regulator: Factor out regulator name pretty printing
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39         struct list_head list;
40         const char *dev_name;   /* The dev_name() for the consumer */
41         const char *supply;
42         struct regulator_dev *regulator;
43 };
44
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51         struct device *dev;
52         struct list_head list;
53         int uA_load;
54         int min_uV;
55         int max_uV;
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 static const char *rdev_get_name(struct regulator_dev *rdev)
70 {
71         if (rdev->constraints && rdev->constraints->name)
72                 return rdev->constraints->name;
73         else if (rdev->desc->name)
74                 return rdev->desc->name;
75         else
76                 return "";
77 }
78
79 /* gets the regulator for a given consumer device */
80 static struct regulator *get_device_regulator(struct device *dev)
81 {
82         struct regulator *regulator = NULL;
83         struct regulator_dev *rdev;
84
85         mutex_lock(&regulator_list_mutex);
86         list_for_each_entry(rdev, &regulator_list, list) {
87                 mutex_lock(&rdev->mutex);
88                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
89                         if (regulator->dev == dev) {
90                                 mutex_unlock(&rdev->mutex);
91                                 mutex_unlock(&regulator_list_mutex);
92                                 return regulator;
93                         }
94                 }
95                 mutex_unlock(&rdev->mutex);
96         }
97         mutex_unlock(&regulator_list_mutex);
98         return NULL;
99 }
100
101 /* Platform voltage constraint check */
102 static int regulator_check_voltage(struct regulator_dev *rdev,
103                                    int *min_uV, int *max_uV)
104 {
105         BUG_ON(*min_uV > *max_uV);
106
107         if (!rdev->constraints) {
108                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
109                        rdev_get_name(rdev));
110                 return -ENODEV;
111         }
112         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
113                 printk(KERN_ERR "%s: operation not allowed for %s\n",
114                        __func__, rdev_get_name(rdev));
115                 return -EPERM;
116         }
117
118         if (*max_uV > rdev->constraints->max_uV)
119                 *max_uV = rdev->constraints->max_uV;
120         if (*min_uV < rdev->constraints->min_uV)
121                 *min_uV = rdev->constraints->min_uV;
122
123         if (*min_uV > *max_uV)
124                 return -EINVAL;
125
126         return 0;
127 }
128
129 /* current constraint check */
130 static int regulator_check_current_limit(struct regulator_dev *rdev,
131                                         int *min_uA, int *max_uA)
132 {
133         BUG_ON(*min_uA > *max_uA);
134
135         if (!rdev->constraints) {
136                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
137                        rdev_get_name(rdev));
138                 return -ENODEV;
139         }
140         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
141                 printk(KERN_ERR "%s: operation not allowed for %s\n",
142                        __func__, rdev_get_name(rdev));
143                 return -EPERM;
144         }
145
146         if (*max_uA > rdev->constraints->max_uA)
147                 *max_uA = rdev->constraints->max_uA;
148         if (*min_uA < rdev->constraints->min_uA)
149                 *min_uA = rdev->constraints->min_uA;
150
151         if (*min_uA > *max_uA)
152                 return -EINVAL;
153
154         return 0;
155 }
156
157 /* operating mode constraint check */
158 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
159 {
160         switch (mode) {
161         case REGULATOR_MODE_FAST:
162         case REGULATOR_MODE_NORMAL:
163         case REGULATOR_MODE_IDLE:
164         case REGULATOR_MODE_STANDBY:
165                 break;
166         default:
167                 return -EINVAL;
168         }
169
170         if (!rdev->constraints) {
171                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
172                        rdev_get_name(rdev));
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
176                 printk(KERN_ERR "%s: operation not allowed for %s\n",
177                        __func__, rdev_get_name(rdev));
178                 return -EPERM;
179         }
180         if (!(rdev->constraints->valid_modes_mask & mode)) {
181                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
182                        __func__, mode, rdev_get_name(rdev));
183                 return -EINVAL;
184         }
185         return 0;
186 }
187
188 /* dynamic regulator mode switching constraint check */
189 static int regulator_check_drms(struct regulator_dev *rdev)
190 {
191         if (!rdev->constraints) {
192                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
193                        rdev_get_name(rdev));
194                 return -ENODEV;
195         }
196         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
197                 printk(KERN_ERR "%s: operation not allowed for %s\n",
198                        __func__, rdev_get_name(rdev));
199                 return -EPERM;
200         }
201         return 0;
202 }
203
204 static ssize_t device_requested_uA_show(struct device *dev,
205                              struct device_attribute *attr, char *buf)
206 {
207         struct regulator *regulator;
208
209         regulator = get_device_regulator(dev);
210         if (regulator == NULL)
211                 return 0;
212
213         return sprintf(buf, "%d\n", regulator->uA_load);
214 }
215
216 static ssize_t regulator_uV_show(struct device *dev,
217                                 struct device_attribute *attr, char *buf)
218 {
219         struct regulator_dev *rdev = dev_get_drvdata(dev);
220         ssize_t ret;
221
222         mutex_lock(&rdev->mutex);
223         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
224         mutex_unlock(&rdev->mutex);
225
226         return ret;
227 }
228 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
229
230 static ssize_t regulator_uA_show(struct device *dev,
231                                 struct device_attribute *attr, char *buf)
232 {
233         struct regulator_dev *rdev = dev_get_drvdata(dev);
234
235         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
236 }
237 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
238
239 static ssize_t regulator_name_show(struct device *dev,
240                              struct device_attribute *attr, char *buf)
241 {
242         struct regulator_dev *rdev = dev_get_drvdata(dev);
243
244         return sprintf(buf, "%s\n", rdev_get_name(rdev));
245 }
246
247 static ssize_t regulator_print_opmode(char *buf, int mode)
248 {
249         switch (mode) {
250         case REGULATOR_MODE_FAST:
251                 return sprintf(buf, "fast\n");
252         case REGULATOR_MODE_NORMAL:
253                 return sprintf(buf, "normal\n");
254         case REGULATOR_MODE_IDLE:
255                 return sprintf(buf, "idle\n");
256         case REGULATOR_MODE_STANDBY:
257                 return sprintf(buf, "standby\n");
258         }
259         return sprintf(buf, "unknown\n");
260 }
261
262 static ssize_t regulator_opmode_show(struct device *dev,
263                                     struct device_attribute *attr, char *buf)
264 {
265         struct regulator_dev *rdev = dev_get_drvdata(dev);
266
267         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
268 }
269 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
270
271 static ssize_t regulator_print_state(char *buf, int state)
272 {
273         if (state > 0)
274                 return sprintf(buf, "enabled\n");
275         else if (state == 0)
276                 return sprintf(buf, "disabled\n");
277         else
278                 return sprintf(buf, "unknown\n");
279 }
280
281 static ssize_t regulator_state_show(struct device *dev,
282                                    struct device_attribute *attr, char *buf)
283 {
284         struct regulator_dev *rdev = dev_get_drvdata(dev);
285         ssize_t ret;
286
287         mutex_lock(&rdev->mutex);
288         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
289         mutex_unlock(&rdev->mutex);
290
291         return ret;
292 }
293 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
294
295 static ssize_t regulator_status_show(struct device *dev,
296                                    struct device_attribute *attr, char *buf)
297 {
298         struct regulator_dev *rdev = dev_get_drvdata(dev);
299         int status;
300         char *label;
301
302         status = rdev->desc->ops->get_status(rdev);
303         if (status < 0)
304                 return status;
305
306         switch (status) {
307         case REGULATOR_STATUS_OFF:
308                 label = "off";
309                 break;
310         case REGULATOR_STATUS_ON:
311                 label = "on";
312                 break;
313         case REGULATOR_STATUS_ERROR:
314                 label = "error";
315                 break;
316         case REGULATOR_STATUS_FAST:
317                 label = "fast";
318                 break;
319         case REGULATOR_STATUS_NORMAL:
320                 label = "normal";
321                 break;
322         case REGULATOR_STATUS_IDLE:
323                 label = "idle";
324                 break;
325         case REGULATOR_STATUS_STANDBY:
326                 label = "standby";
327                 break;
328         default:
329                 return -ERANGE;
330         }
331
332         return sprintf(buf, "%s\n", label);
333 }
334 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
335
336 static ssize_t regulator_min_uA_show(struct device *dev,
337                                     struct device_attribute *attr, char *buf)
338 {
339         struct regulator_dev *rdev = dev_get_drvdata(dev);
340
341         if (!rdev->constraints)
342                 return sprintf(buf, "constraint not defined\n");
343
344         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
345 }
346 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
347
348 static ssize_t regulator_max_uA_show(struct device *dev,
349                                     struct device_attribute *attr, char *buf)
350 {
351         struct regulator_dev *rdev = dev_get_drvdata(dev);
352
353         if (!rdev->constraints)
354                 return sprintf(buf, "constraint not defined\n");
355
356         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
357 }
358 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
359
360 static ssize_t regulator_min_uV_show(struct device *dev,
361                                     struct device_attribute *attr, char *buf)
362 {
363         struct regulator_dev *rdev = dev_get_drvdata(dev);
364
365         if (!rdev->constraints)
366                 return sprintf(buf, "constraint not defined\n");
367
368         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
369 }
370 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
371
372 static ssize_t regulator_max_uV_show(struct device *dev,
373                                     struct device_attribute *attr, char *buf)
374 {
375         struct regulator_dev *rdev = dev_get_drvdata(dev);
376
377         if (!rdev->constraints)
378                 return sprintf(buf, "constraint not defined\n");
379
380         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
381 }
382 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
383
384 static ssize_t regulator_total_uA_show(struct device *dev,
385                                       struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         struct regulator *regulator;
389         int uA = 0;
390
391         mutex_lock(&rdev->mutex);
392         list_for_each_entry(regulator, &rdev->consumer_list, list)
393             uA += regulator->uA_load;
394         mutex_unlock(&rdev->mutex);
395         return sprintf(buf, "%d\n", uA);
396 }
397 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
398
399 static ssize_t regulator_num_users_show(struct device *dev,
400                                       struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403         return sprintf(buf, "%d\n", rdev->use_count);
404 }
405
406 static ssize_t regulator_type_show(struct device *dev,
407                                   struct device_attribute *attr, char *buf)
408 {
409         struct regulator_dev *rdev = dev_get_drvdata(dev);
410
411         switch (rdev->desc->type) {
412         case REGULATOR_VOLTAGE:
413                 return sprintf(buf, "voltage\n");
414         case REGULATOR_CURRENT:
415                 return sprintf(buf, "current\n");
416         }
417         return sprintf(buf, "unknown\n");
418 }
419
420 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
421                                 struct device_attribute *attr, char *buf)
422 {
423         struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
426 }
427 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
428                 regulator_suspend_mem_uV_show, NULL);
429
430 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
431                                 struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
436 }
437 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
438                 regulator_suspend_disk_uV_show, NULL);
439
440 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
441                                 struct device_attribute *attr, char *buf)
442 {
443         struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
446 }
447 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
448                 regulator_suspend_standby_uV_show, NULL);
449
450 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
451                                 struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         return regulator_print_opmode(buf,
456                 rdev->constraints->state_mem.mode);
457 }
458 static DEVICE_ATTR(suspend_mem_mode, 0444,
459                 regulator_suspend_mem_mode_show, NULL);
460
461 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
462                                 struct device_attribute *attr, char *buf)
463 {
464         struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466         return regulator_print_opmode(buf,
467                 rdev->constraints->state_disk.mode);
468 }
469 static DEVICE_ATTR(suspend_disk_mode, 0444,
470                 regulator_suspend_disk_mode_show, NULL);
471
472 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
473                                 struct device_attribute *attr, char *buf)
474 {
475         struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477         return regulator_print_opmode(buf,
478                 rdev->constraints->state_standby.mode);
479 }
480 static DEVICE_ATTR(suspend_standby_mode, 0444,
481                 regulator_suspend_standby_mode_show, NULL);
482
483 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
484                                    struct device_attribute *attr, char *buf)
485 {
486         struct regulator_dev *rdev = dev_get_drvdata(dev);
487
488         return regulator_print_state(buf,
489                         rdev->constraints->state_mem.enabled);
490 }
491 static DEVICE_ATTR(suspend_mem_state, 0444,
492                 regulator_suspend_mem_state_show, NULL);
493
494 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
495                                    struct device_attribute *attr, char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498
499         return regulator_print_state(buf,
500                         rdev->constraints->state_disk.enabled);
501 }
502 static DEVICE_ATTR(suspend_disk_state, 0444,
503                 regulator_suspend_disk_state_show, NULL);
504
505 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
506                                    struct device_attribute *attr, char *buf)
507 {
508         struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510         return regulator_print_state(buf,
511                         rdev->constraints->state_standby.enabled);
512 }
513 static DEVICE_ATTR(suspend_standby_state, 0444,
514                 regulator_suspend_standby_state_show, NULL);
515
516
517 /*
518  * These are the only attributes are present for all regulators.
519  * Other attributes are a function of regulator functionality.
520  */
521 static struct device_attribute regulator_dev_attrs[] = {
522         __ATTR(name, 0444, regulator_name_show, NULL),
523         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
524         __ATTR(type, 0444, regulator_type_show, NULL),
525         __ATTR_NULL,
526 };
527
528 static void regulator_dev_release(struct device *dev)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531         kfree(rdev);
532 }
533
534 static struct class regulator_class = {
535         .name = "regulator",
536         .dev_release = regulator_dev_release,
537         .dev_attrs = regulator_dev_attrs,
538 };
539
540 /* Calculate the new optimum regulator operating mode based on the new total
541  * consumer load. All locks held by caller */
542 static void drms_uA_update(struct regulator_dev *rdev)
543 {
544         struct regulator *sibling;
545         int current_uA = 0, output_uV, input_uV, err;
546         unsigned int mode;
547
548         err = regulator_check_drms(rdev);
549         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
550             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
551                 return;
552
553         /* get output voltage */
554         output_uV = rdev->desc->ops->get_voltage(rdev);
555         if (output_uV <= 0)
556                 return;
557
558         /* get input voltage */
559         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
560                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
561         else
562                 input_uV = rdev->constraints->input_uV;
563         if (input_uV <= 0)
564                 return;
565
566         /* calc total requested load */
567         list_for_each_entry(sibling, &rdev->consumer_list, list)
568             current_uA += sibling->uA_load;
569
570         /* now get the optimum mode for our new total regulator load */
571         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
572                                                   output_uV, current_uA);
573
574         /* check the new mode is allowed */
575         err = regulator_check_mode(rdev, mode);
576         if (err == 0)
577                 rdev->desc->ops->set_mode(rdev, mode);
578 }
579
580 static int suspend_set_state(struct regulator_dev *rdev,
581         struct regulator_state *rstate)
582 {
583         int ret = 0;
584
585         /* enable & disable are mandatory for suspend control */
586         if (!rdev->desc->ops->set_suspend_enable ||
587                 !rdev->desc->ops->set_suspend_disable) {
588                 printk(KERN_ERR "%s: no way to set suspend state\n",
589                         __func__);
590                 return -EINVAL;
591         }
592
593         if (rstate->enabled)
594                 ret = rdev->desc->ops->set_suspend_enable(rdev);
595         else
596                 ret = rdev->desc->ops->set_suspend_disable(rdev);
597         if (ret < 0) {
598                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
599                 return ret;
600         }
601
602         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
603                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
604                 if (ret < 0) {
605                         printk(KERN_ERR "%s: failed to set voltage\n",
606                                 __func__);
607                         return ret;
608                 }
609         }
610
611         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
612                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
613                 if (ret < 0) {
614                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
615                         return ret;
616                 }
617         }
618         return ret;
619 }
620
621 /* locks held by caller */
622 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
623 {
624         if (!rdev->constraints)
625                 return -EINVAL;
626
627         switch (state) {
628         case PM_SUSPEND_STANDBY:
629                 return suspend_set_state(rdev,
630                         &rdev->constraints->state_standby);
631         case PM_SUSPEND_MEM:
632                 return suspend_set_state(rdev,
633                         &rdev->constraints->state_mem);
634         case PM_SUSPEND_MAX:
635                 return suspend_set_state(rdev,
636                         &rdev->constraints->state_disk);
637         default:
638                 return -EINVAL;
639         }
640 }
641
642 static void print_constraints(struct regulator_dev *rdev)
643 {
644         struct regulation_constraints *constraints = rdev->constraints;
645         char buf[80];
646         int count = 0;
647         int ret;
648
649         if (constraints->min_uV && constraints->max_uV) {
650                 if (constraints->min_uV == constraints->max_uV)
651                         count += sprintf(buf + count, "%d mV ",
652                                          constraints->min_uV / 1000);
653                 else
654                         count += sprintf(buf + count, "%d <--> %d mV ",
655                                          constraints->min_uV / 1000,
656                                          constraints->max_uV / 1000);
657         }
658
659         if (!constraints->min_uV ||
660             constraints->min_uV != constraints->max_uV) {
661                 ret = _regulator_get_voltage(rdev);
662                 if (ret > 0)
663                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
664         }
665
666         if (constraints->min_uA && constraints->max_uA) {
667                 if (constraints->min_uA == constraints->max_uA)
668                         count += sprintf(buf + count, "%d mA ",
669                                          constraints->min_uA / 1000);
670                 else
671                         count += sprintf(buf + count, "%d <--> %d mA ",
672                                          constraints->min_uA / 1000,
673                                          constraints->max_uA / 1000);
674         }
675
676         if (!constraints->min_uA ||
677             constraints->min_uA != constraints->max_uA) {
678                 ret = _regulator_get_current_limit(rdev);
679                 if (ret > 0)
680                         count += sprintf(buf + count, "at %d uA ", ret / 1000);
681         }
682
683         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
684                 count += sprintf(buf + count, "fast ");
685         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
686                 count += sprintf(buf + count, "normal ");
687         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
688                 count += sprintf(buf + count, "idle ");
689         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
690                 count += sprintf(buf + count, "standby");
691
692         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
693 }
694
695 static int machine_constraints_voltage(struct regulator_dev *rdev,
696         struct regulation_constraints *constraints)
697 {
698         struct regulator_ops *ops = rdev->desc->ops;
699         const char *name = rdev_get_name(rdev);
700         int ret;
701
702         /* do we need to apply the constraint voltage */
703         if (rdev->constraints->apply_uV &&
704                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
705                 ops->set_voltage) {
706                 ret = ops->set_voltage(rdev,
707                         rdev->constraints->min_uV, rdev->constraints->max_uV);
708                         if (ret < 0) {
709                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
710                                        __func__,
711                                        rdev->constraints->min_uV, name);
712                                 rdev->constraints = NULL;
713                                 return ret;
714                         }
715         }
716
717         /* constrain machine-level voltage specs to fit
718          * the actual range supported by this regulator.
719          */
720         if (ops->list_voltage && rdev->desc->n_voltages) {
721                 int     count = rdev->desc->n_voltages;
722                 int     i;
723                 int     min_uV = INT_MAX;
724                 int     max_uV = INT_MIN;
725                 int     cmin = constraints->min_uV;
726                 int     cmax = constraints->max_uV;
727
728                 /* it's safe to autoconfigure fixed-voltage supplies
729                    and the constraints are used by list_voltage. */
730                 if (count == 1 && !cmin) {
731                         cmin = 1;
732                         cmax = INT_MAX;
733                         constraints->min_uV = cmin;
734                         constraints->max_uV = cmax;
735                 }
736
737                 /* voltage constraints are optional */
738                 if ((cmin == 0) && (cmax == 0))
739                         return 0;
740
741                 /* else require explicit machine-level constraints */
742                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
743                         pr_err("%s: %s '%s' voltage constraints\n",
744                                        __func__, "invalid", name);
745                         return -EINVAL;
746                 }
747
748                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
749                 for (i = 0; i < count; i++) {
750                         int     value;
751
752                         value = ops->list_voltage(rdev, i);
753                         if (value <= 0)
754                                 continue;
755
756                         /* maybe adjust [min_uV..max_uV] */
757                         if (value >= cmin && value < min_uV)
758                                 min_uV = value;
759                         if (value <= cmax && value > max_uV)
760                                 max_uV = value;
761                 }
762
763                 /* final: [min_uV..max_uV] valid iff constraints valid */
764                 if (max_uV < min_uV) {
765                         pr_err("%s: %s '%s' voltage constraints\n",
766                                        __func__, "unsupportable", name);
767                         return -EINVAL;
768                 }
769
770                 /* use regulator's subset of machine constraints */
771                 if (constraints->min_uV < min_uV) {
772                         pr_debug("%s: override '%s' %s, %d -> %d\n",
773                                        __func__, name, "min_uV",
774                                         constraints->min_uV, min_uV);
775                         constraints->min_uV = min_uV;
776                 }
777                 if (constraints->max_uV > max_uV) {
778                         pr_debug("%s: override '%s' %s, %d -> %d\n",
779                                        __func__, name, "max_uV",
780                                         constraints->max_uV, max_uV);
781                         constraints->max_uV = max_uV;
782                 }
783         }
784
785         return 0;
786 }
787
788 /**
789  * set_machine_constraints - sets regulator constraints
790  * @rdev: regulator source
791  * @constraints: constraints to apply
792  *
793  * Allows platform initialisation code to define and constrain
794  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
795  * Constraints *must* be set by platform code in order for some
796  * regulator operations to proceed i.e. set_voltage, set_current_limit,
797  * set_mode.
798  */
799 static int set_machine_constraints(struct regulator_dev *rdev,
800         struct regulation_constraints *constraints)
801 {
802         int ret = 0;
803         const char *name;
804         struct regulator_ops *ops = rdev->desc->ops;
805
806         rdev->constraints = constraints;
807
808         name = rdev_get_name(rdev);
809
810         ret = machine_constraints_voltage(rdev, constraints);
811         if (ret != 0)
812                 goto out;
813
814         /* do we need to setup our suspend state */
815         if (constraints->initial_state) {
816                 ret = suspend_prepare(rdev, constraints->initial_state);
817                 if (ret < 0) {
818                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
819                                __func__, name);
820                         rdev->constraints = NULL;
821                         goto out;
822                 }
823         }
824
825         if (constraints->initial_mode) {
826                 if (!ops->set_mode) {
827                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
828                                __func__, name);
829                         ret = -EINVAL;
830                         goto out;
831                 }
832
833                 ret = ops->set_mode(rdev, constraints->initial_mode);
834                 if (ret < 0) {
835                         printk(KERN_ERR
836                                "%s: failed to set initial mode for %s: %d\n",
837                                __func__, name, ret);
838                         goto out;
839                 }
840         }
841
842         /* If the constraints say the regulator should be on at this point
843          * and we have control then make sure it is enabled.
844          */
845         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
846                 ret = ops->enable(rdev);
847                 if (ret < 0) {
848                         printk(KERN_ERR "%s: failed to enable %s\n",
849                                __func__, name);
850                         rdev->constraints = NULL;
851                         goto out;
852                 }
853         }
854
855         print_constraints(rdev);
856 out:
857         return ret;
858 }
859
860 /**
861  * set_supply - set regulator supply regulator
862  * @rdev: regulator name
863  * @supply_rdev: supply regulator name
864  *
865  * Called by platform initialisation code to set the supply regulator for this
866  * regulator. This ensures that a regulators supply will also be enabled by the
867  * core if it's child is enabled.
868  */
869 static int set_supply(struct regulator_dev *rdev,
870         struct regulator_dev *supply_rdev)
871 {
872         int err;
873
874         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
875                                 "supply");
876         if (err) {
877                 printk(KERN_ERR
878                        "%s: could not add device link %s err %d\n",
879                        __func__, supply_rdev->dev.kobj.name, err);
880                        goto out;
881         }
882         rdev->supply = supply_rdev;
883         list_add(&rdev->slist, &supply_rdev->supply_list);
884 out:
885         return err;
886 }
887
888 /**
889  * set_consumer_device_supply: Bind a regulator to a symbolic supply
890  * @rdev:         regulator source
891  * @consumer_dev: device the supply applies to
892  * @consumer_dev_name: dev_name() string for device supply applies to
893  * @supply:       symbolic name for supply
894  *
895  * Allows platform initialisation code to map physical regulator
896  * sources to symbolic names for supplies for use by devices.  Devices
897  * should use these symbolic names to request regulators, avoiding the
898  * need to provide board-specific regulator names as platform data.
899  *
900  * Only one of consumer_dev and consumer_dev_name may be specified.
901  */
902 static int set_consumer_device_supply(struct regulator_dev *rdev,
903         struct device *consumer_dev, const char *consumer_dev_name,
904         const char *supply)
905 {
906         struct regulator_map *node;
907         int has_dev;
908
909         if (consumer_dev && consumer_dev_name)
910                 return -EINVAL;
911
912         if (!consumer_dev_name && consumer_dev)
913                 consumer_dev_name = dev_name(consumer_dev);
914
915         if (supply == NULL)
916                 return -EINVAL;
917
918         if (consumer_dev_name != NULL)
919                 has_dev = 1;
920         else
921                 has_dev = 0;
922
923         list_for_each_entry(node, &regulator_map_list, list) {
924                 if (consumer_dev_name != node->dev_name)
925                         continue;
926                 if (strcmp(node->supply, supply) != 0)
927                         continue;
928
929                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
930                                 dev_name(&node->regulator->dev),
931                                 node->regulator->desc->name,
932                                 supply,
933                                 dev_name(&rdev->dev), rdev_get_name(rdev));
934                 return -EBUSY;
935         }
936
937         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
938         if (node == NULL)
939                 return -ENOMEM;
940
941         node->regulator = rdev;
942         node->supply = supply;
943
944         if (has_dev) {
945                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
946                 if (node->dev_name == NULL) {
947                         kfree(node);
948                         return -ENOMEM;
949                 }
950         }
951
952         list_add(&node->list, &regulator_map_list);
953         return 0;
954 }
955
956 static void unset_consumer_device_supply(struct regulator_dev *rdev,
957         const char *consumer_dev_name, struct device *consumer_dev)
958 {
959         struct regulator_map *node, *n;
960
961         if (consumer_dev && !consumer_dev_name)
962                 consumer_dev_name = dev_name(consumer_dev);
963
964         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
965                 if (rdev != node->regulator)
966                         continue;
967
968                 if (consumer_dev_name && node->dev_name &&
969                     strcmp(consumer_dev_name, node->dev_name))
970                         continue;
971
972                 list_del(&node->list);
973                 kfree(node->dev_name);
974                 kfree(node);
975                 return;
976         }
977 }
978
979 static void unset_regulator_supplies(struct regulator_dev *rdev)
980 {
981         struct regulator_map *node, *n;
982
983         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
984                 if (rdev == node->regulator) {
985                         list_del(&node->list);
986                         kfree(node->dev_name);
987                         kfree(node);
988                         return;
989                 }
990         }
991 }
992
993 #define REG_STR_SIZE    32
994
995 static struct regulator *create_regulator(struct regulator_dev *rdev,
996                                           struct device *dev,
997                                           const char *supply_name)
998 {
999         struct regulator *regulator;
1000         char buf[REG_STR_SIZE];
1001         int err, size;
1002
1003         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1004         if (regulator == NULL)
1005                 return NULL;
1006
1007         mutex_lock(&rdev->mutex);
1008         regulator->rdev = rdev;
1009         list_add(&regulator->list, &rdev->consumer_list);
1010
1011         if (dev) {
1012                 /* create a 'requested_microamps_name' sysfs entry */
1013                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1014                         supply_name);
1015                 if (size >= REG_STR_SIZE)
1016                         goto overflow_err;
1017
1018                 regulator->dev = dev;
1019                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1020                 if (regulator->dev_attr.attr.name == NULL)
1021                         goto attr_name_err;
1022
1023                 regulator->dev_attr.attr.owner = THIS_MODULE;
1024                 regulator->dev_attr.attr.mode = 0444;
1025                 regulator->dev_attr.show = device_requested_uA_show;
1026                 err = device_create_file(dev, &regulator->dev_attr);
1027                 if (err < 0) {
1028                         printk(KERN_WARNING "%s: could not add regulator_dev"
1029                                 " load sysfs\n", __func__);
1030                         goto attr_name_err;
1031                 }
1032
1033                 /* also add a link to the device sysfs entry */
1034                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1035                                  dev->kobj.name, supply_name);
1036                 if (size >= REG_STR_SIZE)
1037                         goto attr_err;
1038
1039                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1040                 if (regulator->supply_name == NULL)
1041                         goto attr_err;
1042
1043                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1044                                         buf);
1045                 if (err) {
1046                         printk(KERN_WARNING
1047                                "%s: could not add device link %s err %d\n",
1048                                __func__, dev->kobj.name, err);
1049                         device_remove_file(dev, &regulator->dev_attr);
1050                         goto link_name_err;
1051                 }
1052         }
1053         mutex_unlock(&rdev->mutex);
1054         return regulator;
1055 link_name_err:
1056         kfree(regulator->supply_name);
1057 attr_err:
1058         device_remove_file(regulator->dev, &regulator->dev_attr);
1059 attr_name_err:
1060         kfree(regulator->dev_attr.attr.name);
1061 overflow_err:
1062         list_del(&regulator->list);
1063         kfree(regulator);
1064         mutex_unlock(&rdev->mutex);
1065         return NULL;
1066 }
1067
1068 /* Internal regulator request function */
1069 static struct regulator *_regulator_get(struct device *dev, const char *id,
1070                                         int exclusive)
1071 {
1072         struct regulator_dev *rdev;
1073         struct regulator_map *map;
1074         struct regulator *regulator = ERR_PTR(-ENODEV);
1075         const char *devname = NULL;
1076         int ret;
1077
1078         if (id == NULL) {
1079                 printk(KERN_ERR "regulator: get() with no identifier\n");
1080                 return regulator;
1081         }
1082
1083         if (dev)
1084                 devname = dev_name(dev);
1085
1086         mutex_lock(&regulator_list_mutex);
1087
1088         list_for_each_entry(map, &regulator_map_list, list) {
1089                 /* If the mapping has a device set up it must match */
1090                 if (map->dev_name &&
1091                     (!devname || strcmp(map->dev_name, devname)))
1092                         continue;
1093
1094                 if (strcmp(map->supply, id) == 0) {
1095                         rdev = map->regulator;
1096                         goto found;
1097                 }
1098         }
1099         mutex_unlock(&regulator_list_mutex);
1100         return regulator;
1101
1102 found:
1103         if (rdev->exclusive) {
1104                 regulator = ERR_PTR(-EPERM);
1105                 goto out;
1106         }
1107
1108         if (exclusive && rdev->open_count) {
1109                 regulator = ERR_PTR(-EBUSY);
1110                 goto out;
1111         }
1112
1113         if (!try_module_get(rdev->owner))
1114                 goto out;
1115
1116         regulator = create_regulator(rdev, dev, id);
1117         if (regulator == NULL) {
1118                 regulator = ERR_PTR(-ENOMEM);
1119                 module_put(rdev->owner);
1120         }
1121
1122         rdev->open_count++;
1123         if (exclusive) {
1124                 rdev->exclusive = 1;
1125
1126                 ret = _regulator_is_enabled(rdev);
1127                 if (ret > 0)
1128                         rdev->use_count = 1;
1129                 else
1130                         rdev->use_count = 0;
1131         }
1132
1133 out:
1134         mutex_unlock(&regulator_list_mutex);
1135
1136         return regulator;
1137 }
1138
1139 /**
1140  * regulator_get - lookup and obtain a reference to a regulator.
1141  * @dev: device for regulator "consumer"
1142  * @id: Supply name or regulator ID.
1143  *
1144  * Returns a struct regulator corresponding to the regulator producer,
1145  * or IS_ERR() condition containing errno.
1146  *
1147  * Use of supply names configured via regulator_set_device_supply() is
1148  * strongly encouraged.  It is recommended that the supply name used
1149  * should match the name used for the supply and/or the relevant
1150  * device pins in the datasheet.
1151  */
1152 struct regulator *regulator_get(struct device *dev, const char *id)
1153 {
1154         return _regulator_get(dev, id, 0);
1155 }
1156 EXPORT_SYMBOL_GPL(regulator_get);
1157
1158 /**
1159  * regulator_get_exclusive - obtain exclusive access to a regulator.
1160  * @dev: device for regulator "consumer"
1161  * @id: Supply name or regulator ID.
1162  *
1163  * Returns a struct regulator corresponding to the regulator producer,
1164  * or IS_ERR() condition containing errno.  Other consumers will be
1165  * unable to obtain this reference is held and the use count for the
1166  * regulator will be initialised to reflect the current state of the
1167  * regulator.
1168  *
1169  * This is intended for use by consumers which cannot tolerate shared
1170  * use of the regulator such as those which need to force the
1171  * regulator off for correct operation of the hardware they are
1172  * controlling.
1173  *
1174  * Use of supply names configured via regulator_set_device_supply() is
1175  * strongly encouraged.  It is recommended that the supply name used
1176  * should match the name used for the supply and/or the relevant
1177  * device pins in the datasheet.
1178  */
1179 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1180 {
1181         return _regulator_get(dev, id, 1);
1182 }
1183 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1184
1185 /**
1186  * regulator_put - "free" the regulator source
1187  * @regulator: regulator source
1188  *
1189  * Note: drivers must ensure that all regulator_enable calls made on this
1190  * regulator source are balanced by regulator_disable calls prior to calling
1191  * this function.
1192  */
1193 void regulator_put(struct regulator *regulator)
1194 {
1195         struct regulator_dev *rdev;
1196
1197         if (regulator == NULL || IS_ERR(regulator))
1198                 return;
1199
1200         mutex_lock(&regulator_list_mutex);
1201         rdev = regulator->rdev;
1202
1203         /* remove any sysfs entries */
1204         if (regulator->dev) {
1205                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1206                 kfree(regulator->supply_name);
1207                 device_remove_file(regulator->dev, &regulator->dev_attr);
1208                 kfree(regulator->dev_attr.attr.name);
1209         }
1210         list_del(&regulator->list);
1211         kfree(regulator);
1212
1213         rdev->open_count--;
1214         rdev->exclusive = 0;
1215
1216         module_put(rdev->owner);
1217         mutex_unlock(&regulator_list_mutex);
1218 }
1219 EXPORT_SYMBOL_GPL(regulator_put);
1220
1221 static int _regulator_can_change_status(struct regulator_dev *rdev)
1222 {
1223         if (!rdev->constraints)
1224                 return 0;
1225
1226         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1227                 return 1;
1228         else
1229                 return 0;
1230 }
1231
1232 /* locks held by regulator_enable() */
1233 static int _regulator_enable(struct regulator_dev *rdev)
1234 {
1235         int ret;
1236
1237         /* do we need to enable the supply regulator first */
1238         if (rdev->supply) {
1239                 ret = _regulator_enable(rdev->supply);
1240                 if (ret < 0) {
1241                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1242                                __func__, rdev_get_name(rdev), ret);
1243                         return ret;
1244                 }
1245         }
1246
1247         /* check voltage and requested load before enabling */
1248         if (rdev->constraints &&
1249             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1250                 drms_uA_update(rdev);
1251
1252         if (rdev->use_count == 0) {
1253                 /* The regulator may on if it's not switchable or left on */
1254                 ret = _regulator_is_enabled(rdev);
1255                 if (ret == -EINVAL || ret == 0) {
1256                         if (!_regulator_can_change_status(rdev))
1257                                 return -EPERM;
1258
1259                         if (rdev->desc->ops->enable) {
1260                                 ret = rdev->desc->ops->enable(rdev);
1261                                 if (ret < 0)
1262                                         return ret;
1263                         } else {
1264                                 return -EINVAL;
1265                         }
1266                 } else if (ret < 0) {
1267                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1268                                __func__, rdev_get_name(rdev), ret);
1269                         return ret;
1270                 }
1271                 /* Fallthrough on positive return values - already enabled */
1272         }
1273
1274         rdev->use_count++;
1275
1276         return 0;
1277 }
1278
1279 /**
1280  * regulator_enable - enable regulator output
1281  * @regulator: regulator source
1282  *
1283  * Request that the regulator be enabled with the regulator output at
1284  * the predefined voltage or current value.  Calls to regulator_enable()
1285  * must be balanced with calls to regulator_disable().
1286  *
1287  * NOTE: the output value can be set by other drivers, boot loader or may be
1288  * hardwired in the regulator.
1289  */
1290 int regulator_enable(struct regulator *regulator)
1291 {
1292         struct regulator_dev *rdev = regulator->rdev;
1293         int ret = 0;
1294
1295         mutex_lock(&rdev->mutex);
1296         ret = _regulator_enable(rdev);
1297         mutex_unlock(&rdev->mutex);
1298         return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(regulator_enable);
1301
1302 /* locks held by regulator_disable() */
1303 static int _regulator_disable(struct regulator_dev *rdev)
1304 {
1305         int ret = 0;
1306
1307         if (WARN(rdev->use_count <= 0,
1308                         "unbalanced disables for %s\n",
1309                         rdev_get_name(rdev)))
1310                 return -EIO;
1311
1312         /* are we the last user and permitted to disable ? */
1313         if (rdev->use_count == 1 &&
1314             (rdev->constraints && !rdev->constraints->always_on)) {
1315
1316                 /* we are last user */
1317                 if (_regulator_can_change_status(rdev) &&
1318                     rdev->desc->ops->disable) {
1319                         ret = rdev->desc->ops->disable(rdev);
1320                         if (ret < 0) {
1321                                 printk(KERN_ERR "%s: failed to disable %s\n",
1322                                        __func__, rdev_get_name(rdev));
1323                                 return ret;
1324                         }
1325                 }
1326
1327                 /* decrease our supplies ref count and disable if required */
1328                 if (rdev->supply)
1329                         _regulator_disable(rdev->supply);
1330
1331                 rdev->use_count = 0;
1332         } else if (rdev->use_count > 1) {
1333
1334                 if (rdev->constraints &&
1335                         (rdev->constraints->valid_ops_mask &
1336                         REGULATOR_CHANGE_DRMS))
1337                         drms_uA_update(rdev);
1338
1339                 rdev->use_count--;
1340         }
1341         return ret;
1342 }
1343
1344 /**
1345  * regulator_disable - disable regulator output
1346  * @regulator: regulator source
1347  *
1348  * Disable the regulator output voltage or current.  Calls to
1349  * regulator_enable() must be balanced with calls to
1350  * regulator_disable().
1351  *
1352  * NOTE: this will only disable the regulator output if no other consumer
1353  * devices have it enabled, the regulator device supports disabling and
1354  * machine constraints permit this operation.
1355  */
1356 int regulator_disable(struct regulator *regulator)
1357 {
1358         struct regulator_dev *rdev = regulator->rdev;
1359         int ret = 0;
1360
1361         mutex_lock(&rdev->mutex);
1362         ret = _regulator_disable(rdev);
1363         mutex_unlock(&rdev->mutex);
1364         return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(regulator_disable);
1367
1368 /* locks held by regulator_force_disable() */
1369 static int _regulator_force_disable(struct regulator_dev *rdev)
1370 {
1371         int ret = 0;
1372
1373         /* force disable */
1374         if (rdev->desc->ops->disable) {
1375                 /* ah well, who wants to live forever... */
1376                 ret = rdev->desc->ops->disable(rdev);
1377                 if (ret < 0) {
1378                         printk(KERN_ERR "%s: failed to force disable %s\n",
1379                                __func__, rdev_get_name(rdev));
1380                         return ret;
1381                 }
1382                 /* notify other consumers that power has been forced off */
1383                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1384                         NULL);
1385         }
1386
1387         /* decrease our supplies ref count and disable if required */
1388         if (rdev->supply)
1389                 _regulator_disable(rdev->supply);
1390
1391         rdev->use_count = 0;
1392         return ret;
1393 }
1394
1395 /**
1396  * regulator_force_disable - force disable regulator output
1397  * @regulator: regulator source
1398  *
1399  * Forcibly disable the regulator output voltage or current.
1400  * NOTE: this *will* disable the regulator output even if other consumer
1401  * devices have it enabled. This should be used for situations when device
1402  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1403  */
1404 int regulator_force_disable(struct regulator *regulator)
1405 {
1406         int ret;
1407
1408         mutex_lock(&regulator->rdev->mutex);
1409         regulator->uA_load = 0;
1410         ret = _regulator_force_disable(regulator->rdev);
1411         mutex_unlock(&regulator->rdev->mutex);
1412         return ret;
1413 }
1414 EXPORT_SYMBOL_GPL(regulator_force_disable);
1415
1416 static int _regulator_is_enabled(struct regulator_dev *rdev)
1417 {
1418         /* sanity check */
1419         if (!rdev->desc->ops->is_enabled)
1420                 return -EINVAL;
1421
1422         return rdev->desc->ops->is_enabled(rdev);
1423 }
1424
1425 /**
1426  * regulator_is_enabled - is the regulator output enabled
1427  * @regulator: regulator source
1428  *
1429  * Returns positive if the regulator driver backing the source/client
1430  * has requested that the device be enabled, zero if it hasn't, else a
1431  * negative errno code.
1432  *
1433  * Note that the device backing this regulator handle can have multiple
1434  * users, so it might be enabled even if regulator_enable() was never
1435  * called for this particular source.
1436  */
1437 int regulator_is_enabled(struct regulator *regulator)
1438 {
1439         int ret;
1440
1441         mutex_lock(&regulator->rdev->mutex);
1442         ret = _regulator_is_enabled(regulator->rdev);
1443         mutex_unlock(&regulator->rdev->mutex);
1444
1445         return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1448
1449 /**
1450  * regulator_count_voltages - count regulator_list_voltage() selectors
1451  * @regulator: regulator source
1452  *
1453  * Returns number of selectors, or negative errno.  Selectors are
1454  * numbered starting at zero, and typically correspond to bitfields
1455  * in hardware registers.
1456  */
1457 int regulator_count_voltages(struct regulator *regulator)
1458 {
1459         struct regulator_dev    *rdev = regulator->rdev;
1460
1461         return rdev->desc->n_voltages ? : -EINVAL;
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1464
1465 /**
1466  * regulator_list_voltage - enumerate supported voltages
1467  * @regulator: regulator source
1468  * @selector: identify voltage to list
1469  * Context: can sleep
1470  *
1471  * Returns a voltage that can be passed to @regulator_set_voltage(),
1472  * zero if this selector code can't be used on this sytem, or a
1473  * negative errno.
1474  */
1475 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1476 {
1477         struct regulator_dev    *rdev = regulator->rdev;
1478         struct regulator_ops    *ops = rdev->desc->ops;
1479         int                     ret;
1480
1481         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1482                 return -EINVAL;
1483
1484         mutex_lock(&rdev->mutex);
1485         ret = ops->list_voltage(rdev, selector);
1486         mutex_unlock(&rdev->mutex);
1487
1488         if (ret > 0) {
1489                 if (ret < rdev->constraints->min_uV)
1490                         ret = 0;
1491                 else if (ret > rdev->constraints->max_uV)
1492                         ret = 0;
1493         }
1494
1495         return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1498
1499 /**
1500  * regulator_is_supported_voltage - check if a voltage range can be supported
1501  *
1502  * @regulator: Regulator to check.
1503  * @min_uV: Minimum required voltage in uV.
1504  * @max_uV: Maximum required voltage in uV.
1505  *
1506  * Returns a boolean or a negative error code.
1507  */
1508 int regulator_is_supported_voltage(struct regulator *regulator,
1509                                    int min_uV, int max_uV)
1510 {
1511         int i, voltages, ret;
1512
1513         ret = regulator_count_voltages(regulator);
1514         if (ret < 0)
1515                 return ret;
1516         voltages = ret;
1517
1518         for (i = 0; i < voltages; i++) {
1519                 ret = regulator_list_voltage(regulator, i);
1520
1521                 if (ret >= min_uV && ret <= max_uV)
1522                         return 1;
1523         }
1524
1525         return 0;
1526 }
1527
1528 /**
1529  * regulator_set_voltage - set regulator output voltage
1530  * @regulator: regulator source
1531  * @min_uV: Minimum required voltage in uV
1532  * @max_uV: Maximum acceptable voltage in uV
1533  *
1534  * Sets a voltage regulator to the desired output voltage. This can be set
1535  * during any regulator state. IOW, regulator can be disabled or enabled.
1536  *
1537  * If the regulator is enabled then the voltage will change to the new value
1538  * immediately otherwise if the regulator is disabled the regulator will
1539  * output at the new voltage when enabled.
1540  *
1541  * NOTE: If the regulator is shared between several devices then the lowest
1542  * request voltage that meets the system constraints will be used.
1543  * Regulator system constraints must be set for this regulator before
1544  * calling this function otherwise this call will fail.
1545  */
1546 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1547 {
1548         struct regulator_dev *rdev = regulator->rdev;
1549         int ret;
1550
1551         mutex_lock(&rdev->mutex);
1552
1553         /* sanity check */
1554         if (!rdev->desc->ops->set_voltage) {
1555                 ret = -EINVAL;
1556                 goto out;
1557         }
1558
1559         /* constraints check */
1560         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1561         if (ret < 0)
1562                 goto out;
1563         regulator->min_uV = min_uV;
1564         regulator->max_uV = max_uV;
1565         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1566
1567 out:
1568         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1569         mutex_unlock(&rdev->mutex);
1570         return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1573
1574 static int _regulator_get_voltage(struct regulator_dev *rdev)
1575 {
1576         /* sanity check */
1577         if (rdev->desc->ops->get_voltage)
1578                 return rdev->desc->ops->get_voltage(rdev);
1579         else
1580                 return -EINVAL;
1581 }
1582
1583 /**
1584  * regulator_get_voltage - get regulator output voltage
1585  * @regulator: regulator source
1586  *
1587  * This returns the current regulator voltage in uV.
1588  *
1589  * NOTE: If the regulator is disabled it will return the voltage value. This
1590  * function should not be used to determine regulator state.
1591  */
1592 int regulator_get_voltage(struct regulator *regulator)
1593 {
1594         int ret;
1595
1596         mutex_lock(&regulator->rdev->mutex);
1597
1598         ret = _regulator_get_voltage(regulator->rdev);
1599
1600         mutex_unlock(&regulator->rdev->mutex);
1601
1602         return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1605
1606 /**
1607  * regulator_set_current_limit - set regulator output current limit
1608  * @regulator: regulator source
1609  * @min_uA: Minimuum supported current in uA
1610  * @max_uA: Maximum supported current in uA
1611  *
1612  * Sets current sink to the desired output current. This can be set during
1613  * any regulator state. IOW, regulator can be disabled or enabled.
1614  *
1615  * If the regulator is enabled then the current will change to the new value
1616  * immediately otherwise if the regulator is disabled the regulator will
1617  * output at the new current when enabled.
1618  *
1619  * NOTE: Regulator system constraints must be set for this regulator before
1620  * calling this function otherwise this call will fail.
1621  */
1622 int regulator_set_current_limit(struct regulator *regulator,
1623                                int min_uA, int max_uA)
1624 {
1625         struct regulator_dev *rdev = regulator->rdev;
1626         int ret;
1627
1628         mutex_lock(&rdev->mutex);
1629
1630         /* sanity check */
1631         if (!rdev->desc->ops->set_current_limit) {
1632                 ret = -EINVAL;
1633                 goto out;
1634         }
1635
1636         /* constraints check */
1637         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1638         if (ret < 0)
1639                 goto out;
1640
1641         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1642 out:
1643         mutex_unlock(&rdev->mutex);
1644         return ret;
1645 }
1646 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1647
1648 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1649 {
1650         int ret;
1651
1652         mutex_lock(&rdev->mutex);
1653
1654         /* sanity check */
1655         if (!rdev->desc->ops->get_current_limit) {
1656                 ret = -EINVAL;
1657                 goto out;
1658         }
1659
1660         ret = rdev->desc->ops->get_current_limit(rdev);
1661 out:
1662         mutex_unlock(&rdev->mutex);
1663         return ret;
1664 }
1665
1666 /**
1667  * regulator_get_current_limit - get regulator output current
1668  * @regulator: regulator source
1669  *
1670  * This returns the current supplied by the specified current sink in uA.
1671  *
1672  * NOTE: If the regulator is disabled it will return the current value. This
1673  * function should not be used to determine regulator state.
1674  */
1675 int regulator_get_current_limit(struct regulator *regulator)
1676 {
1677         return _regulator_get_current_limit(regulator->rdev);
1678 }
1679 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1680
1681 /**
1682  * regulator_set_mode - set regulator operating mode
1683  * @regulator: regulator source
1684  * @mode: operating mode - one of the REGULATOR_MODE constants
1685  *
1686  * Set regulator operating mode to increase regulator efficiency or improve
1687  * regulation performance.
1688  *
1689  * NOTE: Regulator system constraints must be set for this regulator before
1690  * calling this function otherwise this call will fail.
1691  */
1692 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1693 {
1694         struct regulator_dev *rdev = regulator->rdev;
1695         int ret;
1696
1697         mutex_lock(&rdev->mutex);
1698
1699         /* sanity check */
1700         if (!rdev->desc->ops->set_mode) {
1701                 ret = -EINVAL;
1702                 goto out;
1703         }
1704
1705         /* constraints check */
1706         ret = regulator_check_mode(rdev, mode);
1707         if (ret < 0)
1708                 goto out;
1709
1710         ret = rdev->desc->ops->set_mode(rdev, mode);
1711 out:
1712         mutex_unlock(&rdev->mutex);
1713         return ret;
1714 }
1715 EXPORT_SYMBOL_GPL(regulator_set_mode);
1716
1717 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1718 {
1719         int ret;
1720
1721         mutex_lock(&rdev->mutex);
1722
1723         /* sanity check */
1724         if (!rdev->desc->ops->get_mode) {
1725                 ret = -EINVAL;
1726                 goto out;
1727         }
1728
1729         ret = rdev->desc->ops->get_mode(rdev);
1730 out:
1731         mutex_unlock(&rdev->mutex);
1732         return ret;
1733 }
1734
1735 /**
1736  * regulator_get_mode - get regulator operating mode
1737  * @regulator: regulator source
1738  *
1739  * Get the current regulator operating mode.
1740  */
1741 unsigned int regulator_get_mode(struct regulator *regulator)
1742 {
1743         return _regulator_get_mode(regulator->rdev);
1744 }
1745 EXPORT_SYMBOL_GPL(regulator_get_mode);
1746
1747 /**
1748  * regulator_set_optimum_mode - set regulator optimum operating mode
1749  * @regulator: regulator source
1750  * @uA_load: load current
1751  *
1752  * Notifies the regulator core of a new device load. This is then used by
1753  * DRMS (if enabled by constraints) to set the most efficient regulator
1754  * operating mode for the new regulator loading.
1755  *
1756  * Consumer devices notify their supply regulator of the maximum power
1757  * they will require (can be taken from device datasheet in the power
1758  * consumption tables) when they change operational status and hence power
1759  * state. Examples of operational state changes that can affect power
1760  * consumption are :-
1761  *
1762  *    o Device is opened / closed.
1763  *    o Device I/O is about to begin or has just finished.
1764  *    o Device is idling in between work.
1765  *
1766  * This information is also exported via sysfs to userspace.
1767  *
1768  * DRMS will sum the total requested load on the regulator and change
1769  * to the most efficient operating mode if platform constraints allow.
1770  *
1771  * Returns the new regulator mode or error.
1772  */
1773 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1774 {
1775         struct regulator_dev *rdev = regulator->rdev;
1776         struct regulator *consumer;
1777         int ret, output_uV, input_uV, total_uA_load = 0;
1778         unsigned int mode;
1779
1780         mutex_lock(&rdev->mutex);
1781
1782         regulator->uA_load = uA_load;
1783         ret = regulator_check_drms(rdev);
1784         if (ret < 0)
1785                 goto out;
1786         ret = -EINVAL;
1787
1788         /* sanity check */
1789         if (!rdev->desc->ops->get_optimum_mode)
1790                 goto out;
1791
1792         /* get output voltage */
1793         output_uV = rdev->desc->ops->get_voltage(rdev);
1794         if (output_uV <= 0) {
1795                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1796                         __func__, rdev_get_name(rdev));
1797                 goto out;
1798         }
1799
1800         /* get input voltage */
1801         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1802                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1803         else
1804                 input_uV = rdev->constraints->input_uV;
1805         if (input_uV <= 0) {
1806                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1807                         __func__, rdev_get_name(rdev));
1808                 goto out;
1809         }
1810
1811         /* calc total requested load for this regulator */
1812         list_for_each_entry(consumer, &rdev->consumer_list, list)
1813             total_uA_load += consumer->uA_load;
1814
1815         mode = rdev->desc->ops->get_optimum_mode(rdev,
1816                                                  input_uV, output_uV,
1817                                                  total_uA_load);
1818         ret = regulator_check_mode(rdev, mode);
1819         if (ret < 0) {
1820                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1821                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1822                         total_uA_load, input_uV, output_uV);
1823                 goto out;
1824         }
1825
1826         ret = rdev->desc->ops->set_mode(rdev, mode);
1827         if (ret < 0) {
1828                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1829                         __func__, mode, rdev_get_name(rdev));
1830                 goto out;
1831         }
1832         ret = mode;
1833 out:
1834         mutex_unlock(&rdev->mutex);
1835         return ret;
1836 }
1837 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1838
1839 /**
1840  * regulator_register_notifier - register regulator event notifier
1841  * @regulator: regulator source
1842  * @nb: notifier block
1843  *
1844  * Register notifier block to receive regulator events.
1845  */
1846 int regulator_register_notifier(struct regulator *regulator,
1847                               struct notifier_block *nb)
1848 {
1849         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1850                                                 nb);
1851 }
1852 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1853
1854 /**
1855  * regulator_unregister_notifier - unregister regulator event notifier
1856  * @regulator: regulator source
1857  * @nb: notifier block
1858  *
1859  * Unregister regulator event notifier block.
1860  */
1861 int regulator_unregister_notifier(struct regulator *regulator,
1862                                 struct notifier_block *nb)
1863 {
1864         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1865                                                   nb);
1866 }
1867 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1868
1869 /* notify regulator consumers and downstream regulator consumers.
1870  * Note mutex must be held by caller.
1871  */
1872 static void _notifier_call_chain(struct regulator_dev *rdev,
1873                                   unsigned long event, void *data)
1874 {
1875         struct regulator_dev *_rdev;
1876
1877         /* call rdev chain first */
1878         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1879
1880         /* now notify regulator we supply */
1881         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1882           mutex_lock(&_rdev->mutex);
1883           _notifier_call_chain(_rdev, event, data);
1884           mutex_unlock(&_rdev->mutex);
1885         }
1886 }
1887
1888 /**
1889  * regulator_bulk_get - get multiple regulator consumers
1890  *
1891  * @dev:           Device to supply
1892  * @num_consumers: Number of consumers to register
1893  * @consumers:     Configuration of consumers; clients are stored here.
1894  *
1895  * @return 0 on success, an errno on failure.
1896  *
1897  * This helper function allows drivers to get several regulator
1898  * consumers in one operation.  If any of the regulators cannot be
1899  * acquired then any regulators that were allocated will be freed
1900  * before returning to the caller.
1901  */
1902 int regulator_bulk_get(struct device *dev, int num_consumers,
1903                        struct regulator_bulk_data *consumers)
1904 {
1905         int i;
1906         int ret;
1907
1908         for (i = 0; i < num_consumers; i++)
1909                 consumers[i].consumer = NULL;
1910
1911         for (i = 0; i < num_consumers; i++) {
1912                 consumers[i].consumer = regulator_get(dev,
1913                                                       consumers[i].supply);
1914                 if (IS_ERR(consumers[i].consumer)) {
1915                         ret = PTR_ERR(consumers[i].consumer);
1916                         dev_err(dev, "Failed to get supply '%s': %d\n",
1917                                 consumers[i].supply, ret);
1918                         consumers[i].consumer = NULL;
1919                         goto err;
1920                 }
1921         }
1922
1923         return 0;
1924
1925 err:
1926         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1927                 regulator_put(consumers[i].consumer);
1928
1929         return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1932
1933 /**
1934  * regulator_bulk_enable - enable multiple regulator consumers
1935  *
1936  * @num_consumers: Number of consumers
1937  * @consumers:     Consumer data; clients are stored here.
1938  * @return         0 on success, an errno on failure
1939  *
1940  * This convenience API allows consumers to enable multiple regulator
1941  * clients in a single API call.  If any consumers cannot be enabled
1942  * then any others that were enabled will be disabled again prior to
1943  * return.
1944  */
1945 int regulator_bulk_enable(int num_consumers,
1946                           struct regulator_bulk_data *consumers)
1947 {
1948         int i;
1949         int ret;
1950
1951         for (i = 0; i < num_consumers; i++) {
1952                 ret = regulator_enable(consumers[i].consumer);
1953                 if (ret != 0)
1954                         goto err;
1955         }
1956
1957         return 0;
1958
1959 err:
1960         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1961         for (i = 0; i < num_consumers; i++)
1962                 regulator_disable(consumers[i].consumer);
1963
1964         return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1967
1968 /**
1969  * regulator_bulk_disable - disable multiple regulator consumers
1970  *
1971  * @num_consumers: Number of consumers
1972  * @consumers:     Consumer data; clients are stored here.
1973  * @return         0 on success, an errno on failure
1974  *
1975  * This convenience API allows consumers to disable multiple regulator
1976  * clients in a single API call.  If any consumers cannot be enabled
1977  * then any others that were disabled will be disabled again prior to
1978  * return.
1979  */
1980 int regulator_bulk_disable(int num_consumers,
1981                            struct regulator_bulk_data *consumers)
1982 {
1983         int i;
1984         int ret;
1985
1986         for (i = 0; i < num_consumers; i++) {
1987                 ret = regulator_disable(consumers[i].consumer);
1988                 if (ret != 0)
1989                         goto err;
1990         }
1991
1992         return 0;
1993
1994 err:
1995         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
1996                ret);
1997         for (i = 0; i < num_consumers; i++)
1998                 regulator_enable(consumers[i].consumer);
1999
2000         return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2003
2004 /**
2005  * regulator_bulk_free - free multiple regulator consumers
2006  *
2007  * @num_consumers: Number of consumers
2008  * @consumers:     Consumer data; clients are stored here.
2009  *
2010  * This convenience API allows consumers to free multiple regulator
2011  * clients in a single API call.
2012  */
2013 void regulator_bulk_free(int num_consumers,
2014                          struct regulator_bulk_data *consumers)
2015 {
2016         int i;
2017
2018         for (i = 0; i < num_consumers; i++) {
2019                 regulator_put(consumers[i].consumer);
2020                 consumers[i].consumer = NULL;
2021         }
2022 }
2023 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2024
2025 /**
2026  * regulator_notifier_call_chain - call regulator event notifier
2027  * @rdev: regulator source
2028  * @event: notifier block
2029  * @data: callback-specific data.
2030  *
2031  * Called by regulator drivers to notify clients a regulator event has
2032  * occurred. We also notify regulator clients downstream.
2033  * Note lock must be held by caller.
2034  */
2035 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2036                                   unsigned long event, void *data)
2037 {
2038         _notifier_call_chain(rdev, event, data);
2039         return NOTIFY_DONE;
2040
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2043
2044 /**
2045  * regulator_mode_to_status - convert a regulator mode into a status
2046  *
2047  * @mode: Mode to convert
2048  *
2049  * Convert a regulator mode into a status.
2050  */
2051 int regulator_mode_to_status(unsigned int mode)
2052 {
2053         switch (mode) {
2054         case REGULATOR_MODE_FAST:
2055                 return REGULATOR_STATUS_FAST;
2056         case REGULATOR_MODE_NORMAL:
2057                 return REGULATOR_STATUS_NORMAL;
2058         case REGULATOR_MODE_IDLE:
2059                 return REGULATOR_STATUS_IDLE;
2060         case REGULATOR_STATUS_STANDBY:
2061                 return REGULATOR_STATUS_STANDBY;
2062         default:
2063                 return 0;
2064         }
2065 }
2066 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2067
2068 /*
2069  * To avoid cluttering sysfs (and memory) with useless state, only
2070  * create attributes that can be meaningfully displayed.
2071  */
2072 static int add_regulator_attributes(struct regulator_dev *rdev)
2073 {
2074         struct device           *dev = &rdev->dev;
2075         struct regulator_ops    *ops = rdev->desc->ops;
2076         int                     status = 0;
2077
2078         /* some attributes need specific methods to be displayed */
2079         if (ops->get_voltage) {
2080                 status = device_create_file(dev, &dev_attr_microvolts);
2081                 if (status < 0)
2082                         return status;
2083         }
2084         if (ops->get_current_limit) {
2085                 status = device_create_file(dev, &dev_attr_microamps);
2086                 if (status < 0)
2087                         return status;
2088         }
2089         if (ops->get_mode) {
2090                 status = device_create_file(dev, &dev_attr_opmode);
2091                 if (status < 0)
2092                         return status;
2093         }
2094         if (ops->is_enabled) {
2095                 status = device_create_file(dev, &dev_attr_state);
2096                 if (status < 0)
2097                         return status;
2098         }
2099         if (ops->get_status) {
2100                 status = device_create_file(dev, &dev_attr_status);
2101                 if (status < 0)
2102                         return status;
2103         }
2104
2105         /* some attributes are type-specific */
2106         if (rdev->desc->type == REGULATOR_CURRENT) {
2107                 status = device_create_file(dev, &dev_attr_requested_microamps);
2108                 if (status < 0)
2109                         return status;
2110         }
2111
2112         /* all the other attributes exist to support constraints;
2113          * don't show them if there are no constraints, or if the
2114          * relevant supporting methods are missing.
2115          */
2116         if (!rdev->constraints)
2117                 return status;
2118
2119         /* constraints need specific supporting methods */
2120         if (ops->set_voltage) {
2121                 status = device_create_file(dev, &dev_attr_min_microvolts);
2122                 if (status < 0)
2123                         return status;
2124                 status = device_create_file(dev, &dev_attr_max_microvolts);
2125                 if (status < 0)
2126                         return status;
2127         }
2128         if (ops->set_current_limit) {
2129                 status = device_create_file(dev, &dev_attr_min_microamps);
2130                 if (status < 0)
2131                         return status;
2132                 status = device_create_file(dev, &dev_attr_max_microamps);
2133                 if (status < 0)
2134                         return status;
2135         }
2136
2137         /* suspend mode constraints need multiple supporting methods */
2138         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2139                 return status;
2140
2141         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2142         if (status < 0)
2143                 return status;
2144         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2145         if (status < 0)
2146                 return status;
2147         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2148         if (status < 0)
2149                 return status;
2150
2151         if (ops->set_suspend_voltage) {
2152                 status = device_create_file(dev,
2153                                 &dev_attr_suspend_standby_microvolts);
2154                 if (status < 0)
2155                         return status;
2156                 status = device_create_file(dev,
2157                                 &dev_attr_suspend_mem_microvolts);
2158                 if (status < 0)
2159                         return status;
2160                 status = device_create_file(dev,
2161                                 &dev_attr_suspend_disk_microvolts);
2162                 if (status < 0)
2163                         return status;
2164         }
2165
2166         if (ops->set_suspend_mode) {
2167                 status = device_create_file(dev,
2168                                 &dev_attr_suspend_standby_mode);
2169                 if (status < 0)
2170                         return status;
2171                 status = device_create_file(dev,
2172                                 &dev_attr_suspend_mem_mode);
2173                 if (status < 0)
2174                         return status;
2175                 status = device_create_file(dev,
2176                                 &dev_attr_suspend_disk_mode);
2177                 if (status < 0)
2178                         return status;
2179         }
2180
2181         return status;
2182 }
2183
2184 /**
2185  * regulator_register - register regulator
2186  * @regulator_desc: regulator to register
2187  * @dev: struct device for the regulator
2188  * @init_data: platform provided init data, passed through by driver
2189  * @driver_data: private regulator data
2190  *
2191  * Called by regulator drivers to register a regulator.
2192  * Returns 0 on success.
2193  */
2194 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2195         struct device *dev, struct regulator_init_data *init_data,
2196         void *driver_data)
2197 {
2198         static atomic_t regulator_no = ATOMIC_INIT(0);
2199         struct regulator_dev *rdev;
2200         int ret, i;
2201
2202         if (regulator_desc == NULL)
2203                 return ERR_PTR(-EINVAL);
2204
2205         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2206                 return ERR_PTR(-EINVAL);
2207
2208         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2209             regulator_desc->type != REGULATOR_CURRENT)
2210                 return ERR_PTR(-EINVAL);
2211
2212         if (!init_data)
2213                 return ERR_PTR(-EINVAL);
2214
2215         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2216         if (rdev == NULL)
2217                 return ERR_PTR(-ENOMEM);
2218
2219         mutex_lock(&regulator_list_mutex);
2220
2221         mutex_init(&rdev->mutex);
2222         rdev->reg_data = driver_data;
2223         rdev->owner = regulator_desc->owner;
2224         rdev->desc = regulator_desc;
2225         INIT_LIST_HEAD(&rdev->consumer_list);
2226         INIT_LIST_HEAD(&rdev->supply_list);
2227         INIT_LIST_HEAD(&rdev->list);
2228         INIT_LIST_HEAD(&rdev->slist);
2229         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2230
2231         /* preform any regulator specific init */
2232         if (init_data->regulator_init) {
2233                 ret = init_data->regulator_init(rdev->reg_data);
2234                 if (ret < 0)
2235                         goto clean;
2236         }
2237
2238         /* register with sysfs */
2239         rdev->dev.class = &regulator_class;
2240         rdev->dev.parent = dev;
2241         dev_set_name(&rdev->dev, "regulator.%d",
2242                      atomic_inc_return(&regulator_no) - 1);
2243         ret = device_register(&rdev->dev);
2244         if (ret != 0)
2245                 goto clean;
2246
2247         dev_set_drvdata(&rdev->dev, rdev);
2248
2249         /* set regulator constraints */
2250         ret = set_machine_constraints(rdev, &init_data->constraints);
2251         if (ret < 0)
2252                 goto scrub;
2253
2254         /* add attributes supported by this regulator */
2255         ret = add_regulator_attributes(rdev);
2256         if (ret < 0)
2257                 goto scrub;
2258
2259         /* set supply regulator if it exists */
2260         if (init_data->supply_regulator_dev) {
2261                 ret = set_supply(rdev,
2262                         dev_get_drvdata(init_data->supply_regulator_dev));
2263                 if (ret < 0)
2264                         goto scrub;
2265         }
2266
2267         /* add consumers devices */
2268         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2269                 ret = set_consumer_device_supply(rdev,
2270                         init_data->consumer_supplies[i].dev,
2271                         init_data->consumer_supplies[i].dev_name,
2272                         init_data->consumer_supplies[i].supply);
2273                 if (ret < 0) {
2274                         for (--i; i >= 0; i--)
2275                                 unset_consumer_device_supply(rdev,
2276                                     init_data->consumer_supplies[i].dev_name,
2277                                     init_data->consumer_supplies[i].dev);
2278                         goto scrub;
2279                 }
2280         }
2281
2282         list_add(&rdev->list, &regulator_list);
2283 out:
2284         mutex_unlock(&regulator_list_mutex);
2285         return rdev;
2286
2287 scrub:
2288         device_unregister(&rdev->dev);
2289         /* device core frees rdev */
2290         rdev = ERR_PTR(ret);
2291         goto out;
2292
2293 clean:
2294         kfree(rdev);
2295         rdev = ERR_PTR(ret);
2296         goto out;
2297 }
2298 EXPORT_SYMBOL_GPL(regulator_register);
2299
2300 /**
2301  * regulator_unregister - unregister regulator
2302  * @rdev: regulator to unregister
2303  *
2304  * Called by regulator drivers to unregister a regulator.
2305  */
2306 void regulator_unregister(struct regulator_dev *rdev)
2307 {
2308         if (rdev == NULL)
2309                 return;
2310
2311         mutex_lock(&regulator_list_mutex);
2312         WARN_ON(rdev->open_count);
2313         unset_regulator_supplies(rdev);
2314         list_del(&rdev->list);
2315         if (rdev->supply)
2316                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2317         device_unregister(&rdev->dev);
2318         mutex_unlock(&regulator_list_mutex);
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_unregister);
2321
2322 /**
2323  * regulator_suspend_prepare - prepare regulators for system wide suspend
2324  * @state: system suspend state
2325  *
2326  * Configure each regulator with it's suspend operating parameters for state.
2327  * This will usually be called by machine suspend code prior to supending.
2328  */
2329 int regulator_suspend_prepare(suspend_state_t state)
2330 {
2331         struct regulator_dev *rdev;
2332         int ret = 0;
2333
2334         /* ON is handled by regulator active state */
2335         if (state == PM_SUSPEND_ON)
2336                 return -EINVAL;
2337
2338         mutex_lock(&regulator_list_mutex);
2339         list_for_each_entry(rdev, &regulator_list, list) {
2340
2341                 mutex_lock(&rdev->mutex);
2342                 ret = suspend_prepare(rdev, state);
2343                 mutex_unlock(&rdev->mutex);
2344
2345                 if (ret < 0) {
2346                         printk(KERN_ERR "%s: failed to prepare %s\n",
2347                                 __func__, rdev_get_name(rdev));
2348                         goto out;
2349                 }
2350         }
2351 out:
2352         mutex_unlock(&regulator_list_mutex);
2353         return ret;
2354 }
2355 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2356
2357 /**
2358  * regulator_has_full_constraints - the system has fully specified constraints
2359  *
2360  * Calling this function will cause the regulator API to disable all
2361  * regulators which have a zero use count and don't have an always_on
2362  * constraint in a late_initcall.
2363  *
2364  * The intention is that this will become the default behaviour in a
2365  * future kernel release so users are encouraged to use this facility
2366  * now.
2367  */
2368 void regulator_has_full_constraints(void)
2369 {
2370         has_full_constraints = 1;
2371 }
2372 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2373
2374 /**
2375  * rdev_get_drvdata - get rdev regulator driver data
2376  * @rdev: regulator
2377  *
2378  * Get rdev regulator driver private data. This call can be used in the
2379  * regulator driver context.
2380  */
2381 void *rdev_get_drvdata(struct regulator_dev *rdev)
2382 {
2383         return rdev->reg_data;
2384 }
2385 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2386
2387 /**
2388  * regulator_get_drvdata - get regulator driver data
2389  * @regulator: regulator
2390  *
2391  * Get regulator driver private data. This call can be used in the consumer
2392  * driver context when non API regulator specific functions need to be called.
2393  */
2394 void *regulator_get_drvdata(struct regulator *regulator)
2395 {
2396         return regulator->rdev->reg_data;
2397 }
2398 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2399
2400 /**
2401  * regulator_set_drvdata - set regulator driver data
2402  * @regulator: regulator
2403  * @data: data
2404  */
2405 void regulator_set_drvdata(struct regulator *regulator, void *data)
2406 {
2407         regulator->rdev->reg_data = data;
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2410
2411 /**
2412  * regulator_get_id - get regulator ID
2413  * @rdev: regulator
2414  */
2415 int rdev_get_id(struct regulator_dev *rdev)
2416 {
2417         return rdev->desc->id;
2418 }
2419 EXPORT_SYMBOL_GPL(rdev_get_id);
2420
2421 struct device *rdev_get_dev(struct regulator_dev *rdev)
2422 {
2423         return &rdev->dev;
2424 }
2425 EXPORT_SYMBOL_GPL(rdev_get_dev);
2426
2427 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2428 {
2429         return reg_init_data->driver_data;
2430 }
2431 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2432
2433 static int __init regulator_init(void)
2434 {
2435         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2436         return class_register(&regulator_class);
2437 }
2438
2439 /* init early to allow our consumers to complete system booting */
2440 core_initcall(regulator_init);
2441
2442 static int __init regulator_init_complete(void)
2443 {
2444         struct regulator_dev *rdev;
2445         struct regulator_ops *ops;
2446         struct regulation_constraints *c;
2447         int enabled, ret;
2448         const char *name;
2449
2450         mutex_lock(&regulator_list_mutex);
2451
2452         /* If we have a full configuration then disable any regulators
2453          * which are not in use or always_on.  This will become the
2454          * default behaviour in the future.
2455          */
2456         list_for_each_entry(rdev, &regulator_list, list) {
2457                 ops = rdev->desc->ops;
2458                 c = rdev->constraints;
2459
2460                 name = rdev_get_name(rdev);
2461
2462                 if (!ops->disable || (c && c->always_on))
2463                         continue;
2464
2465                 mutex_lock(&rdev->mutex);
2466
2467                 if (rdev->use_count)
2468                         goto unlock;
2469
2470                 /* If we can't read the status assume it's on. */
2471                 if (ops->is_enabled)
2472                         enabled = ops->is_enabled(rdev);
2473                 else
2474                         enabled = 1;
2475
2476                 if (!enabled)
2477                         goto unlock;
2478
2479                 if (has_full_constraints) {
2480                         /* We log since this may kill the system if it
2481                          * goes wrong. */
2482                         printk(KERN_INFO "%s: disabling %s\n",
2483                                __func__, name);
2484                         ret = ops->disable(rdev);
2485                         if (ret != 0) {
2486                                 printk(KERN_ERR
2487                                        "%s: couldn't disable %s: %d\n",
2488                                        __func__, name, ret);
2489                         }
2490                 } else {
2491                         /* The intention is that in future we will
2492                          * assume that full constraints are provided
2493                          * so warn even if we aren't going to do
2494                          * anything here.
2495                          */
2496                         printk(KERN_WARNING
2497                                "%s: incomplete constraints, leaving %s on\n",
2498                                __func__, name);
2499                 }
2500
2501 unlock:
2502                 mutex_unlock(&rdev->mutex);
2503         }
2504
2505         mutex_unlock(&regulator_list_mutex);
2506
2507         return 0;
2508 }
2509 late_initcall(regulator_init_complete);