regulator: Additional diagnostics for machine constraints
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /**
33  * struct regulator_dev
34  *
35  * Voltage / Current regulator class device. One for each regulator.
36  */
37 struct regulator_dev {
38         struct regulator_desc *desc;
39         int use_count;
40
41         /* lists we belong to */
42         struct list_head list; /* list of all regulators */
43         struct list_head slist; /* list of supplied regulators */
44
45         /* lists we own */
46         struct list_head consumer_list; /* consumers we supply */
47         struct list_head supply_list; /* regulators we supply */
48
49         struct blocking_notifier_head notifier;
50         struct mutex mutex; /* consumer lock */
51         struct module *owner;
52         struct device dev;
53         struct regulation_constraints *constraints;
54         struct regulator_dev *supply;   /* for tree */
55
56         void *reg_data;         /* regulator_dev data */
57 };
58
59 /**
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         struct device *dev;
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         int uA_load;
80         int min_uV;
81         int max_uV;
82         int enabled; /* client has called enabled */
83         char *supply_name;
84         struct device_attribute dev_attr;
85         struct regulator_dev *rdev;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94                                   unsigned long event, void *data);
95
96 /* gets the regulator for a given consumer device */
97 static struct regulator *get_device_regulator(struct device *dev)
98 {
99         struct regulator *regulator = NULL;
100         struct regulator_dev *rdev;
101
102         mutex_lock(&regulator_list_mutex);
103         list_for_each_entry(rdev, &regulator_list, list) {
104                 mutex_lock(&rdev->mutex);
105                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
106                         if (regulator->dev == dev) {
107                                 mutex_unlock(&rdev->mutex);
108                                 mutex_unlock(&regulator_list_mutex);
109                                 return regulator;
110                         }
111                 }
112                 mutex_unlock(&rdev->mutex);
113         }
114         mutex_unlock(&regulator_list_mutex);
115         return NULL;
116 }
117
118 /* Platform voltage constraint check */
119 static int regulator_check_voltage(struct regulator_dev *rdev,
120                                    int *min_uV, int *max_uV)
121 {
122         BUG_ON(*min_uV > *max_uV);
123
124         if (!rdev->constraints) {
125                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126                        rdev->desc->name);
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 printk(KERN_ERR "%s: operation not allowed for %s\n",
131                        __func__, rdev->desc->name);
132                 return -EPERM;
133         }
134
135         if (*max_uV > rdev->constraints->max_uV)
136                 *max_uV = rdev->constraints->max_uV;
137         if (*min_uV < rdev->constraints->min_uV)
138                 *min_uV = rdev->constraints->min_uV;
139
140         if (*min_uV > *max_uV)
141                 return -EINVAL;
142
143         return 0;
144 }
145
146 /* current constraint check */
147 static int regulator_check_current_limit(struct regulator_dev *rdev,
148                                         int *min_uA, int *max_uA)
149 {
150         BUG_ON(*min_uA > *max_uA);
151
152         if (!rdev->constraints) {
153                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154                        rdev->desc->name);
155                 return -ENODEV;
156         }
157         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158                 printk(KERN_ERR "%s: operation not allowed for %s\n",
159                        __func__, rdev->desc->name);
160                 return -EPERM;
161         }
162
163         if (*max_uA > rdev->constraints->max_uA)
164                 *max_uA = rdev->constraints->max_uA;
165         if (*min_uA < rdev->constraints->min_uA)
166                 *min_uA = rdev->constraints->min_uA;
167
168         if (*min_uA > *max_uA)
169                 return -EINVAL;
170
171         return 0;
172 }
173
174 /* operating mode constraint check */
175 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176 {
177         if (!rdev->constraints) {
178                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
179                        rdev->desc->name);
180                 return -ENODEV;
181         }
182         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
183                 printk(KERN_ERR "%s: operation not allowed for %s\n",
184                        __func__, rdev->desc->name);
185                 return -EPERM;
186         }
187         if (!(rdev->constraints->valid_modes_mask & mode)) {
188                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
189                        __func__, mode, rdev->desc->name);
190                 return -EINVAL;
191         }
192         return 0;
193 }
194
195 /* dynamic regulator mode switching constraint check */
196 static int regulator_check_drms(struct regulator_dev *rdev)
197 {
198         if (!rdev->constraints) {
199                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
200                        rdev->desc->name);
201                 return -ENODEV;
202         }
203         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
204                 printk(KERN_ERR "%s: operation not allowed for %s\n",
205                        __func__, rdev->desc->name);
206                 return -EPERM;
207         }
208         return 0;
209 }
210
211 static ssize_t device_requested_uA_show(struct device *dev,
212                              struct device_attribute *attr, char *buf)
213 {
214         struct regulator *regulator;
215
216         regulator = get_device_regulator(dev);
217         if (regulator == NULL)
218                 return 0;
219
220         return sprintf(buf, "%d\n", regulator->uA_load);
221 }
222
223 static ssize_t regulator_uV_show(struct device *dev,
224                                 struct device_attribute *attr, char *buf)
225 {
226         struct regulator_dev *rdev = dev_get_drvdata(dev);
227         ssize_t ret;
228
229         mutex_lock(&rdev->mutex);
230         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
231         mutex_unlock(&rdev->mutex);
232
233         return ret;
234 }
235
236 static ssize_t regulator_uA_show(struct device *dev,
237                                 struct device_attribute *attr, char *buf)
238 {
239         struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243
244 static ssize_t regulator_opmode_show(struct device *dev,
245                                     struct device_attribute *attr, char *buf)
246 {
247         struct regulator_dev *rdev = dev_get_drvdata(dev);
248         int mode = _regulator_get_mode(rdev);
249
250         switch (mode) {
251         case REGULATOR_MODE_FAST:
252                 return sprintf(buf, "fast\n");
253         case REGULATOR_MODE_NORMAL:
254                 return sprintf(buf, "normal\n");
255         case REGULATOR_MODE_IDLE:
256                 return sprintf(buf, "idle\n");
257         case REGULATOR_MODE_STANDBY:
258                 return sprintf(buf, "standby\n");
259         }
260         return sprintf(buf, "unknown\n");
261 }
262
263 static ssize_t regulator_state_show(struct device *dev,
264                                    struct device_attribute *attr, char *buf)
265 {
266         struct regulator_dev *rdev = dev_get_drvdata(dev);
267         int state = _regulator_is_enabled(rdev);
268
269         if (state > 0)
270                 return sprintf(buf, "enabled\n");
271         else if (state == 0)
272                 return sprintf(buf, "disabled\n");
273         else
274                 return sprintf(buf, "unknown\n");
275 }
276
277 static ssize_t regulator_min_uA_show(struct device *dev,
278                                     struct device_attribute *attr, char *buf)
279 {
280         struct regulator_dev *rdev = dev_get_drvdata(dev);
281
282         if (!rdev->constraints)
283                 return sprintf(buf, "constraint not defined\n");
284
285         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
286 }
287
288 static ssize_t regulator_max_uA_show(struct device *dev,
289                                     struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292
293         if (!rdev->constraints)
294                 return sprintf(buf, "constraint not defined\n");
295
296         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
297 }
298
299 static ssize_t regulator_min_uV_show(struct device *dev,
300                                     struct device_attribute *attr, char *buf)
301 {
302         struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304         if (!rdev->constraints)
305                 return sprintf(buf, "constraint not defined\n");
306
307         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
308 }
309
310 static ssize_t regulator_max_uV_show(struct device *dev,
311                                     struct device_attribute *attr, char *buf)
312 {
313         struct regulator_dev *rdev = dev_get_drvdata(dev);
314
315         if (!rdev->constraints)
316                 return sprintf(buf, "constraint not defined\n");
317
318         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
319 }
320
321 static ssize_t regulator_total_uA_show(struct device *dev,
322                                       struct device_attribute *attr, char *buf)
323 {
324         struct regulator_dev *rdev = dev_get_drvdata(dev);
325         struct regulator *regulator;
326         int uA = 0;
327
328         mutex_lock(&rdev->mutex);
329         list_for_each_entry(regulator, &rdev->consumer_list, list)
330             uA += regulator->uA_load;
331         mutex_unlock(&rdev->mutex);
332         return sprintf(buf, "%d\n", uA);
333 }
334
335 static ssize_t regulator_num_users_show(struct device *dev,
336                                       struct device_attribute *attr, char *buf)
337 {
338         struct regulator_dev *rdev = dev_get_drvdata(dev);
339         return sprintf(buf, "%d\n", rdev->use_count);
340 }
341
342 static ssize_t regulator_type_show(struct device *dev,
343                                   struct device_attribute *attr, char *buf)
344 {
345         struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347         switch (rdev->desc->type) {
348         case REGULATOR_VOLTAGE:
349                 return sprintf(buf, "voltage\n");
350         case REGULATOR_CURRENT:
351                 return sprintf(buf, "current\n");
352         }
353         return sprintf(buf, "unknown\n");
354 }
355
356 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
357                                 struct device_attribute *attr, char *buf)
358 {
359         struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361         if (!rdev->constraints)
362                 return sprintf(buf, "not defined\n");
363         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
364 }
365
366 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
367                                 struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "not defined\n");
373         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
374 }
375
376 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
377                                 struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381         if (!rdev->constraints)
382                 return sprintf(buf, "not defined\n");
383         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
384 }
385
386 static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
387         unsigned int mode, char *buf)
388 {
389         switch (mode) {
390         case REGULATOR_MODE_FAST:
391                 return sprintf(buf, "fast\n");
392         case REGULATOR_MODE_NORMAL:
393                 return sprintf(buf, "normal\n");
394         case REGULATOR_MODE_IDLE:
395                 return sprintf(buf, "idle\n");
396         case REGULATOR_MODE_STANDBY:
397                 return sprintf(buf, "standby\n");
398         }
399         return sprintf(buf, "unknown\n");
400 }
401
402 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
403                                 struct device_attribute *attr, char *buf)
404 {
405         struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407         if (!rdev->constraints)
408                 return sprintf(buf, "not defined\n");
409         return suspend_opmode_show(rdev,
410                 rdev->constraints->state_mem.mode, buf);
411 }
412
413 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         if (!rdev->constraints)
419                 return sprintf(buf, "not defined\n");
420         return suspend_opmode_show(rdev,
421                 rdev->constraints->state_disk.mode, buf);
422 }
423
424 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
425                                 struct device_attribute *attr, char *buf)
426 {
427         struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429         if (!rdev->constraints)
430                 return sprintf(buf, "not defined\n");
431         return suspend_opmode_show(rdev,
432                 rdev->constraints->state_standby.mode, buf);
433 }
434
435 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
436                                    struct device_attribute *attr, char *buf)
437 {
438         struct regulator_dev *rdev = dev_get_drvdata(dev);
439
440         if (!rdev->constraints)
441                 return sprintf(buf, "not defined\n");
442
443         if (rdev->constraints->state_mem.enabled)
444                 return sprintf(buf, "enabled\n");
445         else
446                 return sprintf(buf, "disabled\n");
447 }
448
449 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
450                                    struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         if (!rdev->constraints)
455                 return sprintf(buf, "not defined\n");
456
457         if (rdev->constraints->state_disk.enabled)
458                 return sprintf(buf, "enabled\n");
459         else
460                 return sprintf(buf, "disabled\n");
461 }
462
463 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
464                                    struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467
468         if (!rdev->constraints)
469                 return sprintf(buf, "not defined\n");
470
471         if (rdev->constraints->state_standby.enabled)
472                 return sprintf(buf, "enabled\n");
473         else
474                 return sprintf(buf, "disabled\n");
475 }
476 static struct device_attribute regulator_dev_attrs[] = {
477         __ATTR(microvolts, 0444, regulator_uV_show, NULL),
478         __ATTR(microamps, 0444, regulator_uA_show, NULL),
479         __ATTR(opmode, 0444, regulator_opmode_show, NULL),
480         __ATTR(state, 0444, regulator_state_show, NULL),
481         __ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
482         __ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
483         __ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
484         __ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
485         __ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
486         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
487         __ATTR(type, 0444, regulator_type_show, NULL),
488         __ATTR(suspend_mem_microvolts, 0444,
489                 regulator_suspend_mem_uV_show, NULL),
490         __ATTR(suspend_disk_microvolts, 0444,
491                 regulator_suspend_disk_uV_show, NULL),
492         __ATTR(suspend_standby_microvolts, 0444,
493                 regulator_suspend_standby_uV_show, NULL),
494         __ATTR(suspend_mem_mode, 0444,
495                 regulator_suspend_mem_mode_show, NULL),
496         __ATTR(suspend_disk_mode, 0444,
497                 regulator_suspend_disk_mode_show, NULL),
498         __ATTR(suspend_standby_mode, 0444,
499                 regulator_suspend_standby_mode_show, NULL),
500         __ATTR(suspend_mem_state, 0444,
501                 regulator_suspend_mem_state_show, NULL),
502         __ATTR(suspend_disk_state, 0444,
503                 regulator_suspend_disk_state_show, NULL),
504         __ATTR(suspend_standby_state, 0444,
505                 regulator_suspend_standby_state_show, NULL),
506         __ATTR_NULL,
507 };
508
509 static void regulator_dev_release(struct device *dev)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512         kfree(rdev);
513 }
514
515 static struct class regulator_class = {
516         .name = "regulator",
517         .dev_release = regulator_dev_release,
518         .dev_attrs = regulator_dev_attrs,
519 };
520
521 /* Calculate the new optimum regulator operating mode based on the new total
522  * consumer load. All locks held by caller */
523 static void drms_uA_update(struct regulator_dev *rdev)
524 {
525         struct regulator *sibling;
526         int current_uA = 0, output_uV, input_uV, err;
527         unsigned int mode;
528
529         err = regulator_check_drms(rdev);
530         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
531             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
532         return;
533
534         /* get output voltage */
535         output_uV = rdev->desc->ops->get_voltage(rdev);
536         if (output_uV <= 0)
537                 return;
538
539         /* get input voltage */
540         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
541                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
542         else
543                 input_uV = rdev->constraints->input_uV;
544         if (input_uV <= 0)
545                 return;
546
547         /* calc total requested load */
548         list_for_each_entry(sibling, &rdev->consumer_list, list)
549             current_uA += sibling->uA_load;
550
551         /* now get the optimum mode for our new total regulator load */
552         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
553                                                   output_uV, current_uA);
554
555         /* check the new mode is allowed */
556         err = regulator_check_mode(rdev, mode);
557         if (err == 0)
558                 rdev->desc->ops->set_mode(rdev, mode);
559 }
560
561 static int suspend_set_state(struct regulator_dev *rdev,
562         struct regulator_state *rstate)
563 {
564         int ret = 0;
565
566         /* enable & disable are mandatory for suspend control */
567         if (!rdev->desc->ops->set_suspend_enable ||
568                 !rdev->desc->ops->set_suspend_disable) {
569                 printk(KERN_ERR "%s: no way to set suspend state\n",
570                         __func__);
571                 return -EINVAL;
572         }
573
574         if (rstate->enabled)
575                 ret = rdev->desc->ops->set_suspend_enable(rdev);
576         else
577                 ret = rdev->desc->ops->set_suspend_disable(rdev);
578         if (ret < 0) {
579                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
580                 return ret;
581         }
582
583         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
584                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
585                 if (ret < 0) {
586                         printk(KERN_ERR "%s: failed to set voltage\n",
587                                 __func__);
588                         return ret;
589                 }
590         }
591
592         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
593                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
594                 if (ret < 0) {
595                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
596                         return ret;
597                 }
598         }
599         return ret;
600 }
601
602 /* locks held by caller */
603 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
604 {
605         if (!rdev->constraints)
606                 return -EINVAL;
607
608         switch (state) {
609         case PM_SUSPEND_STANDBY:
610                 return suspend_set_state(rdev,
611                         &rdev->constraints->state_standby);
612         case PM_SUSPEND_MEM:
613                 return suspend_set_state(rdev,
614                         &rdev->constraints->state_mem);
615         case PM_SUSPEND_MAX:
616                 return suspend_set_state(rdev,
617                         &rdev->constraints->state_disk);
618         default:
619                 return -EINVAL;
620         }
621 }
622
623 static void print_constraints(struct regulator_dev *rdev)
624 {
625         struct regulation_constraints *constraints = rdev->constraints;
626         char buf[80];
627         int count;
628
629         if (rdev->desc->type == REGULATOR_VOLTAGE) {
630                 if (constraints->min_uV == constraints->max_uV)
631                         count = sprintf(buf, "%d mV ",
632                                         constraints->min_uV / 1000);
633                 else
634                         count = sprintf(buf, "%d <--> %d mV ",
635                                         constraints->min_uV / 1000,
636                                         constraints->max_uV / 1000);
637         } else {
638                 if (constraints->min_uA == constraints->max_uA)
639                         count = sprintf(buf, "%d mA ",
640                                         constraints->min_uA / 1000);
641                 else
642                         count = sprintf(buf, "%d <--> %d mA ",
643                                         constraints->min_uA / 1000,
644                                         constraints->max_uA / 1000);
645         }
646         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
647                 count += sprintf(buf + count, "fast ");
648         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
649                 count += sprintf(buf + count, "normal ");
650         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
651                 count += sprintf(buf + count, "idle ");
652         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
653                 count += sprintf(buf + count, "standby");
654
655         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
656 }
657
658 /**
659  * set_machine_constraints - sets regulator constraints
660  * @regulator: regulator source
661  *
662  * Allows platform initialisation code to define and constrain
663  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
664  * Constraints *must* be set by platform code in order for some
665  * regulator operations to proceed i.e. set_voltage, set_current_limit,
666  * set_mode.
667  */
668 static int set_machine_constraints(struct regulator_dev *rdev,
669         struct regulation_constraints *constraints)
670 {
671         int ret = 0;
672         const char *name;
673
674         if (constraints->name)
675                 name = constraints->name;
676         else if (rdev->desc->name)
677                 name = rdev->desc->name;
678         else
679                 name = "regulator";
680
681         rdev->constraints = constraints;
682
683         /* do we need to apply the constraint voltage */
684         if (rdev->constraints->apply_uV &&
685                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
686                 rdev->desc->ops->set_voltage) {
687                 ret = rdev->desc->ops->set_voltage(rdev,
688                         rdev->constraints->min_uV, rdev->constraints->max_uV);
689                         if (ret < 0) {
690                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
691                                        __func__,
692                                        rdev->constraints->min_uV, name);
693                                 rdev->constraints = NULL;
694                                 goto out;
695                         }
696         }
697
698         /* are we enabled at boot time by firmware / bootloader */
699         if (rdev->constraints->boot_on)
700                 rdev->use_count = 1;
701
702         /* do we need to setup our suspend state */
703         if (constraints->initial_state) {
704                 ret = suspend_prepare(rdev, constraints->initial_state);
705                 if (ret < 0) {
706                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
707                                __func__, name);
708                         rdev->constraints = NULL;
709                         goto out;
710                 }
711         }
712
713         print_constraints(rdev);
714 out:
715         return ret;
716 }
717
718 /**
719  * set_supply - set regulator supply regulator
720  * @regulator: regulator name
721  * @supply: supply regulator name
722  *
723  * Called by platform initialisation code to set the supply regulator for this
724  * regulator. This ensures that a regulators supply will also be enabled by the
725  * core if it's child is enabled.
726  */
727 static int set_supply(struct regulator_dev *rdev,
728         struct regulator_dev *supply_rdev)
729 {
730         int err;
731
732         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
733                                 "supply");
734         if (err) {
735                 printk(KERN_ERR
736                        "%s: could not add device link %s err %d\n",
737                        __func__, supply_rdev->dev.kobj.name, err);
738                        goto out;
739         }
740         rdev->supply = supply_rdev;
741         list_add(&rdev->slist, &supply_rdev->supply_list);
742 out:
743         return err;
744 }
745
746 /**
747  * set_consumer_device_supply: Bind a regulator to a symbolic supply
748  * @regulator: regulator source
749  * @dev:       device the supply applies to
750  * @supply:    symbolic name for supply
751  *
752  * Allows platform initialisation code to map physical regulator
753  * sources to symbolic names for supplies for use by devices.  Devices
754  * should use these symbolic names to request regulators, avoiding the
755  * need to provide board-specific regulator names as platform data.
756  */
757 static int set_consumer_device_supply(struct regulator_dev *rdev,
758         struct device *consumer_dev, const char *supply)
759 {
760         struct regulator_map *node;
761
762         if (supply == NULL)
763                 return -EINVAL;
764
765         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
766         if (node == NULL)
767                 return -ENOMEM;
768
769         node->regulator = rdev;
770         node->dev = consumer_dev;
771         node->supply = supply;
772
773         list_add(&node->list, &regulator_map_list);
774         return 0;
775 }
776
777 static void unset_consumer_device_supply(struct regulator_dev *rdev,
778         struct device *consumer_dev)
779 {
780         struct regulator_map *node, *n;
781
782         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
783                 if (rdev == node->regulator &&
784                         consumer_dev == node->dev) {
785                         list_del(&node->list);
786                         kfree(node);
787                         return;
788                 }
789         }
790 }
791
792 #define REG_STR_SIZE    32
793
794 static struct regulator *create_regulator(struct regulator_dev *rdev,
795                                           struct device *dev,
796                                           const char *supply_name)
797 {
798         struct regulator *regulator;
799         char buf[REG_STR_SIZE];
800         int err, size;
801
802         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
803         if (regulator == NULL)
804                 return NULL;
805
806         mutex_lock(&rdev->mutex);
807         regulator->rdev = rdev;
808         list_add(&regulator->list, &rdev->consumer_list);
809
810         if (dev) {
811                 /* create a 'requested_microamps_name' sysfs entry */
812                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
813                         supply_name);
814                 if (size >= REG_STR_SIZE)
815                         goto overflow_err;
816
817                 regulator->dev = dev;
818                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
819                 if (regulator->dev_attr.attr.name == NULL)
820                         goto attr_name_err;
821
822                 regulator->dev_attr.attr.owner = THIS_MODULE;
823                 regulator->dev_attr.attr.mode = 0444;
824                 regulator->dev_attr.show = device_requested_uA_show;
825                 err = device_create_file(dev, &regulator->dev_attr);
826                 if (err < 0) {
827                         printk(KERN_WARNING "%s: could not add regulator_dev"
828                                 " load sysfs\n", __func__);
829                         goto attr_name_err;
830                 }
831
832                 /* also add a link to the device sysfs entry */
833                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
834                                  dev->kobj.name, supply_name);
835                 if (size >= REG_STR_SIZE)
836                         goto attr_err;
837
838                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
839                 if (regulator->supply_name == NULL)
840                         goto attr_err;
841
842                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
843                                         buf);
844                 if (err) {
845                         printk(KERN_WARNING
846                                "%s: could not add device link %s err %d\n",
847                                __func__, dev->kobj.name, err);
848                         device_remove_file(dev, &regulator->dev_attr);
849                         goto link_name_err;
850                 }
851         }
852         mutex_unlock(&rdev->mutex);
853         return regulator;
854 link_name_err:
855         kfree(regulator->supply_name);
856 attr_err:
857         device_remove_file(regulator->dev, &regulator->dev_attr);
858 attr_name_err:
859         kfree(regulator->dev_attr.attr.name);
860 overflow_err:
861         list_del(&regulator->list);
862         kfree(regulator);
863         mutex_unlock(&rdev->mutex);
864         return NULL;
865 }
866
867 /**
868  * regulator_get - lookup and obtain a reference to a regulator.
869  * @dev: device for regulator "consumer"
870  * @id: Supply name or regulator ID.
871  *
872  * Returns a struct regulator corresponding to the regulator producer,
873  * or IS_ERR() condition containing errno.  Use of supply names
874  * configured via regulator_set_device_supply() is strongly
875  * encouraged.
876  */
877 struct regulator *regulator_get(struct device *dev, const char *id)
878 {
879         struct regulator_dev *rdev;
880         struct regulator_map *map;
881         struct regulator *regulator = ERR_PTR(-ENODEV);
882
883         if (id == NULL) {
884                 printk(KERN_ERR "regulator: get() with no identifier\n");
885                 return regulator;
886         }
887
888         mutex_lock(&regulator_list_mutex);
889
890         list_for_each_entry(map, &regulator_map_list, list) {
891                 if (dev == map->dev &&
892                     strcmp(map->supply, id) == 0) {
893                         rdev = map->regulator;
894                         goto found;
895                 }
896         }
897         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
898                id);
899         mutex_unlock(&regulator_list_mutex);
900         return regulator;
901
902 found:
903         if (!try_module_get(rdev->owner))
904                 goto out;
905
906         regulator = create_regulator(rdev, dev, id);
907         if (regulator == NULL) {
908                 regulator = ERR_PTR(-ENOMEM);
909                 module_put(rdev->owner);
910         }
911
912 out:
913         mutex_unlock(&regulator_list_mutex);
914         return regulator;
915 }
916 EXPORT_SYMBOL_GPL(regulator_get);
917
918 /**
919  * regulator_put - "free" the regulator source
920  * @regulator: regulator source
921  *
922  * Note: drivers must ensure that all regulator_enable calls made on this
923  * regulator source are balanced by regulator_disable calls prior to calling
924  * this function.
925  */
926 void regulator_put(struct regulator *regulator)
927 {
928         struct regulator_dev *rdev;
929
930         if (regulator == NULL || IS_ERR(regulator))
931                 return;
932
933         if (regulator->enabled) {
934                 printk(KERN_WARNING "Releasing supply %s while enabled\n",
935                        regulator->supply_name);
936                 WARN_ON(regulator->enabled);
937                 regulator_disable(regulator);
938         }
939
940         mutex_lock(&regulator_list_mutex);
941         rdev = regulator->rdev;
942
943         /* remove any sysfs entries */
944         if (regulator->dev) {
945                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
946                 kfree(regulator->supply_name);
947                 device_remove_file(regulator->dev, &regulator->dev_attr);
948                 kfree(regulator->dev_attr.attr.name);
949         }
950         list_del(&regulator->list);
951         kfree(regulator);
952
953         module_put(rdev->owner);
954         mutex_unlock(&regulator_list_mutex);
955 }
956 EXPORT_SYMBOL_GPL(regulator_put);
957
958 /* locks held by regulator_enable() */
959 static int _regulator_enable(struct regulator_dev *rdev)
960 {
961         int ret = -EINVAL;
962
963         if (!rdev->constraints) {
964                 printk(KERN_ERR "%s: %s has no constraints\n",
965                        __func__, rdev->desc->name);
966                 return ret;
967         }
968
969         /* do we need to enable the supply regulator first */
970         if (rdev->supply) {
971                 ret = _regulator_enable(rdev->supply);
972                 if (ret < 0) {
973                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
974                                __func__, rdev->desc->name, ret);
975                         return ret;
976                 }
977         }
978
979         /* check voltage and requested load before enabling */
980         if (rdev->desc->ops->enable) {
981
982                 if (rdev->constraints &&
983                         (rdev->constraints->valid_ops_mask &
984                         REGULATOR_CHANGE_DRMS))
985                         drms_uA_update(rdev);
986
987                 ret = rdev->desc->ops->enable(rdev);
988                 if (ret < 0) {
989                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
990                                __func__, rdev->desc->name, ret);
991                         return ret;
992                 }
993                 rdev->use_count++;
994                 return ret;
995         }
996
997         return ret;
998 }
999
1000 /**
1001  * regulator_enable - enable regulator output
1002  * @regulator: regulator source
1003  *
1004  * Enable the regulator output at the predefined voltage or current value.
1005  * NOTE: the output value can be set by other drivers, boot loader or may be
1006  * hardwired in the regulator.
1007  * NOTE: calls to regulator_enable() must be balanced with calls to
1008  * regulator_disable().
1009  */
1010 int regulator_enable(struct regulator *regulator)
1011 {
1012         int ret;
1013
1014         if (regulator->enabled) {
1015                 printk(KERN_CRIT "Regulator %s already enabled\n",
1016                        regulator->supply_name);
1017                 WARN_ON(regulator->enabled);
1018                 return 0;
1019         }
1020
1021         mutex_lock(&regulator->rdev->mutex);
1022         regulator->enabled = 1;
1023         ret = _regulator_enable(regulator->rdev);
1024         if (ret != 0)
1025                 regulator->enabled = 0;
1026         mutex_unlock(&regulator->rdev->mutex);
1027         return ret;
1028 }
1029 EXPORT_SYMBOL_GPL(regulator_enable);
1030
1031 /* locks held by regulator_disable() */
1032 static int _regulator_disable(struct regulator_dev *rdev)
1033 {
1034         int ret = 0;
1035
1036         /* are we the last user and permitted to disable ? */
1037         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1038
1039                 /* we are last user */
1040                 if (rdev->desc->ops->disable) {
1041                         ret = rdev->desc->ops->disable(rdev);
1042                         if (ret < 0) {
1043                                 printk(KERN_ERR "%s: failed to disable %s\n",
1044                                        __func__, rdev->desc->name);
1045                                 return ret;
1046                         }
1047                 }
1048
1049                 /* decrease our supplies ref count and disable if required */
1050                 if (rdev->supply)
1051                         _regulator_disable(rdev->supply);
1052
1053                 rdev->use_count = 0;
1054         } else if (rdev->use_count > 1) {
1055
1056                 if (rdev->constraints &&
1057                         (rdev->constraints->valid_ops_mask &
1058                         REGULATOR_CHANGE_DRMS))
1059                         drms_uA_update(rdev);
1060
1061                 rdev->use_count--;
1062         }
1063         return ret;
1064 }
1065
1066 /**
1067  * regulator_disable - disable regulator output
1068  * @regulator: regulator source
1069  *
1070  * Disable the regulator output voltage or current.
1071  * NOTE: this will only disable the regulator output if no other consumer
1072  * devices have it enabled.
1073  * NOTE: calls to regulator_enable() must be balanced with calls to
1074  * regulator_disable().
1075  */
1076 int regulator_disable(struct regulator *regulator)
1077 {
1078         int ret;
1079
1080         if (!regulator->enabled) {
1081                 printk(KERN_ERR "%s: not in use by this consumer\n",
1082                         __func__);
1083                 return 0;
1084         }
1085
1086         mutex_lock(&regulator->rdev->mutex);
1087         regulator->enabled = 0;
1088         regulator->uA_load = 0;
1089         ret = _regulator_disable(regulator->rdev);
1090         mutex_unlock(&regulator->rdev->mutex);
1091         return ret;
1092 }
1093 EXPORT_SYMBOL_GPL(regulator_disable);
1094
1095 /* locks held by regulator_force_disable() */
1096 static int _regulator_force_disable(struct regulator_dev *rdev)
1097 {
1098         int ret = 0;
1099
1100         /* force disable */
1101         if (rdev->desc->ops->disable) {
1102                 /* ah well, who wants to live forever... */
1103                 ret = rdev->desc->ops->disable(rdev);
1104                 if (ret < 0) {
1105                         printk(KERN_ERR "%s: failed to force disable %s\n",
1106                                __func__, rdev->desc->name);
1107                         return ret;
1108                 }
1109                 /* notify other consumers that power has been forced off */
1110                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1111                         NULL);
1112         }
1113
1114         /* decrease our supplies ref count and disable if required */
1115         if (rdev->supply)
1116                 _regulator_disable(rdev->supply);
1117
1118         rdev->use_count = 0;
1119         return ret;
1120 }
1121
1122 /**
1123  * regulator_force_disable - force disable regulator output
1124  * @regulator: regulator source
1125  *
1126  * Forcibly disable the regulator output voltage or current.
1127  * NOTE: this *will* disable the regulator output even if other consumer
1128  * devices have it enabled. This should be used for situations when device
1129  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1130  */
1131 int regulator_force_disable(struct regulator *regulator)
1132 {
1133         int ret;
1134
1135         mutex_lock(&regulator->rdev->mutex);
1136         regulator->enabled = 0;
1137         regulator->uA_load = 0;
1138         ret = _regulator_force_disable(regulator->rdev);
1139         mutex_unlock(&regulator->rdev->mutex);
1140         return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(regulator_force_disable);
1143
1144 static int _regulator_is_enabled(struct regulator_dev *rdev)
1145 {
1146         int ret;
1147
1148         mutex_lock(&rdev->mutex);
1149
1150         /* sanity check */
1151         if (!rdev->desc->ops->is_enabled) {
1152                 ret = -EINVAL;
1153                 goto out;
1154         }
1155
1156         ret = rdev->desc->ops->is_enabled(rdev);
1157 out:
1158         mutex_unlock(&rdev->mutex);
1159         return ret;
1160 }
1161
1162 /**
1163  * regulator_is_enabled - is the regulator output enabled
1164  * @regulator: regulator source
1165  *
1166  * Returns zero for disabled otherwise return number of enable requests.
1167  */
1168 int regulator_is_enabled(struct regulator *regulator)
1169 {
1170         return _regulator_is_enabled(regulator->rdev);
1171 }
1172 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1173
1174 /**
1175  * regulator_set_voltage - set regulator output voltage
1176  * @regulator: regulator source
1177  * @min_uV: Minimum required voltage in uV
1178  * @max_uV: Maximum acceptable voltage in uV
1179  *
1180  * Sets a voltage regulator to the desired output voltage. This can be set
1181  * during any regulator state. IOW, regulator can be disabled or enabled.
1182  *
1183  * If the regulator is enabled then the voltage will change to the new value
1184  * immediately otherwise if the regulator is disabled the regulator will
1185  * output at the new voltage when enabled.
1186  *
1187  * NOTE: If the regulator is shared between several devices then the lowest
1188  * request voltage that meets the system constraints will be used.
1189  * NOTE: Regulator system constraints must be set for this regulator before
1190  * calling this function otherwise this call will fail.
1191  */
1192 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1193 {
1194         struct regulator_dev *rdev = regulator->rdev;
1195         int ret;
1196
1197         mutex_lock(&rdev->mutex);
1198
1199         /* sanity check */
1200         if (!rdev->desc->ops->set_voltage) {
1201                 ret = -EINVAL;
1202                 goto out;
1203         }
1204
1205         /* constraints check */
1206         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1207         if (ret < 0)
1208                 goto out;
1209         regulator->min_uV = min_uV;
1210         regulator->max_uV = max_uV;
1211         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1212
1213 out:
1214         mutex_unlock(&rdev->mutex);
1215         return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1218
1219 static int _regulator_get_voltage(struct regulator_dev *rdev)
1220 {
1221         /* sanity check */
1222         if (rdev->desc->ops->get_voltage)
1223                 return rdev->desc->ops->get_voltage(rdev);
1224         else
1225                 return -EINVAL;
1226 }
1227
1228 /**
1229  * regulator_get_voltage - get regulator output voltage
1230  * @regulator: regulator source
1231  *
1232  * This returns the current regulator voltage in uV.
1233  *
1234  * NOTE: If the regulator is disabled it will return the voltage value. This
1235  * function should not be used to determine regulator state.
1236  */
1237 int regulator_get_voltage(struct regulator *regulator)
1238 {
1239         int ret;
1240
1241         mutex_lock(&regulator->rdev->mutex);
1242
1243         ret = _regulator_get_voltage(regulator->rdev);
1244
1245         mutex_unlock(&regulator->rdev->mutex);
1246
1247         return ret;
1248 }
1249 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1250
1251 /**
1252  * regulator_set_current_limit - set regulator output current limit
1253  * @regulator: regulator source
1254  * @min_uA: Minimuum supported current in uA
1255  * @max_uA: Maximum supported current in uA
1256  *
1257  * Sets current sink to the desired output current. This can be set during
1258  * any regulator state. IOW, regulator can be disabled or enabled.
1259  *
1260  * If the regulator is enabled then the current will change to the new value
1261  * immediately otherwise if the regulator is disabled the regulator will
1262  * output at the new current when enabled.
1263  *
1264  * NOTE: Regulator system constraints must be set for this regulator before
1265  * calling this function otherwise this call will fail.
1266  */
1267 int regulator_set_current_limit(struct regulator *regulator,
1268                                int min_uA, int max_uA)
1269 {
1270         struct regulator_dev *rdev = regulator->rdev;
1271         int ret;
1272
1273         mutex_lock(&rdev->mutex);
1274
1275         /* sanity check */
1276         if (!rdev->desc->ops->set_current_limit) {
1277                 ret = -EINVAL;
1278                 goto out;
1279         }
1280
1281         /* constraints check */
1282         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1283         if (ret < 0)
1284                 goto out;
1285
1286         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1287 out:
1288         mutex_unlock(&rdev->mutex);
1289         return ret;
1290 }
1291 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1292
1293 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1294 {
1295         int ret;
1296
1297         mutex_lock(&rdev->mutex);
1298
1299         /* sanity check */
1300         if (!rdev->desc->ops->get_current_limit) {
1301                 ret = -EINVAL;
1302                 goto out;
1303         }
1304
1305         ret = rdev->desc->ops->get_current_limit(rdev);
1306 out:
1307         mutex_unlock(&rdev->mutex);
1308         return ret;
1309 }
1310
1311 /**
1312  * regulator_get_current_limit - get regulator output current
1313  * @regulator: regulator source
1314  *
1315  * This returns the current supplied by the specified current sink in uA.
1316  *
1317  * NOTE: If the regulator is disabled it will return the current value. This
1318  * function should not be used to determine regulator state.
1319  */
1320 int regulator_get_current_limit(struct regulator *regulator)
1321 {
1322         return _regulator_get_current_limit(regulator->rdev);
1323 }
1324 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1325
1326 /**
1327  * regulator_set_mode - set regulator operating mode
1328  * @regulator: regulator source
1329  * @mode: operating mode - one of the REGULATOR_MODE constants
1330  *
1331  * Set regulator operating mode to increase regulator efficiency or improve
1332  * regulation performance.
1333  *
1334  * NOTE: Regulator system constraints must be set for this regulator before
1335  * calling this function otherwise this call will fail.
1336  */
1337 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1338 {
1339         struct regulator_dev *rdev = regulator->rdev;
1340         int ret;
1341
1342         mutex_lock(&rdev->mutex);
1343
1344         /* sanity check */
1345         if (!rdev->desc->ops->set_mode) {
1346                 ret = -EINVAL;
1347                 goto out;
1348         }
1349
1350         /* constraints check */
1351         ret = regulator_check_mode(rdev, mode);
1352         if (ret < 0)
1353                 goto out;
1354
1355         ret = rdev->desc->ops->set_mode(rdev, mode);
1356 out:
1357         mutex_unlock(&rdev->mutex);
1358         return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(regulator_set_mode);
1361
1362 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1363 {
1364         int ret;
1365
1366         mutex_lock(&rdev->mutex);
1367
1368         /* sanity check */
1369         if (!rdev->desc->ops->get_mode) {
1370                 ret = -EINVAL;
1371                 goto out;
1372         }
1373
1374         ret = rdev->desc->ops->get_mode(rdev);
1375 out:
1376         mutex_unlock(&rdev->mutex);
1377         return ret;
1378 }
1379
1380 /**
1381  * regulator_get_mode - get regulator operating mode
1382  * @regulator: regulator source
1383  *
1384  * Get the current regulator operating mode.
1385  */
1386 unsigned int regulator_get_mode(struct regulator *regulator)
1387 {
1388         return _regulator_get_mode(regulator->rdev);
1389 }
1390 EXPORT_SYMBOL_GPL(regulator_get_mode);
1391
1392 /**
1393  * regulator_set_optimum_mode - set regulator optimum operating mode
1394  * @regulator: regulator source
1395  * @uA_load: load current
1396  *
1397  * Notifies the regulator core of a new device load. This is then used by
1398  * DRMS (if enabled by constraints) to set the most efficient regulator
1399  * operating mode for the new regulator loading.
1400  *
1401  * Consumer devices notify their supply regulator of the maximum power
1402  * they will require (can be taken from device datasheet in the power
1403  * consumption tables) when they change operational status and hence power
1404  * state. Examples of operational state changes that can affect power
1405  * consumption are :-
1406  *
1407  *    o Device is opened / closed.
1408  *    o Device I/O is about to begin or has just finished.
1409  *    o Device is idling in between work.
1410  *
1411  * This information is also exported via sysfs to userspace.
1412  *
1413  * DRMS will sum the total requested load on the regulator and change
1414  * to the most efficient operating mode if platform constraints allow.
1415  *
1416  * Returns the new regulator mode or error.
1417  */
1418 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1419 {
1420         struct regulator_dev *rdev = regulator->rdev;
1421         struct regulator *consumer;
1422         int ret, output_uV, input_uV, total_uA_load = 0;
1423         unsigned int mode;
1424
1425         mutex_lock(&rdev->mutex);
1426
1427         regulator->uA_load = uA_load;
1428         ret = regulator_check_drms(rdev);
1429         if (ret < 0)
1430                 goto out;
1431         ret = -EINVAL;
1432
1433         /* sanity check */
1434         if (!rdev->desc->ops->get_optimum_mode)
1435                 goto out;
1436
1437         /* get output voltage */
1438         output_uV = rdev->desc->ops->get_voltage(rdev);
1439         if (output_uV <= 0) {
1440                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1441                         __func__, rdev->desc->name);
1442                 goto out;
1443         }
1444
1445         /* get input voltage */
1446         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1447                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1448         else
1449                 input_uV = rdev->constraints->input_uV;
1450         if (input_uV <= 0) {
1451                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1452                         __func__, rdev->desc->name);
1453                 goto out;
1454         }
1455
1456         /* calc total requested load for this regulator */
1457         list_for_each_entry(consumer, &rdev->consumer_list, list)
1458             total_uA_load += consumer->uA_load;
1459
1460         mode = rdev->desc->ops->get_optimum_mode(rdev,
1461                                                  input_uV, output_uV,
1462                                                  total_uA_load);
1463         if (ret <= 0) {
1464                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1465                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1466                         total_uA_load, input_uV, output_uV);
1467                 goto out;
1468         }
1469
1470         ret = rdev->desc->ops->set_mode(rdev, mode);
1471         if (ret <= 0) {
1472                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1473                         __func__, mode, rdev->desc->name);
1474                 goto out;
1475         }
1476         ret = mode;
1477 out:
1478         mutex_unlock(&rdev->mutex);
1479         return ret;
1480 }
1481 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1482
1483 /**
1484  * regulator_register_notifier - register regulator event notifier
1485  * @regulator: regulator source
1486  * @notifier_block: notifier block
1487  *
1488  * Register notifier block to receive regulator events.
1489  */
1490 int regulator_register_notifier(struct regulator *regulator,
1491                               struct notifier_block *nb)
1492 {
1493         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1494                                                 nb);
1495 }
1496 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1497
1498 /**
1499  * regulator_unregister_notifier - unregister regulator event notifier
1500  * @regulator: regulator source
1501  * @notifier_block: notifier block
1502  *
1503  * Unregister regulator event notifier block.
1504  */
1505 int regulator_unregister_notifier(struct regulator *regulator,
1506                                 struct notifier_block *nb)
1507 {
1508         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1509                                                   nb);
1510 }
1511 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1512
1513 /* notify regulator consumers and downstream regulator consumers */
1514 static void _notifier_call_chain(struct regulator_dev *rdev,
1515                                   unsigned long event, void *data)
1516 {
1517         struct regulator_dev *_rdev;
1518
1519         /* call rdev chain first */
1520         mutex_lock(&rdev->mutex);
1521         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1522         mutex_unlock(&rdev->mutex);
1523
1524         /* now notify regulator we supply */
1525         list_for_each_entry(_rdev, &rdev->supply_list, slist)
1526                 _notifier_call_chain(_rdev, event, data);
1527 }
1528
1529 /**
1530  * regulator_bulk_get - get multiple regulator consumers
1531  *
1532  * @dev:           Device to supply
1533  * @num_consumers: Number of consumers to register
1534  * @consumers:     Configuration of consumers; clients are stored here.
1535  *
1536  * @return 0 on success, an errno on failure.
1537  *
1538  * This helper function allows drivers to get several regulator
1539  * consumers in one operation.  If any of the regulators cannot be
1540  * acquired then any regulators that were allocated will be freed
1541  * before returning to the caller.
1542  */
1543 int regulator_bulk_get(struct device *dev, int num_consumers,
1544                        struct regulator_bulk_data *consumers)
1545 {
1546         int i;
1547         int ret;
1548
1549         for (i = 0; i < num_consumers; i++)
1550                 consumers[i].consumer = NULL;
1551
1552         for (i = 0; i < num_consumers; i++) {
1553                 consumers[i].consumer = regulator_get(dev,
1554                                                       consumers[i].supply);
1555                 if (IS_ERR(consumers[i].consumer)) {
1556                         dev_err(dev, "Failed to get supply '%s'\n",
1557                                 consumers[i].supply);
1558                         ret = PTR_ERR(consumers[i].consumer);
1559                         consumers[i].consumer = NULL;
1560                         goto err;
1561                 }
1562         }
1563
1564         return 0;
1565
1566 err:
1567         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1568                 regulator_put(consumers[i].consumer);
1569
1570         return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1573
1574 /**
1575  * regulator_bulk_enable - enable multiple regulator consumers
1576  *
1577  * @num_consumers: Number of consumers
1578  * @consumers:     Consumer data; clients are stored here.
1579  * @return         0 on success, an errno on failure
1580  *
1581  * This convenience API allows consumers to enable multiple regulator
1582  * clients in a single API call.  If any consumers cannot be enabled
1583  * then any others that were enabled will be disabled again prior to
1584  * return.
1585  */
1586 int regulator_bulk_enable(int num_consumers,
1587                           struct regulator_bulk_data *consumers)
1588 {
1589         int i;
1590         int ret;
1591
1592         for (i = 0; i < num_consumers; i++) {
1593                 ret = regulator_enable(consumers[i].consumer);
1594                 if (ret != 0)
1595                         goto err;
1596         }
1597
1598         return 0;
1599
1600 err:
1601         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1602         for (i = 0; i < num_consumers; i++)
1603                 regulator_disable(consumers[i].consumer);
1604
1605         return ret;
1606 }
1607 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1608
1609 /**
1610  * regulator_bulk_disable - disable multiple regulator consumers
1611  *
1612  * @num_consumers: Number of consumers
1613  * @consumers:     Consumer data; clients are stored here.
1614  * @return         0 on success, an errno on failure
1615  *
1616  * This convenience API allows consumers to disable multiple regulator
1617  * clients in a single API call.  If any consumers cannot be enabled
1618  * then any others that were disabled will be disabled again prior to
1619  * return.
1620  */
1621 int regulator_bulk_disable(int num_consumers,
1622                            struct regulator_bulk_data *consumers)
1623 {
1624         int i;
1625         int ret;
1626
1627         for (i = 0; i < num_consumers; i++) {
1628                 ret = regulator_disable(consumers[i].consumer);
1629                 if (ret != 0)
1630                         goto err;
1631         }
1632
1633         return 0;
1634
1635 err:
1636         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1637         for (i = 0; i < num_consumers; i++)
1638                 regulator_enable(consumers[i].consumer);
1639
1640         return ret;
1641 }
1642 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1643
1644 /**
1645  * regulator_bulk_free - free multiple regulator consumers
1646  *
1647  * @num_consumers: Number of consumers
1648  * @consumers:     Consumer data; clients are stored here.
1649  *
1650  * This convenience API allows consumers to free multiple regulator
1651  * clients in a single API call.
1652  */
1653 void regulator_bulk_free(int num_consumers,
1654                          struct regulator_bulk_data *consumers)
1655 {
1656         int i;
1657
1658         for (i = 0; i < num_consumers; i++) {
1659                 regulator_put(consumers[i].consumer);
1660                 consumers[i].consumer = NULL;
1661         }
1662 }
1663 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1664
1665 /**
1666  * regulator_notifier_call_chain - call regulator event notifier
1667  * @regulator: regulator source
1668  * @event: notifier block
1669  * @data:
1670  *
1671  * Called by regulator drivers to notify clients a regulator event has
1672  * occurred. We also notify regulator clients downstream.
1673  */
1674 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1675                                   unsigned long event, void *data)
1676 {
1677         _notifier_call_chain(rdev, event, data);
1678         return NOTIFY_DONE;
1679
1680 }
1681 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1682
1683 /**
1684  * regulator_register - register regulator
1685  * @regulator: regulator source
1686  * @reg_data: private regulator data
1687  *
1688  * Called by regulator drivers to register a regulator.
1689  * Returns 0 on success.
1690  */
1691 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1692         struct device *dev, void *driver_data)
1693 {
1694         static atomic_t regulator_no = ATOMIC_INIT(0);
1695         struct regulator_dev *rdev;
1696         struct regulator_init_data *init_data = dev->platform_data;
1697         int ret, i;
1698
1699         if (regulator_desc == NULL)
1700                 return ERR_PTR(-EINVAL);
1701
1702         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1703                 return ERR_PTR(-EINVAL);
1704
1705         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1706             !regulator_desc->type == REGULATOR_CURRENT)
1707                 return ERR_PTR(-EINVAL);
1708
1709         if (!init_data)
1710                 return ERR_PTR(-EINVAL);
1711
1712         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1713         if (rdev == NULL)
1714                 return ERR_PTR(-ENOMEM);
1715
1716         mutex_lock(&regulator_list_mutex);
1717
1718         mutex_init(&rdev->mutex);
1719         rdev->reg_data = driver_data;
1720         rdev->owner = regulator_desc->owner;
1721         rdev->desc = regulator_desc;
1722         INIT_LIST_HEAD(&rdev->consumer_list);
1723         INIT_LIST_HEAD(&rdev->supply_list);
1724         INIT_LIST_HEAD(&rdev->list);
1725         INIT_LIST_HEAD(&rdev->slist);
1726         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1727
1728         /* preform any regulator specific init */
1729         if (init_data->regulator_init) {
1730                 ret = init_data->regulator_init(rdev->reg_data);
1731                 if (ret < 0) {
1732                         kfree(rdev);
1733                         rdev = ERR_PTR(ret);
1734                         goto out;
1735                 }
1736         }
1737
1738         /* set regulator constraints */
1739         ret = set_machine_constraints(rdev, &init_data->constraints);
1740         if (ret < 0) {
1741                 kfree(rdev);
1742                 rdev = ERR_PTR(ret);
1743                 goto out;
1744         }
1745
1746         /* register with sysfs */
1747         rdev->dev.class = &regulator_class;
1748         rdev->dev.parent = dev;
1749         snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
1750                  "regulator.%d", atomic_inc_return(&regulator_no) - 1);
1751         ret = device_register(&rdev->dev);
1752         if (ret != 0) {
1753                 kfree(rdev);
1754                 rdev = ERR_PTR(ret);
1755                 goto out;
1756         }
1757
1758         dev_set_drvdata(&rdev->dev, rdev);
1759
1760         /* set supply regulator if it exists */
1761         if (init_data->supply_regulator_dev) {
1762                 ret = set_supply(rdev,
1763                         dev_get_drvdata(init_data->supply_regulator_dev));
1764                 if (ret < 0) {
1765                         device_unregister(&rdev->dev);
1766                         kfree(rdev);
1767                         rdev = ERR_PTR(ret);
1768                         goto out;
1769                 }
1770         }
1771
1772         /* add consumers devices */
1773         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1774                 ret = set_consumer_device_supply(rdev,
1775                         init_data->consumer_supplies[i].dev,
1776                         init_data->consumer_supplies[i].supply);
1777                 if (ret < 0) {
1778                         for (--i; i >= 0; i--)
1779                                 unset_consumer_device_supply(rdev,
1780                                         init_data->consumer_supplies[i].dev);
1781                         device_unregister(&rdev->dev);
1782                         kfree(rdev);
1783                         rdev = ERR_PTR(ret);
1784                         goto out;
1785                 }
1786         }
1787
1788         list_add(&rdev->list, &regulator_list);
1789 out:
1790         mutex_unlock(&regulator_list_mutex);
1791         return rdev;
1792 }
1793 EXPORT_SYMBOL_GPL(regulator_register);
1794
1795 /**
1796  * regulator_unregister - unregister regulator
1797  * @regulator: regulator source
1798  *
1799  * Called by regulator drivers to unregister a regulator.
1800  */
1801 void regulator_unregister(struct regulator_dev *rdev)
1802 {
1803         if (rdev == NULL)
1804                 return;
1805
1806         mutex_lock(&regulator_list_mutex);
1807         list_del(&rdev->list);
1808         if (rdev->supply)
1809                 sysfs_remove_link(&rdev->dev.kobj, "supply");
1810         device_unregister(&rdev->dev);
1811         mutex_unlock(&regulator_list_mutex);
1812 }
1813 EXPORT_SYMBOL_GPL(regulator_unregister);
1814
1815 /**
1816  * regulator_suspend_prepare: prepare regulators for system wide suspend
1817  * @state: system suspend state
1818  *
1819  * Configure each regulator with it's suspend operating parameters for state.
1820  * This will usually be called by machine suspend code prior to supending.
1821  */
1822 int regulator_suspend_prepare(suspend_state_t state)
1823 {
1824         struct regulator_dev *rdev;
1825         int ret = 0;
1826
1827         /* ON is handled by regulator active state */
1828         if (state == PM_SUSPEND_ON)
1829                 return -EINVAL;
1830
1831         mutex_lock(&regulator_list_mutex);
1832         list_for_each_entry(rdev, &regulator_list, list) {
1833
1834                 mutex_lock(&rdev->mutex);
1835                 ret = suspend_prepare(rdev, state);
1836                 mutex_unlock(&rdev->mutex);
1837
1838                 if (ret < 0) {
1839                         printk(KERN_ERR "%s: failed to prepare %s\n",
1840                                 __func__, rdev->desc->name);
1841                         goto out;
1842                 }
1843         }
1844 out:
1845         mutex_unlock(&regulator_list_mutex);
1846         return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1849
1850 /**
1851  * rdev_get_drvdata - get rdev regulator driver data
1852  * @regulator: regulator
1853  *
1854  * Get rdev regulator driver private data. This call can be used in the
1855  * regulator driver context.
1856  */
1857 void *rdev_get_drvdata(struct regulator_dev *rdev)
1858 {
1859         return rdev->reg_data;
1860 }
1861 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1862
1863 /**
1864  * regulator_get_drvdata - get regulator driver data
1865  * @regulator: regulator
1866  *
1867  * Get regulator driver private data. This call can be used in the consumer
1868  * driver context when non API regulator specific functions need to be called.
1869  */
1870 void *regulator_get_drvdata(struct regulator *regulator)
1871 {
1872         return regulator->rdev->reg_data;
1873 }
1874 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1875
1876 /**
1877  * regulator_set_drvdata - set regulator driver data
1878  * @regulator: regulator
1879  * @data: data
1880  */
1881 void regulator_set_drvdata(struct regulator *regulator, void *data)
1882 {
1883         regulator->rdev->reg_data = data;
1884 }
1885 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1886
1887 /**
1888  * regulator_get_id - get regulator ID
1889  * @regulator: regulator
1890  */
1891 int rdev_get_id(struct regulator_dev *rdev)
1892 {
1893         return rdev->desc->id;
1894 }
1895 EXPORT_SYMBOL_GPL(rdev_get_id);
1896
1897 struct device *rdev_get_dev(struct regulator_dev *rdev)
1898 {
1899         return &rdev->dev;
1900 }
1901 EXPORT_SYMBOL_GPL(rdev_get_dev);
1902
1903 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
1904 {
1905         return reg_init_data->driver_data;
1906 }
1907 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
1908
1909 static int __init regulator_init(void)
1910 {
1911         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1912         return class_register(&regulator_class);
1913 }
1914
1915 /* init early to allow our consumers to complete system booting */
1916 core_initcall(regulator_init);