regulator: Factor out voltage constraint setup
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39         struct list_head list;
40         const char *dev_name;   /* The dev_name() for the consumer */
41         const char *supply;
42         struct regulator_dev *regulator;
43 };
44
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51         struct device *dev;
52         struct list_head list;
53         int uA_load;
54         int min_uV;
55         int max_uV;
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints && rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283         ssize_t ret;
284
285         mutex_lock(&rdev->mutex);
286         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287         mutex_unlock(&rdev->mutex);
288
289         return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293 static ssize_t regulator_status_show(struct device *dev,
294                                    struct device_attribute *attr, char *buf)
295 {
296         struct regulator_dev *rdev = dev_get_drvdata(dev);
297         int status;
298         char *label;
299
300         status = rdev->desc->ops->get_status(rdev);
301         if (status < 0)
302                 return status;
303
304         switch (status) {
305         case REGULATOR_STATUS_OFF:
306                 label = "off";
307                 break;
308         case REGULATOR_STATUS_ON:
309                 label = "on";
310                 break;
311         case REGULATOR_STATUS_ERROR:
312                 label = "error";
313                 break;
314         case REGULATOR_STATUS_FAST:
315                 label = "fast";
316                 break;
317         case REGULATOR_STATUS_NORMAL:
318                 label = "normal";
319                 break;
320         case REGULATOR_STATUS_IDLE:
321                 label = "idle";
322                 break;
323         case REGULATOR_STATUS_STANDBY:
324                 label = "standby";
325                 break;
326         default:
327                 return -ERANGE;
328         }
329
330         return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334 static ssize_t regulator_min_uA_show(struct device *dev,
335                                     struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         if (!rdev->constraints)
340                 return sprintf(buf, "constraint not defined\n");
341
342         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346 static ssize_t regulator_max_uA_show(struct device *dev,
347                                     struct device_attribute *attr, char *buf)
348 {
349         struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351         if (!rdev->constraints)
352                 return sprintf(buf, "constraint not defined\n");
353
354         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358 static ssize_t regulator_min_uV_show(struct device *dev,
359                                     struct device_attribute *attr, char *buf)
360 {
361         struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363         if (!rdev->constraints)
364                 return sprintf(buf, "constraint not defined\n");
365
366         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370 static ssize_t regulator_max_uV_show(struct device *dev,
371                                     struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375         if (!rdev->constraints)
376                 return sprintf(buf, "constraint not defined\n");
377
378         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382 static ssize_t regulator_total_uA_show(struct device *dev,
383                                       struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         struct regulator *regulator;
387         int uA = 0;
388
389         mutex_lock(&rdev->mutex);
390         list_for_each_entry(regulator, &rdev->consumer_list, list)
391             uA += regulator->uA_load;
392         mutex_unlock(&rdev->mutex);
393         return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397 static ssize_t regulator_num_users_show(struct device *dev,
398                                       struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         return sprintf(buf, "%d\n", rdev->use_count);
402 }
403
404 static ssize_t regulator_type_show(struct device *dev,
405                                   struct device_attribute *attr, char *buf)
406 {
407         struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409         switch (rdev->desc->type) {
410         case REGULATOR_VOLTAGE:
411                 return sprintf(buf, "voltage\n");
412         case REGULATOR_CURRENT:
413                 return sprintf(buf, "current\n");
414         }
415         return sprintf(buf, "unknown\n");
416 }
417
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419                                 struct device_attribute *attr, char *buf)
420 {
421         struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426                 regulator_suspend_mem_uV_show, NULL);
427
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429                                 struct device_attribute *attr, char *buf)
430 {
431         struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436                 regulator_suspend_disk_uV_show, NULL);
437
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439                                 struct device_attribute *attr, char *buf)
440 {
441         struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446                 regulator_suspend_standby_uV_show, NULL);
447
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449                                 struct device_attribute *attr, char *buf)
450 {
451         struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453         return regulator_print_opmode(buf,
454                 rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457                 regulator_suspend_mem_mode_show, NULL);
458
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460                                 struct device_attribute *attr, char *buf)
461 {
462         struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464         return regulator_print_opmode(buf,
465                 rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468                 regulator_suspend_disk_mode_show, NULL);
469
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return regulator_print_opmode(buf,
476                 rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479                 regulator_suspend_standby_mode_show, NULL);
480
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482                                    struct device_attribute *attr, char *buf)
483 {
484         struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486         return regulator_print_state(buf,
487                         rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490                 regulator_suspend_mem_state_show, NULL);
491
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493                                    struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497         return regulator_print_state(buf,
498                         rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501                 regulator_suspend_disk_state_show, NULL);
502
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504                                    struct device_attribute *attr, char *buf)
505 {
506         struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508         return regulator_print_state(buf,
509                         rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512                 regulator_suspend_standby_state_show, NULL);
513
514
515 /*
516  * These are the only attributes are present for all regulators.
517  * Other attributes are a function of regulator functionality.
518  */
519 static struct device_attribute regulator_dev_attrs[] = {
520         __ATTR(name, 0444, regulator_name_show, NULL),
521         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
522         __ATTR(type, 0444, regulator_type_show, NULL),
523         __ATTR_NULL,
524 };
525
526 static void regulator_dev_release(struct device *dev)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         kfree(rdev);
530 }
531
532 static struct class regulator_class = {
533         .name = "regulator",
534         .dev_release = regulator_dev_release,
535         .dev_attrs = regulator_dev_attrs,
536 };
537
538 /* Calculate the new optimum regulator operating mode based on the new total
539  * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542         struct regulator *sibling;
543         int current_uA = 0, output_uV, input_uV, err;
544         unsigned int mode;
545
546         err = regulator_check_drms(rdev);
547         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549                 return;
550
551         /* get output voltage */
552         output_uV = rdev->desc->ops->get_voltage(rdev);
553         if (output_uV <= 0)
554                 return;
555
556         /* get input voltage */
557         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559         else
560                 input_uV = rdev->constraints->input_uV;
561         if (input_uV <= 0)
562                 return;
563
564         /* calc total requested load */
565         list_for_each_entry(sibling, &rdev->consumer_list, list)
566             current_uA += sibling->uA_load;
567
568         /* now get the optimum mode for our new total regulator load */
569         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570                                                   output_uV, current_uA);
571
572         /* check the new mode is allowed */
573         err = regulator_check_mode(rdev, mode);
574         if (err == 0)
575                 rdev->desc->ops->set_mode(rdev, mode);
576 }
577
578 static int suspend_set_state(struct regulator_dev *rdev,
579         struct regulator_state *rstate)
580 {
581         int ret = 0;
582
583         /* enable & disable are mandatory for suspend control */
584         if (!rdev->desc->ops->set_suspend_enable ||
585                 !rdev->desc->ops->set_suspend_disable) {
586                 printk(KERN_ERR "%s: no way to set suspend state\n",
587                         __func__);
588                 return -EINVAL;
589         }
590
591         if (rstate->enabled)
592                 ret = rdev->desc->ops->set_suspend_enable(rdev);
593         else
594                 ret = rdev->desc->ops->set_suspend_disable(rdev);
595         if (ret < 0) {
596                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597                 return ret;
598         }
599
600         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602                 if (ret < 0) {
603                         printk(KERN_ERR "%s: failed to set voltage\n",
604                                 __func__);
605                         return ret;
606                 }
607         }
608
609         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611                 if (ret < 0) {
612                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
613                         return ret;
614                 }
615         }
616         return ret;
617 }
618
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622         if (!rdev->constraints)
623                 return -EINVAL;
624
625         switch (state) {
626         case PM_SUSPEND_STANDBY:
627                 return suspend_set_state(rdev,
628                         &rdev->constraints->state_standby);
629         case PM_SUSPEND_MEM:
630                 return suspend_set_state(rdev,
631                         &rdev->constraints->state_mem);
632         case PM_SUSPEND_MAX:
633                 return suspend_set_state(rdev,
634                         &rdev->constraints->state_disk);
635         default:
636                 return -EINVAL;
637         }
638 }
639
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642         struct regulation_constraints *constraints = rdev->constraints;
643         char buf[80];
644         int count;
645
646         if (rdev->desc->type == REGULATOR_VOLTAGE) {
647                 if (constraints->min_uV == constraints->max_uV)
648                         count = sprintf(buf, "%d mV ",
649                                         constraints->min_uV / 1000);
650                 else
651                         count = sprintf(buf, "%d <--> %d mV ",
652                                         constraints->min_uV / 1000,
653                                         constraints->max_uV / 1000);
654         } else {
655                 if (constraints->min_uA == constraints->max_uA)
656                         count = sprintf(buf, "%d mA ",
657                                         constraints->min_uA / 1000);
658                 else
659                         count = sprintf(buf, "%d <--> %d mA ",
660                                         constraints->min_uA / 1000,
661                                         constraints->max_uA / 1000);
662         }
663         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664                 count += sprintf(buf + count, "fast ");
665         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666                 count += sprintf(buf + count, "normal ");
667         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668                 count += sprintf(buf + count, "idle ");
669         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670                 count += sprintf(buf + count, "standby");
671
672         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673 }
674
675 static int machine_constraints_voltage(struct regulator_dev *rdev,
676         const char *name, struct regulation_constraints *constraints)
677 {
678         struct regulator_ops *ops = rdev->desc->ops;
679
680         /* constrain machine-level voltage specs to fit
681          * the actual range supported by this regulator.
682          */
683         if (ops->list_voltage && rdev->desc->n_voltages) {
684                 int     count = rdev->desc->n_voltages;
685                 int     i;
686                 int     min_uV = INT_MAX;
687                 int     max_uV = INT_MIN;
688                 int     cmin = constraints->min_uV;
689                 int     cmax = constraints->max_uV;
690
691                 /* it's safe to autoconfigure fixed-voltage supplies
692                    and the constraints are used by list_voltage. */
693                 if (count == 1 && !cmin) {
694                         cmin = 1;
695                         cmax = INT_MAX;
696                         constraints->min_uV = cmin;
697                         constraints->max_uV = cmax;
698                 }
699
700                 /* voltage constraints are optional */
701                 if ((cmin == 0) && (cmax == 0))
702                         return 0;
703
704                 /* else require explicit machine-level constraints */
705                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
706                         pr_err("%s: %s '%s' voltage constraints\n",
707                                        __func__, "invalid", name);
708                         return -EINVAL;
709                 }
710
711                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
712                 for (i = 0; i < count; i++) {
713                         int     value;
714
715                         value = ops->list_voltage(rdev, i);
716                         if (value <= 0)
717                                 continue;
718
719                         /* maybe adjust [min_uV..max_uV] */
720                         if (value >= cmin && value < min_uV)
721                                 min_uV = value;
722                         if (value <= cmax && value > max_uV)
723                                 max_uV = value;
724                 }
725
726                 /* final: [min_uV..max_uV] valid iff constraints valid */
727                 if (max_uV < min_uV) {
728                         pr_err("%s: %s '%s' voltage constraints\n",
729                                        __func__, "unsupportable", name);
730                         return -EINVAL;
731                 }
732
733                 /* use regulator's subset of machine constraints */
734                 if (constraints->min_uV < min_uV) {
735                         pr_debug("%s: override '%s' %s, %d -> %d\n",
736                                        __func__, name, "min_uV",
737                                         constraints->min_uV, min_uV);
738                         constraints->min_uV = min_uV;
739                 }
740                 if (constraints->max_uV > max_uV) {
741                         pr_debug("%s: override '%s' %s, %d -> %d\n",
742                                        __func__, name, "max_uV",
743                                         constraints->max_uV, max_uV);
744                         constraints->max_uV = max_uV;
745                 }
746         }
747
748         return 0;
749 }
750
751 /**
752  * set_machine_constraints - sets regulator constraints
753  * @rdev: regulator source
754  * @constraints: constraints to apply
755  *
756  * Allows platform initialisation code to define and constrain
757  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
758  * Constraints *must* be set by platform code in order for some
759  * regulator operations to proceed i.e. set_voltage, set_current_limit,
760  * set_mode.
761  */
762 static int set_machine_constraints(struct regulator_dev *rdev,
763         struct regulation_constraints *constraints)
764 {
765         int ret = 0;
766         const char *name;
767         struct regulator_ops *ops = rdev->desc->ops;
768
769         if (constraints->name)
770                 name = constraints->name;
771         else if (rdev->desc->name)
772                 name = rdev->desc->name;
773         else
774                 name = "regulator";
775
776         ret = machine_constraints_voltage(rdev, name, constraints);
777         if (ret != 0)
778                 goto out;
779
780         rdev->constraints = constraints;
781
782         /* do we need to apply the constraint voltage */
783         if (rdev->constraints->apply_uV &&
784                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
785                 ops->set_voltage) {
786                 ret = ops->set_voltage(rdev,
787                         rdev->constraints->min_uV, rdev->constraints->max_uV);
788                         if (ret < 0) {
789                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
790                                        __func__,
791                                        rdev->constraints->min_uV, name);
792                                 rdev->constraints = NULL;
793                                 goto out;
794                         }
795         }
796
797         /* do we need to setup our suspend state */
798         if (constraints->initial_state) {
799                 ret = suspend_prepare(rdev, constraints->initial_state);
800                 if (ret < 0) {
801                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
802                                __func__, name);
803                         rdev->constraints = NULL;
804                         goto out;
805                 }
806         }
807
808         if (constraints->initial_mode) {
809                 if (!ops->set_mode) {
810                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
811                                __func__, name);
812                         ret = -EINVAL;
813                         goto out;
814                 }
815
816                 ret = ops->set_mode(rdev, constraints->initial_mode);
817                 if (ret < 0) {
818                         printk(KERN_ERR
819                                "%s: failed to set initial mode for %s: %d\n",
820                                __func__, name, ret);
821                         goto out;
822                 }
823         }
824
825         /* If the constraints say the regulator should be on at this point
826          * and we have control then make sure it is enabled.
827          */
828         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
829                 ret = ops->enable(rdev);
830                 if (ret < 0) {
831                         printk(KERN_ERR "%s: failed to enable %s\n",
832                                __func__, name);
833                         rdev->constraints = NULL;
834                         goto out;
835                 }
836         }
837
838         print_constraints(rdev);
839 out:
840         return ret;
841 }
842
843 /**
844  * set_supply - set regulator supply regulator
845  * @rdev: regulator name
846  * @supply_rdev: supply regulator name
847  *
848  * Called by platform initialisation code to set the supply regulator for this
849  * regulator. This ensures that a regulators supply will also be enabled by the
850  * core if it's child is enabled.
851  */
852 static int set_supply(struct regulator_dev *rdev,
853         struct regulator_dev *supply_rdev)
854 {
855         int err;
856
857         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
858                                 "supply");
859         if (err) {
860                 printk(KERN_ERR
861                        "%s: could not add device link %s err %d\n",
862                        __func__, supply_rdev->dev.kobj.name, err);
863                        goto out;
864         }
865         rdev->supply = supply_rdev;
866         list_add(&rdev->slist, &supply_rdev->supply_list);
867 out:
868         return err;
869 }
870
871 /**
872  * set_consumer_device_supply: Bind a regulator to a symbolic supply
873  * @rdev:         regulator source
874  * @consumer_dev: device the supply applies to
875  * @consumer_dev_name: dev_name() string for device supply applies to
876  * @supply:       symbolic name for supply
877  *
878  * Allows platform initialisation code to map physical regulator
879  * sources to symbolic names for supplies for use by devices.  Devices
880  * should use these symbolic names to request regulators, avoiding the
881  * need to provide board-specific regulator names as platform data.
882  *
883  * Only one of consumer_dev and consumer_dev_name may be specified.
884  */
885 static int set_consumer_device_supply(struct regulator_dev *rdev,
886         struct device *consumer_dev, const char *consumer_dev_name,
887         const char *supply)
888 {
889         struct regulator_map *node;
890         int has_dev;
891
892         if (consumer_dev && consumer_dev_name)
893                 return -EINVAL;
894
895         if (!consumer_dev_name && consumer_dev)
896                 consumer_dev_name = dev_name(consumer_dev);
897
898         if (supply == NULL)
899                 return -EINVAL;
900
901         if (consumer_dev_name != NULL)
902                 has_dev = 1;
903         else
904                 has_dev = 0;
905
906         list_for_each_entry(node, &regulator_map_list, list) {
907                 if (consumer_dev_name != node->dev_name)
908                         continue;
909                 if (strcmp(node->supply, supply) != 0)
910                         continue;
911
912                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
913                                 dev_name(&node->regulator->dev),
914                                 node->regulator->desc->name,
915                                 supply,
916                                 dev_name(&rdev->dev), rdev->desc->name);
917                 return -EBUSY;
918         }
919
920         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
921         if (node == NULL)
922                 return -ENOMEM;
923
924         node->regulator = rdev;
925         node->supply = supply;
926
927         if (has_dev) {
928                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
929                 if (node->dev_name == NULL) {
930                         kfree(node);
931                         return -ENOMEM;
932                 }
933         }
934
935         list_add(&node->list, &regulator_map_list);
936         return 0;
937 }
938
939 static void unset_consumer_device_supply(struct regulator_dev *rdev,
940         const char *consumer_dev_name, struct device *consumer_dev)
941 {
942         struct regulator_map *node, *n;
943
944         if (consumer_dev && !consumer_dev_name)
945                 consumer_dev_name = dev_name(consumer_dev);
946
947         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
948                 if (rdev != node->regulator)
949                         continue;
950
951                 if (consumer_dev_name && node->dev_name &&
952                     strcmp(consumer_dev_name, node->dev_name))
953                         continue;
954
955                 list_del(&node->list);
956                 kfree(node->dev_name);
957                 kfree(node);
958                 return;
959         }
960 }
961
962 static void unset_regulator_supplies(struct regulator_dev *rdev)
963 {
964         struct regulator_map *node, *n;
965
966         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
967                 if (rdev == node->regulator) {
968                         list_del(&node->list);
969                         kfree(node->dev_name);
970                         kfree(node);
971                         return;
972                 }
973         }
974 }
975
976 #define REG_STR_SIZE    32
977
978 static struct regulator *create_regulator(struct regulator_dev *rdev,
979                                           struct device *dev,
980                                           const char *supply_name)
981 {
982         struct regulator *regulator;
983         char buf[REG_STR_SIZE];
984         int err, size;
985
986         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
987         if (regulator == NULL)
988                 return NULL;
989
990         mutex_lock(&rdev->mutex);
991         regulator->rdev = rdev;
992         list_add(&regulator->list, &rdev->consumer_list);
993
994         if (dev) {
995                 /* create a 'requested_microamps_name' sysfs entry */
996                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
997                         supply_name);
998                 if (size >= REG_STR_SIZE)
999                         goto overflow_err;
1000
1001                 regulator->dev = dev;
1002                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1003                 if (regulator->dev_attr.attr.name == NULL)
1004                         goto attr_name_err;
1005
1006                 regulator->dev_attr.attr.owner = THIS_MODULE;
1007                 regulator->dev_attr.attr.mode = 0444;
1008                 regulator->dev_attr.show = device_requested_uA_show;
1009                 err = device_create_file(dev, &regulator->dev_attr);
1010                 if (err < 0) {
1011                         printk(KERN_WARNING "%s: could not add regulator_dev"
1012                                 " load sysfs\n", __func__);
1013                         goto attr_name_err;
1014                 }
1015
1016                 /* also add a link to the device sysfs entry */
1017                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1018                                  dev->kobj.name, supply_name);
1019                 if (size >= REG_STR_SIZE)
1020                         goto attr_err;
1021
1022                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1023                 if (regulator->supply_name == NULL)
1024                         goto attr_err;
1025
1026                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1027                                         buf);
1028                 if (err) {
1029                         printk(KERN_WARNING
1030                                "%s: could not add device link %s err %d\n",
1031                                __func__, dev->kobj.name, err);
1032                         device_remove_file(dev, &regulator->dev_attr);
1033                         goto link_name_err;
1034                 }
1035         }
1036         mutex_unlock(&rdev->mutex);
1037         return regulator;
1038 link_name_err:
1039         kfree(regulator->supply_name);
1040 attr_err:
1041         device_remove_file(regulator->dev, &regulator->dev_attr);
1042 attr_name_err:
1043         kfree(regulator->dev_attr.attr.name);
1044 overflow_err:
1045         list_del(&regulator->list);
1046         kfree(regulator);
1047         mutex_unlock(&rdev->mutex);
1048         return NULL;
1049 }
1050
1051 /* Internal regulator request function */
1052 static struct regulator *_regulator_get(struct device *dev, const char *id,
1053                                         int exclusive)
1054 {
1055         struct regulator_dev *rdev;
1056         struct regulator_map *map;
1057         struct regulator *regulator = ERR_PTR(-ENODEV);
1058         const char *devname = NULL;
1059         int ret;
1060
1061         if (id == NULL) {
1062                 printk(KERN_ERR "regulator: get() with no identifier\n");
1063                 return regulator;
1064         }
1065
1066         if (dev)
1067                 devname = dev_name(dev);
1068
1069         mutex_lock(&regulator_list_mutex);
1070
1071         list_for_each_entry(map, &regulator_map_list, list) {
1072                 /* If the mapping has a device set up it must match */
1073                 if (map->dev_name &&
1074                     (!devname || strcmp(map->dev_name, devname)))
1075                         continue;
1076
1077                 if (strcmp(map->supply, id) == 0) {
1078                         rdev = map->regulator;
1079                         goto found;
1080                 }
1081         }
1082         mutex_unlock(&regulator_list_mutex);
1083         return regulator;
1084
1085 found:
1086         if (rdev->exclusive) {
1087                 regulator = ERR_PTR(-EPERM);
1088                 goto out;
1089         }
1090
1091         if (exclusive && rdev->open_count) {
1092                 regulator = ERR_PTR(-EBUSY);
1093                 goto out;
1094         }
1095
1096         if (!try_module_get(rdev->owner))
1097                 goto out;
1098
1099         regulator = create_regulator(rdev, dev, id);
1100         if (regulator == NULL) {
1101                 regulator = ERR_PTR(-ENOMEM);
1102                 module_put(rdev->owner);
1103         }
1104
1105         rdev->open_count++;
1106         if (exclusive) {
1107                 rdev->exclusive = 1;
1108
1109                 ret = _regulator_is_enabled(rdev);
1110                 if (ret > 0)
1111                         rdev->use_count = 1;
1112                 else
1113                         rdev->use_count = 0;
1114         }
1115
1116 out:
1117         mutex_unlock(&regulator_list_mutex);
1118
1119         return regulator;
1120 }
1121
1122 /**
1123  * regulator_get - lookup and obtain a reference to a regulator.
1124  * @dev: device for regulator "consumer"
1125  * @id: Supply name or regulator ID.
1126  *
1127  * Returns a struct regulator corresponding to the regulator producer,
1128  * or IS_ERR() condition containing errno.
1129  *
1130  * Use of supply names configured via regulator_set_device_supply() is
1131  * strongly encouraged.  It is recommended that the supply name used
1132  * should match the name used for the supply and/or the relevant
1133  * device pins in the datasheet.
1134  */
1135 struct regulator *regulator_get(struct device *dev, const char *id)
1136 {
1137         return _regulator_get(dev, id, 0);
1138 }
1139 EXPORT_SYMBOL_GPL(regulator_get);
1140
1141 /**
1142  * regulator_get_exclusive - obtain exclusive access to a regulator.
1143  * @dev: device for regulator "consumer"
1144  * @id: Supply name or regulator ID.
1145  *
1146  * Returns a struct regulator corresponding to the regulator producer,
1147  * or IS_ERR() condition containing errno.  Other consumers will be
1148  * unable to obtain this reference is held and the use count for the
1149  * regulator will be initialised to reflect the current state of the
1150  * regulator.
1151  *
1152  * This is intended for use by consumers which cannot tolerate shared
1153  * use of the regulator such as those which need to force the
1154  * regulator off for correct operation of the hardware they are
1155  * controlling.
1156  *
1157  * Use of supply names configured via regulator_set_device_supply() is
1158  * strongly encouraged.  It is recommended that the supply name used
1159  * should match the name used for the supply and/or the relevant
1160  * device pins in the datasheet.
1161  */
1162 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1163 {
1164         return _regulator_get(dev, id, 1);
1165 }
1166 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1167
1168 /**
1169  * regulator_put - "free" the regulator source
1170  * @regulator: regulator source
1171  *
1172  * Note: drivers must ensure that all regulator_enable calls made on this
1173  * regulator source are balanced by regulator_disable calls prior to calling
1174  * this function.
1175  */
1176 void regulator_put(struct regulator *regulator)
1177 {
1178         struct regulator_dev *rdev;
1179
1180         if (regulator == NULL || IS_ERR(regulator))
1181                 return;
1182
1183         mutex_lock(&regulator_list_mutex);
1184         rdev = regulator->rdev;
1185
1186         /* remove any sysfs entries */
1187         if (regulator->dev) {
1188                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1189                 kfree(regulator->supply_name);
1190                 device_remove_file(regulator->dev, &regulator->dev_attr);
1191                 kfree(regulator->dev_attr.attr.name);
1192         }
1193         list_del(&regulator->list);
1194         kfree(regulator);
1195
1196         rdev->open_count--;
1197         rdev->exclusive = 0;
1198
1199         module_put(rdev->owner);
1200         mutex_unlock(&regulator_list_mutex);
1201 }
1202 EXPORT_SYMBOL_GPL(regulator_put);
1203
1204 static int _regulator_can_change_status(struct regulator_dev *rdev)
1205 {
1206         if (!rdev->constraints)
1207                 return 0;
1208
1209         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1210                 return 1;
1211         else
1212                 return 0;
1213 }
1214
1215 /* locks held by regulator_enable() */
1216 static int _regulator_enable(struct regulator_dev *rdev)
1217 {
1218         int ret;
1219
1220         /* do we need to enable the supply regulator first */
1221         if (rdev->supply) {
1222                 ret = _regulator_enable(rdev->supply);
1223                 if (ret < 0) {
1224                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1225                                __func__, rdev->desc->name, ret);
1226                         return ret;
1227                 }
1228         }
1229
1230         /* check voltage and requested load before enabling */
1231         if (rdev->constraints &&
1232             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1233                 drms_uA_update(rdev);
1234
1235         if (rdev->use_count == 0) {
1236                 /* The regulator may on if it's not switchable or left on */
1237                 ret = _regulator_is_enabled(rdev);
1238                 if (ret == -EINVAL || ret == 0) {
1239                         if (!_regulator_can_change_status(rdev))
1240                                 return -EPERM;
1241
1242                         if (rdev->desc->ops->enable) {
1243                                 ret = rdev->desc->ops->enable(rdev);
1244                                 if (ret < 0)
1245                                         return ret;
1246                         } else {
1247                                 return -EINVAL;
1248                         }
1249                 } else if (ret < 0) {
1250                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1251                                __func__, rdev->desc->name, ret);
1252                         return ret;
1253                 }
1254                 /* Fallthrough on positive return values - already enabled */
1255         }
1256
1257         rdev->use_count++;
1258
1259         return 0;
1260 }
1261
1262 /**
1263  * regulator_enable - enable regulator output
1264  * @regulator: regulator source
1265  *
1266  * Request that the regulator be enabled with the regulator output at
1267  * the predefined voltage or current value.  Calls to regulator_enable()
1268  * must be balanced with calls to regulator_disable().
1269  *
1270  * NOTE: the output value can be set by other drivers, boot loader or may be
1271  * hardwired in the regulator.
1272  */
1273 int regulator_enable(struct regulator *regulator)
1274 {
1275         struct regulator_dev *rdev = regulator->rdev;
1276         int ret = 0;
1277
1278         mutex_lock(&rdev->mutex);
1279         ret = _regulator_enable(rdev);
1280         mutex_unlock(&rdev->mutex);
1281         return ret;
1282 }
1283 EXPORT_SYMBOL_GPL(regulator_enable);
1284
1285 /* locks held by regulator_disable() */
1286 static int _regulator_disable(struct regulator_dev *rdev)
1287 {
1288         int ret = 0;
1289
1290         if (WARN(rdev->use_count <= 0,
1291                         "unbalanced disables for %s\n",
1292                         rdev->desc->name))
1293                 return -EIO;
1294
1295         /* are we the last user and permitted to disable ? */
1296         if (rdev->use_count == 1 &&
1297             (rdev->constraints && !rdev->constraints->always_on)) {
1298
1299                 /* we are last user */
1300                 if (_regulator_can_change_status(rdev) &&
1301                     rdev->desc->ops->disable) {
1302                         ret = rdev->desc->ops->disable(rdev);
1303                         if (ret < 0) {
1304                                 printk(KERN_ERR "%s: failed to disable %s\n",
1305                                        __func__, rdev->desc->name);
1306                                 return ret;
1307                         }
1308                 }
1309
1310                 /* decrease our supplies ref count and disable if required */
1311                 if (rdev->supply)
1312                         _regulator_disable(rdev->supply);
1313
1314                 rdev->use_count = 0;
1315         } else if (rdev->use_count > 1) {
1316
1317                 if (rdev->constraints &&
1318                         (rdev->constraints->valid_ops_mask &
1319                         REGULATOR_CHANGE_DRMS))
1320                         drms_uA_update(rdev);
1321
1322                 rdev->use_count--;
1323         }
1324         return ret;
1325 }
1326
1327 /**
1328  * regulator_disable - disable regulator output
1329  * @regulator: regulator source
1330  *
1331  * Disable the regulator output voltage or current.  Calls to
1332  * regulator_enable() must be balanced with calls to
1333  * regulator_disable().
1334  *
1335  * NOTE: this will only disable the regulator output if no other consumer
1336  * devices have it enabled, the regulator device supports disabling and
1337  * machine constraints permit this operation.
1338  */
1339 int regulator_disable(struct regulator *regulator)
1340 {
1341         struct regulator_dev *rdev = regulator->rdev;
1342         int ret = 0;
1343
1344         mutex_lock(&rdev->mutex);
1345         ret = _regulator_disable(rdev);
1346         mutex_unlock(&rdev->mutex);
1347         return ret;
1348 }
1349 EXPORT_SYMBOL_GPL(regulator_disable);
1350
1351 /* locks held by regulator_force_disable() */
1352 static int _regulator_force_disable(struct regulator_dev *rdev)
1353 {
1354         int ret = 0;
1355
1356         /* force disable */
1357         if (rdev->desc->ops->disable) {
1358                 /* ah well, who wants to live forever... */
1359                 ret = rdev->desc->ops->disable(rdev);
1360                 if (ret < 0) {
1361                         printk(KERN_ERR "%s: failed to force disable %s\n",
1362                                __func__, rdev->desc->name);
1363                         return ret;
1364                 }
1365                 /* notify other consumers that power has been forced off */
1366                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1367                         NULL);
1368         }
1369
1370         /* decrease our supplies ref count and disable if required */
1371         if (rdev->supply)
1372                 _regulator_disable(rdev->supply);
1373
1374         rdev->use_count = 0;
1375         return ret;
1376 }
1377
1378 /**
1379  * regulator_force_disable - force disable regulator output
1380  * @regulator: regulator source
1381  *
1382  * Forcibly disable the regulator output voltage or current.
1383  * NOTE: this *will* disable the regulator output even if other consumer
1384  * devices have it enabled. This should be used for situations when device
1385  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1386  */
1387 int regulator_force_disable(struct regulator *regulator)
1388 {
1389         int ret;
1390
1391         mutex_lock(&regulator->rdev->mutex);
1392         regulator->uA_load = 0;
1393         ret = _regulator_force_disable(regulator->rdev);
1394         mutex_unlock(&regulator->rdev->mutex);
1395         return ret;
1396 }
1397 EXPORT_SYMBOL_GPL(regulator_force_disable);
1398
1399 static int _regulator_is_enabled(struct regulator_dev *rdev)
1400 {
1401         /* sanity check */
1402         if (!rdev->desc->ops->is_enabled)
1403                 return -EINVAL;
1404
1405         return rdev->desc->ops->is_enabled(rdev);
1406 }
1407
1408 /**
1409  * regulator_is_enabled - is the regulator output enabled
1410  * @regulator: regulator source
1411  *
1412  * Returns positive if the regulator driver backing the source/client
1413  * has requested that the device be enabled, zero if it hasn't, else a
1414  * negative errno code.
1415  *
1416  * Note that the device backing this regulator handle can have multiple
1417  * users, so it might be enabled even if regulator_enable() was never
1418  * called for this particular source.
1419  */
1420 int regulator_is_enabled(struct regulator *regulator)
1421 {
1422         int ret;
1423
1424         mutex_lock(&regulator->rdev->mutex);
1425         ret = _regulator_is_enabled(regulator->rdev);
1426         mutex_unlock(&regulator->rdev->mutex);
1427
1428         return ret;
1429 }
1430 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1431
1432 /**
1433  * regulator_count_voltages - count regulator_list_voltage() selectors
1434  * @regulator: regulator source
1435  *
1436  * Returns number of selectors, or negative errno.  Selectors are
1437  * numbered starting at zero, and typically correspond to bitfields
1438  * in hardware registers.
1439  */
1440 int regulator_count_voltages(struct regulator *regulator)
1441 {
1442         struct regulator_dev    *rdev = regulator->rdev;
1443
1444         return rdev->desc->n_voltages ? : -EINVAL;
1445 }
1446 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1447
1448 /**
1449  * regulator_list_voltage - enumerate supported voltages
1450  * @regulator: regulator source
1451  * @selector: identify voltage to list
1452  * Context: can sleep
1453  *
1454  * Returns a voltage that can be passed to @regulator_set_voltage(),
1455  * zero if this selector code can't be used on this sytem, or a
1456  * negative errno.
1457  */
1458 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1459 {
1460         struct regulator_dev    *rdev = regulator->rdev;
1461         struct regulator_ops    *ops = rdev->desc->ops;
1462         int                     ret;
1463
1464         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1465                 return -EINVAL;
1466
1467         mutex_lock(&rdev->mutex);
1468         ret = ops->list_voltage(rdev, selector);
1469         mutex_unlock(&rdev->mutex);
1470
1471         if (ret > 0) {
1472                 if (ret < rdev->constraints->min_uV)
1473                         ret = 0;
1474                 else if (ret > rdev->constraints->max_uV)
1475                         ret = 0;
1476         }
1477
1478         return ret;
1479 }
1480 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1481
1482 /**
1483  * regulator_is_supported_voltage - check if a voltage range can be supported
1484  *
1485  * @regulator: Regulator to check.
1486  * @min_uV: Minimum required voltage in uV.
1487  * @max_uV: Maximum required voltage in uV.
1488  *
1489  * Returns a boolean or a negative error code.
1490  */
1491 int regulator_is_supported_voltage(struct regulator *regulator,
1492                                    int min_uV, int max_uV)
1493 {
1494         int i, voltages, ret;
1495
1496         ret = regulator_count_voltages(regulator);
1497         if (ret < 0)
1498                 return ret;
1499         voltages = ret;
1500
1501         for (i = 0; i < voltages; i++) {
1502                 ret = regulator_list_voltage(regulator, i);
1503
1504                 if (ret >= min_uV && ret <= max_uV)
1505                         return 1;
1506         }
1507
1508         return 0;
1509 }
1510
1511 /**
1512  * regulator_set_voltage - set regulator output voltage
1513  * @regulator: regulator source
1514  * @min_uV: Minimum required voltage in uV
1515  * @max_uV: Maximum acceptable voltage in uV
1516  *
1517  * Sets a voltage regulator to the desired output voltage. This can be set
1518  * during any regulator state. IOW, regulator can be disabled or enabled.
1519  *
1520  * If the regulator is enabled then the voltage will change to the new value
1521  * immediately otherwise if the regulator is disabled the regulator will
1522  * output at the new voltage when enabled.
1523  *
1524  * NOTE: If the regulator is shared between several devices then the lowest
1525  * request voltage that meets the system constraints will be used.
1526  * Regulator system constraints must be set for this regulator before
1527  * calling this function otherwise this call will fail.
1528  */
1529 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1530 {
1531         struct regulator_dev *rdev = regulator->rdev;
1532         int ret;
1533
1534         mutex_lock(&rdev->mutex);
1535
1536         /* sanity check */
1537         if (!rdev->desc->ops->set_voltage) {
1538                 ret = -EINVAL;
1539                 goto out;
1540         }
1541
1542         /* constraints check */
1543         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1544         if (ret < 0)
1545                 goto out;
1546         regulator->min_uV = min_uV;
1547         regulator->max_uV = max_uV;
1548         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1549
1550 out:
1551         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1552         mutex_unlock(&rdev->mutex);
1553         return ret;
1554 }
1555 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1556
1557 static int _regulator_get_voltage(struct regulator_dev *rdev)
1558 {
1559         /* sanity check */
1560         if (rdev->desc->ops->get_voltage)
1561                 return rdev->desc->ops->get_voltage(rdev);
1562         else
1563                 return -EINVAL;
1564 }
1565
1566 /**
1567  * regulator_get_voltage - get regulator output voltage
1568  * @regulator: regulator source
1569  *
1570  * This returns the current regulator voltage in uV.
1571  *
1572  * NOTE: If the regulator is disabled it will return the voltage value. This
1573  * function should not be used to determine regulator state.
1574  */
1575 int regulator_get_voltage(struct regulator *regulator)
1576 {
1577         int ret;
1578
1579         mutex_lock(&regulator->rdev->mutex);
1580
1581         ret = _regulator_get_voltage(regulator->rdev);
1582
1583         mutex_unlock(&regulator->rdev->mutex);
1584
1585         return ret;
1586 }
1587 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1588
1589 /**
1590  * regulator_set_current_limit - set regulator output current limit
1591  * @regulator: regulator source
1592  * @min_uA: Minimuum supported current in uA
1593  * @max_uA: Maximum supported current in uA
1594  *
1595  * Sets current sink to the desired output current. This can be set during
1596  * any regulator state. IOW, regulator can be disabled or enabled.
1597  *
1598  * If the regulator is enabled then the current will change to the new value
1599  * immediately otherwise if the regulator is disabled the regulator will
1600  * output at the new current when enabled.
1601  *
1602  * NOTE: Regulator system constraints must be set for this regulator before
1603  * calling this function otherwise this call will fail.
1604  */
1605 int regulator_set_current_limit(struct regulator *regulator,
1606                                int min_uA, int max_uA)
1607 {
1608         struct regulator_dev *rdev = regulator->rdev;
1609         int ret;
1610
1611         mutex_lock(&rdev->mutex);
1612
1613         /* sanity check */
1614         if (!rdev->desc->ops->set_current_limit) {
1615                 ret = -EINVAL;
1616                 goto out;
1617         }
1618
1619         /* constraints check */
1620         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1621         if (ret < 0)
1622                 goto out;
1623
1624         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1625 out:
1626         mutex_unlock(&rdev->mutex);
1627         return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1630
1631 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1632 {
1633         int ret;
1634
1635         mutex_lock(&rdev->mutex);
1636
1637         /* sanity check */
1638         if (!rdev->desc->ops->get_current_limit) {
1639                 ret = -EINVAL;
1640                 goto out;
1641         }
1642
1643         ret = rdev->desc->ops->get_current_limit(rdev);
1644 out:
1645         mutex_unlock(&rdev->mutex);
1646         return ret;
1647 }
1648
1649 /**
1650  * regulator_get_current_limit - get regulator output current
1651  * @regulator: regulator source
1652  *
1653  * This returns the current supplied by the specified current sink in uA.
1654  *
1655  * NOTE: If the regulator is disabled it will return the current value. This
1656  * function should not be used to determine regulator state.
1657  */
1658 int regulator_get_current_limit(struct regulator *regulator)
1659 {
1660         return _regulator_get_current_limit(regulator->rdev);
1661 }
1662 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1663
1664 /**
1665  * regulator_set_mode - set regulator operating mode
1666  * @regulator: regulator source
1667  * @mode: operating mode - one of the REGULATOR_MODE constants
1668  *
1669  * Set regulator operating mode to increase regulator efficiency or improve
1670  * regulation performance.
1671  *
1672  * NOTE: Regulator system constraints must be set for this regulator before
1673  * calling this function otherwise this call will fail.
1674  */
1675 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1676 {
1677         struct regulator_dev *rdev = regulator->rdev;
1678         int ret;
1679
1680         mutex_lock(&rdev->mutex);
1681
1682         /* sanity check */
1683         if (!rdev->desc->ops->set_mode) {
1684                 ret = -EINVAL;
1685                 goto out;
1686         }
1687
1688         /* constraints check */
1689         ret = regulator_check_mode(rdev, mode);
1690         if (ret < 0)
1691                 goto out;
1692
1693         ret = rdev->desc->ops->set_mode(rdev, mode);
1694 out:
1695         mutex_unlock(&rdev->mutex);
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_set_mode);
1699
1700 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1701 {
1702         int ret;
1703
1704         mutex_lock(&rdev->mutex);
1705
1706         /* sanity check */
1707         if (!rdev->desc->ops->get_mode) {
1708                 ret = -EINVAL;
1709                 goto out;
1710         }
1711
1712         ret = rdev->desc->ops->get_mode(rdev);
1713 out:
1714         mutex_unlock(&rdev->mutex);
1715         return ret;
1716 }
1717
1718 /**
1719  * regulator_get_mode - get regulator operating mode
1720  * @regulator: regulator source
1721  *
1722  * Get the current regulator operating mode.
1723  */
1724 unsigned int regulator_get_mode(struct regulator *regulator)
1725 {
1726         return _regulator_get_mode(regulator->rdev);
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_get_mode);
1729
1730 /**
1731  * regulator_set_optimum_mode - set regulator optimum operating mode
1732  * @regulator: regulator source
1733  * @uA_load: load current
1734  *
1735  * Notifies the regulator core of a new device load. This is then used by
1736  * DRMS (if enabled by constraints) to set the most efficient regulator
1737  * operating mode for the new regulator loading.
1738  *
1739  * Consumer devices notify their supply regulator of the maximum power
1740  * they will require (can be taken from device datasheet in the power
1741  * consumption tables) when they change operational status and hence power
1742  * state. Examples of operational state changes that can affect power
1743  * consumption are :-
1744  *
1745  *    o Device is opened / closed.
1746  *    o Device I/O is about to begin or has just finished.
1747  *    o Device is idling in between work.
1748  *
1749  * This information is also exported via sysfs to userspace.
1750  *
1751  * DRMS will sum the total requested load on the regulator and change
1752  * to the most efficient operating mode if platform constraints allow.
1753  *
1754  * Returns the new regulator mode or error.
1755  */
1756 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1757 {
1758         struct regulator_dev *rdev = regulator->rdev;
1759         struct regulator *consumer;
1760         int ret, output_uV, input_uV, total_uA_load = 0;
1761         unsigned int mode;
1762
1763         mutex_lock(&rdev->mutex);
1764
1765         regulator->uA_load = uA_load;
1766         ret = regulator_check_drms(rdev);
1767         if (ret < 0)
1768                 goto out;
1769         ret = -EINVAL;
1770
1771         /* sanity check */
1772         if (!rdev->desc->ops->get_optimum_mode)
1773                 goto out;
1774
1775         /* get output voltage */
1776         output_uV = rdev->desc->ops->get_voltage(rdev);
1777         if (output_uV <= 0) {
1778                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1779                         __func__, rdev->desc->name);
1780                 goto out;
1781         }
1782
1783         /* get input voltage */
1784         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1785                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1786         else
1787                 input_uV = rdev->constraints->input_uV;
1788         if (input_uV <= 0) {
1789                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1790                         __func__, rdev->desc->name);
1791                 goto out;
1792         }
1793
1794         /* calc total requested load for this regulator */
1795         list_for_each_entry(consumer, &rdev->consumer_list, list)
1796             total_uA_load += consumer->uA_load;
1797
1798         mode = rdev->desc->ops->get_optimum_mode(rdev,
1799                                                  input_uV, output_uV,
1800                                                  total_uA_load);
1801         ret = regulator_check_mode(rdev, mode);
1802         if (ret < 0) {
1803                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1804                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1805                         total_uA_load, input_uV, output_uV);
1806                 goto out;
1807         }
1808
1809         ret = rdev->desc->ops->set_mode(rdev, mode);
1810         if (ret < 0) {
1811                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1812                         __func__, mode, rdev->desc->name);
1813                 goto out;
1814         }
1815         ret = mode;
1816 out:
1817         mutex_unlock(&rdev->mutex);
1818         return ret;
1819 }
1820 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1821
1822 /**
1823  * regulator_register_notifier - register regulator event notifier
1824  * @regulator: regulator source
1825  * @nb: notifier block
1826  *
1827  * Register notifier block to receive regulator events.
1828  */
1829 int regulator_register_notifier(struct regulator *regulator,
1830                               struct notifier_block *nb)
1831 {
1832         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1833                                                 nb);
1834 }
1835 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1836
1837 /**
1838  * regulator_unregister_notifier - unregister regulator event notifier
1839  * @regulator: regulator source
1840  * @nb: notifier block
1841  *
1842  * Unregister regulator event notifier block.
1843  */
1844 int regulator_unregister_notifier(struct regulator *regulator,
1845                                 struct notifier_block *nb)
1846 {
1847         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1848                                                   nb);
1849 }
1850 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1851
1852 /* notify regulator consumers and downstream regulator consumers.
1853  * Note mutex must be held by caller.
1854  */
1855 static void _notifier_call_chain(struct regulator_dev *rdev,
1856                                   unsigned long event, void *data)
1857 {
1858         struct regulator_dev *_rdev;
1859
1860         /* call rdev chain first */
1861         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1862
1863         /* now notify regulator we supply */
1864         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1865           mutex_lock(&_rdev->mutex);
1866           _notifier_call_chain(_rdev, event, data);
1867           mutex_unlock(&_rdev->mutex);
1868         }
1869 }
1870
1871 /**
1872  * regulator_bulk_get - get multiple regulator consumers
1873  *
1874  * @dev:           Device to supply
1875  * @num_consumers: Number of consumers to register
1876  * @consumers:     Configuration of consumers; clients are stored here.
1877  *
1878  * @return 0 on success, an errno on failure.
1879  *
1880  * This helper function allows drivers to get several regulator
1881  * consumers in one operation.  If any of the regulators cannot be
1882  * acquired then any regulators that were allocated will be freed
1883  * before returning to the caller.
1884  */
1885 int regulator_bulk_get(struct device *dev, int num_consumers,
1886                        struct regulator_bulk_data *consumers)
1887 {
1888         int i;
1889         int ret;
1890
1891         for (i = 0; i < num_consumers; i++)
1892                 consumers[i].consumer = NULL;
1893
1894         for (i = 0; i < num_consumers; i++) {
1895                 consumers[i].consumer = regulator_get(dev,
1896                                                       consumers[i].supply);
1897                 if (IS_ERR(consumers[i].consumer)) {
1898                         ret = PTR_ERR(consumers[i].consumer);
1899                         dev_err(dev, "Failed to get supply '%s': %d\n",
1900                                 consumers[i].supply, ret);
1901                         consumers[i].consumer = NULL;
1902                         goto err;
1903                 }
1904         }
1905
1906         return 0;
1907
1908 err:
1909         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1910                 regulator_put(consumers[i].consumer);
1911
1912         return ret;
1913 }
1914 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1915
1916 /**
1917  * regulator_bulk_enable - enable multiple regulator consumers
1918  *
1919  * @num_consumers: Number of consumers
1920  * @consumers:     Consumer data; clients are stored here.
1921  * @return         0 on success, an errno on failure
1922  *
1923  * This convenience API allows consumers to enable multiple regulator
1924  * clients in a single API call.  If any consumers cannot be enabled
1925  * then any others that were enabled will be disabled again prior to
1926  * return.
1927  */
1928 int regulator_bulk_enable(int num_consumers,
1929                           struct regulator_bulk_data *consumers)
1930 {
1931         int i;
1932         int ret;
1933
1934         for (i = 0; i < num_consumers; i++) {
1935                 ret = regulator_enable(consumers[i].consumer);
1936                 if (ret != 0)
1937                         goto err;
1938         }
1939
1940         return 0;
1941
1942 err:
1943         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1944         for (i = 0; i < num_consumers; i++)
1945                 regulator_disable(consumers[i].consumer);
1946
1947         return ret;
1948 }
1949 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1950
1951 /**
1952  * regulator_bulk_disable - disable multiple regulator consumers
1953  *
1954  * @num_consumers: Number of consumers
1955  * @consumers:     Consumer data; clients are stored here.
1956  * @return         0 on success, an errno on failure
1957  *
1958  * This convenience API allows consumers to disable multiple regulator
1959  * clients in a single API call.  If any consumers cannot be enabled
1960  * then any others that were disabled will be disabled again prior to
1961  * return.
1962  */
1963 int regulator_bulk_disable(int num_consumers,
1964                            struct regulator_bulk_data *consumers)
1965 {
1966         int i;
1967         int ret;
1968
1969         for (i = 0; i < num_consumers; i++) {
1970                 ret = regulator_disable(consumers[i].consumer);
1971                 if (ret != 0)
1972                         goto err;
1973         }
1974
1975         return 0;
1976
1977 err:
1978         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
1979                ret);
1980         for (i = 0; i < num_consumers; i++)
1981                 regulator_enable(consumers[i].consumer);
1982
1983         return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1986
1987 /**
1988  * regulator_bulk_free - free multiple regulator consumers
1989  *
1990  * @num_consumers: Number of consumers
1991  * @consumers:     Consumer data; clients are stored here.
1992  *
1993  * This convenience API allows consumers to free multiple regulator
1994  * clients in a single API call.
1995  */
1996 void regulator_bulk_free(int num_consumers,
1997                          struct regulator_bulk_data *consumers)
1998 {
1999         int i;
2000
2001         for (i = 0; i < num_consumers; i++) {
2002                 regulator_put(consumers[i].consumer);
2003                 consumers[i].consumer = NULL;
2004         }
2005 }
2006 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2007
2008 /**
2009  * regulator_notifier_call_chain - call regulator event notifier
2010  * @rdev: regulator source
2011  * @event: notifier block
2012  * @data: callback-specific data.
2013  *
2014  * Called by regulator drivers to notify clients a regulator event has
2015  * occurred. We also notify regulator clients downstream.
2016  * Note lock must be held by caller.
2017  */
2018 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2019                                   unsigned long event, void *data)
2020 {
2021         _notifier_call_chain(rdev, event, data);
2022         return NOTIFY_DONE;
2023
2024 }
2025 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2026
2027 /**
2028  * regulator_mode_to_status - convert a regulator mode into a status
2029  *
2030  * @mode: Mode to convert
2031  *
2032  * Convert a regulator mode into a status.
2033  */
2034 int regulator_mode_to_status(unsigned int mode)
2035 {
2036         switch (mode) {
2037         case REGULATOR_MODE_FAST:
2038                 return REGULATOR_STATUS_FAST;
2039         case REGULATOR_MODE_NORMAL:
2040                 return REGULATOR_STATUS_NORMAL;
2041         case REGULATOR_MODE_IDLE:
2042                 return REGULATOR_STATUS_IDLE;
2043         case REGULATOR_STATUS_STANDBY:
2044                 return REGULATOR_STATUS_STANDBY;
2045         default:
2046                 return 0;
2047         }
2048 }
2049 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2050
2051 /*
2052  * To avoid cluttering sysfs (and memory) with useless state, only
2053  * create attributes that can be meaningfully displayed.
2054  */
2055 static int add_regulator_attributes(struct regulator_dev *rdev)
2056 {
2057         struct device           *dev = &rdev->dev;
2058         struct regulator_ops    *ops = rdev->desc->ops;
2059         int                     status = 0;
2060
2061         /* some attributes need specific methods to be displayed */
2062         if (ops->get_voltage) {
2063                 status = device_create_file(dev, &dev_attr_microvolts);
2064                 if (status < 0)
2065                         return status;
2066         }
2067         if (ops->get_current_limit) {
2068                 status = device_create_file(dev, &dev_attr_microamps);
2069                 if (status < 0)
2070                         return status;
2071         }
2072         if (ops->get_mode) {
2073                 status = device_create_file(dev, &dev_attr_opmode);
2074                 if (status < 0)
2075                         return status;
2076         }
2077         if (ops->is_enabled) {
2078                 status = device_create_file(dev, &dev_attr_state);
2079                 if (status < 0)
2080                         return status;
2081         }
2082         if (ops->get_status) {
2083                 status = device_create_file(dev, &dev_attr_status);
2084                 if (status < 0)
2085                         return status;
2086         }
2087
2088         /* some attributes are type-specific */
2089         if (rdev->desc->type == REGULATOR_CURRENT) {
2090                 status = device_create_file(dev, &dev_attr_requested_microamps);
2091                 if (status < 0)
2092                         return status;
2093         }
2094
2095         /* all the other attributes exist to support constraints;
2096          * don't show them if there are no constraints, or if the
2097          * relevant supporting methods are missing.
2098          */
2099         if (!rdev->constraints)
2100                 return status;
2101
2102         /* constraints need specific supporting methods */
2103         if (ops->set_voltage) {
2104                 status = device_create_file(dev, &dev_attr_min_microvolts);
2105                 if (status < 0)
2106                         return status;
2107                 status = device_create_file(dev, &dev_attr_max_microvolts);
2108                 if (status < 0)
2109                         return status;
2110         }
2111         if (ops->set_current_limit) {
2112                 status = device_create_file(dev, &dev_attr_min_microamps);
2113                 if (status < 0)
2114                         return status;
2115                 status = device_create_file(dev, &dev_attr_max_microamps);
2116                 if (status < 0)
2117                         return status;
2118         }
2119
2120         /* suspend mode constraints need multiple supporting methods */
2121         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2122                 return status;
2123
2124         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2125         if (status < 0)
2126                 return status;
2127         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2128         if (status < 0)
2129                 return status;
2130         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2131         if (status < 0)
2132                 return status;
2133
2134         if (ops->set_suspend_voltage) {
2135                 status = device_create_file(dev,
2136                                 &dev_attr_suspend_standby_microvolts);
2137                 if (status < 0)
2138                         return status;
2139                 status = device_create_file(dev,
2140                                 &dev_attr_suspend_mem_microvolts);
2141                 if (status < 0)
2142                         return status;
2143                 status = device_create_file(dev,
2144                                 &dev_attr_suspend_disk_microvolts);
2145                 if (status < 0)
2146                         return status;
2147         }
2148
2149         if (ops->set_suspend_mode) {
2150                 status = device_create_file(dev,
2151                                 &dev_attr_suspend_standby_mode);
2152                 if (status < 0)
2153                         return status;
2154                 status = device_create_file(dev,
2155                                 &dev_attr_suspend_mem_mode);
2156                 if (status < 0)
2157                         return status;
2158                 status = device_create_file(dev,
2159                                 &dev_attr_suspend_disk_mode);
2160                 if (status < 0)
2161                         return status;
2162         }
2163
2164         return status;
2165 }
2166
2167 /**
2168  * regulator_register - register regulator
2169  * @regulator_desc: regulator to register
2170  * @dev: struct device for the regulator
2171  * @init_data: platform provided init data, passed through by driver
2172  * @driver_data: private regulator data
2173  *
2174  * Called by regulator drivers to register a regulator.
2175  * Returns 0 on success.
2176  */
2177 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2178         struct device *dev, struct regulator_init_data *init_data,
2179         void *driver_data)
2180 {
2181         static atomic_t regulator_no = ATOMIC_INIT(0);
2182         struct regulator_dev *rdev;
2183         int ret, i;
2184
2185         if (regulator_desc == NULL)
2186                 return ERR_PTR(-EINVAL);
2187
2188         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2189                 return ERR_PTR(-EINVAL);
2190
2191         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2192             regulator_desc->type != REGULATOR_CURRENT)
2193                 return ERR_PTR(-EINVAL);
2194
2195         if (!init_data)
2196                 return ERR_PTR(-EINVAL);
2197
2198         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2199         if (rdev == NULL)
2200                 return ERR_PTR(-ENOMEM);
2201
2202         mutex_lock(&regulator_list_mutex);
2203
2204         mutex_init(&rdev->mutex);
2205         rdev->reg_data = driver_data;
2206         rdev->owner = regulator_desc->owner;
2207         rdev->desc = regulator_desc;
2208         INIT_LIST_HEAD(&rdev->consumer_list);
2209         INIT_LIST_HEAD(&rdev->supply_list);
2210         INIT_LIST_HEAD(&rdev->list);
2211         INIT_LIST_HEAD(&rdev->slist);
2212         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2213
2214         /* preform any regulator specific init */
2215         if (init_data->regulator_init) {
2216                 ret = init_data->regulator_init(rdev->reg_data);
2217                 if (ret < 0)
2218                         goto clean;
2219         }
2220
2221         /* register with sysfs */
2222         rdev->dev.class = &regulator_class;
2223         rdev->dev.parent = dev;
2224         dev_set_name(&rdev->dev, "regulator.%d",
2225                      atomic_inc_return(&regulator_no) - 1);
2226         ret = device_register(&rdev->dev);
2227         if (ret != 0)
2228                 goto clean;
2229
2230         dev_set_drvdata(&rdev->dev, rdev);
2231
2232         /* set regulator constraints */
2233         ret = set_machine_constraints(rdev, &init_data->constraints);
2234         if (ret < 0)
2235                 goto scrub;
2236
2237         /* add attributes supported by this regulator */
2238         ret = add_regulator_attributes(rdev);
2239         if (ret < 0)
2240                 goto scrub;
2241
2242         /* set supply regulator if it exists */
2243         if (init_data->supply_regulator_dev) {
2244                 ret = set_supply(rdev,
2245                         dev_get_drvdata(init_data->supply_regulator_dev));
2246                 if (ret < 0)
2247                         goto scrub;
2248         }
2249
2250         /* add consumers devices */
2251         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2252                 ret = set_consumer_device_supply(rdev,
2253                         init_data->consumer_supplies[i].dev,
2254                         init_data->consumer_supplies[i].dev_name,
2255                         init_data->consumer_supplies[i].supply);
2256                 if (ret < 0) {
2257                         for (--i; i >= 0; i--)
2258                                 unset_consumer_device_supply(rdev,
2259                                     init_data->consumer_supplies[i].dev_name,
2260                                     init_data->consumer_supplies[i].dev);
2261                         goto scrub;
2262                 }
2263         }
2264
2265         list_add(&rdev->list, &regulator_list);
2266 out:
2267         mutex_unlock(&regulator_list_mutex);
2268         return rdev;
2269
2270 scrub:
2271         device_unregister(&rdev->dev);
2272         /* device core frees rdev */
2273         rdev = ERR_PTR(ret);
2274         goto out;
2275
2276 clean:
2277         kfree(rdev);
2278         rdev = ERR_PTR(ret);
2279         goto out;
2280 }
2281 EXPORT_SYMBOL_GPL(regulator_register);
2282
2283 /**
2284  * regulator_unregister - unregister regulator
2285  * @rdev: regulator to unregister
2286  *
2287  * Called by regulator drivers to unregister a regulator.
2288  */
2289 void regulator_unregister(struct regulator_dev *rdev)
2290 {
2291         if (rdev == NULL)
2292                 return;
2293
2294         mutex_lock(&regulator_list_mutex);
2295         WARN_ON(rdev->open_count);
2296         unset_regulator_supplies(rdev);
2297         list_del(&rdev->list);
2298         if (rdev->supply)
2299                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2300         device_unregister(&rdev->dev);
2301         mutex_unlock(&regulator_list_mutex);
2302 }
2303 EXPORT_SYMBOL_GPL(regulator_unregister);
2304
2305 /**
2306  * regulator_suspend_prepare - prepare regulators for system wide suspend
2307  * @state: system suspend state
2308  *
2309  * Configure each regulator with it's suspend operating parameters for state.
2310  * This will usually be called by machine suspend code prior to supending.
2311  */
2312 int regulator_suspend_prepare(suspend_state_t state)
2313 {
2314         struct regulator_dev *rdev;
2315         int ret = 0;
2316
2317         /* ON is handled by regulator active state */
2318         if (state == PM_SUSPEND_ON)
2319                 return -EINVAL;
2320
2321         mutex_lock(&regulator_list_mutex);
2322         list_for_each_entry(rdev, &regulator_list, list) {
2323
2324                 mutex_lock(&rdev->mutex);
2325                 ret = suspend_prepare(rdev, state);
2326                 mutex_unlock(&rdev->mutex);
2327
2328                 if (ret < 0) {
2329                         printk(KERN_ERR "%s: failed to prepare %s\n",
2330                                 __func__, rdev->desc->name);
2331                         goto out;
2332                 }
2333         }
2334 out:
2335         mutex_unlock(&regulator_list_mutex);
2336         return ret;
2337 }
2338 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2339
2340 /**
2341  * regulator_has_full_constraints - the system has fully specified constraints
2342  *
2343  * Calling this function will cause the regulator API to disable all
2344  * regulators which have a zero use count and don't have an always_on
2345  * constraint in a late_initcall.
2346  *
2347  * The intention is that this will become the default behaviour in a
2348  * future kernel release so users are encouraged to use this facility
2349  * now.
2350  */
2351 void regulator_has_full_constraints(void)
2352 {
2353         has_full_constraints = 1;
2354 }
2355 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2356
2357 /**
2358  * rdev_get_drvdata - get rdev regulator driver data
2359  * @rdev: regulator
2360  *
2361  * Get rdev regulator driver private data. This call can be used in the
2362  * regulator driver context.
2363  */
2364 void *rdev_get_drvdata(struct regulator_dev *rdev)
2365 {
2366         return rdev->reg_data;
2367 }
2368 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2369
2370 /**
2371  * regulator_get_drvdata - get regulator driver data
2372  * @regulator: regulator
2373  *
2374  * Get regulator driver private data. This call can be used in the consumer
2375  * driver context when non API regulator specific functions need to be called.
2376  */
2377 void *regulator_get_drvdata(struct regulator *regulator)
2378 {
2379         return regulator->rdev->reg_data;
2380 }
2381 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2382
2383 /**
2384  * regulator_set_drvdata - set regulator driver data
2385  * @regulator: regulator
2386  * @data: data
2387  */
2388 void regulator_set_drvdata(struct regulator *regulator, void *data)
2389 {
2390         regulator->rdev->reg_data = data;
2391 }
2392 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2393
2394 /**
2395  * regulator_get_id - get regulator ID
2396  * @rdev: regulator
2397  */
2398 int rdev_get_id(struct regulator_dev *rdev)
2399 {
2400         return rdev->desc->id;
2401 }
2402 EXPORT_SYMBOL_GPL(rdev_get_id);
2403
2404 struct device *rdev_get_dev(struct regulator_dev *rdev)
2405 {
2406         return &rdev->dev;
2407 }
2408 EXPORT_SYMBOL_GPL(rdev_get_dev);
2409
2410 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2411 {
2412         return reg_init_data->driver_data;
2413 }
2414 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2415
2416 static int __init regulator_init(void)
2417 {
2418         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2419         return class_register(&regulator_class);
2420 }
2421
2422 /* init early to allow our consumers to complete system booting */
2423 core_initcall(regulator_init);
2424
2425 static int __init regulator_init_complete(void)
2426 {
2427         struct regulator_dev *rdev;
2428         struct regulator_ops *ops;
2429         struct regulation_constraints *c;
2430         int enabled, ret;
2431         const char *name;
2432
2433         mutex_lock(&regulator_list_mutex);
2434
2435         /* If we have a full configuration then disable any regulators
2436          * which are not in use or always_on.  This will become the
2437          * default behaviour in the future.
2438          */
2439         list_for_each_entry(rdev, &regulator_list, list) {
2440                 ops = rdev->desc->ops;
2441                 c = rdev->constraints;
2442
2443                 if (c && c->name)
2444                         name = c->name;
2445                 else if (rdev->desc->name)
2446                         name = rdev->desc->name;
2447                 else
2448                         name = "regulator";
2449
2450                 if (!ops->disable || (c && c->always_on))
2451                         continue;
2452
2453                 mutex_lock(&rdev->mutex);
2454
2455                 if (rdev->use_count)
2456                         goto unlock;
2457
2458                 /* If we can't read the status assume it's on. */
2459                 if (ops->is_enabled)
2460                         enabled = ops->is_enabled(rdev);
2461                 else
2462                         enabled = 1;
2463
2464                 if (!enabled)
2465                         goto unlock;
2466
2467                 if (has_full_constraints) {
2468                         /* We log since this may kill the system if it
2469                          * goes wrong. */
2470                         printk(KERN_INFO "%s: disabling %s\n",
2471                                __func__, name);
2472                         ret = ops->disable(rdev);
2473                         if (ret != 0) {
2474                                 printk(KERN_ERR
2475                                        "%s: couldn't disable %s: %d\n",
2476                                        __func__, name, ret);
2477                         }
2478                 } else {
2479                         /* The intention is that in future we will
2480                          * assume that full constraints are provided
2481                          * so warn even if we aren't going to do
2482                          * anything here.
2483                          */
2484                         printk(KERN_WARNING
2485                                "%s: incomplete constraints, leaving %s on\n",
2486                                __func__, name);
2487                 }
2488
2489 unlock:
2490                 mutex_unlock(&rdev->mutex);
2491         }
2492
2493         mutex_unlock(&regulator_list_mutex);
2494
2495         return 0;
2496 }
2497 late_initcall(regulator_init_complete);