting */
2099 core_initcall(regulator_init);