b85e4a9dafcf5d23f186cc3849f2fc4e4c198c24
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /*
33  * struct regulator_map
34  *
35  * Used to provide symbolic supply names to devices.
36  */
37 struct regulator_map {
38         struct list_head list;
39         struct device *dev;
40         const char *supply;
41         struct regulator_dev *regulator;
42 };
43
44 /*
45  * struct regulator
46  *
47  * One for each consumer device.
48  */
49 struct regulator {
50         struct device *dev;
51         struct list_head list;
52         int uA_load;
53         int min_uV;
54         int max_uV;
55         int enabled; /* count of client enables */
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284         return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288 static ssize_t regulator_status_show(struct device *dev,
289                                    struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292         int status;
293         char *label;
294
295         status = rdev->desc->ops->get_status(rdev);
296         if (status < 0)
297                 return status;
298
299         switch (status) {
300         case REGULATOR_STATUS_OFF:
301                 label = "off";
302                 break;
303         case REGULATOR_STATUS_ON:
304                 label = "on";
305                 break;
306         case REGULATOR_STATUS_ERROR:
307                 label = "error";
308                 break;
309         case REGULATOR_STATUS_FAST:
310                 label = "fast";
311                 break;
312         case REGULATOR_STATUS_NORMAL:
313                 label = "normal";
314                 break;
315         case REGULATOR_STATUS_IDLE:
316                 label = "idle";
317                 break;
318         case REGULATOR_STATUS_STANDBY:
319                 label = "standby";
320                 break;
321         default:
322                 return -ERANGE;
323         }
324
325         return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329 static ssize_t regulator_min_uA_show(struct device *dev,
330                                     struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         if (!rdev->constraints)
335                 return sprintf(buf, "constraint not defined\n");
336
337         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341 static ssize_t regulator_max_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353 static ssize_t regulator_min_uV_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365 static ssize_t regulator_max_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377 static ssize_t regulator_total_uA_show(struct device *dev,
378                                       struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381         struct regulator *regulator;
382         int uA = 0;
383
384         mutex_lock(&rdev->mutex);
385         list_for_each_entry(regulator, &rdev->consumer_list, list)
386             uA += regulator->uA_load;
387         mutex_unlock(&rdev->mutex);
388         return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392 static ssize_t regulator_num_users_show(struct device *dev,
393                                       struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         return sprintf(buf, "%d\n", rdev->use_count);
397 }
398
399 static ssize_t regulator_type_show(struct device *dev,
400                                   struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404         switch (rdev->desc->type) {
405         case REGULATOR_VOLTAGE:
406                 return sprintf(buf, "voltage\n");
407         case REGULATOR_CURRENT:
408                 return sprintf(buf, "current\n");
409         }
410         return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421                 regulator_suspend_mem_uV_show, NULL);
422
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431                 regulator_suspend_disk_uV_show, NULL);
432
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441                 regulator_suspend_standby_uV_show, NULL);
442
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return regulator_print_opmode(buf,
449                 rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452                 regulator_suspend_mem_mode_show, NULL);
453
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463                 regulator_suspend_disk_mode_show, NULL);
464
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474                 regulator_suspend_standby_mode_show, NULL);
475
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477                                    struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_state(buf,
482                         rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485                 regulator_suspend_mem_state_show, NULL);
486
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496                 regulator_suspend_disk_state_show, NULL);
497
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507                 regulator_suspend_standby_state_show, NULL);
508
509
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515         __ATTR(name, 0444, regulator_name_show, NULL),
516         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517         __ATTR(type, 0444, regulator_type_show, NULL),
518         __ATTR_NULL,
519 };
520
521 static void regulator_dev_release(struct device *dev)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524         kfree(rdev);
525 }
526
527 static struct class regulator_class = {
528         .name = "regulator",
529         .dev_release = regulator_dev_release,
530         .dev_attrs = regulator_dev_attrs,
531 };
532
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537         struct regulator *sibling;
538         int current_uA = 0, output_uV, input_uV, err;
539         unsigned int mode;
540
541         err = regulator_check_drms(rdev);
542         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544         return;
545
546         /* get output voltage */
547         output_uV = rdev->desc->ops->get_voltage(rdev);
548         if (output_uV <= 0)
549                 return;
550
551         /* get input voltage */
552         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554         else
555                 input_uV = rdev->constraints->input_uV;
556         if (input_uV <= 0)
557                 return;
558
559         /* calc total requested load */
560         list_for_each_entry(sibling, &rdev->consumer_list, list)
561             current_uA += sibling->uA_load;
562
563         /* now get the optimum mode for our new total regulator load */
564         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565                                                   output_uV, current_uA);
566
567         /* check the new mode is allowed */
568         err = regulator_check_mode(rdev, mode);
569         if (err == 0)
570                 rdev->desc->ops->set_mode(rdev, mode);
571 }
572
573 static int suspend_set_state(struct regulator_dev *rdev,
574         struct regulator_state *rstate)
575 {
576         int ret = 0;
577
578         /* enable & disable are mandatory for suspend control */
579         if (!rdev->desc->ops->set_suspend_enable ||
580                 !rdev->desc->ops->set_suspend_disable) {
581                 printk(KERN_ERR "%s: no way to set suspend state\n",
582                         __func__);
583                 return -EINVAL;
584         }
585
586         if (rstate->enabled)
587                 ret = rdev->desc->ops->set_suspend_enable(rdev);
588         else
589                 ret = rdev->desc->ops->set_suspend_disable(rdev);
590         if (ret < 0) {
591                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592                 return ret;
593         }
594
595         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597                 if (ret < 0) {
598                         printk(KERN_ERR "%s: failed to set voltage\n",
599                                 __func__);
600                         return ret;
601                 }
602         }
603
604         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606                 if (ret < 0) {
607                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
608                         return ret;
609                 }
610         }
611         return ret;
612 }
613
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617         if (!rdev->constraints)
618                 return -EINVAL;
619
620         switch (state) {
621         case PM_SUSPEND_STANDBY:
622                 return suspend_set_state(rdev,
623                         &rdev->constraints->state_standby);
624         case PM_SUSPEND_MEM:
625                 return suspend_set_state(rdev,
626                         &rdev->constraints->state_mem);
627         case PM_SUSPEND_MAX:
628                 return suspend_set_state(rdev,
629                         &rdev->constraints->state_disk);
630         default:
631                 return -EINVAL;
632         }
633 }
634
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637         struct regulation_constraints *constraints = rdev->constraints;
638         char buf[80];
639         int count;
640
641         if (rdev->desc->type == REGULATOR_VOLTAGE) {
642                 if (constraints->min_uV == constraints->max_uV)
643                         count = sprintf(buf, "%d mV ",
644                                         constraints->min_uV / 1000);
645                 else
646                         count = sprintf(buf, "%d <--> %d mV ",
647                                         constraints->min_uV / 1000,
648                                         constraints->max_uV / 1000);
649         } else {
650                 if (constraints->min_uA == constraints->max_uA)
651                         count = sprintf(buf, "%d mA ",
652                                         constraints->min_uA / 1000);
653                 else
654                         count = sprintf(buf, "%d <--> %d mA ",
655                                         constraints->min_uA / 1000,
656                                         constraints->max_uA / 1000);
657         }
658         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659                 count += sprintf(buf + count, "fast ");
660         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661                 count += sprintf(buf + count, "normal ");
662         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663                 count += sprintf(buf + count, "idle ");
664         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665                 count += sprintf(buf + count, "standby");
666
667         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682         struct regulation_constraints *constraints)
683 {
684         int ret = 0;
685         const char *name;
686         struct regulator_ops *ops = rdev->desc->ops;
687
688         if (constraints->name)
689                 name = constraints->name;
690         else if (rdev->desc->name)
691                 name = rdev->desc->name;
692         else
693                 name = "regulator";
694
695         rdev->constraints = constraints;
696
697         /* do we need to apply the constraint voltage */
698         if (rdev->constraints->apply_uV &&
699                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
700                 ops->set_voltage) {
701                 ret = ops->set_voltage(rdev,
702                         rdev->constraints->min_uV, rdev->constraints->max_uV);
703                         if (ret < 0) {
704                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
705                                        __func__,
706                                        rdev->constraints->min_uV, name);
707                                 rdev->constraints = NULL;
708                                 goto out;
709                         }
710         }
711
712         /* are we enabled at boot time by firmware / bootloader */
713         if (rdev->constraints->boot_on)
714                 rdev->use_count = 1;
715
716         /* do we need to setup our suspend state */
717         if (constraints->initial_state) {
718                 ret = suspend_prepare(rdev, constraints->initial_state);
719                 if (ret < 0) {
720                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
721                                __func__, name);
722                         rdev->constraints = NULL;
723                         goto out;
724                 }
725         }
726
727         /* if always_on is set then turn the regulator on if it's not
728          * already on. */
729         if (constraints->always_on && ops->enable &&
730             ((ops->is_enabled && !ops->is_enabled(rdev)) ||
731              (!ops->is_enabled && !constraints->boot_on))) {
732                 ret = ops->enable(rdev);
733                 if (ret < 0) {
734                         printk(KERN_ERR "%s: failed to enable %s\n",
735                                __func__, name);
736                         rdev->constraints = NULL;
737                         goto out;
738                 }
739         }
740
741         print_constraints(rdev);
742 out:
743         return ret;
744 }
745
746 /**
747  * set_supply - set regulator supply regulator
748  * @rdev: regulator name
749  * @supply_rdev: supply regulator name
750  *
751  * Called by platform initialisation code to set the supply regulator for this
752  * regulator. This ensures that a regulators supply will also be enabled by the
753  * core if it's child is enabled.
754  */
755 static int set_supply(struct regulator_dev *rdev,
756         struct regulator_dev *supply_rdev)
757 {
758         int err;
759
760         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
761                                 "supply");
762         if (err) {
763                 printk(KERN_ERR
764                        "%s: could not add device link %s err %d\n",
765                        __func__, supply_rdev->dev.kobj.name, err);
766                        goto out;
767         }
768         rdev->supply = supply_rdev;
769         list_add(&rdev->slist, &supply_rdev->supply_list);
770 out:
771         return err;
772 }
773
774 /**
775  * set_consumer_device_supply: Bind a regulator to a symbolic supply
776  * @rdev:         regulator source
777  * @consumer_dev: device the supply applies to
778  * @supply:       symbolic name for supply
779  *
780  * Allows platform initialisation code to map physical regulator
781  * sources to symbolic names for supplies for use by devices.  Devices
782  * should use these symbolic names to request regulators, avoiding the
783  * need to provide board-specific regulator names as platform data.
784  */
785 static int set_consumer_device_supply(struct regulator_dev *rdev,
786         struct device *consumer_dev, const char *supply)
787 {
788         struct regulator_map *node;
789
790         if (supply == NULL)
791                 return -EINVAL;
792
793         list_for_each_entry(node, &regulator_map_list, list) {
794                 if (consumer_dev != node->dev)
795                         continue;
796                 if (strcmp(node->supply, supply) != 0)
797                         continue;
798
799                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
800                                 dev_name(&node->regulator->dev),
801                                 node->regulator->desc->name,
802                                 supply,
803                                 dev_name(&rdev->dev), rdev->desc->name);
804                 return -EBUSY;
805         }
806
807         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
808         if (node == NULL)
809                 return -ENOMEM;
810
811         node->regulator = rdev;
812         node->dev = consumer_dev;
813         node->supply = supply;
814
815         list_add(&node->list, &regulator_map_list);
816         return 0;
817 }
818
819 static void unset_consumer_device_supply(struct regulator_dev *rdev,
820         struct device *consumer_dev)
821 {
822         struct regulator_map *node, *n;
823
824         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
825                 if (rdev == node->regulator &&
826                         consumer_dev == node->dev) {
827                         list_del(&node->list);
828                         kfree(node);
829                         return;
830                 }
831         }
832 }
833
834 static void unset_regulator_supplies(struct regulator_dev *rdev)
835 {
836         struct regulator_map *node, *n;
837
838         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
839                 if (rdev == node->regulator) {
840                         list_del(&node->list);
841                         kfree(node);
842                         return;
843                 }
844         }
845 }
846
847 #define REG_STR_SIZE    32
848
849 static struct regulator *create_regulator(struct regulator_dev *rdev,
850                                           struct device *dev,
851                                           const char *supply_name)
852 {
853         struct regulator *regulator;
854         char buf[REG_STR_SIZE];
855         int err, size;
856
857         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
858         if (regulator == NULL)
859                 return NULL;
860
861         mutex_lock(&rdev->mutex);
862         regulator->rdev = rdev;
863         list_add(&regulator->list, &rdev->consumer_list);
864
865         if (dev) {
866                 /* create a 'requested_microamps_name' sysfs entry */
867                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
868                         supply_name);
869                 if (size >= REG_STR_SIZE)
870                         goto overflow_err;
871
872                 regulator->dev = dev;
873                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
874                 if (regulator->dev_attr.attr.name == NULL)
875                         goto attr_name_err;
876
877                 regulator->dev_attr.attr.owner = THIS_MODULE;
878                 regulator->dev_attr.attr.mode = 0444;
879                 regulator->dev_attr.show = device_requested_uA_show;
880                 err = device_create_file(dev, &regulator->dev_attr);
881                 if (err < 0) {
882                         printk(KERN_WARNING "%s: could not add regulator_dev"
883                                 " load sysfs\n", __func__);
884                         goto attr_name_err;
885                 }
886
887                 /* also add a link to the device sysfs entry */
888                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
889                                  dev->kobj.name, supply_name);
890                 if (size >= REG_STR_SIZE)
891                         goto attr_err;
892
893                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
894                 if (regulator->supply_name == NULL)
895                         goto attr_err;
896
897                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
898                                         buf);
899                 if (err) {
900                         printk(KERN_WARNING
901                                "%s: could not add device link %s err %d\n",
902                                __func__, dev->kobj.name, err);
903                         device_remove_file(dev, &regulator->dev_attr);
904                         goto link_name_err;
905                 }
906         }
907         mutex_unlock(&rdev->mutex);
908         return regulator;
909 link_name_err:
910         kfree(regulator->supply_name);
911 attr_err:
912         device_remove_file(regulator->dev, &regulator->dev_attr);
913 attr_name_err:
914         kfree(regulator->dev_attr.attr.name);
915 overflow_err:
916         list_del(&regulator->list);
917         kfree(regulator);
918         mutex_unlock(&rdev->mutex);
919         return NULL;
920 }
921
922 /**
923  * regulator_get - lookup and obtain a reference to a regulator.
924  * @dev: device for regulator "consumer"
925  * @id: Supply name or regulator ID.
926  *
927  * Returns a struct regulator corresponding to the regulator producer,
928  * or IS_ERR() condition containing errno.  Use of supply names
929  * configured via regulator_set_device_supply() is strongly
930  * encouraged.
931  */
932 struct regulator *regulator_get(struct device *dev, const char *id)
933 {
934         struct regulator_dev *rdev;
935         struct regulator_map *map;
936         struct regulator *regulator = ERR_PTR(-ENODEV);
937
938         if (id == NULL) {
939                 printk(KERN_ERR "regulator: get() with no identifier\n");
940                 return regulator;
941         }
942
943         mutex_lock(&regulator_list_mutex);
944
945         list_for_each_entry(map, &regulator_map_list, list) {
946                 if (dev == map->dev &&
947                     strcmp(map->supply, id) == 0) {
948                         rdev = map->regulator;
949                         goto found;
950                 }
951         }
952         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
953                id);
954         mutex_unlock(&regulator_list_mutex);
955         return regulator;
956
957 found:
958         if (!try_module_get(rdev->owner))
959                 goto out;
960
961         regulator = create_regulator(rdev, dev, id);
962         if (regulator == NULL) {
963                 regulator = ERR_PTR(-ENOMEM);
964                 module_put(rdev->owner);
965         }
966
967 out:
968         mutex_unlock(&regulator_list_mutex);
969         return regulator;
970 }
971 EXPORT_SYMBOL_GPL(regulator_get);
972
973 /**
974  * regulator_put - "free" the regulator source
975  * @regulator: regulator source
976  *
977  * Note: drivers must ensure that all regulator_enable calls made on this
978  * regulator source are balanced by regulator_disable calls prior to calling
979  * this function.
980  */
981 void regulator_put(struct regulator *regulator)
982 {
983         struct regulator_dev *rdev;
984
985         if (regulator == NULL || IS_ERR(regulator))
986                 return;
987
988         mutex_lock(&regulator_list_mutex);
989         rdev = regulator->rdev;
990
991         if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
992                                regulator->supply_name))
993                 _regulator_disable(rdev);
994
995         /* remove any sysfs entries */
996         if (regulator->dev) {
997                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
998                 kfree(regulator->supply_name);
999                 device_remove_file(regulator->dev, &regulator->dev_attr);
1000                 kfree(regulator->dev_attr.attr.name);
1001         }
1002         list_del(&regulator->list);
1003         kfree(regulator);
1004
1005         module_put(rdev->owner);
1006         mutex_unlock(&regulator_list_mutex);
1007 }
1008 EXPORT_SYMBOL_GPL(regulator_put);
1009
1010 /* locks held by regulator_enable() */
1011 static int _regulator_enable(struct regulator_dev *rdev)
1012 {
1013         int ret = -EINVAL;
1014
1015         if (!rdev->constraints) {
1016                 printk(KERN_ERR "%s: %s has no constraints\n",
1017                        __func__, rdev->desc->name);
1018                 return ret;
1019         }
1020
1021         /* do we need to enable the supply regulator first */
1022         if (rdev->supply) {
1023                 ret = _regulator_enable(rdev->supply);
1024                 if (ret < 0) {
1025                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1026                                __func__, rdev->desc->name, ret);
1027                         return ret;
1028                 }
1029         }
1030
1031         /* check voltage and requested load before enabling */
1032         if (rdev->desc->ops->enable) {
1033
1034                 if (rdev->constraints &&
1035                         (rdev->constraints->valid_ops_mask &
1036                         REGULATOR_CHANGE_DRMS))
1037                         drms_uA_update(rdev);
1038
1039                 ret = rdev->desc->ops->enable(rdev);
1040                 if (ret < 0) {
1041                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1042                                __func__, rdev->desc->name, ret);
1043                         return ret;
1044                 }
1045                 rdev->use_count++;
1046                 return ret;
1047         }
1048
1049         return ret;
1050 }
1051
1052 /**
1053  * regulator_enable - enable regulator output
1054  * @regulator: regulator source
1055  *
1056  * Request that the regulator be enabled with the regulator output at
1057  * the predefined voltage or current value.  Calls to regulator_enable()
1058  * must be balanced with calls to regulator_disable().
1059  *
1060  * NOTE: the output value can be set by other drivers, boot loader or may be
1061  * hardwired in the regulator.
1062  */
1063 int regulator_enable(struct regulator *regulator)
1064 {
1065         struct regulator_dev *rdev = regulator->rdev;
1066         int ret = 0;
1067
1068         mutex_lock(&rdev->mutex);
1069         if (regulator->enabled == 0)
1070                 ret = _regulator_enable(rdev);
1071         else if (regulator->enabled < 0)
1072                 ret = -EIO;
1073         if (ret == 0)
1074                 regulator->enabled++;
1075         mutex_unlock(&rdev->mutex);
1076         return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(regulator_enable);
1079
1080 /* locks held by regulator_disable() */
1081 static int _regulator_disable(struct regulator_dev *rdev)
1082 {
1083         int ret = 0;
1084
1085         /* are we the last user and permitted to disable ? */
1086         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1087
1088                 /* we are last user */
1089                 if (rdev->desc->ops->disable) {
1090                         ret = rdev->desc->ops->disable(rdev);
1091                         if (ret < 0) {
1092                                 printk(KERN_ERR "%s: failed to disable %s\n",
1093                                        __func__, rdev->desc->name);
1094                                 return ret;
1095                         }
1096                 }
1097
1098                 /* decrease our supplies ref count and disable if required */
1099                 if (rdev->supply)
1100                         _regulator_disable(rdev->supply);
1101
1102                 rdev->use_count = 0;
1103         } else if (rdev->use_count > 1) {
1104
1105                 if (rdev->constraints &&
1106                         (rdev->constraints->valid_ops_mask &
1107                         REGULATOR_CHANGE_DRMS))
1108                         drms_uA_update(rdev);
1109
1110                 rdev->use_count--;
1111         }
1112         return ret;
1113 }
1114
1115 /**
1116  * regulator_disable - disable regulator output
1117  * @regulator: regulator source
1118  *
1119  * Disable the regulator output voltage or current.  Calls to
1120  * regulator_enable() must be balanced with calls to
1121  * regulator_disable().
1122  *
1123  * NOTE: this will only disable the regulator output if no other consumer
1124  * devices have it enabled, the regulator device supports disabling and
1125  * machine constraints permit this operation.
1126  */
1127 int regulator_disable(struct regulator *regulator)
1128 {
1129         struct regulator_dev *rdev = regulator->rdev;
1130         int ret = 0;
1131
1132         mutex_lock(&rdev->mutex);
1133         if (regulator->enabled == 1) {
1134                 ret = _regulator_disable(rdev);
1135                 if (ret == 0)
1136                         regulator->uA_load = 0;
1137         } else if (WARN(regulator->enabled <= 0,
1138                         "unbalanced disables for supply %s\n",
1139                         regulator->supply_name))
1140                 ret = -EIO;
1141         if (ret == 0)
1142                 regulator->enabled--;
1143         mutex_unlock(&rdev->mutex);
1144         return ret;
1145 }
1146 EXPORT_SYMBOL_GPL(regulator_disable);
1147
1148 /* locks held by regulator_force_disable() */
1149 static int _regulator_force_disable(struct regulator_dev *rdev)
1150 {
1151         int ret = 0;
1152
1153         /* force disable */
1154         if (rdev->desc->ops->disable) {
1155                 /* ah well, who wants to live forever... */
1156                 ret = rdev->desc->ops->disable(rdev);
1157                 if (ret < 0) {
1158                         printk(KERN_ERR "%s: failed to force disable %s\n",
1159                                __func__, rdev->desc->name);
1160                         return ret;
1161                 }
1162                 /* notify other consumers that power has been forced off */
1163                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1164                         NULL);
1165         }
1166
1167         /* decrease our supplies ref count and disable if required */
1168         if (rdev->supply)
1169                 _regulator_disable(rdev->supply);
1170
1171         rdev->use_count = 0;
1172         return ret;
1173 }
1174
1175 /**
1176  * regulator_force_disable - force disable regulator output
1177  * @regulator: regulator source
1178  *
1179  * Forcibly disable the regulator output voltage or current.
1180  * NOTE: this *will* disable the regulator output even if other consumer
1181  * devices have it enabled. This should be used for situations when device
1182  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1183  */
1184 int regulator_force_disable(struct regulator *regulator)
1185 {
1186         int ret;
1187
1188         mutex_lock(&regulator->rdev->mutex);
1189         regulator->enabled = 0;
1190         regulator->uA_load = 0;
1191         ret = _regulator_force_disable(regulator->rdev);
1192         mutex_unlock(&regulator->rdev->mutex);
1193         return ret;
1194 }
1195 EXPORT_SYMBOL_GPL(regulator_force_disable);
1196
1197 static int _regulator_is_enabled(struct regulator_dev *rdev)
1198 {
1199         int ret;
1200
1201         mutex_lock(&rdev->mutex);
1202
1203         /* sanity check */
1204         if (!rdev->desc->ops->is_enabled) {
1205                 ret = -EINVAL;
1206                 goto out;
1207         }
1208
1209         ret = rdev->desc->ops->is_enabled(rdev);
1210 out:
1211         mutex_unlock(&rdev->mutex);
1212         return ret;
1213 }
1214
1215 /**
1216  * regulator_is_enabled - is the regulator output enabled
1217  * @regulator: regulator source
1218  *
1219  * Returns positive if the regulator driver backing the source/client
1220  * has requested that the device be enabled, zero if it hasn't, else a
1221  * negative errno code.
1222  *
1223  * Note that the device backing this regulator handle can have multiple
1224  * users, so it might be enabled even if regulator_enable() was never
1225  * called for this particular source.
1226  */
1227 int regulator_is_enabled(struct regulator *regulator)
1228 {
1229         return _regulator_is_enabled(regulator->rdev);
1230 }
1231 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1232
1233 /**
1234  * regulator_set_voltage - set regulator output voltage
1235  * @regulator: regulator source
1236  * @min_uV: Minimum required voltage in uV
1237  * @max_uV: Maximum acceptable voltage in uV
1238  *
1239  * Sets a voltage regulator to the desired output voltage. This can be set
1240  * during any regulator state. IOW, regulator can be disabled or enabled.
1241  *
1242  * If the regulator is enabled then the voltage will change to the new value
1243  * immediately otherwise if the regulator is disabled the regulator will
1244  * output at the new voltage when enabled.
1245  *
1246  * NOTE: If the regulator is shared between several devices then the lowest
1247  * request voltage that meets the system constraints will be used.
1248  * Regulator system constraints must be set for this regulator before
1249  * calling this function otherwise this call will fail.
1250  */
1251 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1252 {
1253         struct regulator_dev *rdev = regulator->rdev;
1254         int ret;
1255
1256         mutex_lock(&rdev->mutex);
1257
1258         /* sanity check */
1259         if (!rdev->desc->ops->set_voltage) {
1260                 ret = -EINVAL;
1261                 goto out;
1262         }
1263
1264         /* constraints check */
1265         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1266         if (ret < 0)
1267                 goto out;
1268         regulator->min_uV = min_uV;
1269         regulator->max_uV = max_uV;
1270         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1271
1272 out:
1273         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1274         mutex_unlock(&rdev->mutex);
1275         return ret;
1276 }
1277 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1278
1279 static int _regulator_get_voltage(struct regulator_dev *rdev)
1280 {
1281         /* sanity check */
1282         if (rdev->desc->ops->get_voltage)
1283                 return rdev->desc->ops->get_voltage(rdev);
1284         else
1285                 return -EINVAL;
1286 }
1287
1288 /**
1289  * regulator_get_voltage - get regulator output voltage
1290  * @regulator: regulator source
1291  *
1292  * This returns the current regulator voltage in uV.
1293  *
1294  * NOTE: If the regulator is disabled it will return the voltage value. This
1295  * function should not be used to determine regulator state.
1296  */
1297 int regulator_get_voltage(struct regulator *regulator)
1298 {
1299         int ret;
1300
1301         mutex_lock(&regulator->rdev->mutex);
1302
1303         ret = _regulator_get_voltage(regulator->rdev);
1304
1305         mutex_unlock(&regulator->rdev->mutex);
1306
1307         return ret;
1308 }
1309 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1310
1311 /**
1312  * regulator_set_current_limit - set regulator output current limit
1313  * @regulator: regulator source
1314  * @min_uA: Minimuum supported current in uA
1315  * @max_uA: Maximum supported current in uA
1316  *
1317  * Sets current sink to the desired output current. This can be set during
1318  * any regulator state. IOW, regulator can be disabled or enabled.
1319  *
1320  * If the regulator is enabled then the current will change to the new value
1321  * immediately otherwise if the regulator is disabled the regulator will
1322  * output at the new current when enabled.
1323  *
1324  * NOTE: Regulator system constraints must be set for this regulator before
1325  * calling this function otherwise this call will fail.
1326  */
1327 int regulator_set_current_limit(struct regulator *regulator,
1328                                int min_uA, int max_uA)
1329 {
1330         struct regulator_dev *rdev = regulator->rdev;
1331         int ret;
1332
1333         mutex_lock(&rdev->mutex);
1334
1335         /* sanity check */
1336         if (!rdev->desc->ops->set_current_limit) {
1337                 ret = -EINVAL;
1338                 goto out;
1339         }
1340
1341         /* constraints check */
1342         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1343         if (ret < 0)
1344                 goto out;
1345
1346         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1347 out:
1348         mutex_unlock(&rdev->mutex);
1349         return ret;
1350 }
1351 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1352
1353 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1354 {
1355         int ret;
1356
1357         mutex_lock(&rdev->mutex);
1358
1359         /* sanity check */
1360         if (!rdev->desc->ops->get_current_limit) {
1361                 ret = -EINVAL;
1362                 goto out;
1363         }
1364
1365         ret = rdev->desc->ops->get_current_limit(rdev);
1366 out:
1367         mutex_unlock(&rdev->mutex);
1368         return ret;
1369 }
1370
1371 /**
1372  * regulator_get_current_limit - get regulator output current
1373  * @regulator: regulator source
1374  *
1375  * This returns the current supplied by the specified current sink in uA.
1376  *
1377  * NOTE: If the regulator is disabled it will return the current value. This
1378  * function should not be used to determine regulator state.
1379  */
1380 int regulator_get_current_limit(struct regulator *regulator)
1381 {
1382         return _regulator_get_current_limit(regulator->rdev);
1383 }
1384 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1385
1386 /**
1387  * regulator_set_mode - set regulator operating mode
1388  * @regulator: regulator source
1389  * @mode: operating mode - one of the REGULATOR_MODE constants
1390  *
1391  * Set regulator operating mode to increase regulator efficiency or improve
1392  * regulation performance.
1393  *
1394  * NOTE: Regulator system constraints must be set for this regulator before
1395  * calling this function otherwise this call will fail.
1396  */
1397 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1398 {
1399         struct regulator_dev *rdev = regulator->rdev;
1400         int ret;
1401
1402         mutex_lock(&rdev->mutex);
1403
1404         /* sanity check */
1405         if (!rdev->desc->ops->set_mode) {
1406                 ret = -EINVAL;
1407                 goto out;
1408         }
1409
1410         /* constraints check */
1411         ret = regulator_check_mode(rdev, mode);
1412         if (ret < 0)
1413                 goto out;
1414
1415         ret = rdev->desc->ops->set_mode(rdev, mode);
1416 out:
1417         mutex_unlock(&rdev->mutex);
1418         return ret;
1419 }
1420 EXPORT_SYMBOL_GPL(regulator_set_mode);
1421
1422 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1423 {
1424         int ret;
1425
1426         mutex_lock(&rdev->mutex);
1427
1428         /* sanity check */
1429         if (!rdev->desc->ops->get_mode) {
1430                 ret = -EINVAL;
1431                 goto out;
1432         }
1433
1434         ret = rdev->desc->ops->get_mode(rdev);
1435 out:
1436         mutex_unlock(&rdev->mutex);
1437         return ret;
1438 }
1439
1440 /**
1441  * regulator_get_mode - get regulator operating mode
1442  * @regulator: regulator source
1443  *
1444  * Get the current regulator operating mode.
1445  */
1446 unsigned int regulator_get_mode(struct regulator *regulator)
1447 {
1448         return _regulator_get_mode(regulator->rdev);
1449 }
1450 EXPORT_SYMBOL_GPL(regulator_get_mode);
1451
1452 /**
1453  * regulator_set_optimum_mode - set regulator optimum operating mode
1454  * @regulator: regulator source
1455  * @uA_load: load current
1456  *
1457  * Notifies the regulator core of a new device load. This is then used by
1458  * DRMS (if enabled by constraints) to set the most efficient regulator
1459  * operating mode for the new regulator loading.
1460  *
1461  * Consumer devices notify their supply regulator of the maximum power
1462  * they will require (can be taken from device datasheet in the power
1463  * consumption tables) when they change operational status and hence power
1464  * state. Examples of operational state changes that can affect power
1465  * consumption are :-
1466  *
1467  *    o Device is opened / closed.
1468  *    o Device I/O is about to begin or has just finished.
1469  *    o Device is idling in between work.
1470  *
1471  * This information is also exported via sysfs to userspace.
1472  *
1473  * DRMS will sum the total requested load on the regulator and change
1474  * to the most efficient operating mode if platform constraints allow.
1475  *
1476  * Returns the new regulator mode or error.
1477  */
1478 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1479 {
1480         struct regulator_dev *rdev = regulator->rdev;
1481         struct regulator *consumer;
1482         int ret, output_uV, input_uV, total_uA_load = 0;
1483         unsigned int mode;
1484
1485         mutex_lock(&rdev->mutex);
1486
1487         regulator->uA_load = uA_load;
1488         ret = regulator_check_drms(rdev);
1489         if (ret < 0)
1490                 goto out;
1491         ret = -EINVAL;
1492
1493         /* sanity check */
1494         if (!rdev->desc->ops->get_optimum_mode)
1495                 goto out;
1496
1497         /* get output voltage */
1498         output_uV = rdev->desc->ops->get_voltage(rdev);
1499         if (output_uV <= 0) {
1500                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1501                         __func__, rdev->desc->name);
1502                 goto out;
1503         }
1504
1505         /* get input voltage */
1506         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1507                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1508         else
1509                 input_uV = rdev->constraints->input_uV;
1510         if (input_uV <= 0) {
1511                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1512                         __func__, rdev->desc->name);
1513                 goto out;
1514         }
1515
1516         /* calc total requested load for this regulator */
1517         list_for_each_entry(consumer, &rdev->consumer_list, list)
1518             total_uA_load += consumer->uA_load;
1519
1520         mode = rdev->desc->ops->get_optimum_mode(rdev,
1521                                                  input_uV, output_uV,
1522                                                  total_uA_load);
1523         ret = regulator_check_mode(rdev, mode);
1524         if (ret < 0) {
1525                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1526                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1527                         total_uA_load, input_uV, output_uV);
1528                 goto out;
1529         }
1530
1531         ret = rdev->desc->ops->set_mode(rdev, mode);
1532         if (ret < 0) {
1533                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1534                         __func__, mode, rdev->desc->name);
1535                 goto out;
1536         }
1537         ret = mode;
1538 out:
1539         mutex_unlock(&rdev->mutex);
1540         return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1543
1544 /**
1545  * regulator_register_notifier - register regulator event notifier
1546  * @regulator: regulator source
1547  * @nb: notifier block
1548  *
1549  * Register notifier block to receive regulator events.
1550  */
1551 int regulator_register_notifier(struct regulator *regulator,
1552                               struct notifier_block *nb)
1553 {
1554         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1555                                                 nb);
1556 }
1557 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1558
1559 /**
1560  * regulator_unregister_notifier - unregister regulator event notifier
1561  * @regulator: regulator source
1562  * @nb: notifier block
1563  *
1564  * Unregister regulator event notifier block.
1565  */
1566 int regulator_unregister_notifier(struct regulator *regulator,
1567                                 struct notifier_block *nb)
1568 {
1569         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1570                                                   nb);
1571 }
1572 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1573
1574 /* notify regulator consumers and downstream regulator consumers.
1575  * Note mutex must be held by caller.
1576  */
1577 static void _notifier_call_chain(struct regulator_dev *rdev,
1578                                   unsigned long event, void *data)
1579 {
1580         struct regulator_dev *_rdev;
1581
1582         /* call rdev chain first */
1583         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1584
1585         /* now notify regulator we supply */
1586         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1587           mutex_lock(&_rdev->mutex);
1588           _notifier_call_chain(_rdev, event, data);
1589           mutex_unlock(&_rdev->mutex);
1590         }
1591 }
1592
1593 /**
1594  * regulator_bulk_get - get multiple regulator consumers
1595  *
1596  * @dev:           Device to supply
1597  * @num_consumers: Number of consumers to register
1598  * @consumers:     Configuration of consumers; clients are stored here.
1599  *
1600  * @return 0 on success, an errno on failure.
1601  *
1602  * This helper function allows drivers to get several regulator
1603  * consumers in one operation.  If any of the regulators cannot be
1604  * acquired then any regulators that were allocated will be freed
1605  * before returning to the caller.
1606  */
1607 int regulator_bulk_get(struct device *dev, int num_consumers,
1608                        struct regulator_bulk_data *consumers)
1609 {
1610         int i;
1611         int ret;
1612
1613         for (i = 0; i < num_consumers; i++)
1614                 consumers[i].consumer = NULL;
1615
1616         for (i = 0; i < num_consumers; i++) {
1617                 consumers[i].consumer = regulator_get(dev,
1618                                                       consumers[i].supply);
1619                 if (IS_ERR(consumers[i].consumer)) {
1620                         dev_err(dev, "Failed to get supply '%s'\n",
1621                                 consumers[i].supply);
1622                         ret = PTR_ERR(consumers[i].consumer);
1623                         consumers[i].consumer = NULL;
1624                         goto err;
1625                 }
1626         }
1627
1628         return 0;
1629
1630 err:
1631         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1632                 regulator_put(consumers[i].consumer);
1633
1634         return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1637
1638 /**
1639  * regulator_bulk_enable - enable multiple regulator consumers
1640  *
1641  * @num_consumers: Number of consumers
1642  * @consumers:     Consumer data; clients are stored here.
1643  * @return         0 on success, an errno on failure
1644  *
1645  * This convenience API allows consumers to enable multiple regulator
1646  * clients in a single API call.  If any consumers cannot be enabled
1647  * then any others that were enabled will be disabled again prior to
1648  * return.
1649  */
1650 int regulator_bulk_enable(int num_consumers,
1651                           struct regulator_bulk_data *consumers)
1652 {
1653         int i;
1654         int ret;
1655
1656         for (i = 0; i < num_consumers; i++) {
1657                 ret = regulator_enable(consumers[i].consumer);
1658                 if (ret != 0)
1659                         goto err;
1660         }
1661
1662         return 0;
1663
1664 err:
1665         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1666         for (i = 0; i < num_consumers; i++)
1667                 regulator_disable(consumers[i].consumer);
1668
1669         return ret;
1670 }
1671 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1672
1673 /**
1674  * regulator_bulk_disable - disable multiple regulator consumers
1675  *
1676  * @num_consumers: Number of consumers
1677  * @consumers:     Consumer data; clients are stored here.
1678  * @return         0 on success, an errno on failure
1679  *
1680  * This convenience API allows consumers to disable multiple regulator
1681  * clients in a single API call.  If any consumers cannot be enabled
1682  * then any others that were disabled will be disabled again prior to
1683  * return.
1684  */
1685 int regulator_bulk_disable(int num_consumers,
1686                            struct regulator_bulk_data *consumers)
1687 {
1688         int i;
1689         int ret;
1690
1691         for (i = 0; i < num_consumers; i++) {
1692                 ret = regulator_disable(consumers[i].consumer);
1693                 if (ret != 0)
1694                         goto err;
1695         }
1696
1697         return 0;
1698
1699 err:
1700         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1701         for (i = 0; i < num_consumers; i++)
1702                 regulator_enable(consumers[i].consumer);
1703
1704         return ret;
1705 }
1706 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1707
1708 /**
1709  * regulator_bulk_free - free multiple regulator consumers
1710  *
1711  * @num_consumers: Number of consumers
1712  * @consumers:     Consumer data; clients are stored here.
1713  *
1714  * This convenience API allows consumers to free multiple regulator
1715  * clients in a single API call.
1716  */
1717 void regulator_bulk_free(int num_consumers,
1718                          struct regulator_bulk_data *consumers)
1719 {
1720         int i;
1721
1722         for (i = 0; i < num_consumers; i++) {
1723                 regulator_put(consumers[i].consumer);
1724                 consumers[i].consumer = NULL;
1725         }
1726 }
1727 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1728
1729 /**
1730  * regulator_notifier_call_chain - call regulator event notifier
1731  * @rdev: regulator source
1732  * @event: notifier block
1733  * @data: callback-specific data.
1734  *
1735  * Called by regulator drivers to notify clients a regulator event has
1736  * occurred. We also notify regulator clients downstream.
1737  * Note lock must be held by caller.
1738  */
1739 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1740                                   unsigned long event, void *data)
1741 {
1742         _notifier_call_chain(rdev, event, data);
1743         return NOTIFY_DONE;
1744
1745 }
1746 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1747
1748 /*
1749  * To avoid cluttering sysfs (and memory) with useless state, only
1750  * create attributes that can be meaningfully displayed.
1751  */
1752 static int add_regulator_attributes(struct regulator_dev *rdev)
1753 {
1754         struct device           *dev = &rdev->dev;
1755         struct regulator_ops    *ops = rdev->desc->ops;
1756         int                     status = 0;
1757
1758         /* some attributes need specific methods to be displayed */
1759         if (ops->get_voltage) {
1760                 status = device_create_file(dev, &dev_attr_microvolts);
1761                 if (status < 0)
1762                         return status;
1763         }
1764         if (ops->get_current_limit) {
1765                 status = device_create_file(dev, &dev_attr_microamps);
1766                 if (status < 0)
1767                         return status;
1768         }
1769         if (ops->get_mode) {
1770                 status = device_create_file(dev, &dev_attr_opmode);
1771                 if (status < 0)
1772                         return status;
1773         }
1774         if (ops->is_enabled) {
1775                 status = device_create_file(dev, &dev_attr_state);
1776                 if (status < 0)
1777                         return status;
1778         }
1779         if (ops->get_status) {
1780                 status = device_create_file(dev, &dev_attr_status);
1781                 if (status < 0)
1782                         return status;
1783         }
1784
1785         /* some attributes are type-specific */
1786         if (rdev->desc->type == REGULATOR_CURRENT) {
1787                 status = device_create_file(dev, &dev_attr_requested_microamps);
1788                 if (status < 0)
1789                         return status;
1790         }
1791
1792         /* all the other attributes exist to support constraints;
1793          * don't show them if there are no constraints, or if the
1794          * relevant supporting methods are missing.
1795          */
1796         if (!rdev->constraints)
1797                 return status;
1798
1799         /* constraints need specific supporting methods */
1800         if (ops->set_voltage) {
1801                 status = device_create_file(dev, &dev_attr_min_microvolts);
1802                 if (status < 0)
1803                         return status;
1804                 status = device_create_file(dev, &dev_attr_max_microvolts);
1805                 if (status < 0)
1806                         return status;
1807         }
1808         if (ops->set_current_limit) {
1809                 status = device_create_file(dev, &dev_attr_min_microamps);
1810                 if (status < 0)
1811                         return status;
1812                 status = device_create_file(dev, &dev_attr_max_microamps);
1813                 if (status < 0)
1814                         return status;
1815         }
1816
1817         /* suspend mode constraints need multiple supporting methods */
1818         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1819                 return status;
1820
1821         status = device_create_file(dev, &dev_attr_suspend_standby_state);
1822         if (status < 0)
1823                 return status;
1824         status = device_create_file(dev, &dev_attr_suspend_mem_state);
1825         if (status < 0)
1826                 return status;
1827         status = device_create_file(dev, &dev_attr_suspend_disk_state);
1828         if (status < 0)
1829                 return status;
1830
1831         if (ops->set_suspend_voltage) {
1832                 status = device_create_file(dev,
1833                                 &dev_attr_suspend_standby_microvolts);
1834                 if (status < 0)
1835                         return status;
1836                 status = device_create_file(dev,
1837                                 &dev_attr_suspend_mem_microvolts);
1838                 if (status < 0)
1839                         return status;
1840                 status = device_create_file(dev,
1841                                 &dev_attr_suspend_disk_microvolts);
1842                 if (status < 0)
1843                         return status;
1844         }
1845
1846         if (ops->set_suspend_mode) {
1847                 status = device_create_file(dev,
1848                                 &dev_attr_suspend_standby_mode);
1849                 if (status < 0)
1850                         return status;
1851                 status = device_create_file(dev,
1852                                 &dev_attr_suspend_mem_mode);
1853                 if (status < 0)
1854                         return status;
1855                 status = device_create_file(dev,
1856                                 &dev_attr_suspend_disk_mode);
1857                 if (status < 0)
1858                         return status;
1859         }
1860
1861         return status;
1862 }
1863
1864 /**
1865  * regulator_register - register regulator
1866  * @regulator_desc: regulator to register
1867  * @dev: struct device for the regulator
1868  * @init_data: platform provided init data, passed through by driver
1869  * @driver_data: private regulator data
1870  *
1871  * Called by regulator drivers to register a regulator.
1872  * Returns 0 on success.
1873  */
1874 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1875         struct device *dev, struct regulator_init_data *init_data,
1876         void *driver_data)
1877 {
1878         static atomic_t regulator_no = ATOMIC_INIT(0);
1879         struct regulator_dev *rdev;
1880         int ret, i;
1881
1882         if (regulator_desc == NULL)
1883                 return ERR_PTR(-EINVAL);
1884
1885         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1886                 return ERR_PTR(-EINVAL);
1887
1888         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1889             !regulator_desc->type == REGULATOR_CURRENT)
1890                 return ERR_PTR(-EINVAL);
1891
1892         if (!init_data)
1893                 return ERR_PTR(-EINVAL);
1894
1895         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1896         if (rdev == NULL)
1897                 return ERR_PTR(-ENOMEM);
1898
1899         mutex_lock(&regulator_list_mutex);
1900
1901         mutex_init(&rdev->mutex);
1902         rdev->reg_data = driver_data;
1903         rdev->owner = regulator_desc->owner;
1904         rdev->desc = regulator_desc;
1905         INIT_LIST_HEAD(&rdev->consumer_list);
1906         INIT_LIST_HEAD(&rdev->supply_list);
1907         INIT_LIST_HEAD(&rdev->list);
1908         INIT_LIST_HEAD(&rdev->slist);
1909         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1910
1911         /* preform any regulator specific init */
1912         if (init_data->regulator_init) {
1913                 ret = init_data->regulator_init(rdev->reg_data);
1914                 if (ret < 0)
1915                         goto clean;
1916         }
1917
1918         /* register with sysfs */
1919         rdev->dev.class = &regulator_class;
1920         rdev->dev.parent = dev;
1921         dev_set_name(&rdev->dev, "regulator.%d",
1922                      atomic_inc_return(&regulator_no) - 1);
1923         ret = device_register(&rdev->dev);
1924         if (ret != 0)
1925                 goto clean;
1926
1927         dev_set_drvdata(&rdev->dev, rdev);
1928
1929         /* set regulator constraints */
1930         ret = set_machine_constraints(rdev, &init_data->constraints);
1931         if (ret < 0)
1932                 goto scrub;
1933
1934         /* add attributes supported by this regulator */
1935         ret = add_regulator_attributes(rdev);
1936         if (ret < 0)
1937                 goto scrub;
1938
1939         /* set supply regulator if it exists */
1940         if (init_data->supply_regulator_dev) {
1941                 ret = set_supply(rdev,
1942                         dev_get_drvdata(init_data->supply_regulator_dev));
1943                 if (ret < 0)
1944                         goto scrub;
1945         }
1946
1947         /* add consumers devices */
1948         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1949                 ret = set_consumer_device_supply(rdev,
1950                         init_data->consumer_supplies[i].dev,
1951                         init_data->consumer_supplies[i].supply);
1952                 if (ret < 0) {
1953                         for (--i; i >= 0; i--)
1954                                 unset_consumer_device_supply(rdev,
1955                                         init_data->consumer_supplies[i].dev);
1956                         goto scrub;
1957                 }
1958         }
1959
1960         list_add(&rdev->list, &regulator_list);
1961 out:
1962         mutex_unlock(&regulator_list_mutex);
1963         return rdev;
1964
1965 scrub:
1966         device_unregister(&rdev->dev);
1967 clean:
1968         kfree(rdev);
1969         rdev = ERR_PTR(ret);
1970         goto out;
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_register);
1973
1974 /**
1975  * regulator_unregister - unregister regulator
1976  * @rdev: regulator to unregister
1977  *
1978  * Called by regulator drivers to unregister a regulator.
1979  */
1980 void regulator_unregister(struct regulator_dev *rdev)
1981 {
1982         if (rdev == NULL)
1983                 return;
1984
1985         mutex_lock(&regulator_list_mutex);
1986         unset_regulator_supplies(rdev);
1987         list_del(&rdev->list);
1988         if (rdev->supply)
1989                 sysfs_remove_link(&rdev->dev.kobj, "supply");
1990         device_unregister(&rdev->dev);
1991         mutex_unlock(&regulator_list_mutex);
1992 }
1993 EXPORT_SYMBOL_GPL(regulator_unregister);
1994
1995 /**
1996  * regulator_suspend_prepare - prepare regulators for system wide suspend
1997  * @state: system suspend state
1998  *
1999  * Configure each regulator with it's suspend operating parameters for state.
2000  * This will usually be called by machine suspend code prior to supending.
2001  */
2002 int regulator_suspend_prepare(suspend_state_t state)
2003 {
2004         struct regulator_dev *rdev;
2005         int ret = 0;
2006
2007         /* ON is handled by regulator active state */
2008         if (state == PM_SUSPEND_ON)
2009                 return -EINVAL;
2010
2011         mutex_lock(&regulator_list_mutex);
2012         list_for_each_entry(rdev, &regulator_list, list) {
2013
2014                 mutex_lock(&rdev->mutex);
2015                 ret = suspend_prepare(rdev, state);
2016                 mutex_unlock(&rdev->mutex);
2017
2018                 if (ret < 0) {
2019                         printk(KERN_ERR "%s: failed to prepare %s\n",
2020                                 __func__, rdev->desc->name);
2021                         goto out;
2022                 }
2023         }
2024 out:
2025         mutex_unlock(&regulator_list_mutex);
2026         return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2029
2030 /**
2031  * rdev_get_drvdata - get rdev regulator driver data
2032  * @rdev: regulator
2033  *
2034  * Get rdev regulator driver private data. This call can be used in the
2035  * regulator driver context.
2036  */
2037 void *rdev_get_drvdata(struct regulator_dev *rdev)
2038 {
2039         return rdev->reg_data;
2040 }
2041 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2042
2043 /**
2044  * regulator_get_drvdata - get regulator driver data
2045  * @regulator: regulator
2046  *
2047  * Get regulator driver private data. This call can be used in the consumer
2048  * driver context when non API regulator specific functions need to be called.
2049  */
2050 void *regulator_get_drvdata(struct regulator *regulator)
2051 {
2052         return regulator->rdev->reg_data;
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2055
2056 /**
2057  * regulator_set_drvdata - set regulator driver data
2058  * @regulator: regulator
2059  * @data: data
2060  */
2061 void regulator_set_drvdata(struct regulator *regulator, void *data)
2062 {
2063         regulator->rdev->reg_data = data;
2064 }
2065 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2066
2067 /**
2068  * regulator_get_id - get regulator ID
2069  * @rdev: regulator
2070  */
2071 int rdev_get_id(struct regulator_dev *rdev)
2072 {
2073         return rdev->desc->id;
2074 }
2075 EXPORT_SYMBOL_GPL(rdev_get_id);
2076
2077 struct device *rdev_get_dev(struct regulator_dev *rdev)
2078 {
2079         return &rdev->dev;
2080 }
2081 EXPORT_SYMBOL_GPL(rdev_get_dev);
2082
2083 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2084 {
2085         return reg_init_data->driver_data;
2086 }
2087 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2088
2089 static int __init regulator_init(void)
2090 {
2091         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2092         return class_register(&regulator_class);
2093 }
2094
2095 /* init early to allow our consumers to complete system booting */
2096 core_initcall(regulator_init);