regulator: Allow regulators to set the initial operating mode
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /*
33  * struct regulator_map
34  *
35  * Used to provide symbolic supply names to devices.
36  */
37 struct regulator_map {
38         struct list_head list;
39         struct device *dev;
40         const char *supply;
41         struct regulator_dev *regulator;
42 };
43
44 /*
45  * struct regulator
46  *
47  * One for each consumer device.
48  */
49 struct regulator {
50         struct device *dev;
51         struct list_head list;
52         int uA_load;
53         int min_uV;
54         int max_uV;
55         int enabled; /* count of client enables */
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284         return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288 static ssize_t regulator_status_show(struct device *dev,
289                                    struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292         int status;
293         char *label;
294
295         status = rdev->desc->ops->get_status(rdev);
296         if (status < 0)
297                 return status;
298
299         switch (status) {
300         case REGULATOR_STATUS_OFF:
301                 label = "off";
302                 break;
303         case REGULATOR_STATUS_ON:
304                 label = "on";
305                 break;
306         case REGULATOR_STATUS_ERROR:
307                 label = "error";
308                 break;
309         case REGULATOR_STATUS_FAST:
310                 label = "fast";
311                 break;
312         case REGULATOR_STATUS_NORMAL:
313                 label = "normal";
314                 break;
315         case REGULATOR_STATUS_IDLE:
316                 label = "idle";
317                 break;
318         case REGULATOR_STATUS_STANDBY:
319                 label = "standby";
320                 break;
321         default:
322                 return -ERANGE;
323         }
324
325         return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329 static ssize_t regulator_min_uA_show(struct device *dev,
330                                     struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         if (!rdev->constraints)
335                 return sprintf(buf, "constraint not defined\n");
336
337         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341 static ssize_t regulator_max_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353 static ssize_t regulator_min_uV_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365 static ssize_t regulator_max_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377 static ssize_t regulator_total_uA_show(struct device *dev,
378                                       struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381         struct regulator *regulator;
382         int uA = 0;
383
384         mutex_lock(&rdev->mutex);
385         list_for_each_entry(regulator, &rdev->consumer_list, list)
386             uA += regulator->uA_load;
387         mutex_unlock(&rdev->mutex);
388         return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392 static ssize_t regulator_num_users_show(struct device *dev,
393                                       struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         return sprintf(buf, "%d\n", rdev->use_count);
397 }
398
399 static ssize_t regulator_type_show(struct device *dev,
400                                   struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404         switch (rdev->desc->type) {
405         case REGULATOR_VOLTAGE:
406                 return sprintf(buf, "voltage\n");
407         case REGULATOR_CURRENT:
408                 return sprintf(buf, "current\n");
409         }
410         return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421                 regulator_suspend_mem_uV_show, NULL);
422
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431                 regulator_suspend_disk_uV_show, NULL);
432
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441                 regulator_suspend_standby_uV_show, NULL);
442
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return regulator_print_opmode(buf,
449                 rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452                 regulator_suspend_mem_mode_show, NULL);
453
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463                 regulator_suspend_disk_mode_show, NULL);
464
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474                 regulator_suspend_standby_mode_show, NULL);
475
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477                                    struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_state(buf,
482                         rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485                 regulator_suspend_mem_state_show, NULL);
486
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496                 regulator_suspend_disk_state_show, NULL);
497
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507                 regulator_suspend_standby_state_show, NULL);
508
509
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515         __ATTR(name, 0444, regulator_name_show, NULL),
516         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517         __ATTR(type, 0444, regulator_type_show, NULL),
518         __ATTR_NULL,
519 };
520
521 static void regulator_dev_release(struct device *dev)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524         kfree(rdev);
525 }
526
527 static struct class regulator_class = {
528         .name = "regulator",
529         .dev_release = regulator_dev_release,
530         .dev_attrs = regulator_dev_attrs,
531 };
532
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537         struct regulator *sibling;
538         int current_uA = 0, output_uV, input_uV, err;
539         unsigned int mode;
540
541         err = regulator_check_drms(rdev);
542         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544         return;
545
546         /* get output voltage */
547         output_uV = rdev->desc->ops->get_voltage(rdev);
548         if (output_uV <= 0)
549                 return;
550
551         /* get input voltage */
552         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554         else
555                 input_uV = rdev->constraints->input_uV;
556         if (input_uV <= 0)
557                 return;
558
559         /* calc total requested load */
560         list_for_each_entry(sibling, &rdev->consumer_list, list)
561             current_uA += sibling->uA_load;
562
563         /* now get the optimum mode for our new total regulator load */
564         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565                                                   output_uV, current_uA);
566
567         /* check the new mode is allowed */
568         err = regulator_check_mode(rdev, mode);
569         if (err == 0)
570                 rdev->desc->ops->set_mode(rdev, mode);
571 }
572
573 static int suspend_set_state(struct regulator_dev *rdev,
574         struct regulator_state *rstate)
575 {
576         int ret = 0;
577
578         /* enable & disable are mandatory for suspend control */
579         if (!rdev->desc->ops->set_suspend_enable ||
580                 !rdev->desc->ops->set_suspend_disable) {
581                 printk(KERN_ERR "%s: no way to set suspend state\n",
582                         __func__);
583                 return -EINVAL;
584         }
585
586         if (rstate->enabled)
587                 ret = rdev->desc->ops->set_suspend_enable(rdev);
588         else
589                 ret = rdev->desc->ops->set_suspend_disable(rdev);
590         if (ret < 0) {
591                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592                 return ret;
593         }
594
595         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597                 if (ret < 0) {
598                         printk(KERN_ERR "%s: failed to set voltage\n",
599                                 __func__);
600                         return ret;
601                 }
602         }
603
604         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606                 if (ret < 0) {
607                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
608                         return ret;
609                 }
610         }
611         return ret;
612 }
613
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617         if (!rdev->constraints)
618                 return -EINVAL;
619
620         switch (state) {
621         case PM_SUSPEND_STANDBY:
622                 return suspend_set_state(rdev,
623                         &rdev->constraints->state_standby);
624         case PM_SUSPEND_MEM:
625                 return suspend_set_state(rdev,
626                         &rdev->constraints->state_mem);
627         case PM_SUSPEND_MAX:
628                 return suspend_set_state(rdev,
629                         &rdev->constraints->state_disk);
630         default:
631                 return -EINVAL;
632         }
633 }
634
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637         struct regulation_constraints *constraints = rdev->constraints;
638         char buf[80];
639         int count;
640
641         if (rdev->desc->type == REGULATOR_VOLTAGE) {
642                 if (constraints->min_uV == constraints->max_uV)
643                         count = sprintf(buf, "%d mV ",
644                                         constraints->min_uV / 1000);
645                 else
646                         count = sprintf(buf, "%d <--> %d mV ",
647                                         constraints->min_uV / 1000,
648                                         constraints->max_uV / 1000);
649         } else {
650                 if (constraints->min_uA == constraints->max_uA)
651                         count = sprintf(buf, "%d mA ",
652                                         constraints->min_uA / 1000);
653                 else
654                         count = sprintf(buf, "%d <--> %d mA ",
655                                         constraints->min_uA / 1000,
656                                         constraints->max_uA / 1000);
657         }
658         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659                 count += sprintf(buf + count, "fast ");
660         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661                 count += sprintf(buf + count, "normal ");
662         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663                 count += sprintf(buf + count, "idle ");
664         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665                 count += sprintf(buf + count, "standby");
666
667         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682         struct regulation_constraints *constraints)
683 {
684         int ret = 0;
685         const char *name;
686         struct regulator_ops *ops = rdev->desc->ops;
687
688         if (constraints->name)
689                 name = constraints->name;
690         else if (rdev->desc->name)
691                 name = rdev->desc->name;
692         else
693                 name = "regulator";
694
695         rdev->constraints = constraints;
696
697         /* do we need to apply the constraint voltage */
698         if (rdev->constraints->apply_uV &&
699                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
700                 ops->set_voltage) {
701                 ret = ops->set_voltage(rdev,
702                         rdev->constraints->min_uV, rdev->constraints->max_uV);
703                         if (ret < 0) {
704                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
705                                        __func__,
706                                        rdev->constraints->min_uV, name);
707                                 rdev->constraints = NULL;
708                                 goto out;
709                         }
710         }
711
712         /* are we enabled at boot time by firmware / bootloader */
713         if (rdev->constraints->boot_on)
714                 rdev->use_count = 1;
715
716         /* do we need to setup our suspend state */
717         if (constraints->initial_state) {
718                 ret = suspend_prepare(rdev, constraints->initial_state);
719                 if (ret < 0) {
720                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
721                                __func__, name);
722                         rdev->constraints = NULL;
723                         goto out;
724                 }
725         }
726
727         if (constraints->initial_mode) {
728                 if (!ops->set_mode) {
729                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
730                                __func__, name);
731                         ret = -EINVAL;
732                         goto out;
733                 }
734
735                 ret = ops->set_mode(rdev, constraints->initial_mode);
736                 if (ret < 0) {
737                         printk(KERN_ERR
738                                "%s: failed to set initial mode for %s: %d\n",
739                                __func__, name, ret);
740                         goto out;
741                 }
742         }
743
744         /* if always_on is set then turn the regulator on if it's not
745          * already on. */
746         if (constraints->always_on && ops->enable &&
747             ((ops->is_enabled && !ops->is_enabled(rdev)) ||
748              (!ops->is_enabled && !constraints->boot_on))) {
749                 ret = ops->enable(rdev);
750                 if (ret < 0) {
751                         printk(KERN_ERR "%s: failed to enable %s\n",
752                                __func__, name);
753                         rdev->constraints = NULL;
754                         goto out;
755                 }
756         }
757
758         print_constraints(rdev);
759 out:
760         return ret;
761 }
762
763 /**
764  * set_supply - set regulator supply regulator
765  * @rdev: regulator name
766  * @supply_rdev: supply regulator name
767  *
768  * Called by platform initialisation code to set the supply regulator for this
769  * regulator. This ensures that a regulators supply will also be enabled by the
770  * core if it's child is enabled.
771  */
772 static int set_supply(struct regulator_dev *rdev,
773         struct regulator_dev *supply_rdev)
774 {
775         int err;
776
777         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
778                                 "supply");
779         if (err) {
780                 printk(KERN_ERR
781                        "%s: could not add device link %s err %d\n",
782                        __func__, supply_rdev->dev.kobj.name, err);
783                        goto out;
784         }
785         rdev->supply = supply_rdev;
786         list_add(&rdev->slist, &supply_rdev->supply_list);
787 out:
788         return err;
789 }
790
791 /**
792  * set_consumer_device_supply: Bind a regulator to a symbolic supply
793  * @rdev:         regulator source
794  * @consumer_dev: device the supply applies to
795  * @supply:       symbolic name for supply
796  *
797  * Allows platform initialisation code to map physical regulator
798  * sources to symbolic names for supplies for use by devices.  Devices
799  * should use these symbolic names to request regulators, avoiding the
800  * need to provide board-specific regulator names as platform data.
801  */
802 static int set_consumer_device_supply(struct regulator_dev *rdev,
803         struct device *consumer_dev, const char *supply)
804 {
805         struct regulator_map *node;
806
807         if (supply == NULL)
808                 return -EINVAL;
809
810         list_for_each_entry(node, &regulator_map_list, list) {
811                 if (consumer_dev != node->dev)
812                         continue;
813                 if (strcmp(node->supply, supply) != 0)
814                         continue;
815
816                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
817                                 dev_name(&node->regulator->dev),
818                                 node->regulator->desc->name,
819                                 supply,
820                                 dev_name(&rdev->dev), rdev->desc->name);
821                 return -EBUSY;
822         }
823
824         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
825         if (node == NULL)
826                 return -ENOMEM;
827
828         node->regulator = rdev;
829         node->dev = consumer_dev;
830         node->supply = supply;
831
832         list_add(&node->list, &regulator_map_list);
833         return 0;
834 }
835
836 static void unset_consumer_device_supply(struct regulator_dev *rdev,
837         struct device *consumer_dev)
838 {
839         struct regulator_map *node, *n;
840
841         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
842                 if (rdev == node->regulator &&
843                         consumer_dev == node->dev) {
844                         list_del(&node->list);
845                         kfree(node);
846                         return;
847                 }
848         }
849 }
850
851 static void unset_regulator_supplies(struct regulator_dev *rdev)
852 {
853         struct regulator_map *node, *n;
854
855         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
856                 if (rdev == node->regulator) {
857                         list_del(&node->list);
858                         kfree(node);
859                         return;
860                 }
861         }
862 }
863
864 #define REG_STR_SIZE    32
865
866 static struct regulator *create_regulator(struct regulator_dev *rdev,
867                                           struct device *dev,
868                                           const char *supply_name)
869 {
870         struct regulator *regulator;
871         char buf[REG_STR_SIZE];
872         int err, size;
873
874         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
875         if (regulator == NULL)
876                 return NULL;
877
878         mutex_lock(&rdev->mutex);
879         regulator->rdev = rdev;
880         list_add(&regulator->list, &rdev->consumer_list);
881
882         if (dev) {
883                 /* create a 'requested_microamps_name' sysfs entry */
884                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
885                         supply_name);
886                 if (size >= REG_STR_SIZE)
887                         goto overflow_err;
888
889                 regulator->dev = dev;
890                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
891                 if (regulator->dev_attr.attr.name == NULL)
892                         goto attr_name_err;
893
894                 regulator->dev_attr.attr.owner = THIS_MODULE;
895                 regulator->dev_attr.attr.mode = 0444;
896                 regulator->dev_attr.show = device_requested_uA_show;
897                 err = device_create_file(dev, &regulator->dev_attr);
898                 if (err < 0) {
899                         printk(KERN_WARNING "%s: could not add regulator_dev"
900                                 " load sysfs\n", __func__);
901                         goto attr_name_err;
902                 }
903
904                 /* also add a link to the device sysfs entry */
905                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
906                                  dev->kobj.name, supply_name);
907                 if (size >= REG_STR_SIZE)
908                         goto attr_err;
909
910                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
911                 if (regulator->supply_name == NULL)
912                         goto attr_err;
913
914                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
915                                         buf);
916                 if (err) {
917                         printk(KERN_WARNING
918                                "%s: could not add device link %s err %d\n",
919                                __func__, dev->kobj.name, err);
920                         device_remove_file(dev, &regulator->dev_attr);
921                         goto link_name_err;
922                 }
923         }
924         mutex_unlock(&rdev->mutex);
925         return regulator;
926 link_name_err:
927         kfree(regulator->supply_name);
928 attr_err:
929         device_remove_file(regulator->dev, &regulator->dev_attr);
930 attr_name_err:
931         kfree(regulator->dev_attr.attr.name);
932 overflow_err:
933         list_del(&regulator->list);
934         kfree(regulator);
935         mutex_unlock(&rdev->mutex);
936         return NULL;
937 }
938
939 /**
940  * regulator_get - lookup and obtain a reference to a regulator.
941  * @dev: device for regulator "consumer"
942  * @id: Supply name or regulator ID.
943  *
944  * Returns a struct regulator corresponding to the regulator producer,
945  * or IS_ERR() condition containing errno.
946  *
947  * Use of supply names configured via regulator_set_device_supply() is
948  * strongly encouraged.  It is recommended that the supply name used
949  * should match the name used for the supply and/or the relevant
950  * device pins in the datasheet.
951  */
952 struct regulator *regulator_get(struct device *dev, const char *id)
953 {
954         struct regulator_dev *rdev;
955         struct regulator_map *map;
956         struct regulator *regulator = ERR_PTR(-ENODEV);
957
958         if (id == NULL) {
959                 printk(KERN_ERR "regulator: get() with no identifier\n");
960                 return regulator;
961         }
962
963         mutex_lock(&regulator_list_mutex);
964
965         list_for_each_entry(map, &regulator_map_list, list) {
966                 if (dev == map->dev &&
967                     strcmp(map->supply, id) == 0) {
968                         rdev = map->regulator;
969                         goto found;
970                 }
971         }
972         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
973                id);
974         mutex_unlock(&regulator_list_mutex);
975         return regulator;
976
977 found:
978         if (!try_module_get(rdev->owner))
979                 goto out;
980
981         regulator = create_regulator(rdev, dev, id);
982         if (regulator == NULL) {
983                 regulator = ERR_PTR(-ENOMEM);
984                 module_put(rdev->owner);
985         }
986
987 out:
988         mutex_unlock(&regulator_list_mutex);
989         return regulator;
990 }
991 EXPORT_SYMBOL_GPL(regulator_get);
992
993 /**
994  * regulator_put - "free" the regulator source
995  * @regulator: regulator source
996  *
997  * Note: drivers must ensure that all regulator_enable calls made on this
998  * regulator source are balanced by regulator_disable calls prior to calling
999  * this function.
1000  */
1001 void regulator_put(struct regulator *regulator)
1002 {
1003         struct regulator_dev *rdev;
1004
1005         if (regulator == NULL || IS_ERR(regulator))
1006                 return;
1007
1008         mutex_lock(&regulator_list_mutex);
1009         rdev = regulator->rdev;
1010
1011         if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
1012                                regulator->supply_name))
1013                 _regulator_disable(rdev);
1014
1015         /* remove any sysfs entries */
1016         if (regulator->dev) {
1017                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1018                 kfree(regulator->supply_name);
1019                 device_remove_file(regulator->dev, &regulator->dev_attr);
1020                 kfree(regulator->dev_attr.attr.name);
1021         }
1022         list_del(&regulator->list);
1023         kfree(regulator);
1024
1025         module_put(rdev->owner);
1026         mutex_unlock(&regulator_list_mutex);
1027 }
1028 EXPORT_SYMBOL_GPL(regulator_put);
1029
1030 /* locks held by regulator_enable() */
1031 static int _regulator_enable(struct regulator_dev *rdev)
1032 {
1033         int ret = -EINVAL;
1034
1035         if (!rdev->constraints) {
1036                 printk(KERN_ERR "%s: %s has no constraints\n",
1037                        __func__, rdev->desc->name);
1038                 return ret;
1039         }
1040
1041         /* do we need to enable the supply regulator first */
1042         if (rdev->supply) {
1043                 ret = _regulator_enable(rdev->supply);
1044                 if (ret < 0) {
1045                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1046                                __func__, rdev->desc->name, ret);
1047                         return ret;
1048                 }
1049         }
1050
1051         /* check voltage and requested load before enabling */
1052         if (rdev->desc->ops->enable) {
1053
1054                 if (rdev->constraints &&
1055                         (rdev->constraints->valid_ops_mask &
1056                         REGULATOR_CHANGE_DRMS))
1057                         drms_uA_update(rdev);
1058
1059                 ret = rdev->desc->ops->enable(rdev);
1060                 if (ret < 0) {
1061                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1062                                __func__, rdev->desc->name, ret);
1063                         return ret;
1064                 }
1065                 rdev->use_count++;
1066                 return ret;
1067         }
1068
1069         return ret;
1070 }
1071
1072 /**
1073  * regulator_enable - enable regulator output
1074  * @regulator: regulator source
1075  *
1076  * Request that the regulator be enabled with the regulator output at
1077  * the predefined voltage or current value.  Calls to regulator_enable()
1078  * must be balanced with calls to regulator_disable().
1079  *
1080  * NOTE: the output value can be set by other drivers, boot loader or may be
1081  * hardwired in the regulator.
1082  */
1083 int regulator_enable(struct regulator *regulator)
1084 {
1085         struct regulator_dev *rdev = regulator->rdev;
1086         int ret = 0;
1087
1088         mutex_lock(&rdev->mutex);
1089         if (regulator->enabled == 0)
1090                 ret = _regulator_enable(rdev);
1091         else if (regulator->enabled < 0)
1092                 ret = -EIO;
1093         if (ret == 0)
1094                 regulator->enabled++;
1095         mutex_unlock(&rdev->mutex);
1096         return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(regulator_enable);
1099
1100 /* locks held by regulator_disable() */
1101 static int _regulator_disable(struct regulator_dev *rdev)
1102 {
1103         int ret = 0;
1104
1105         /* are we the last user and permitted to disable ? */
1106         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1107
1108                 /* we are last user */
1109                 if (rdev->desc->ops->disable) {
1110                         ret = rdev->desc->ops->disable(rdev);
1111                         if (ret < 0) {
1112                                 printk(KERN_ERR "%s: failed to disable %s\n",
1113                                        __func__, rdev->desc->name);
1114                                 return ret;
1115                         }
1116                 }
1117
1118                 /* decrease our supplies ref count and disable if required */
1119                 if (rdev->supply)
1120                         _regulator_disable(rdev->supply);
1121
1122                 rdev->use_count = 0;
1123         } else if (rdev->use_count > 1) {
1124
1125                 if (rdev->constraints &&
1126                         (rdev->constraints->valid_ops_mask &
1127                         REGULATOR_CHANGE_DRMS))
1128                         drms_uA_update(rdev);
1129
1130                 rdev->use_count--;
1131         }
1132         return ret;
1133 }
1134
1135 /**
1136  * regulator_disable - disable regulator output
1137  * @regulator: regulator source
1138  *
1139  * Disable the regulator output voltage or current.  Calls to
1140  * regulator_enable() must be balanced with calls to
1141  * regulator_disable().
1142  *
1143  * NOTE: this will only disable the regulator output if no other consumer
1144  * devices have it enabled, the regulator device supports disabling and
1145  * machine constraints permit this operation.
1146  */
1147 int regulator_disable(struct regulator *regulator)
1148 {
1149         struct regulator_dev *rdev = regulator->rdev;
1150         int ret = 0;
1151
1152         mutex_lock(&rdev->mutex);
1153         if (regulator->enabled == 1) {
1154                 ret = _regulator_disable(rdev);
1155                 if (ret == 0)
1156                         regulator->uA_load = 0;
1157         } else if (WARN(regulator->enabled <= 0,
1158                         "unbalanced disables for supply %s\n",
1159                         regulator->supply_name))
1160                 ret = -EIO;
1161         if (ret == 0)
1162                 regulator->enabled--;
1163         mutex_unlock(&rdev->mutex);
1164         return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(regulator_disable);
1167
1168 /* locks held by regulator_force_disable() */
1169 static int _regulator_force_disable(struct regulator_dev *rdev)
1170 {
1171         int ret = 0;
1172
1173         /* force disable */
1174         if (rdev->desc->ops->disable) {
1175                 /* ah well, who wants to live forever... */
1176                 ret = rdev->desc->ops->disable(rdev);
1177                 if (ret < 0) {
1178                         printk(KERN_ERR "%s: failed to force disable %s\n",
1179                                __func__, rdev->desc->name);
1180                         return ret;
1181                 }
1182                 /* notify other consumers that power has been forced off */
1183                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1184                         NULL);
1185         }
1186
1187         /* decrease our supplies ref count and disable if required */
1188         if (rdev->supply)
1189                 _regulator_disable(rdev->supply);
1190
1191         rdev->use_count = 0;
1192         return ret;
1193 }
1194
1195 /**
1196  * regulator_force_disable - force disable regulator output
1197  * @regulator: regulator source
1198  *
1199  * Forcibly disable the regulator output voltage or current.
1200  * NOTE: this *will* disable the regulator output even if other consumer
1201  * devices have it enabled. This should be used for situations when device
1202  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1203  */
1204 int regulator_force_disable(struct regulator *regulator)
1205 {
1206         int ret;
1207
1208         mutex_lock(&regulator->rdev->mutex);
1209         regulator->enabled = 0;
1210         regulator->uA_load = 0;
1211         ret = _regulator_force_disable(regulator->rdev);
1212         mutex_unlock(&regulator->rdev->mutex);
1213         return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(regulator_force_disable);
1216
1217 static int _regulator_is_enabled(struct regulator_dev *rdev)
1218 {
1219         int ret;
1220
1221         mutex_lock(&rdev->mutex);
1222
1223         /* sanity check */
1224         if (!rdev->desc->ops->is_enabled) {
1225                 ret = -EINVAL;
1226                 goto out;
1227         }
1228
1229         ret = rdev->desc->ops->is_enabled(rdev);
1230 out:
1231         mutex_unlock(&rdev->mutex);
1232         return ret;
1233 }
1234
1235 /**
1236  * regulator_is_enabled - is the regulator output enabled
1237  * @regulator: regulator source
1238  *
1239  * Returns positive if the regulator driver backing the source/client
1240  * has requested that the device be enabled, zero if it hasn't, else a
1241  * negative errno code.
1242  *
1243  * Note that the device backing this regulator handle can have multiple
1244  * users, so it might be enabled even if regulator_enable() was never
1245  * called for this particular source.
1246  */
1247 int regulator_is_enabled(struct regulator *regulator)
1248 {
1249         return _regulator_is_enabled(regulator->rdev);
1250 }
1251 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1252
1253 /**
1254  * regulator_set_voltage - set regulator output voltage
1255  * @regulator: regulator source
1256  * @min_uV: Minimum required voltage in uV
1257  * @max_uV: Maximum acceptable voltage in uV
1258  *
1259  * Sets a voltage regulator to the desired output voltage. This can be set
1260  * during any regulator state. IOW, regulator can be disabled or enabled.
1261  *
1262  * If the regulator is enabled then the voltage will change to the new value
1263  * immediately otherwise if the regulator is disabled the regulator will
1264  * output at the new voltage when enabled.
1265  *
1266  * NOTE: If the regulator is shared between several devices then the lowest
1267  * request voltage that meets the system constraints will be used.
1268  * Regulator system constraints must be set for this regulator before
1269  * calling this function otherwise this call will fail.
1270  */
1271 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1272 {
1273         struct regulator_dev *rdev = regulator->rdev;
1274         int ret;
1275
1276         mutex_lock(&rdev->mutex);
1277
1278         /* sanity check */
1279         if (!rdev->desc->ops->set_voltage) {
1280                 ret = -EINVAL;
1281                 goto out;
1282         }
1283
1284         /* constraints check */
1285         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1286         if (ret < 0)
1287                 goto out;
1288         regulator->min_uV = min_uV;
1289         regulator->max_uV = max_uV;
1290         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1291
1292 out:
1293         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1294         mutex_unlock(&rdev->mutex);
1295         return ret;
1296 }
1297 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1298
1299 static int _regulator_get_voltage(struct regulator_dev *rdev)
1300 {
1301         /* sanity check */
1302         if (rdev->desc->ops->get_voltage)
1303                 return rdev->desc->ops->get_voltage(rdev);
1304         else
1305                 return -EINVAL;
1306 }
1307
1308 /**
1309  * regulator_get_voltage - get regulator output voltage
1310  * @regulator: regulator source
1311  *
1312  * This returns the current regulator voltage in uV.
1313  *
1314  * NOTE: If the regulator is disabled it will return the voltage value. This
1315  * function should not be used to determine regulator state.
1316  */
1317 int regulator_get_voltage(struct regulator *regulator)
1318 {
1319         int ret;
1320
1321         mutex_lock(&regulator->rdev->mutex);
1322
1323         ret = _regulator_get_voltage(regulator->rdev);
1324
1325         mutex_unlock(&regulator->rdev->mutex);
1326
1327         return ret;
1328 }
1329 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1330
1331 /**
1332  * regulator_set_current_limit - set regulator output current limit
1333  * @regulator: regulator source
1334  * @min_uA: Minimuum supported current in uA
1335  * @max_uA: Maximum supported current in uA
1336  *
1337  * Sets current sink to the desired output current. This can be set during
1338  * any regulator state. IOW, regulator can be disabled or enabled.
1339  *
1340  * If the regulator is enabled then the current will change to the new value
1341  * immediately otherwise if the regulator is disabled the regulator will
1342  * output at the new current when enabled.
1343  *
1344  * NOTE: Regulator system constraints must be set for this regulator before
1345  * calling this function otherwise this call will fail.
1346  */
1347 int regulator_set_current_limit(struct regulator *regulator,
1348                                int min_uA, int max_uA)
1349 {
1350         struct regulator_dev *rdev = regulator->rdev;
1351         int ret;
1352
1353         mutex_lock(&rdev->mutex);
1354
1355         /* sanity check */
1356         if (!rdev->desc->ops->set_current_limit) {
1357                 ret = -EINVAL;
1358                 goto out;
1359         }
1360
1361         /* constraints check */
1362         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1363         if (ret < 0)
1364                 goto out;
1365
1366         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1367 out:
1368         mutex_unlock(&rdev->mutex);
1369         return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1372
1373 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1374 {
1375         int ret;
1376
1377         mutex_lock(&rdev->mutex);
1378
1379         /* sanity check */
1380         if (!rdev->desc->ops->get_current_limit) {
1381                 ret = -EINVAL;
1382                 goto out;
1383         }
1384
1385         ret = rdev->desc->ops->get_current_limit(rdev);
1386 out:
1387         mutex_unlock(&rdev->mutex);
1388         return ret;
1389 }
1390
1391 /**
1392  * regulator_get_current_limit - get regulator output current
1393  * @regulator: regulator source
1394  *
1395  * This returns the current supplied by the specified current sink in uA.
1396  *
1397  * NOTE: If the regulator is disabled it will return the current value. This
1398  * function should not be used to determine regulator state.
1399  */
1400 int regulator_get_current_limit(struct regulator *regulator)
1401 {
1402         return _regulator_get_current_limit(regulator->rdev);
1403 }
1404 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1405
1406 /**
1407  * regulator_set_mode - set regulator operating mode
1408  * @regulator: regulator source
1409  * @mode: operating mode - one of the REGULATOR_MODE constants
1410  *
1411  * Set regulator operating mode to increase regulator efficiency or improve
1412  * regulation performance.
1413  *
1414  * NOTE: Regulator system constraints must be set for this regulator before
1415  * calling this function otherwise this call will fail.
1416  */
1417 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1418 {
1419         struct regulator_dev *rdev = regulator->rdev;
1420         int ret;
1421
1422         mutex_lock(&rdev->mutex);
1423
1424         /* sanity check */
1425         if (!rdev->desc->ops->set_mode) {
1426                 ret = -EINVAL;
1427                 goto out;
1428         }
1429
1430         /* constraints check */
1431         ret = regulator_check_mode(rdev, mode);
1432         if (ret < 0)
1433                 goto out;
1434
1435         ret = rdev->desc->ops->set_mode(rdev, mode);
1436 out:
1437         mutex_unlock(&rdev->mutex);
1438         return ret;
1439 }
1440 EXPORT_SYMBOL_GPL(regulator_set_mode);
1441
1442 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1443 {
1444         int ret;
1445
1446         mutex_lock(&rdev->mutex);
1447
1448         /* sanity check */
1449         if (!rdev->desc->ops->get_mode) {
1450                 ret = -EINVAL;
1451                 goto out;
1452         }
1453
1454         ret = rdev->desc->ops->get_mode(rdev);
1455 out:
1456         mutex_unlock(&rdev->mutex);
1457         return ret;
1458 }
1459
1460 /**
1461  * regulator_get_mode - get regulator operating mode
1462  * @regulator: regulator source
1463  *
1464  * Get the current regulator operating mode.
1465  */
1466 unsigned int regulator_get_mode(struct regulator *regulator)
1467 {
1468         return _regulator_get_mode(regulator->rdev);
1469 }
1470 EXPORT_SYMBOL_GPL(regulator_get_mode);
1471
1472 /**
1473  * regulator_set_optimum_mode - set regulator optimum operating mode
1474  * @regulator: regulator source
1475  * @uA_load: load current
1476  *
1477  * Notifies the regulator core of a new device load. This is then used by
1478  * DRMS (if enabled by constraints) to set the most efficient regulator
1479  * operating mode for the new regulator loading.
1480  *
1481  * Consumer devices notify their supply regulator of the maximum power
1482  * they will require (can be taken from device datasheet in the power
1483  * consumption tables) when they change operational status and hence power
1484  * state. Examples of operational state changes that can affect power
1485  * consumption are :-
1486  *
1487  *    o Device is opened / closed.
1488  *    o Device I/O is about to begin or has just finished.
1489  *    o Device is idling in between work.
1490  *
1491  * This information is also exported via sysfs to userspace.
1492  *
1493  * DRMS will sum the total requested load on the regulator and change
1494  * to the most efficient operating mode if platform constraints allow.
1495  *
1496  * Returns the new regulator mode or error.
1497  */
1498 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1499 {
1500         struct regulator_dev *rdev = regulator->rdev;
1501         struct regulator *consumer;
1502         int ret, output_uV, input_uV, total_uA_load = 0;
1503         unsigned int mode;
1504
1505         mutex_lock(&rdev->mutex);
1506
1507         regulator->uA_load = uA_load;
1508         ret = regulator_check_drms(rdev);
1509         if (ret < 0)
1510                 goto out;
1511         ret = -EINVAL;
1512
1513         /* sanity check */
1514         if (!rdev->desc->ops->get_optimum_mode)
1515                 goto out;
1516
1517         /* get output voltage */
1518         output_uV = rdev->desc->ops->get_voltage(rdev);
1519         if (output_uV <= 0) {
1520                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1521                         __func__, rdev->desc->name);
1522                 goto out;
1523         }
1524
1525         /* get input voltage */
1526         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1527                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1528         else
1529                 input_uV = rdev->constraints->input_uV;
1530         if (input_uV <= 0) {
1531                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1532                         __func__, rdev->desc->name);
1533                 goto out;
1534         }
1535
1536         /* calc total requested load for this regulator */
1537         list_for_each_entry(consumer, &rdev->consumer_list, list)
1538             total_uA_load += consumer->uA_load;
1539
1540         mode = rdev->desc->ops->get_optimum_mode(rdev,
1541                                                  input_uV, output_uV,
1542                                                  total_uA_load);
1543         ret = regulator_check_mode(rdev, mode);
1544         if (ret < 0) {
1545                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1546                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1547                         total_uA_load, input_uV, output_uV);
1548                 goto out;
1549         }
1550
1551         ret = rdev->desc->ops->set_mode(rdev, mode);
1552         if (ret < 0) {
1553                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1554                         __func__, mode, rdev->desc->name);
1555                 goto out;
1556         }
1557         ret = mode;
1558 out:
1559         mutex_unlock(&rdev->mutex);
1560         return ret;
1561 }
1562 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1563
1564 /**
1565  * regulator_register_notifier - register regulator event notifier
1566  * @regulator: regulator source
1567  * @nb: notifier block
1568  *
1569  * Register notifier block to receive regulator events.
1570  */
1571 int regulator_register_notifier(struct regulator *regulator,
1572                               struct notifier_block *nb)
1573 {
1574         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1575                                                 nb);
1576 }
1577 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1578
1579 /**
1580  * regulator_unregister_notifier - unregister regulator event notifier
1581  * @regulator: regulator source
1582  * @nb: notifier block
1583  *
1584  * Unregister regulator event notifier block.
1585  */
1586 int regulator_unregister_notifier(struct regulator *regulator,
1587                                 struct notifier_block *nb)
1588 {
1589         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1590                                                   nb);
1591 }
1592 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1593
1594 /* notify regulator consumers and downstream regulator consumers.
1595  * Note mutex must be held by caller.
1596  */
1597 static void _notifier_call_chain(struct regulator_dev *rdev,
1598                                   unsigned long event, void *data)
1599 {
1600         struct regulator_dev *_rdev;
1601
1602         /* call rdev chain first */
1603         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1604
1605         /* now notify regulator we supply */
1606         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1607           mutex_lock(&_rdev->mutex);
1608           _notifier_call_chain(_rdev, event, data);
1609           mutex_unlock(&_rdev->mutex);
1610         }
1611 }
1612
1613 /**
1614  * regulator_bulk_get - get multiple regulator consumers
1615  *
1616  * @dev:           Device to supply
1617  * @num_consumers: Number of consumers to register
1618  * @consumers:     Configuration of consumers; clients are stored here.
1619  *
1620  * @return 0 on success, an errno on failure.
1621  *
1622  * This helper function allows drivers to get several regulator
1623  * consumers in one operation.  If any of the regulators cannot be
1624  * acquired then any regulators that were allocated will be freed
1625  * before returning to the caller.
1626  */
1627 int regulator_bulk_get(struct device *dev, int num_consumers,
1628                        struct regulator_bulk_data *consumers)
1629 {
1630         int i;
1631         int ret;
1632
1633         for (i = 0; i < num_consumers; i++)
1634                 consumers[i].consumer = NULL;
1635
1636         for (i = 0; i < num_consumers; i++) {
1637                 consumers[i].consumer = regulator_get(dev,
1638                                                       consumers[i].supply);
1639                 if (IS_ERR(consumers[i].consumer)) {
1640                         dev_err(dev, "Failed to get supply '%s'\n",
1641                                 consumers[i].supply);
1642                         ret = PTR_ERR(consumers[i].consumer);
1643                         consumers[i].consumer = NULL;
1644                         goto err;
1645                 }
1646         }
1647
1648         return 0;
1649
1650 err:
1651         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1652                 regulator_put(consumers[i].consumer);
1653
1654         return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1657
1658 /**
1659  * regulator_bulk_enable - enable multiple regulator consumers
1660  *
1661  * @num_consumers: Number of consumers
1662  * @consumers:     Consumer data; clients are stored here.
1663  * @return         0 on success, an errno on failure
1664  *
1665  * This convenience API allows consumers to enable multiple regulator
1666  * clients in a single API call.  If any consumers cannot be enabled
1667  * then any others that were enabled will be disabled again prior to
1668  * return.
1669  */
1670 int regulator_bulk_enable(int num_consumers,
1671                           struct regulator_bulk_data *consumers)
1672 {
1673         int i;
1674         int ret;
1675
1676         for (i = 0; i < num_consumers; i++) {
1677                 ret = regulator_enable(consumers[i].consumer);
1678                 if (ret != 0)
1679                         goto err;
1680         }
1681
1682         return 0;
1683
1684 err:
1685         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1686         for (i = 0; i < num_consumers; i++)
1687                 regulator_disable(consumers[i].consumer);
1688
1689         return ret;
1690 }
1691 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1692
1693 /**
1694  * regulator_bulk_disable - disable multiple regulator consumers
1695  *
1696  * @num_consumers: Number of consumers
1697  * @consumers:     Consumer data; clients are stored here.
1698  * @return         0 on success, an errno on failure
1699  *
1700  * This convenience API allows consumers to disable multiple regulator
1701  * clients in a single API call.  If any consumers cannot be enabled
1702  * then any others that were disabled will be disabled again prior to
1703  * return.
1704  */
1705 int regulator_bulk_disable(int num_consumers,
1706                            struct regulator_bulk_data *consumers)
1707 {
1708         int i;
1709         int ret;
1710
1711         for (i = 0; i < num_consumers; i++) {
1712                 ret = regulator_disable(consumers[i].consumer);
1713                 if (ret != 0)
1714                         goto err;
1715         }
1716
1717         return 0;
1718
1719 err:
1720         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1721         for (i = 0; i < num_consumers; i++)
1722                 regulator_enable(consumers[i].consumer);
1723
1724         return ret;
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1727
1728 /**
1729  * regulator_bulk_free - free multiple regulator consumers
1730  *
1731  * @num_consumers: Number of consumers
1732  * @consumers:     Consumer data; clients are stored here.
1733  *
1734  * This convenience API allows consumers to free multiple regulator
1735  * clients in a single API call.
1736  */
1737 void regulator_bulk_free(int num_consumers,
1738                          struct regulator_bulk_data *consumers)
1739 {
1740         int i;
1741
1742         for (i = 0; i < num_consumers; i++) {
1743                 regulator_put(consumers[i].consumer);
1744                 consumers[i].consumer = NULL;
1745         }
1746 }
1747 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1748
1749 /**
1750  * regulator_notifier_call_chain - call regulator event notifier
1751  * @rdev: regulator source
1752  * @event: notifier block
1753  * @data: callback-specific data.
1754  *
1755  * Called by regulator drivers to notify clients a regulator event has
1756  * occurred. We also notify regulator clients downstream.
1757  * Note lock must be held by caller.
1758  */
1759 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1760                                   unsigned long event, void *data)
1761 {
1762         _notifier_call_chain(rdev, event, data);
1763         return NOTIFY_DONE;
1764
1765 }
1766 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1767
1768 /*
1769  * To avoid cluttering sysfs (and memory) with useless state, only
1770  * create attributes that can be meaningfully displayed.
1771  */
1772 static int add_regulator_attributes(struct regulator_dev *rdev)
1773 {
1774         struct device           *dev = &rdev->dev;
1775         struct regulator_ops    *ops = rdev->desc->ops;
1776         int                     status = 0;
1777
1778         /* some attributes need specific methods to be displayed */
1779         if (ops->get_voltage) {
1780                 status = device_create_file(dev, &dev_attr_microvolts);
1781                 if (status < 0)
1782                         return status;
1783         }
1784         if (ops->get_current_limit) {
1785                 status = device_create_file(dev, &dev_attr_microamps);
1786                 if (status < 0)
1787                         return status;
1788         }
1789         if (ops->get_mode) {
1790                 status = device_create_file(dev, &dev_attr_opmode);
1791                 if (status < 0)
1792                         return status;
1793         }
1794         if (ops->is_enabled) {
1795                 status = device_create_file(dev, &dev_attr_state);
1796                 if (status < 0)
1797                         return status;
1798         }
1799         if (ops->get_status) {
1800                 status = device_create_file(dev, &dev_attr_status);
1801                 if (status < 0)
1802                         return status;
1803         }
1804
1805         /* some attributes are type-specific */
1806         if (rdev->desc->type == REGULATOR_CURRENT) {
1807                 status = device_create_file(dev, &dev_attr_requested_microamps);
1808                 if (status < 0)
1809                         return status;
1810         }
1811
1812         /* all the other attributes exist to support constraints;
1813          * don't show them if there are no constraints, or if the
1814          * relevant supporting methods are missing.
1815          */
1816         if (!rdev->constraints)
1817                 return status;
1818
1819         /* constraints need specific supporting methods */
1820         if (ops->set_voltage) {
1821                 status = device_create_file(dev, &dev_attr_min_microvolts);
1822                 if (status < 0)
1823                         return status;
1824                 status = device_create_file(dev, &dev_attr_max_microvolts);
1825                 if (status < 0)
1826                         return status;
1827         }
1828         if (ops->set_current_limit) {
1829                 status = device_create_file(dev, &dev_attr_min_microamps);
1830                 if (status < 0)
1831                         return status;
1832                 status = device_create_file(dev, &dev_attr_max_microamps);
1833                 if (status < 0)
1834                         return status;
1835         }
1836
1837         /* suspend mode constraints need multiple supporting methods */
1838         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1839                 return status;
1840
1841         status = device_create_file(dev, &dev_attr_suspend_standby_state);
1842         if (status < 0)
1843                 return status;
1844         status = device_create_file(dev, &dev_attr_suspend_mem_state);
1845         if (status < 0)
1846                 return status;
1847         status = device_create_file(dev, &dev_attr_suspend_disk_state);
1848         if (status < 0)
1849                 return status;
1850
1851         if (ops->set_suspend_voltage) {
1852                 status = device_create_file(dev,
1853                                 &dev_attr_suspend_standby_microvolts);
1854                 if (status < 0)
1855                         return status;
1856                 status = device_create_file(dev,
1857                                 &dev_attr_suspend_mem_microvolts);
1858                 if (status < 0)
1859                         return status;
1860                 status = device_create_file(dev,
1861                                 &dev_attr_suspend_disk_microvolts);
1862                 if (status < 0)
1863                         return status;
1864         }
1865
1866         if (ops->set_suspend_mode) {
1867                 status = device_create_file(dev,
1868                                 &dev_attr_suspend_standby_mode);
1869                 if (status < 0)
1870                         return status;
1871                 status = device_create_file(dev,
1872                                 &dev_attr_suspend_mem_mode);
1873                 if (status < 0)
1874                         return status;
1875                 status = device_create_file(dev,
1876                                 &dev_attr_suspend_disk_mode);
1877                 if (status < 0)
1878                         return status;
1879         }
1880
1881         return status;
1882 }
1883
1884 /**
1885  * regulator_register - register regulator
1886  * @regulator_desc: regulator to register
1887  * @dev: struct device for the regulator
1888  * @init_data: platform provided init data, passed through by driver
1889  * @driver_data: private regulator data
1890  *
1891  * Called by regulator drivers to register a regulator.
1892  * Returns 0 on success.
1893  */
1894 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1895         struct device *dev, struct regulator_init_data *init_data,
1896         void *driver_data)
1897 {
1898         static atomic_t regulator_no = ATOMIC_INIT(0);
1899         struct regulator_dev *rdev;
1900         int ret, i;
1901
1902         if (regulator_desc == NULL)
1903                 return ERR_PTR(-EINVAL);
1904
1905         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1906                 return ERR_PTR(-EINVAL);
1907
1908         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1909             !regulator_desc->type == REGULATOR_CURRENT)
1910                 return ERR_PTR(-EINVAL);
1911
1912         if (!init_data)
1913                 return ERR_PTR(-EINVAL);
1914
1915         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1916         if (rdev == NULL)
1917                 return ERR_PTR(-ENOMEM);
1918
1919         mutex_lock(&regulator_list_mutex);
1920
1921         mutex_init(&rdev->mutex);
1922         rdev->reg_data = driver_data;
1923         rdev->owner = regulator_desc->owner;
1924         rdev->desc = regulator_desc;
1925         INIT_LIST_HEAD(&rdev->consumer_list);
1926         INIT_LIST_HEAD(&rdev->supply_list);
1927         INIT_LIST_HEAD(&rdev->list);
1928         INIT_LIST_HEAD(&rdev->slist);
1929         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1930
1931         /* preform any regulator specific init */
1932         if (init_data->regulator_init) {
1933                 ret = init_data->regulator_init(rdev->reg_data);
1934                 if (ret < 0)
1935                         goto clean;
1936         }
1937
1938         /* register with sysfs */
1939         rdev->dev.class = &regulator_class;
1940         rdev->dev.parent = dev;
1941         dev_set_name(&rdev->dev, "regulator.%d",
1942                      atomic_inc_return(&regulator_no) - 1);
1943         ret = device_register(&rdev->dev);
1944         if (ret != 0)
1945                 goto clean;
1946
1947         dev_set_drvdata(&rdev->dev, rdev);
1948
1949         /* set regulator constraints */
1950         ret = set_machine_constraints(rdev, &init_data->constraints);
1951         if (ret < 0)
1952                 goto scrub;
1953
1954         /* add attributes supported by this regulator */
1955         ret = add_regulator_attributes(rdev);
1956         if (ret < 0)
1957                 goto scrub;
1958
1959         /* set supply regulator if it exists */
1960         if (init_data->supply_regulator_dev) {
1961                 ret = set_supply(rdev,
1962                         dev_get_drvdata(init_data->supply_regulator_dev));
1963                 if (ret < 0)
1964                         goto scrub;
1965         }
1966
1967         /* add consumers devices */
1968         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1969                 ret = set_consumer_device_supply(rdev,
1970                         init_data->consumer_supplies[i].dev,
1971                         init_data->consumer_supplies[i].supply);
1972                 if (ret < 0) {
1973                         for (--i; i >= 0; i--)
1974                                 unset_consumer_device_supply(rdev,
1975                                         init_data->consumer_supplies[i].dev);
1976                         goto scrub;
1977                 }
1978         }
1979
1980         list_add(&rdev->list, &regulator_list);
1981 out:
1982         mutex_unlock(&regulator_list_mutex);
1983         return rdev;
1984
1985 scrub:
1986         device_unregister(&rdev->dev);
1987 clean:
1988         kfree(rdev);
1989         rdev = ERR_PTR(ret);
1990         goto out;
1991 }
1992 EXPORT_SYMBOL_GPL(regulator_register);
1993
1994 /**
1995  * regulator_unregister - unregister regulator
1996  * @rdev: regulator to unregister
1997  *
1998  * Called by regulator drivers to unregister a regulator.
1999  */
2000 void regulator_unregister(struct regulator_dev *rdev)
2001 {
2002         if (rdev == NULL)
2003                 return;
2004
2005         mutex_lock(&regulator_list_mutex);
2006         unset_regulator_supplies(rdev);
2007         list_del(&rdev->list);
2008         if (rdev->supply)
2009                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2010         device_unregister(&rdev->dev);
2011         mutex_unlock(&regulator_list_mutex);
2012 }
2013 EXPORT_SYMBOL_GPL(regulator_unregister);
2014
2015 /**
2016  * regulator_suspend_prepare - prepare regulators for system wide suspend
2017  * @state: system suspend state
2018  *
2019  * Configure each regulator with it's suspend operating parameters for state.
2020  * This will usually be called by machine suspend code prior to supending.
2021  */
2022 int regulator_suspend_prepare(suspend_state_t state)
2023 {
2024         struct regulator_dev *rdev;
2025         int ret = 0;
2026
2027         /* ON is handled by regulator active state */
2028         if (state == PM_SUSPEND_ON)
2029                 return -EINVAL;
2030
2031         mutex_lock(&regulator_list_mutex);
2032         list_for_each_entry(rdev, &regulator_list, list) {
2033
2034                 mutex_lock(&rdev->mutex);
2035                 ret = suspend_prepare(rdev, state);
2036                 mutex_unlock(&rdev->mutex);
2037
2038                 if (ret < 0) {
2039                         printk(KERN_ERR "%s: failed to prepare %s\n",
2040                                 __func__, rdev->desc->name);
2041                         goto out;
2042                 }
2043         }
2044 out:
2045         mutex_unlock(&regulator_list_mutex);
2046         return ret;
2047 }
2048 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2049
2050 /**
2051  * rdev_get_drvdata - get rdev regulator driver data
2052  * @rdev: regulator
2053  *
2054  * Get rdev regulator driver private data. This call can be used in the
2055  * regulator driver context.
2056  */
2057 void *rdev_get_drvdata(struct regulator_dev *rdev)
2058 {
2059         return rdev->reg_data;
2060 }
2061 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2062
2063 /**
2064  * regulator_get_drvdata - get regulator driver data
2065  * @regulator: regulator
2066  *
2067  * Get regulator driver private data. This call can be used in the consumer
2068  * driver context when non API regulator specific functions need to be called.
2069  */
2070 void *regulator_get_drvdata(struct regulator *regulator)
2071 {
2072         return regulator->rdev->reg_data;
2073 }
2074 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2075
2076 /**
2077  * regulator_set_drvdata - set regulator driver data
2078  * @regulator: regulator
2079  * @data: data
2080  */
2081 void regulator_set_drvdata(struct regulator *regulator, void *data)
2082 {
2083         regulator->rdev->reg_data = data;
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2086
2087 /**
2088  * regulator_get_id - get regulator ID
2089  * @rdev: regulator
2090  */
2091 int rdev_get_id(struct regulator_dev *rdev)
2092 {
2093         return rdev->desc->id;
2094 }
2095 EXPORT_SYMBOL_GPL(rdev_get_id);
2096
2097 struct device *rdev_get_dev(struct regulator_dev *rdev)
2098 {
2099         return &rdev->dev;
2100 }
2101 EXPORT_SYMBOL_GPL(rdev_get_dev);
2102
2103 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2104 {
2105         return reg_init_data->driver_data;
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2108
2109 static int __init regulator_init(void)
2110 {
2111         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2112         return class_register(&regulator_class);
2113 }
2114
2115 /* init early to allow our consumers to complete system booting */
2116 core_initcall(regulator_init);