regulator: simplify regulator_register() error handling
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36
37 /*
38  * struct regulator_map
39  *
40  * Used to provide symbolic supply names to devices.
41  */
42 struct regulator_map {
43         struct list_head list;
44         const char *dev_name;   /* The dev_name() for the consumer */
45         const char *supply;
46         struct regulator_dev *regulator;
47 };
48
49 /*
50  * struct regulator
51  *
52  * One for each consumer device.
53  */
54 struct regulator {
55         struct device *dev;
56         struct list_head list;
57         int uA_load;
58         int min_uV;
59         int max_uV;
60         char *supply_name;
61         struct device_attribute dev_attr;
62         struct regulator_dev *rdev;
63 };
64
65 static int _regulator_is_enabled(struct regulator_dev *rdev);
66 static int _regulator_disable(struct regulator_dev *rdev);
67 static int _regulator_get_voltage(struct regulator_dev *rdev);
68 static int _regulator_get_current_limit(struct regulator_dev *rdev);
69 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
70 static void _notifier_call_chain(struct regulator_dev *rdev,
71                                   unsigned long event, void *data);
72
73 static const char *rdev_get_name(struct regulator_dev *rdev)
74 {
75         if (rdev->constraints && rdev->constraints->name)
76                 return rdev->constraints->name;
77         else if (rdev->desc->name)
78                 return rdev->desc->name;
79         else
80                 return "";
81 }
82
83 /* gets the regulator for a given consumer device */
84 static struct regulator *get_device_regulator(struct device *dev)
85 {
86         struct regulator *regulator = NULL;
87         struct regulator_dev *rdev;
88
89         mutex_lock(&regulator_list_mutex);
90         list_for_each_entry(rdev, &regulator_list, list) {
91                 mutex_lock(&rdev->mutex);
92                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
93                         if (regulator->dev == dev) {
94                                 mutex_unlock(&rdev->mutex);
95                                 mutex_unlock(&regulator_list_mutex);
96                                 return regulator;
97                         }
98                 }
99                 mutex_unlock(&rdev->mutex);
100         }
101         mutex_unlock(&regulator_list_mutex);
102         return NULL;
103 }
104
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev *rdev,
107                                    int *min_uV, int *max_uV)
108 {
109         BUG_ON(*min_uV > *max_uV);
110
111         if (!rdev->constraints) {
112                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
113                        rdev_get_name(rdev));
114                 return -ENODEV;
115         }
116         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
117                 printk(KERN_ERR "%s: operation not allowed for %s\n",
118                        __func__, rdev_get_name(rdev));
119                 return -EPERM;
120         }
121
122         if (*max_uV > rdev->constraints->max_uV)
123                 *max_uV = rdev->constraints->max_uV;
124         if (*min_uV < rdev->constraints->min_uV)
125                 *min_uV = rdev->constraints->min_uV;
126
127         if (*min_uV > *max_uV)
128                 return -EINVAL;
129
130         return 0;
131 }
132
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev *rdev,
135                                         int *min_uA, int *max_uA)
136 {
137         BUG_ON(*min_uA > *max_uA);
138
139         if (!rdev->constraints) {
140                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
141                        rdev_get_name(rdev));
142                 return -ENODEV;
143         }
144         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
145                 printk(KERN_ERR "%s: operation not allowed for %s\n",
146                        __func__, rdev_get_name(rdev));
147                 return -EPERM;
148         }
149
150         if (*max_uA > rdev->constraints->max_uA)
151                 *max_uA = rdev->constraints->max_uA;
152         if (*min_uA < rdev->constraints->min_uA)
153                 *min_uA = rdev->constraints->min_uA;
154
155         if (*min_uA > *max_uA)
156                 return -EINVAL;
157
158         return 0;
159 }
160
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
163 {
164         switch (mode) {
165         case REGULATOR_MODE_FAST:
166         case REGULATOR_MODE_NORMAL:
167         case REGULATOR_MODE_IDLE:
168         case REGULATOR_MODE_STANDBY:
169                 break;
170         default:
171                 return -EINVAL;
172         }
173
174         if (!rdev->constraints) {
175                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
176                        rdev_get_name(rdev));
177                 return -ENODEV;
178         }
179         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
180                 printk(KERN_ERR "%s: operation not allowed for %s\n",
181                        __func__, rdev_get_name(rdev));
182                 return -EPERM;
183         }
184         if (!(rdev->constraints->valid_modes_mask & mode)) {
185                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
186                        __func__, mode, rdev_get_name(rdev));
187                 return -EINVAL;
188         }
189         return 0;
190 }
191
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev *rdev)
194 {
195         if (!rdev->constraints) {
196                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
197                        rdev_get_name(rdev));
198                 return -ENODEV;
199         }
200         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
201                 printk(KERN_ERR "%s: operation not allowed for %s\n",
202                        __func__, rdev_get_name(rdev));
203                 return -EPERM;
204         }
205         return 0;
206 }
207
208 static ssize_t device_requested_uA_show(struct device *dev,
209                              struct device_attribute *attr, char *buf)
210 {
211         struct regulator *regulator;
212
213         regulator = get_device_regulator(dev);
214         if (regulator == NULL)
215                 return 0;
216
217         return sprintf(buf, "%d\n", regulator->uA_load);
218 }
219
220 static ssize_t regulator_uV_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224         ssize_t ret;
225
226         mutex_lock(&rdev->mutex);
227         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
228         mutex_unlock(&rdev->mutex);
229
230         return ret;
231 }
232 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
233
234 static ssize_t regulator_uA_show(struct device *dev,
235                                 struct device_attribute *attr, char *buf)
236 {
237         struct regulator_dev *rdev = dev_get_drvdata(dev);
238
239         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
240 }
241 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
242
243 static ssize_t regulator_name_show(struct device *dev,
244                              struct device_attribute *attr, char *buf)
245 {
246         struct regulator_dev *rdev = dev_get_drvdata(dev);
247
248         return sprintf(buf, "%s\n", rdev_get_name(rdev));
249 }
250
251 static ssize_t regulator_print_opmode(char *buf, int mode)
252 {
253         switch (mode) {
254         case REGULATOR_MODE_FAST:
255                 return sprintf(buf, "fast\n");
256         case REGULATOR_MODE_NORMAL:
257                 return sprintf(buf, "normal\n");
258         case REGULATOR_MODE_IDLE:
259                 return sprintf(buf, "idle\n");
260         case REGULATOR_MODE_STANDBY:
261                 return sprintf(buf, "standby\n");
262         }
263         return sprintf(buf, "unknown\n");
264 }
265
266 static ssize_t regulator_opmode_show(struct device *dev,
267                                     struct device_attribute *attr, char *buf)
268 {
269         struct regulator_dev *rdev = dev_get_drvdata(dev);
270
271         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
272 }
273 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
274
275 static ssize_t regulator_print_state(char *buf, int state)
276 {
277         if (state > 0)
278                 return sprintf(buf, "enabled\n");
279         else if (state == 0)
280                 return sprintf(buf, "disabled\n");
281         else
282                 return sprintf(buf, "unknown\n");
283 }
284
285 static ssize_t regulator_state_show(struct device *dev,
286                                    struct device_attribute *attr, char *buf)
287 {
288         struct regulator_dev *rdev = dev_get_drvdata(dev);
289         ssize_t ret;
290
291         mutex_lock(&rdev->mutex);
292         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
293         mutex_unlock(&rdev->mutex);
294
295         return ret;
296 }
297 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
298
299 static ssize_t regulator_status_show(struct device *dev,
300                                    struct device_attribute *attr, char *buf)
301 {
302         struct regulator_dev *rdev = dev_get_drvdata(dev);
303         int status;
304         char *label;
305
306         status = rdev->desc->ops->get_status(rdev);
307         if (status < 0)
308                 return status;
309
310         switch (status) {
311         case REGULATOR_STATUS_OFF:
312                 label = "off";
313                 break;
314         case REGULATOR_STATUS_ON:
315                 label = "on";
316                 break;
317         case REGULATOR_STATUS_ERROR:
318                 label = "error";
319                 break;
320         case REGULATOR_STATUS_FAST:
321                 label = "fast";
322                 break;
323         case REGULATOR_STATUS_NORMAL:
324                 label = "normal";
325                 break;
326         case REGULATOR_STATUS_IDLE:
327                 label = "idle";
328                 break;
329         case REGULATOR_STATUS_STANDBY:
330                 label = "standby";
331                 break;
332         default:
333                 return -ERANGE;
334         }
335
336         return sprintf(buf, "%s\n", label);
337 }
338 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
339
340 static ssize_t regulator_min_uA_show(struct device *dev,
341                                     struct device_attribute *attr, char *buf)
342 {
343         struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345         if (!rdev->constraints)
346                 return sprintf(buf, "constraint not defined\n");
347
348         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
349 }
350 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
351
352 static ssize_t regulator_max_uA_show(struct device *dev,
353                                     struct device_attribute *attr, char *buf)
354 {
355         struct regulator_dev *rdev = dev_get_drvdata(dev);
356
357         if (!rdev->constraints)
358                 return sprintf(buf, "constraint not defined\n");
359
360         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
361 }
362 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
363
364 static ssize_t regulator_min_uV_show(struct device *dev,
365                                     struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         if (!rdev->constraints)
370                 return sprintf(buf, "constraint not defined\n");
371
372         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
373 }
374 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
375
376 static ssize_t regulator_max_uV_show(struct device *dev,
377                                     struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381         if (!rdev->constraints)
382                 return sprintf(buf, "constraint not defined\n");
383
384         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
385 }
386 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
387
388 static ssize_t regulator_total_uA_show(struct device *dev,
389                                       struct device_attribute *attr, char *buf)
390 {
391         struct regulator_dev *rdev = dev_get_drvdata(dev);
392         struct regulator *regulator;
393         int uA = 0;
394
395         mutex_lock(&rdev->mutex);
396         list_for_each_entry(regulator, &rdev->consumer_list, list)
397                 uA += regulator->uA_load;
398         mutex_unlock(&rdev->mutex);
399         return sprintf(buf, "%d\n", uA);
400 }
401 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
402
403 static ssize_t regulator_num_users_show(struct device *dev,
404                                       struct device_attribute *attr, char *buf)
405 {
406         struct regulator_dev *rdev = dev_get_drvdata(dev);
407         return sprintf(buf, "%d\n", rdev->use_count);
408 }
409
410 static ssize_t regulator_type_show(struct device *dev,
411                                   struct device_attribute *attr, char *buf)
412 {
413         struct regulator_dev *rdev = dev_get_drvdata(dev);
414
415         switch (rdev->desc->type) {
416         case REGULATOR_VOLTAGE:
417                 return sprintf(buf, "voltage\n");
418         case REGULATOR_CURRENT:
419                 return sprintf(buf, "current\n");
420         }
421         return sprintf(buf, "unknown\n");
422 }
423
424 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
425                                 struct device_attribute *attr, char *buf)
426 {
427         struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
430 }
431 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
432                 regulator_suspend_mem_uV_show, NULL);
433
434 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
435                                 struct device_attribute *attr, char *buf)
436 {
437         struct regulator_dev *rdev = dev_get_drvdata(dev);
438
439         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
440 }
441 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
442                 regulator_suspend_disk_uV_show, NULL);
443
444 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
445                                 struct device_attribute *attr, char *buf)
446 {
447         struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
450 }
451 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
452                 regulator_suspend_standby_uV_show, NULL);
453
454 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_mem.mode);
461 }
462 static DEVICE_ATTR(suspend_mem_mode, 0444,
463                 regulator_suspend_mem_mode_show, NULL);
464
465 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_disk.mode);
472 }
473 static DEVICE_ATTR(suspend_disk_mode, 0444,
474                 regulator_suspend_disk_mode_show, NULL);
475
476 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
477                                 struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_opmode(buf,
482                 rdev->constraints->state_standby.mode);
483 }
484 static DEVICE_ATTR(suspend_standby_mode, 0444,
485                 regulator_suspend_standby_mode_show, NULL);
486
487 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_mem.enabled);
494 }
495 static DEVICE_ATTR(suspend_mem_state, 0444,
496                 regulator_suspend_mem_state_show, NULL);
497
498 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_disk.enabled);
505 }
506 static DEVICE_ATTR(suspend_disk_state, 0444,
507                 regulator_suspend_disk_state_show, NULL);
508
509 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
510                                    struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return regulator_print_state(buf,
515                         rdev->constraints->state_standby.enabled);
516 }
517 static DEVICE_ATTR(suspend_standby_state, 0444,
518                 regulator_suspend_standby_state_show, NULL);
519
520
521 /*
522  * These are the only attributes are present for all regulators.
523  * Other attributes are a function of regulator functionality.
524  */
525 static struct device_attribute regulator_dev_attrs[] = {
526         __ATTR(name, 0444, regulator_name_show, NULL),
527         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
528         __ATTR(type, 0444, regulator_type_show, NULL),
529         __ATTR_NULL,
530 };
531
532 static void regulator_dev_release(struct device *dev)
533 {
534         struct regulator_dev *rdev = dev_get_drvdata(dev);
535         kfree(rdev);
536 }
537
538 static struct class regulator_class = {
539         .name = "regulator",
540         .dev_release = regulator_dev_release,
541         .dev_attrs = regulator_dev_attrs,
542 };
543
544 /* Calculate the new optimum regulator operating mode based on the new total
545  * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev *rdev)
547 {
548         struct regulator *sibling;
549         int current_uA = 0, output_uV, input_uV, err;
550         unsigned int mode;
551
552         err = regulator_check_drms(rdev);
553         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
554             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
555                 return;
556
557         /* get output voltage */
558         output_uV = rdev->desc->ops->get_voltage(rdev);
559         if (output_uV <= 0)
560                 return;
561
562         /* get input voltage */
563         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
564                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
565         else
566                 input_uV = rdev->constraints->input_uV;
567         if (input_uV <= 0)
568                 return;
569
570         /* calc total requested load */
571         list_for_each_entry(sibling, &rdev->consumer_list, list)
572                 current_uA += sibling->uA_load;
573
574         /* now get the optimum mode for our new total regulator load */
575         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
576                                                   output_uV, current_uA);
577
578         /* check the new mode is allowed */
579         err = regulator_check_mode(rdev, mode);
580         if (err == 0)
581                 rdev->desc->ops->set_mode(rdev, mode);
582 }
583
584 static int suspend_set_state(struct regulator_dev *rdev,
585         struct regulator_state *rstate)
586 {
587         int ret = 0;
588         bool can_set_state;
589
590         can_set_state = rdev->desc->ops->set_suspend_enable &&
591                 rdev->desc->ops->set_suspend_disable;
592
593         /* If we have no suspend mode configration don't set anything;
594          * only warn if the driver actually makes the suspend mode
595          * configurable.
596          */
597         if (!rstate->enabled && !rstate->disabled) {
598                 if (can_set_state)
599                         printk(KERN_WARNING "%s: No configuration for %s\n",
600                                __func__, rdev_get_name(rdev));
601                 return 0;
602         }
603
604         if (rstate->enabled && rstate->disabled) {
605                 printk(KERN_ERR "%s: invalid configuration for %s\n",
606                        __func__, rdev_get_name(rdev));
607                 return -EINVAL;
608         }
609
610         if (!can_set_state) {
611                 printk(KERN_ERR "%s: no way to set suspend state\n",
612                         __func__);
613                 return -EINVAL;
614         }
615
616         if (rstate->enabled)
617                 ret = rdev->desc->ops->set_suspend_enable(rdev);
618         else
619                 ret = rdev->desc->ops->set_suspend_disable(rdev);
620         if (ret < 0) {
621                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
622                 return ret;
623         }
624
625         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
626                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
627                 if (ret < 0) {
628                         printk(KERN_ERR "%s: failed to set voltage\n",
629                                 __func__);
630                         return ret;
631                 }
632         }
633
634         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
635                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
636                 if (ret < 0) {
637                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
638                         return ret;
639                 }
640         }
641         return ret;
642 }
643
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
646 {
647         if (!rdev->constraints)
648                 return -EINVAL;
649
650         switch (state) {
651         case PM_SUSPEND_STANDBY:
652                 return suspend_set_state(rdev,
653                         &rdev->constraints->state_standby);
654         case PM_SUSPEND_MEM:
655                 return suspend_set_state(rdev,
656                         &rdev->constraints->state_mem);
657         case PM_SUSPEND_MAX:
658                 return suspend_set_state(rdev,
659                         &rdev->constraints->state_disk);
660         default:
661                 return -EINVAL;
662         }
663 }
664
665 static void print_constraints(struct regulator_dev *rdev)
666 {
667         struct regulation_constraints *constraints = rdev->constraints;
668         char buf[80] = "";
669         int count = 0;
670         int ret;
671
672         if (constraints->min_uV && constraints->max_uV) {
673                 if (constraints->min_uV == constraints->max_uV)
674                         count += sprintf(buf + count, "%d mV ",
675                                          constraints->min_uV / 1000);
676                 else
677                         count += sprintf(buf + count, "%d <--> %d mV ",
678                                          constraints->min_uV / 1000,
679                                          constraints->max_uV / 1000);
680         }
681
682         if (!constraints->min_uV ||
683             constraints->min_uV != constraints->max_uV) {
684                 ret = _regulator_get_voltage(rdev);
685                 if (ret > 0)
686                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
687         }
688
689         if (constraints->min_uA && constraints->max_uA) {
690                 if (constraints->min_uA == constraints->max_uA)
691                         count += sprintf(buf + count, "%d mA ",
692                                          constraints->min_uA / 1000);
693                 else
694                         count += sprintf(buf + count, "%d <--> %d mA ",
695                                          constraints->min_uA / 1000,
696                                          constraints->max_uA / 1000);
697         }
698
699         if (!constraints->min_uA ||
700             constraints->min_uA != constraints->max_uA) {
701                 ret = _regulator_get_current_limit(rdev);
702                 if (ret > 0)
703                         count += sprintf(buf + count, "at %d uA ", ret / 1000);
704         }
705
706         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
707                 count += sprintf(buf + count, "fast ");
708         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
709                 count += sprintf(buf + count, "normal ");
710         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
711                 count += sprintf(buf + count, "idle ");
712         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
713                 count += sprintf(buf + count, "standby");
714
715         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
716 }
717
718 static int machine_constraints_voltage(struct regulator_dev *rdev,
719         struct regulation_constraints *constraints)
720 {
721         struct regulator_ops *ops = rdev->desc->ops;
722         const char *name = rdev_get_name(rdev);
723         int ret;
724
725         /* do we need to apply the constraint voltage */
726         if (rdev->constraints->apply_uV &&
727                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
728                 ops->set_voltage) {
729                 ret = ops->set_voltage(rdev,
730                         rdev->constraints->min_uV, rdev->constraints->max_uV);
731                         if (ret < 0) {
732                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
733                                        __func__,
734                                        rdev->constraints->min_uV, name);
735                                 rdev->constraints = NULL;
736                                 return ret;
737                         }
738         }
739
740         /* constrain machine-level voltage specs to fit
741          * the actual range supported by this regulator.
742          */
743         if (ops->list_voltage && rdev->desc->n_voltages) {
744                 int     count = rdev->desc->n_voltages;
745                 int     i;
746                 int     min_uV = INT_MAX;
747                 int     max_uV = INT_MIN;
748                 int     cmin = constraints->min_uV;
749                 int     cmax = constraints->max_uV;
750
751                 /* it's safe to autoconfigure fixed-voltage supplies
752                    and the constraints are used by list_voltage. */
753                 if (count == 1 && !cmin) {
754                         cmin = 1;
755                         cmax = INT_MAX;
756                         constraints->min_uV = cmin;
757                         constraints->max_uV = cmax;
758                 }
759
760                 /* voltage constraints are optional */
761                 if ((cmin == 0) && (cmax == 0))
762                         return 0;
763
764                 /* else require explicit machine-level constraints */
765                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
766                         pr_err("%s: %s '%s' voltage constraints\n",
767                                        __func__, "invalid", name);
768                         return -EINVAL;
769                 }
770
771                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772                 for (i = 0; i < count; i++) {
773                         int     value;
774
775                         value = ops->list_voltage(rdev, i);
776                         if (value <= 0)
777                                 continue;
778
779                         /* maybe adjust [min_uV..max_uV] */
780                         if (value >= cmin && value < min_uV)
781                                 min_uV = value;
782                         if (value <= cmax && value > max_uV)
783                                 max_uV = value;
784                 }
785
786                 /* final: [min_uV..max_uV] valid iff constraints valid */
787                 if (max_uV < min_uV) {
788                         pr_err("%s: %s '%s' voltage constraints\n",
789                                        __func__, "unsupportable", name);
790                         return -EINVAL;
791                 }
792
793                 /* use regulator's subset of machine constraints */
794                 if (constraints->min_uV < min_uV) {
795                         pr_debug("%s: override '%s' %s, %d -> %d\n",
796                                        __func__, name, "min_uV",
797                                         constraints->min_uV, min_uV);
798                         constraints->min_uV = min_uV;
799                 }
800                 if (constraints->max_uV > max_uV) {
801                         pr_debug("%s: override '%s' %s, %d -> %d\n",
802                                        __func__, name, "max_uV",
803                                         constraints->max_uV, max_uV);
804                         constraints->max_uV = max_uV;
805                 }
806         }
807
808         return 0;
809 }
810
811 /**
812  * set_machine_constraints - sets regulator constraints
813  * @rdev: regulator source
814  * @constraints: constraints to apply
815  *
816  * Allows platform initialisation code to define and constrain
817  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
818  * Constraints *must* be set by platform code in order for some
819  * regulator operations to proceed i.e. set_voltage, set_current_limit,
820  * set_mode.
821  */
822 static int set_machine_constraints(struct regulator_dev *rdev,
823         struct regulation_constraints *constraints)
824 {
825         int ret = 0;
826         const char *name;
827         struct regulator_ops *ops = rdev->desc->ops;
828
829         rdev->constraints = constraints;
830
831         name = rdev_get_name(rdev);
832
833         ret = machine_constraints_voltage(rdev, constraints);
834         if (ret != 0)
835                 goto out;
836
837         /* do we need to setup our suspend state */
838         if (constraints->initial_state) {
839                 ret = suspend_prepare(rdev, constraints->initial_state);
840                 if (ret < 0) {
841                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
842                                __func__, name);
843                         rdev->constraints = NULL;
844                         goto out;
845                 }
846         }
847
848         if (constraints->initial_mode) {
849                 if (!ops->set_mode) {
850                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
851                                __func__, name);
852                         ret = -EINVAL;
853                         goto out;
854                 }
855
856                 ret = ops->set_mode(rdev, constraints->initial_mode);
857                 if (ret < 0) {
858                         printk(KERN_ERR
859                                "%s: failed to set initial mode for %s: %d\n",
860                                __func__, name, ret);
861                         goto out;
862                 }
863         }
864
865         /* If the constraints say the regulator should be on at this point
866          * and we have control then make sure it is enabled.
867          */
868         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
869                 ret = ops->enable(rdev);
870                 if (ret < 0) {
871                         printk(KERN_ERR "%s: failed to enable %s\n",
872                                __func__, name);
873                         rdev->constraints = NULL;
874                         goto out;
875                 }
876         }
877
878         print_constraints(rdev);
879 out:
880         return ret;
881 }
882
883 /**
884  * set_supply - set regulator supply regulator
885  * @rdev: regulator name
886  * @supply_rdev: supply regulator name
887  *
888  * Called by platform initialisation code to set the supply regulator for this
889  * regulator. This ensures that a regulators supply will also be enabled by the
890  * core if it's child is enabled.
891  */
892 static int set_supply(struct regulator_dev *rdev,
893         struct regulator_dev *supply_rdev)
894 {
895         int err;
896
897         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
898                                 "supply");
899         if (err) {
900                 printk(KERN_ERR
901                        "%s: could not add device link %s err %d\n",
902                        __func__, supply_rdev->dev.kobj.name, err);
903                        goto out;
904         }
905         rdev->supply = supply_rdev;
906         list_add(&rdev->slist, &supply_rdev->supply_list);
907 out:
908         return err;
909 }
910
911 /**
912  * set_consumer_device_supply: Bind a regulator to a symbolic supply
913  * @rdev:         regulator source
914  * @consumer_dev: device the supply applies to
915  * @consumer_dev_name: dev_name() string for device supply applies to
916  * @supply:       symbolic name for supply
917  *
918  * Allows platform initialisation code to map physical regulator
919  * sources to symbolic names for supplies for use by devices.  Devices
920  * should use these symbolic names to request regulators, avoiding the
921  * need to provide board-specific regulator names as platform data.
922  *
923  * Only one of consumer_dev and consumer_dev_name may be specified.
924  */
925 static int set_consumer_device_supply(struct regulator_dev *rdev,
926         struct device *consumer_dev, const char *consumer_dev_name,
927         const char *supply)
928 {
929         struct regulator_map *node;
930         int has_dev;
931
932         if (consumer_dev && consumer_dev_name)
933                 return -EINVAL;
934
935         if (!consumer_dev_name && consumer_dev)
936                 consumer_dev_name = dev_name(consumer_dev);
937
938         if (supply == NULL)
939                 return -EINVAL;
940
941         if (consumer_dev_name != NULL)
942                 has_dev = 1;
943         else
944                 has_dev = 0;
945
946         list_for_each_entry(node, &regulator_map_list, list) {
947                 if (node->dev_name && consumer_dev_name) {
948                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
949                                 continue;
950                 } else if (node->dev_name || consumer_dev_name) {
951                         continue;
952                 }
953
954                 if (strcmp(node->supply, supply) != 0)
955                         continue;
956
957                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
958                                 dev_name(&node->regulator->dev),
959                                 node->regulator->desc->name,
960                                 supply,
961                                 dev_name(&rdev->dev), rdev_get_name(rdev));
962                 return -EBUSY;
963         }
964
965         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
966         if (node == NULL)
967                 return -ENOMEM;
968
969         node->regulator = rdev;
970         node->supply = supply;
971
972         if (has_dev) {
973                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
974                 if (node->dev_name == NULL) {
975                         kfree(node);
976                         return -ENOMEM;
977                 }
978         }
979
980         list_add(&node->list, &regulator_map_list);
981         return 0;
982 }
983
984 static void unset_regulator_supplies(struct regulator_dev *rdev)
985 {
986         struct regulator_map *node, *n;
987
988         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
989                 if (rdev == node->regulator) {
990                         list_del(&node->list);
991                         kfree(node->dev_name);
992                         kfree(node);
993                 }
994         }
995 }
996
997 #define REG_STR_SIZE    32
998
999 static struct regulator *create_regulator(struct regulator_dev *rdev,
1000                                           struct device *dev,
1001                                           const char *supply_name)
1002 {
1003         struct regulator *regulator;
1004         char buf[REG_STR_SIZE];
1005         int err, size;
1006
1007         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1008         if (regulator == NULL)
1009                 return NULL;
1010
1011         mutex_lock(&rdev->mutex);
1012         regulator->rdev = rdev;
1013         list_add(&regulator->list, &rdev->consumer_list);
1014
1015         if (dev) {
1016                 /* create a 'requested_microamps_name' sysfs entry */
1017                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1018                         supply_name);
1019                 if (size >= REG_STR_SIZE)
1020                         goto overflow_err;
1021
1022                 regulator->dev = dev;
1023                 sysfs_attr_init(&regulator->dev_attr.attr);
1024                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1025                 if (regulator->dev_attr.attr.name == NULL)
1026                         goto attr_name_err;
1027
1028                 regulator->dev_attr.attr.owner = THIS_MODULE;
1029                 regulator->dev_attr.attr.mode = 0444;
1030                 regulator->dev_attr.show = device_requested_uA_show;
1031                 err = device_create_file(dev, &regulator->dev_attr);
1032                 if (err < 0) {
1033                         printk(KERN_WARNING "%s: could not add regulator_dev"
1034                                 " load sysfs\n", __func__);
1035                         goto attr_name_err;
1036                 }
1037
1038                 /* also add a link to the device sysfs entry */
1039                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1040                                  dev->kobj.name, supply_name);
1041                 if (size >= REG_STR_SIZE)
1042                         goto attr_err;
1043
1044                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1045                 if (regulator->supply_name == NULL)
1046                         goto attr_err;
1047
1048                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1049                                         buf);
1050                 if (err) {
1051                         printk(KERN_WARNING
1052                                "%s: could not add device link %s err %d\n",
1053                                __func__, dev->kobj.name, err);
1054                         device_remove_file(dev, &regulator->dev_attr);
1055                         goto link_name_err;
1056                 }
1057         }
1058         mutex_unlock(&rdev->mutex);
1059         return regulator;
1060 link_name_err:
1061         kfree(regulator->supply_name);
1062 attr_err:
1063         device_remove_file(regulator->dev, &regulator->dev_attr);
1064 attr_name_err:
1065         kfree(regulator->dev_attr.attr.name);
1066 overflow_err:
1067         list_del(&regulator->list);
1068         kfree(regulator);
1069         mutex_unlock(&rdev->mutex);
1070         return NULL;
1071 }
1072
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074 {
1075         if (!rdev->desc->ops->enable_time)
1076                 return 0;
1077         return rdev->desc->ops->enable_time(rdev);
1078 }
1079
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1082                                         int exclusive)
1083 {
1084         struct regulator_dev *rdev;
1085         struct regulator_map *map;
1086         struct regulator *regulator = ERR_PTR(-ENODEV);
1087         const char *devname = NULL;
1088         int ret;
1089
1090         if (id == NULL) {
1091                 printk(KERN_ERR "regulator: get() with no identifier\n");
1092                 return regulator;
1093         }
1094
1095         if (dev)
1096                 devname = dev_name(dev);
1097
1098         mutex_lock(&regulator_list_mutex);
1099
1100         list_for_each_entry(map, &regulator_map_list, list) {
1101                 /* If the mapping has a device set up it must match */
1102                 if (map->dev_name &&
1103                     (!devname || strcmp(map->dev_name, devname)))
1104                         continue;
1105
1106                 if (strcmp(map->supply, id) == 0) {
1107                         rdev = map->regulator;
1108                         goto found;
1109                 }
1110         }
1111
1112 #ifdef CONFIG_REGULATOR_DUMMY
1113         if (!devname)
1114                 devname = "deviceless";
1115
1116         /* If the board didn't flag that it was fully constrained then
1117          * substitute in a dummy regulator so consumers can continue.
1118          */
1119         if (!has_full_constraints) {
1120                 pr_warning("%s supply %s not found, using dummy regulator\n",
1121                            devname, id);
1122                 rdev = dummy_regulator_rdev;
1123                 goto found;
1124         }
1125 #endif
1126
1127         mutex_unlock(&regulator_list_mutex);
1128         return regulator;
1129
1130 found:
1131         if (rdev->exclusive) {
1132                 regulator = ERR_PTR(-EPERM);
1133                 goto out;
1134         }
1135
1136         if (exclusive && rdev->open_count) {
1137                 regulator = ERR_PTR(-EBUSY);
1138                 goto out;
1139         }
1140
1141         if (!try_module_get(rdev->owner))
1142                 goto out;
1143
1144         regulator = create_regulator(rdev, dev, id);
1145         if (regulator == NULL) {
1146                 regulator = ERR_PTR(-ENOMEM);
1147                 module_put(rdev->owner);
1148         }
1149
1150         rdev->open_count++;
1151         if (exclusive) {
1152                 rdev->exclusive = 1;
1153
1154                 ret = _regulator_is_enabled(rdev);
1155                 if (ret > 0)
1156                         rdev->use_count = 1;
1157                 else
1158                         rdev->use_count = 0;
1159         }
1160
1161 out:
1162         mutex_unlock(&regulator_list_mutex);
1163
1164         return regulator;
1165 }
1166
1167 /**
1168  * regulator_get - lookup and obtain a reference to a regulator.
1169  * @dev: device for regulator "consumer"
1170  * @id: Supply name or regulator ID.
1171  *
1172  * Returns a struct regulator corresponding to the regulator producer,
1173  * or IS_ERR() condition containing errno.
1174  *
1175  * Use of supply names configured via regulator_set_device_supply() is
1176  * strongly encouraged.  It is recommended that the supply name used
1177  * should match the name used for the supply and/or the relevant
1178  * device pins in the datasheet.
1179  */
1180 struct regulator *regulator_get(struct device *dev, const char *id)
1181 {
1182         return _regulator_get(dev, id, 0);
1183 }
1184 EXPORT_SYMBOL_GPL(regulator_get);
1185
1186 /**
1187  * regulator_get_exclusive - obtain exclusive access to a regulator.
1188  * @dev: device for regulator "consumer"
1189  * @id: Supply name or regulator ID.
1190  *
1191  * Returns a struct regulator corresponding to the regulator producer,
1192  * or IS_ERR() condition containing errno.  Other consumers will be
1193  * unable to obtain this reference is held and the use count for the
1194  * regulator will be initialised to reflect the current state of the
1195  * regulator.
1196  *
1197  * This is intended for use by consumers which cannot tolerate shared
1198  * use of the regulator such as those which need to force the
1199  * regulator off for correct operation of the hardware they are
1200  * controlling.
1201  *
1202  * Use of supply names configured via regulator_set_device_supply() is
1203  * strongly encouraged.  It is recommended that the supply name used
1204  * should match the name used for the supply and/or the relevant
1205  * device pins in the datasheet.
1206  */
1207 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1208 {
1209         return _regulator_get(dev, id, 1);
1210 }
1211 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1212
1213 /**
1214  * regulator_put - "free" the regulator source
1215  * @regulator: regulator source
1216  *
1217  * Note: drivers must ensure that all regulator_enable calls made on this
1218  * regulator source are balanced by regulator_disable calls prior to calling
1219  * this function.
1220  */
1221 void regulator_put(struct regulator *regulator)
1222 {
1223         struct regulator_dev *rdev;
1224
1225         if (regulator == NULL || IS_ERR(regulator))
1226                 return;
1227
1228         mutex_lock(&regulator_list_mutex);
1229         rdev = regulator->rdev;
1230
1231         /* remove any sysfs entries */
1232         if (regulator->dev) {
1233                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1234                 kfree(regulator->supply_name);
1235                 device_remove_file(regulator->dev, &regulator->dev_attr);
1236                 kfree(regulator->dev_attr.attr.name);
1237         }
1238         list_del(&regulator->list);
1239         kfree(regulator);
1240
1241         rdev->open_count--;
1242         rdev->exclusive = 0;
1243
1244         module_put(rdev->owner);
1245         mutex_unlock(&regulator_list_mutex);
1246 }
1247 EXPORT_SYMBOL_GPL(regulator_put);
1248
1249 static int _regulator_can_change_status(struct regulator_dev *rdev)
1250 {
1251         if (!rdev->constraints)
1252                 return 0;
1253
1254         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1255                 return 1;
1256         else
1257                 return 0;
1258 }
1259
1260 /* locks held by regulator_enable() */
1261 static int _regulator_enable(struct regulator_dev *rdev)
1262 {
1263         int ret, delay;
1264
1265         /* do we need to enable the supply regulator first */
1266         if (rdev->supply) {
1267                 ret = _regulator_enable(rdev->supply);
1268                 if (ret < 0) {
1269                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1270                                __func__, rdev_get_name(rdev), ret);
1271                         return ret;
1272                 }
1273         }
1274
1275         /* check voltage and requested load before enabling */
1276         if (rdev->constraints &&
1277             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1278                 drms_uA_update(rdev);
1279
1280         if (rdev->use_count == 0) {
1281                 /* The regulator may on if it's not switchable or left on */
1282                 ret = _regulator_is_enabled(rdev);
1283                 if (ret == -EINVAL || ret == 0) {
1284                         if (!_regulator_can_change_status(rdev))
1285                                 return -EPERM;
1286
1287                         if (!rdev->desc->ops->enable)
1288                                 return -EINVAL;
1289
1290                         /* Query before enabling in case configuration
1291                          * dependant.  */
1292                         ret = _regulator_get_enable_time(rdev);
1293                         if (ret >= 0) {
1294                                 delay = ret;
1295                         } else {
1296                                 printk(KERN_WARNING
1297                                         "%s: enable_time() failed for %s: %d\n",
1298                                         __func__, rdev_get_name(rdev),
1299                                         ret);
1300                                 delay = 0;
1301                         }
1302
1303                         /* Allow the regulator to ramp; it would be useful
1304                          * to extend this for bulk operations so that the
1305                          * regulators can ramp together.  */
1306                         ret = rdev->desc->ops->enable(rdev);
1307                         if (ret < 0)
1308                                 return ret;
1309
1310                         if (delay >= 1000)
1311                                 mdelay(delay / 1000);
1312                         else if (delay)
1313                                 udelay(delay);
1314
1315                 } else if (ret < 0) {
1316                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1317                                __func__, rdev_get_name(rdev), ret);
1318                         return ret;
1319                 }
1320                 /* Fallthrough on positive return values - already enabled */
1321         }
1322
1323         rdev->use_count++;
1324
1325         return 0;
1326 }
1327
1328 /**
1329  * regulator_enable - enable regulator output
1330  * @regulator: regulator source
1331  *
1332  * Request that the regulator be enabled with the regulator output at
1333  * the predefined voltage or current value.  Calls to regulator_enable()
1334  * must be balanced with calls to regulator_disable().
1335  *
1336  * NOTE: the output value can be set by other drivers, boot loader or may be
1337  * hardwired in the regulator.
1338  */
1339 int regulator_enable(struct regulator *regulator)
1340 {
1341         struct regulator_dev *rdev = regulator->rdev;
1342         int ret = 0;
1343
1344         mutex_lock(&rdev->mutex);
1345         ret = _regulator_enable(rdev);
1346         mutex_unlock(&rdev->mutex);
1347         return ret;
1348 }
1349 EXPORT_SYMBOL_GPL(regulator_enable);
1350
1351 /* locks held by regulator_disable() */
1352 static int _regulator_disable(struct regulator_dev *rdev)
1353 {
1354         int ret = 0;
1355
1356         if (WARN(rdev->use_count <= 0,
1357                         "unbalanced disables for %s\n",
1358                         rdev_get_name(rdev)))
1359                 return -EIO;
1360
1361         /* are we the last user and permitted to disable ? */
1362         if (rdev->use_count == 1 &&
1363             (rdev->constraints && !rdev->constraints->always_on)) {
1364
1365                 /* we are last user */
1366                 if (_regulator_can_change_status(rdev) &&
1367                     rdev->desc->ops->disable) {
1368                         ret = rdev->desc->ops->disable(rdev);
1369                         if (ret < 0) {
1370                                 printk(KERN_ERR "%s: failed to disable %s\n",
1371                                        __func__, rdev_get_name(rdev));
1372                                 return ret;
1373                         }
1374
1375                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1376                                              NULL);
1377                 }
1378
1379                 /* decrease our supplies ref count and disable if required */
1380                 if (rdev->supply)
1381                         _regulator_disable(rdev->supply);
1382
1383                 rdev->use_count = 0;
1384         } else if (rdev->use_count > 1) {
1385
1386                 if (rdev->constraints &&
1387                         (rdev->constraints->valid_ops_mask &
1388                         REGULATOR_CHANGE_DRMS))
1389                         drms_uA_update(rdev);
1390
1391                 rdev->use_count--;
1392         }
1393         return ret;
1394 }
1395
1396 /**
1397  * regulator_disable - disable regulator output
1398  * @regulator: regulator source
1399  *
1400  * Disable the regulator output voltage or current.  Calls to
1401  * regulator_enable() must be balanced with calls to
1402  * regulator_disable().
1403  *
1404  * NOTE: this will only disable the regulator output if no other consumer
1405  * devices have it enabled, the regulator device supports disabling and
1406  * machine constraints permit this operation.
1407  */
1408 int regulator_disable(struct regulator *regulator)
1409 {
1410         struct regulator_dev *rdev = regulator->rdev;
1411         int ret = 0;
1412
1413         mutex_lock(&rdev->mutex);
1414         ret = _regulator_disable(rdev);
1415         mutex_unlock(&rdev->mutex);
1416         return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(regulator_disable);
1419
1420 /* locks held by regulator_force_disable() */
1421 static int _regulator_force_disable(struct regulator_dev *rdev)
1422 {
1423         int ret = 0;
1424
1425         /* force disable */
1426         if (rdev->desc->ops->disable) {
1427                 /* ah well, who wants to live forever... */
1428                 ret = rdev->desc->ops->disable(rdev);
1429                 if (ret < 0) {
1430                         printk(KERN_ERR "%s: failed to force disable %s\n",
1431                                __func__, rdev_get_name(rdev));
1432                         return ret;
1433                 }
1434                 /* notify other consumers that power has been forced off */
1435                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1436                         REGULATOR_EVENT_DISABLE, NULL);
1437         }
1438
1439         /* decrease our supplies ref count and disable if required */
1440         if (rdev->supply)
1441                 _regulator_disable(rdev->supply);
1442
1443         rdev->use_count = 0;
1444         return ret;
1445 }
1446
1447 /**
1448  * regulator_force_disable - force disable regulator output
1449  * @regulator: regulator source
1450  *
1451  * Forcibly disable the regulator output voltage or current.
1452  * NOTE: this *will* disable the regulator output even if other consumer
1453  * devices have it enabled. This should be used for situations when device
1454  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1455  */
1456 int regulator_force_disable(struct regulator *regulator)
1457 {
1458         int ret;
1459
1460         mutex_lock(&regulator->rdev->mutex);
1461         regulator->uA_load = 0;
1462         ret = _regulator_force_disable(regulator->rdev);
1463         mutex_unlock(&regulator->rdev->mutex);
1464         return ret;
1465 }
1466 EXPORT_SYMBOL_GPL(regulator_force_disable);
1467
1468 static int _regulator_is_enabled(struct regulator_dev *rdev)
1469 {
1470         /* If we don't know then assume that the regulator is always on */
1471         if (!rdev->desc->ops->is_enabled)
1472                 return 1;
1473
1474         return rdev->desc->ops->is_enabled(rdev);
1475 }
1476
1477 /**
1478  * regulator_is_enabled - is the regulator output enabled
1479  * @regulator: regulator source
1480  *
1481  * Returns positive if the regulator driver backing the source/client
1482  * has requested that the device be enabled, zero if it hasn't, else a
1483  * negative errno code.
1484  *
1485  * Note that the device backing this regulator handle can have multiple
1486  * users, so it might be enabled even if regulator_enable() was never
1487  * called for this particular source.
1488  */
1489 int regulator_is_enabled(struct regulator *regulator)
1490 {
1491         int ret;
1492
1493         mutex_lock(&regulator->rdev->mutex);
1494         ret = _regulator_is_enabled(regulator->rdev);
1495         mutex_unlock(&regulator->rdev->mutex);
1496
1497         return ret;
1498 }
1499 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1500
1501 /**
1502  * regulator_count_voltages - count regulator_list_voltage() selectors
1503  * @regulator: regulator source
1504  *
1505  * Returns number of selectors, or negative errno.  Selectors are
1506  * numbered starting at zero, and typically correspond to bitfields
1507  * in hardware registers.
1508  */
1509 int regulator_count_voltages(struct regulator *regulator)
1510 {
1511         struct regulator_dev    *rdev = regulator->rdev;
1512
1513         return rdev->desc->n_voltages ? : -EINVAL;
1514 }
1515 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1516
1517 /**
1518  * regulator_list_voltage - enumerate supported voltages
1519  * @regulator: regulator source
1520  * @selector: identify voltage to list
1521  * Context: can sleep
1522  *
1523  * Returns a voltage that can be passed to @regulator_set_voltage(),
1524  * zero if this selector code can't be used on this system, or a
1525  * negative errno.
1526  */
1527 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1528 {
1529         struct regulator_dev    *rdev = regulator->rdev;
1530         struct regulator_ops    *ops = rdev->desc->ops;
1531         int                     ret;
1532
1533         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1534                 return -EINVAL;
1535
1536         mutex_lock(&rdev->mutex);
1537         ret = ops->list_voltage(rdev, selector);
1538         mutex_unlock(&rdev->mutex);
1539
1540         if (ret > 0) {
1541                 if (ret < rdev->constraints->min_uV)
1542                         ret = 0;
1543                 else if (ret > rdev->constraints->max_uV)
1544                         ret = 0;
1545         }
1546
1547         return ret;
1548 }
1549 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1550
1551 /**
1552  * regulator_is_supported_voltage - check if a voltage range can be supported
1553  *
1554  * @regulator: Regulator to check.
1555  * @min_uV: Minimum required voltage in uV.
1556  * @max_uV: Maximum required voltage in uV.
1557  *
1558  * Returns a boolean or a negative error code.
1559  */
1560 int regulator_is_supported_voltage(struct regulator *regulator,
1561                                    int min_uV, int max_uV)
1562 {
1563         int i, voltages, ret;
1564
1565         ret = regulator_count_voltages(regulator);
1566         if (ret < 0)
1567                 return ret;
1568         voltages = ret;
1569
1570         for (i = 0; i < voltages; i++) {
1571                 ret = regulator_list_voltage(regulator, i);
1572
1573                 if (ret >= min_uV && ret <= max_uV)
1574                         return 1;
1575         }
1576
1577         return 0;
1578 }
1579
1580 /**
1581  * regulator_set_voltage - set regulator output voltage
1582  * @regulator: regulator source
1583  * @min_uV: Minimum required voltage in uV
1584  * @max_uV: Maximum acceptable voltage in uV
1585  *
1586  * Sets a voltage regulator to the desired output voltage. This can be set
1587  * during any regulator state. IOW, regulator can be disabled or enabled.
1588  *
1589  * If the regulator is enabled then the voltage will change to the new value
1590  * immediately otherwise if the regulator is disabled the regulator will
1591  * output at the new voltage when enabled.
1592  *
1593  * NOTE: If the regulator is shared between several devices then the lowest
1594  * request voltage that meets the system constraints will be used.
1595  * Regulator system constraints must be set for this regulator before
1596  * calling this function otherwise this call will fail.
1597  */
1598 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1599 {
1600         struct regulator_dev *rdev = regulator->rdev;
1601         int ret;
1602
1603         mutex_lock(&rdev->mutex);
1604
1605         /* sanity check */
1606         if (!rdev->desc->ops->set_voltage) {
1607                 ret = -EINVAL;
1608                 goto out;
1609         }
1610
1611         /* constraints check */
1612         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1613         if (ret < 0)
1614                 goto out;
1615         regulator->min_uV = min_uV;
1616         regulator->max_uV = max_uV;
1617         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1618
1619 out:
1620         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1621         mutex_unlock(&rdev->mutex);
1622         return ret;
1623 }
1624 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1625
1626 static int _regulator_get_voltage(struct regulator_dev *rdev)
1627 {
1628         /* sanity check */
1629         if (rdev->desc->ops->get_voltage)
1630                 return rdev->desc->ops->get_voltage(rdev);
1631         else
1632                 return -EINVAL;
1633 }
1634
1635 /**
1636  * regulator_get_voltage - get regulator output voltage
1637  * @regulator: regulator source
1638  *
1639  * This returns the current regulator voltage in uV.
1640  *
1641  * NOTE: If the regulator is disabled it will return the voltage value. This
1642  * function should not be used to determine regulator state.
1643  */
1644 int regulator_get_voltage(struct regulator *regulator)
1645 {
1646         int ret;
1647
1648         mutex_lock(&regulator->rdev->mutex);
1649
1650         ret = _regulator_get_voltage(regulator->rdev);
1651
1652         mutex_unlock(&regulator->rdev->mutex);
1653
1654         return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1657
1658 /**
1659  * regulator_set_current_limit - set regulator output current limit
1660  * @regulator: regulator source
1661  * @min_uA: Minimuum supported current in uA
1662  * @max_uA: Maximum supported current in uA
1663  *
1664  * Sets current sink to the desired output current. This can be set during
1665  * any regulator state. IOW, regulator can be disabled or enabled.
1666  *
1667  * If the regulator is enabled then the current will change to the new value
1668  * immediately otherwise if the regulator is disabled the regulator will
1669  * output at the new current when enabled.
1670  *
1671  * NOTE: Regulator system constraints must be set for this regulator before
1672  * calling this function otherwise this call will fail.
1673  */
1674 int regulator_set_current_limit(struct regulator *regulator,
1675                                int min_uA, int max_uA)
1676 {
1677         struct regulator_dev *rdev = regulator->rdev;
1678         int ret;
1679
1680         mutex_lock(&rdev->mutex);
1681
1682         /* sanity check */
1683         if (!rdev->desc->ops->set_current_limit) {
1684                 ret = -EINVAL;
1685                 goto out;
1686         }
1687
1688         /* constraints check */
1689         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1690         if (ret < 0)
1691                 goto out;
1692
1693         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1694 out:
1695         mutex_unlock(&rdev->mutex);
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1699
1700 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1701 {
1702         int ret;
1703
1704         mutex_lock(&rdev->mutex);
1705
1706         /* sanity check */
1707         if (!rdev->desc->ops->get_current_limit) {
1708                 ret = -EINVAL;
1709                 goto out;
1710         }
1711
1712         ret = rdev->desc->ops->get_current_limit(rdev);
1713 out:
1714         mutex_unlock(&rdev->mutex);
1715         return ret;
1716 }
1717
1718 /**
1719  * regulator_get_current_limit - get regulator output current
1720  * @regulator: regulator source
1721  *
1722  * This returns the current supplied by the specified current sink in uA.
1723  *
1724  * NOTE: If the regulator is disabled it will return the current value. This
1725  * function should not be used to determine regulator state.
1726  */
1727 int regulator_get_current_limit(struct regulator *regulator)
1728 {
1729         return _regulator_get_current_limit(regulator->rdev);
1730 }
1731 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1732
1733 /**
1734  * regulator_set_mode - set regulator operating mode
1735  * @regulator: regulator source
1736  * @mode: operating mode - one of the REGULATOR_MODE constants
1737  *
1738  * Set regulator operating mode to increase regulator efficiency or improve
1739  * regulation performance.
1740  *
1741  * NOTE: Regulator system constraints must be set for this regulator before
1742  * calling this function otherwise this call will fail.
1743  */
1744 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1745 {
1746         struct regulator_dev *rdev = regulator->rdev;
1747         int ret;
1748
1749         mutex_lock(&rdev->mutex);
1750
1751         /* sanity check */
1752         if (!rdev->desc->ops->set_mode) {
1753                 ret = -EINVAL;
1754                 goto out;
1755         }
1756
1757         /* constraints check */
1758         ret = regulator_check_mode(rdev, mode);
1759         if (ret < 0)
1760                 goto out;
1761
1762         ret = rdev->desc->ops->set_mode(rdev, mode);
1763 out:
1764         mutex_unlock(&rdev->mutex);
1765         return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(regulator_set_mode);
1768
1769 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1770 {
1771         int ret;
1772
1773         mutex_lock(&rdev->mutex);
1774
1775         /* sanity check */
1776         if (!rdev->desc->ops->get_mode) {
1777                 ret = -EINVAL;
1778                 goto out;
1779         }
1780
1781         ret = rdev->desc->ops->get_mode(rdev);
1782 out:
1783         mutex_unlock(&rdev->mutex);
1784         return ret;
1785 }
1786
1787 /**
1788  * regulator_get_mode - get regulator operating mode
1789  * @regulator: regulator source
1790  *
1791  * Get the current regulator operating mode.
1792  */
1793 unsigned int regulator_get_mode(struct regulator *regulator)
1794 {
1795         return _regulator_get_mode(regulator->rdev);
1796 }
1797 EXPORT_SYMBOL_GPL(regulator_get_mode);
1798
1799 /**
1800  * regulator_set_optimum_mode - set regulator optimum operating mode
1801  * @regulator: regulator source
1802  * @uA_load: load current
1803  *
1804  * Notifies the regulator core of a new device load. This is then used by
1805  * DRMS (if enabled by constraints) to set the most efficient regulator
1806  * operating mode for the new regulator loading.
1807  *
1808  * Consumer devices notify their supply regulator of the maximum power
1809  * they will require (can be taken from device datasheet in the power
1810  * consumption tables) when they change operational status and hence power
1811  * state. Examples of operational state changes that can affect power
1812  * consumption are :-
1813  *
1814  *    o Device is opened / closed.
1815  *    o Device I/O is about to begin or has just finished.
1816  *    o Device is idling in between work.
1817  *
1818  * This information is also exported via sysfs to userspace.
1819  *
1820  * DRMS will sum the total requested load on the regulator and change
1821  * to the most efficient operating mode if platform constraints allow.
1822  *
1823  * Returns the new regulator mode or error.
1824  */
1825 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1826 {
1827         struct regulator_dev *rdev = regulator->rdev;
1828         struct regulator *consumer;
1829         int ret, output_uV, input_uV, total_uA_load = 0;
1830         unsigned int mode;
1831
1832         mutex_lock(&rdev->mutex);
1833
1834         regulator->uA_load = uA_load;
1835         ret = regulator_check_drms(rdev);
1836         if (ret < 0)
1837                 goto out;
1838         ret = -EINVAL;
1839
1840         /* sanity check */
1841         if (!rdev->desc->ops->get_optimum_mode)
1842                 goto out;
1843
1844         /* get output voltage */
1845         output_uV = rdev->desc->ops->get_voltage(rdev);
1846         if (output_uV <= 0) {
1847                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1848                         __func__, rdev_get_name(rdev));
1849                 goto out;
1850         }
1851
1852         /* get input voltage */
1853         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1854                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1855         else
1856                 input_uV = rdev->constraints->input_uV;
1857         if (input_uV <= 0) {
1858                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1859                         __func__, rdev_get_name(rdev));
1860                 goto out;
1861         }
1862
1863         /* calc total requested load for this regulator */
1864         list_for_each_entry(consumer, &rdev->consumer_list, list)
1865                 total_uA_load += consumer->uA_load;
1866
1867         mode = rdev->desc->ops->get_optimum_mode(rdev,
1868                                                  input_uV, output_uV,
1869                                                  total_uA_load);
1870         ret = regulator_check_mode(rdev, mode);
1871         if (ret < 0) {
1872                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1873                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1874                         total_uA_load, input_uV, output_uV);
1875                 goto out;
1876         }
1877
1878         ret = rdev->desc->ops->set_mode(rdev, mode);
1879         if (ret < 0) {
1880                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1881                         __func__, mode, rdev_get_name(rdev));
1882                 goto out;
1883         }
1884         ret = mode;
1885 out:
1886         mutex_unlock(&rdev->mutex);
1887         return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1890
1891 /**
1892  * regulator_register_notifier - register regulator event notifier
1893  * @regulator: regulator source
1894  * @nb: notifier block
1895  *
1896  * Register notifier block to receive regulator events.
1897  */
1898 int regulator_register_notifier(struct regulator *regulator,
1899                               struct notifier_block *nb)
1900 {
1901         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1902                                                 nb);
1903 }
1904 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1905
1906 /**
1907  * regulator_unregister_notifier - unregister regulator event notifier
1908  * @regulator: regulator source
1909  * @nb: notifier block
1910  *
1911  * Unregister regulator event notifier block.
1912  */
1913 int regulator_unregister_notifier(struct regulator *regulator,
1914                                 struct notifier_block *nb)
1915 {
1916         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1917                                                   nb);
1918 }
1919 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1920
1921 /* notify regulator consumers and downstream regulator consumers.
1922  * Note mutex must be held by caller.
1923  */
1924 static void _notifier_call_chain(struct regulator_dev *rdev,
1925                                   unsigned long event, void *data)
1926 {
1927         struct regulator_dev *_rdev;
1928
1929         /* call rdev chain first */
1930         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1931
1932         /* now notify regulator we supply */
1933         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1934                 mutex_lock(&_rdev->mutex);
1935                 _notifier_call_chain(_rdev, event, data);
1936                 mutex_unlock(&_rdev->mutex);
1937         }
1938 }
1939
1940 /**
1941  * regulator_bulk_get - get multiple regulator consumers
1942  *
1943  * @dev:           Device to supply
1944  * @num_consumers: Number of consumers to register
1945  * @consumers:     Configuration of consumers; clients are stored here.
1946  *
1947  * @return 0 on success, an errno on failure.
1948  *
1949  * This helper function allows drivers to get several regulator
1950  * consumers in one operation.  If any of the regulators cannot be
1951  * acquired then any regulators that were allocated will be freed
1952  * before returning to the caller.
1953  */
1954 int regulator_bulk_get(struct device *dev, int num_consumers,
1955                        struct regulator_bulk_data *consumers)
1956 {
1957         int i;
1958         int ret;
1959
1960         for (i = 0; i < num_consumers; i++)
1961                 consumers[i].consumer = NULL;
1962
1963         for (i = 0; i < num_consumers; i++) {
1964                 consumers[i].consumer = regulator_get(dev,
1965                                                       consumers[i].supply);
1966                 if (IS_ERR(consumers[i].consumer)) {
1967                         ret = PTR_ERR(consumers[i].consumer);
1968                         dev_err(dev, "Failed to get supply '%s': %d\n",
1969                                 consumers[i].supply, ret);
1970                         consumers[i].consumer = NULL;
1971                         goto err;
1972                 }
1973         }
1974
1975         return 0;
1976
1977 err:
1978         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1979                 regulator_put(consumers[i].consumer);
1980
1981         return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1984
1985 /**
1986  * regulator_bulk_enable - enable multiple regulator consumers
1987  *
1988  * @num_consumers: Number of consumers
1989  * @consumers:     Consumer data; clients are stored here.
1990  * @return         0 on success, an errno on failure
1991  *
1992  * This convenience API allows consumers to enable multiple regulator
1993  * clients in a single API call.  If any consumers cannot be enabled
1994  * then any others that were enabled will be disabled again prior to
1995  * return.
1996  */
1997 int regulator_bulk_enable(int num_consumers,
1998                           struct regulator_bulk_data *consumers)
1999 {
2000         int i;
2001         int ret;
2002
2003         for (i = 0; i < num_consumers; i++) {
2004                 ret = regulator_enable(consumers[i].consumer);
2005                 if (ret != 0)
2006                         goto err;
2007         }
2008
2009         return 0;
2010
2011 err:
2012         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2013         for (--i; i >= 0; --i)
2014                 regulator_disable(consumers[i].consumer);
2015
2016         return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2019
2020 /**
2021  * regulator_bulk_disable - disable multiple regulator consumers
2022  *
2023  * @num_consumers: Number of consumers
2024  * @consumers:     Consumer data; clients are stored here.
2025  * @return         0 on success, an errno on failure
2026  *
2027  * This convenience API allows consumers to disable multiple regulator
2028  * clients in a single API call.  If any consumers cannot be enabled
2029  * then any others that were disabled will be disabled again prior to
2030  * return.
2031  */
2032 int regulator_bulk_disable(int num_consumers,
2033                            struct regulator_bulk_data *consumers)
2034 {
2035         int i;
2036         int ret;
2037
2038         for (i = 0; i < num_consumers; i++) {
2039                 ret = regulator_disable(consumers[i].consumer);
2040                 if (ret != 0)
2041                         goto err;
2042         }
2043
2044         return 0;
2045
2046 err:
2047         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2048                ret);
2049         for (--i; i >= 0; --i)
2050                 regulator_enable(consumers[i].consumer);
2051
2052         return ret;
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2055
2056 /**
2057  * regulator_bulk_free - free multiple regulator consumers
2058  *
2059  * @num_consumers: Number of consumers
2060  * @consumers:     Consumer data; clients are stored here.
2061  *
2062  * This convenience API allows consumers to free multiple regulator
2063  * clients in a single API call.
2064  */
2065 void regulator_bulk_free(int num_consumers,
2066                          struct regulator_bulk_data *consumers)
2067 {
2068         int i;
2069
2070         for (i = 0; i < num_consumers; i++) {
2071                 regulator_put(consumers[i].consumer);
2072                 consumers[i].consumer = NULL;
2073         }
2074 }
2075 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2076
2077 /**
2078  * regulator_notifier_call_chain - call regulator event notifier
2079  * @rdev: regulator source
2080  * @event: notifier block
2081  * @data: callback-specific data.
2082  *
2083  * Called by regulator drivers to notify clients a regulator event has
2084  * occurred. We also notify regulator clients downstream.
2085  * Note lock must be held by caller.
2086  */
2087 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2088                                   unsigned long event, void *data)
2089 {
2090         _notifier_call_chain(rdev, event, data);
2091         return NOTIFY_DONE;
2092
2093 }
2094 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2095
2096 /**
2097  * regulator_mode_to_status - convert a regulator mode into a status
2098  *
2099  * @mode: Mode to convert
2100  *
2101  * Convert a regulator mode into a status.
2102  */
2103 int regulator_mode_to_status(unsigned int mode)
2104 {
2105         switch (mode) {
2106         case REGULATOR_MODE_FAST:
2107                 return REGULATOR_STATUS_FAST;
2108         case REGULATOR_MODE_NORMAL:
2109                 return REGULATOR_STATUS_NORMAL;
2110         case REGULATOR_MODE_IDLE:
2111                 return REGULATOR_STATUS_IDLE;
2112         case REGULATOR_STATUS_STANDBY:
2113                 return REGULATOR_STATUS_STANDBY;
2114         default:
2115                 return 0;
2116         }
2117 }
2118 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2119
2120 /*
2121  * To avoid cluttering sysfs (and memory) with useless state, only
2122  * create attributes that can be meaningfully displayed.
2123  */
2124 static int add_regulator_attributes(struct regulator_dev *rdev)
2125 {
2126         struct device           *dev = &rdev->dev;
2127         struct regulator_ops    *ops = rdev->desc->ops;
2128         int                     status = 0;
2129
2130         /* some attributes need specific methods to be displayed */
2131         if (ops->get_voltage) {
2132                 status = device_create_file(dev, &dev_attr_microvolts);
2133                 if (status < 0)
2134                         return status;
2135         }
2136         if (ops->get_current_limit) {
2137                 status = device_create_file(dev, &dev_attr_microamps);
2138                 if (status < 0)
2139                         return status;
2140         }
2141         if (ops->get_mode) {
2142                 status = device_create_file(dev, &dev_attr_opmode);
2143                 if (status < 0)
2144                         return status;
2145         }
2146         if (ops->is_enabled) {
2147                 status = device_create_file(dev, &dev_attr_state);
2148                 if (status < 0)
2149                         return status;
2150         }
2151         if (ops->get_status) {
2152                 status = device_create_file(dev, &dev_attr_status);
2153                 if (status < 0)
2154                         return status;
2155         }
2156
2157         /* some attributes are type-specific */
2158         if (rdev->desc->type == REGULATOR_CURRENT) {
2159                 status = device_create_file(dev, &dev_attr_requested_microamps);
2160                 if (status < 0)
2161                         return status;
2162         }
2163
2164         /* all the other attributes exist to support constraints;
2165          * don't show them if there are no constraints, or if the
2166          * relevant supporting methods are missing.
2167          */
2168         if (!rdev->constraints)
2169                 return status;
2170
2171         /* constraints need specific supporting methods */
2172         if (ops->set_voltage) {
2173                 status = device_create_file(dev, &dev_attr_min_microvolts);
2174                 if (status < 0)
2175                         return status;
2176                 status = device_create_file(dev, &dev_attr_max_microvolts);
2177                 if (status < 0)
2178                         return status;
2179         }
2180         if (ops->set_current_limit) {
2181                 status = device_create_file(dev, &dev_attr_min_microamps);
2182                 if (status < 0)
2183                         return status;
2184                 status = device_create_file(dev, &dev_attr_max_microamps);
2185                 if (status < 0)
2186                         return status;
2187         }
2188
2189         /* suspend mode constraints need multiple supporting methods */
2190         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2191                 return status;
2192
2193         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2194         if (status < 0)
2195                 return status;
2196         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2197         if (status < 0)
2198                 return status;
2199         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2200         if (status < 0)
2201                 return status;
2202
2203         if (ops->set_suspend_voltage) {
2204                 status = device_create_file(dev,
2205                                 &dev_attr_suspend_standby_microvolts);
2206                 if (status < 0)
2207                         return status;
2208                 status = device_create_file(dev,
2209                                 &dev_attr_suspend_mem_microvolts);
2210                 if (status < 0)
2211                         return status;
2212                 status = device_create_file(dev,
2213                                 &dev_attr_suspend_disk_microvolts);
2214                 if (status < 0)
2215                         return status;
2216         }
2217
2218         if (ops->set_suspend_mode) {
2219                 status = device_create_file(dev,
2220                                 &dev_attr_suspend_standby_mode);
2221                 if (status < 0)
2222                         return status;
2223                 status = device_create_file(dev,
2224                                 &dev_attr_suspend_mem_mode);
2225                 if (status < 0)
2226                         return status;
2227                 status = device_create_file(dev,
2228                                 &dev_attr_suspend_disk_mode);
2229                 if (status < 0)
2230                         return status;
2231         }
2232
2233         return status;
2234 }
2235
2236 /**
2237  * regulator_register - register regulator
2238  * @regulator_desc: regulator to register
2239  * @dev: struct device for the regulator
2240  * @init_data: platform provided init data, passed through by driver
2241  * @driver_data: private regulator data
2242  *
2243  * Called by regulator drivers to register a regulator.
2244  * Returns 0 on success.
2245  */
2246 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2247         struct device *dev, struct regulator_init_data *init_data,
2248         void *driver_data)
2249 {
2250         static atomic_t regulator_no = ATOMIC_INIT(0);
2251         struct regulator_dev *rdev;
2252         int ret, i;
2253
2254         if (regulator_desc == NULL)
2255                 return ERR_PTR(-EINVAL);
2256
2257         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2258                 return ERR_PTR(-EINVAL);
2259
2260         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2261             regulator_desc->type != REGULATOR_CURRENT)
2262                 return ERR_PTR(-EINVAL);
2263
2264         if (!init_data)
2265                 return ERR_PTR(-EINVAL);
2266
2267         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2268         if (rdev == NULL)
2269                 return ERR_PTR(-ENOMEM);
2270
2271         mutex_lock(&regulator_list_mutex);
2272
2273         mutex_init(&rdev->mutex);
2274         rdev->reg_data = driver_data;
2275         rdev->owner = regulator_desc->owner;
2276         rdev->desc = regulator_desc;
2277         INIT_LIST_HEAD(&rdev->consumer_list);
2278         INIT_LIST_HEAD(&rdev->supply_list);
2279         INIT_LIST_HEAD(&rdev->list);
2280         INIT_LIST_HEAD(&rdev->slist);
2281         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2282
2283         /* preform any regulator specific init */
2284         if (init_data->regulator_init) {
2285                 ret = init_data->regulator_init(rdev->reg_data);
2286                 if (ret < 0)
2287                         goto clean;
2288         }
2289
2290         /* register with sysfs */
2291         rdev->dev.class = &regulator_class;
2292         rdev->dev.parent = dev;
2293         dev_set_name(&rdev->dev, "regulator.%d",
2294                      atomic_inc_return(&regulator_no) - 1);
2295         ret = device_register(&rdev->dev);
2296         if (ret != 0)
2297                 goto clean;
2298
2299         dev_set_drvdata(&rdev->dev, rdev);
2300
2301         /* set regulator constraints */
2302         ret = set_machine_constraints(rdev, &init_data->constraints);
2303         if (ret < 0)
2304                 goto scrub;
2305
2306         /* add attributes supported by this regulator */
2307         ret = add_regulator_attributes(rdev);
2308         if (ret < 0)
2309                 goto scrub;
2310
2311         /* set supply regulator if it exists */
2312         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2313                 dev_err(dev,
2314                         "Supply regulator specified by both name and dev\n");
2315                 goto scrub;
2316         }
2317
2318         if (init_data->supply_regulator) {
2319                 struct regulator_dev *r;
2320                 int found = 0;
2321
2322                 list_for_each_entry(r, &regulator_list, list) {
2323                         if (strcmp(rdev_get_name(r),
2324                                    init_data->supply_regulator) == 0) {
2325                                 found = 1;
2326                                 break;
2327                         }
2328                 }
2329
2330                 if (!found) {
2331                         dev_err(dev, "Failed to find supply %s\n",
2332                                 init_data->supply_regulator);
2333                         goto scrub;
2334                 }
2335
2336                 ret = set_supply(rdev, r);
2337                 if (ret < 0)
2338                         goto scrub;
2339         }
2340
2341         if (init_data->supply_regulator_dev) {
2342                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2343                 ret = set_supply(rdev,
2344                         dev_get_drvdata(init_data->supply_regulator_dev));
2345                 if (ret < 0)
2346                         goto scrub;
2347         }
2348
2349         /* add consumers devices */
2350         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2351                 ret = set_consumer_device_supply(rdev,
2352                         init_data->consumer_supplies[i].dev,
2353                         init_data->consumer_supplies[i].dev_name,
2354                         init_data->consumer_supplies[i].supply);
2355                 if (ret < 0)
2356                         goto unset_supplies;
2357         }
2358
2359         list_add(&rdev->list, &regulator_list);
2360 out:
2361         mutex_unlock(&regulator_list_mutex);
2362         return rdev;
2363
2364 unset_supplies:
2365         unset_regulator_supplies(rdev);
2366
2367 scrub:
2368         device_unregister(&rdev->dev);
2369         /* device core frees rdev */
2370         rdev = ERR_PTR(ret);
2371         goto out;
2372
2373 clean:
2374         kfree(rdev);
2375         rdev = ERR_PTR(ret);
2376         goto out;
2377 }
2378 EXPORT_SYMBOL_GPL(regulator_register);
2379
2380 /**
2381  * regulator_unregister - unregister regulator
2382  * @rdev: regulator to unregister
2383  *
2384  * Called by regulator drivers to unregister a regulator.
2385  */
2386 void regulator_unregister(struct regulator_dev *rdev)
2387 {
2388         if (rdev == NULL)
2389                 return;
2390
2391         mutex_lock(&regulator_list_mutex);
2392         WARN_ON(rdev->open_count);
2393         unset_regulator_supplies(rdev);
2394         list_del(&rdev->list);
2395         if (rdev->supply)
2396                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2397         device_unregister(&rdev->dev);
2398         mutex_unlock(&regulator_list_mutex);
2399 }
2400 EXPORT_SYMBOL_GPL(regulator_unregister);
2401
2402 /**
2403  * regulator_suspend_prepare - prepare regulators for system wide suspend
2404  * @state: system suspend state
2405  *
2406  * Configure each regulator with it's suspend operating parameters for state.
2407  * This will usually be called by machine suspend code prior to supending.
2408  */
2409 int regulator_suspend_prepare(suspend_state_t state)
2410 {
2411         struct regulator_dev *rdev;
2412         int ret = 0;
2413
2414         /* ON is handled by regulator active state */
2415         if (state == PM_SUSPEND_ON)
2416                 return -EINVAL;
2417
2418         mutex_lock(&regulator_list_mutex);
2419         list_for_each_entry(rdev, &regulator_list, list) {
2420
2421                 mutex_lock(&rdev->mutex);
2422                 ret = suspend_prepare(rdev, state);
2423                 mutex_unlock(&rdev->mutex);
2424
2425                 if (ret < 0) {
2426                         printk(KERN_ERR "%s: failed to prepare %s\n",
2427                                 __func__, rdev_get_name(rdev));
2428                         goto out;
2429                 }
2430         }
2431 out:
2432         mutex_unlock(&regulator_list_mutex);
2433         return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2436
2437 /**
2438  * regulator_has_full_constraints - the system has fully specified constraints
2439  *
2440  * Calling this function will cause the regulator API to disable all
2441  * regulators which have a zero use count and don't have an always_on
2442  * constraint in a late_initcall.
2443  *
2444  * The intention is that this will become the default behaviour in a
2445  * future kernel release so users are encouraged to use this facility
2446  * now.
2447  */
2448 void regulator_has_full_constraints(void)
2449 {
2450         has_full_constraints = 1;
2451 }
2452 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2453
2454 /**
2455  * rdev_get_drvdata - get rdev regulator driver data
2456  * @rdev: regulator
2457  *
2458  * Get rdev regulator driver private data. This call can be used in the
2459  * regulator driver context.
2460  */
2461 void *rdev_get_drvdata(struct regulator_dev *rdev)
2462 {
2463         return rdev->reg_data;
2464 }
2465 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2466
2467 /**
2468  * regulator_get_drvdata - get regulator driver data
2469  * @regulator: regulator
2470  *
2471  * Get regulator driver private data. This call can be used in the consumer
2472  * driver context when non API regulator specific functions need to be called.
2473  */
2474 void *regulator_get_drvdata(struct regulator *regulator)
2475 {
2476         return regulator->rdev->reg_data;
2477 }
2478 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2479
2480 /**
2481  * regulator_set_drvdata - set regulator driver data
2482  * @regulator: regulator
2483  * @data: data
2484  */
2485 void regulator_set_drvdata(struct regulator *regulator, void *data)
2486 {
2487         regulator->rdev->reg_data = data;
2488 }
2489 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2490
2491 /**
2492  * regulator_get_id - get regulator ID
2493  * @rdev: regulator
2494  */
2495 int rdev_get_id(struct regulator_dev *rdev)
2496 {
2497         return rdev->desc->id;
2498 }
2499 EXPORT_SYMBOL_GPL(rdev_get_id);
2500
2501 struct device *rdev_get_dev(struct regulator_dev *rdev)
2502 {
2503         return &rdev->dev;
2504 }
2505 EXPORT_SYMBOL_GPL(rdev_get_dev);
2506
2507 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2508 {
2509         return reg_init_data->driver_data;
2510 }
2511 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2512
2513 static int __init regulator_init(void)
2514 {
2515         int ret;
2516
2517         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2518
2519         ret = class_register(&regulator_class);
2520
2521         regulator_dummy_init();
2522
2523         return ret;
2524 }
2525
2526 /* init early to allow our consumers to complete system booting */
2527 core_initcall(regulator_init);
2528
2529 static int __init regulator_init_complete(void)
2530 {
2531         struct regulator_dev *rdev;
2532         struct regulator_ops *ops;
2533         struct regulation_constraints *c;
2534         int enabled, ret;
2535         const char *name;
2536
2537         mutex_lock(&regulator_list_mutex);
2538
2539         /* If we have a full configuration then disable any regulators
2540          * which are not in use or always_on.  This will become the
2541          * default behaviour in the future.
2542          */
2543         list_for_each_entry(rdev, &regulator_list, list) {
2544                 ops = rdev->desc->ops;
2545                 c = rdev->constraints;
2546
2547                 name = rdev_get_name(rdev);
2548
2549                 if (!ops->disable || (c && c->always_on))
2550                         continue;
2551
2552                 mutex_lock(&rdev->mutex);
2553
2554                 if (rdev->use_count)
2555                         goto unlock;
2556
2557                 /* If we can't read the status assume it's on. */
2558                 if (ops->is_enabled)
2559                         enabled = ops->is_enabled(rdev);
2560                 else
2561                         enabled = 1;
2562
2563                 if (!enabled)
2564                         goto unlock;
2565
2566                 if (has_full_constraints) {
2567                         /* We log since this may kill the system if it
2568                          * goes wrong. */
2569                         printk(KERN_INFO "%s: disabling %s\n",
2570                                __func__, name);
2571                         ret = ops->disable(rdev);
2572                         if (ret != 0) {
2573                                 printk(KERN_ERR
2574                                        "%s: couldn't disable %s: %d\n",
2575                                        __func__, name, ret);
2576                         }
2577                 } else {
2578                         /* The intention is that in future we will
2579                          * assume that full constraints are provided
2580                          * so warn even if we aren't going to do
2581                          * anything here.
2582                          */
2583                         printk(KERN_WARNING
2584                                "%s: incomplete constraints, leaving %s on\n",
2585                                __func__, name);
2586                 }
2587
2588 unlock:
2589                 mutex_unlock(&rdev->mutex);
2590         }
2591
2592         mutex_unlock(&regulator_list_mutex);
2593
2594         return 0;
2595 }
2596 late_initcall(regulator_init_complete);