regulator: improved mode error checks
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /**
33  * struct regulator_dev
34  *
35  * Voltage / Current regulator class device. One for each regulator.
36  */
37 struct regulator_dev {
38         struct regulator_desc *desc;
39         int use_count;
40
41         /* lists we belong to */
42         struct list_head list; /* list of all regulators */
43         struct list_head slist; /* list of supplied regulators */
44
45         /* lists we own */
46         struct list_head consumer_list; /* consumers we supply */
47         struct list_head supply_list; /* regulators we supply */
48
49         struct blocking_notifier_head notifier;
50         struct mutex mutex; /* consumer lock */
51         struct module *owner;
52         struct device dev;
53         struct regulation_constraints *constraints;
54         struct regulator_dev *supply;   /* for tree */
55
56         void *reg_data;         /* regulator_dev data */
57 };
58
59 /**
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         struct device *dev;
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         int uA_load;
80         int min_uV;
81         int max_uV;
82         int enabled; /* count of client enables */
83         char *supply_name;
84         struct device_attribute dev_attr;
85         struct regulator_dev *rdev;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94                                   unsigned long event, void *data);
95
96 /* gets the regulator for a given consumer device */
97 static struct regulator *get_device_regulator(struct device *dev)
98 {
99         struct regulator *regulator = NULL;
100         struct regulator_dev *rdev;
101
102         mutex_lock(&regulator_list_mutex);
103         list_for_each_entry(rdev, &regulator_list, list) {
104                 mutex_lock(&rdev->mutex);
105                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
106                         if (regulator->dev == dev) {
107                                 mutex_unlock(&rdev->mutex);
108                                 mutex_unlock(&regulator_list_mutex);
109                                 return regulator;
110                         }
111                 }
112                 mutex_unlock(&rdev->mutex);
113         }
114         mutex_unlock(&regulator_list_mutex);
115         return NULL;
116 }
117
118 /* Platform voltage constraint check */
119 static int regulator_check_voltage(struct regulator_dev *rdev,
120                                    int *min_uV, int *max_uV)
121 {
122         BUG_ON(*min_uV > *max_uV);
123
124         if (!rdev->constraints) {
125                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126                        rdev->desc->name);
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 printk(KERN_ERR "%s: operation not allowed for %s\n",
131                        __func__, rdev->desc->name);
132                 return -EPERM;
133         }
134
135         if (*max_uV > rdev->constraints->max_uV)
136                 *max_uV = rdev->constraints->max_uV;
137         if (*min_uV < rdev->constraints->min_uV)
138                 *min_uV = rdev->constraints->min_uV;
139
140         if (*min_uV > *max_uV)
141                 return -EINVAL;
142
143         return 0;
144 }
145
146 /* current constraint check */
147 static int regulator_check_current_limit(struct regulator_dev *rdev,
148                                         int *min_uA, int *max_uA)
149 {
150         BUG_ON(*min_uA > *max_uA);
151
152         if (!rdev->constraints) {
153                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154                        rdev->desc->name);
155                 return -ENODEV;
156         }
157         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158                 printk(KERN_ERR "%s: operation not allowed for %s\n",
159                        __func__, rdev->desc->name);
160                 return -EPERM;
161         }
162
163         if (*max_uA > rdev->constraints->max_uA)
164                 *max_uA = rdev->constraints->max_uA;
165         if (*min_uA < rdev->constraints->min_uA)
166                 *min_uA = rdev->constraints->min_uA;
167
168         if (*min_uA > *max_uA)
169                 return -EINVAL;
170
171         return 0;
172 }
173
174 /* operating mode constraint check */
175 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176 {
177         switch (mode) {
178         case REGULATOR_MODE_FAST:
179         case REGULATOR_MODE_NORMAL:
180         case REGULATOR_MODE_IDLE:
181         case REGULATOR_MODE_STANDBY:
182                 break;
183         default:
184                 return -EINVAL;
185         }
186
187         if (!rdev->constraints) {
188                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
189                        rdev->desc->name);
190                 return -ENODEV;
191         }
192         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
193                 printk(KERN_ERR "%s: operation not allowed for %s\n",
194                        __func__, rdev->desc->name);
195                 return -EPERM;
196         }
197         if (!(rdev->constraints->valid_modes_mask & mode)) {
198                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
199                        __func__, mode, rdev->desc->name);
200                 return -EINVAL;
201         }
202         return 0;
203 }
204
205 /* dynamic regulator mode switching constraint check */
206 static int regulator_check_drms(struct regulator_dev *rdev)
207 {
208         if (!rdev->constraints) {
209                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
210                        rdev->desc->name);
211                 return -ENODEV;
212         }
213         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
214                 printk(KERN_ERR "%s: operation not allowed for %s\n",
215                        __func__, rdev->desc->name);
216                 return -EPERM;
217         }
218         return 0;
219 }
220
221 static ssize_t device_requested_uA_show(struct device *dev,
222                              struct device_attribute *attr, char *buf)
223 {
224         struct regulator *regulator;
225
226         regulator = get_device_regulator(dev);
227         if (regulator == NULL)
228                 return 0;
229
230         return sprintf(buf, "%d\n", regulator->uA_load);
231 }
232
233 static ssize_t regulator_uV_show(struct device *dev,
234                                 struct device_attribute *attr, char *buf)
235 {
236         struct regulator_dev *rdev = dev_get_drvdata(dev);
237         ssize_t ret;
238
239         mutex_lock(&rdev->mutex);
240         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
241         mutex_unlock(&rdev->mutex);
242
243         return ret;
244 }
245
246 static ssize_t regulator_uA_show(struct device *dev,
247                                 struct device_attribute *attr, char *buf)
248 {
249         struct regulator_dev *rdev = dev_get_drvdata(dev);
250
251         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
252 }
253
254 static ssize_t regulator_name_show(struct device *dev,
255                              struct device_attribute *attr, char *buf)
256 {
257         struct regulator_dev *rdev = dev_get_drvdata(dev);
258         const char *name;
259
260         if (rdev->constraints->name)
261                 name = rdev->constraints->name;
262         else if (rdev->desc->name)
263                 name = rdev->desc->name;
264         else
265                 name = "";
266
267         return sprintf(buf, "%s\n", name);
268 }
269
270 static ssize_t regulator_opmode_show(struct device *dev,
271                                     struct device_attribute *attr, char *buf)
272 {
273         struct regulator_dev *rdev = dev_get_drvdata(dev);
274         int mode = _regulator_get_mode(rdev);
275
276         switch (mode) {
277         case REGULATOR_MODE_FAST:
278                 return sprintf(buf, "fast\n");
279         case REGULATOR_MODE_NORMAL:
280                 return sprintf(buf, "normal\n");
281         case REGULATOR_MODE_IDLE:
282                 return sprintf(buf, "idle\n");
283         case REGULATOR_MODE_STANDBY:
284                 return sprintf(buf, "standby\n");
285         }
286         return sprintf(buf, "unknown\n");
287 }
288
289 static ssize_t regulator_state_show(struct device *dev,
290                                    struct device_attribute *attr, char *buf)
291 {
292         struct regulator_dev *rdev = dev_get_drvdata(dev);
293         int state = _regulator_is_enabled(rdev);
294
295         if (state > 0)
296                 return sprintf(buf, "enabled\n");
297         else if (state == 0)
298                 return sprintf(buf, "disabled\n");
299         else
300                 return sprintf(buf, "unknown\n");
301 }
302
303 static ssize_t regulator_min_uA_show(struct device *dev,
304                                     struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308         if (!rdev->constraints)
309                 return sprintf(buf, "constraint not defined\n");
310
311         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
312 }
313
314 static ssize_t regulator_max_uA_show(struct device *dev,
315                                     struct device_attribute *attr, char *buf)
316 {
317         struct regulator_dev *rdev = dev_get_drvdata(dev);
318
319         if (!rdev->constraints)
320                 return sprintf(buf, "constraint not defined\n");
321
322         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
323 }
324
325 static ssize_t regulator_min_uV_show(struct device *dev,
326                                     struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330         if (!rdev->constraints)
331                 return sprintf(buf, "constraint not defined\n");
332
333         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
334 }
335
336 static ssize_t regulator_max_uV_show(struct device *dev,
337                                     struct device_attribute *attr, char *buf)
338 {
339         struct regulator_dev *rdev = dev_get_drvdata(dev);
340
341         if (!rdev->constraints)
342                 return sprintf(buf, "constraint not defined\n");
343
344         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
345 }
346
347 static ssize_t regulator_total_uA_show(struct device *dev,
348                                       struct device_attribute *attr, char *buf)
349 {
350         struct regulator_dev *rdev = dev_get_drvdata(dev);
351         struct regulator *regulator;
352         int uA = 0;
353
354         mutex_lock(&rdev->mutex);
355         list_for_each_entry(regulator, &rdev->consumer_list, list)
356             uA += regulator->uA_load;
357         mutex_unlock(&rdev->mutex);
358         return sprintf(buf, "%d\n", uA);
359 }
360
361 static ssize_t regulator_num_users_show(struct device *dev,
362                                       struct device_attribute *attr, char *buf)
363 {
364         struct regulator_dev *rdev = dev_get_drvdata(dev);
365         return sprintf(buf, "%d\n", rdev->use_count);
366 }
367
368 static ssize_t regulator_type_show(struct device *dev,
369                                   struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372
373         switch (rdev->desc->type) {
374         case REGULATOR_VOLTAGE:
375                 return sprintf(buf, "voltage\n");
376         case REGULATOR_CURRENT:
377                 return sprintf(buf, "current\n");
378         }
379         return sprintf(buf, "unknown\n");
380 }
381
382 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
383                                 struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386
387         if (!rdev->constraints)
388                 return sprintf(buf, "not defined\n");
389         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
390 }
391
392 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
393                                 struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396
397         if (!rdev->constraints)
398                 return sprintf(buf, "not defined\n");
399         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
400 }
401
402 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
403                                 struct device_attribute *attr, char *buf)
404 {
405         struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407         if (!rdev->constraints)
408                 return sprintf(buf, "not defined\n");
409         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
410 }
411
412 static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
413         unsigned int mode, char *buf)
414 {
415         switch (mode) {
416         case REGULATOR_MODE_FAST:
417                 return sprintf(buf, "fast\n");
418         case REGULATOR_MODE_NORMAL:
419                 return sprintf(buf, "normal\n");
420         case REGULATOR_MODE_IDLE:
421                 return sprintf(buf, "idle\n");
422         case REGULATOR_MODE_STANDBY:
423                 return sprintf(buf, "standby\n");
424         }
425         return sprintf(buf, "unknown\n");
426 }
427
428 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
429                                 struct device_attribute *attr, char *buf)
430 {
431         struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433         if (!rdev->constraints)
434                 return sprintf(buf, "not defined\n");
435         return suspend_opmode_show(rdev,
436                 rdev->constraints->state_mem.mode, buf);
437 }
438
439 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
440                                 struct device_attribute *attr, char *buf)
441 {
442         struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444         if (!rdev->constraints)
445                 return sprintf(buf, "not defined\n");
446         return suspend_opmode_show(rdev,
447                 rdev->constraints->state_disk.mode, buf);
448 }
449
450 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
451                                 struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         if (!rdev->constraints)
456                 return sprintf(buf, "not defined\n");
457         return suspend_opmode_show(rdev,
458                 rdev->constraints->state_standby.mode, buf);
459 }
460
461 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
462                                    struct device_attribute *attr, char *buf)
463 {
464         struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466         if (!rdev->constraints)
467                 return sprintf(buf, "not defined\n");
468
469         if (rdev->constraints->state_mem.enabled)
470                 return sprintf(buf, "enabled\n");
471         else
472                 return sprintf(buf, "disabled\n");
473 }
474
475 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
476                                    struct device_attribute *attr, char *buf)
477 {
478         struct regulator_dev *rdev = dev_get_drvdata(dev);
479
480         if (!rdev->constraints)
481                 return sprintf(buf, "not defined\n");
482
483         if (rdev->constraints->state_disk.enabled)
484                 return sprintf(buf, "enabled\n");
485         else
486                 return sprintf(buf, "disabled\n");
487 }
488
489 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
490                                    struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "not defined\n");
496
497         if (rdev->constraints->state_standby.enabled)
498                 return sprintf(buf, "enabled\n");
499         else
500                 return sprintf(buf, "disabled\n");
501 }
502
503 static struct device_attribute regulator_dev_attrs[] = {
504         __ATTR(name, 0444, regulator_name_show, NULL),
505         __ATTR(microvolts, 0444, regulator_uV_show, NULL),
506         __ATTR(microamps, 0444, regulator_uA_show, NULL),
507         __ATTR(opmode, 0444, regulator_opmode_show, NULL),
508         __ATTR(state, 0444, regulator_state_show, NULL),
509         __ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
510         __ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
511         __ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
512         __ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
513         __ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
514         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
515         __ATTR(type, 0444, regulator_type_show, NULL),
516         __ATTR(suspend_mem_microvolts, 0444,
517                 regulator_suspend_mem_uV_show, NULL),
518         __ATTR(suspend_disk_microvolts, 0444,
519                 regulator_suspend_disk_uV_show, NULL),
520         __ATTR(suspend_standby_microvolts, 0444,
521                 regulator_suspend_standby_uV_show, NULL),
522         __ATTR(suspend_mem_mode, 0444,
523                 regulator_suspend_mem_mode_show, NULL),
524         __ATTR(suspend_disk_mode, 0444,
525                 regulator_suspend_disk_mode_show, NULL),
526         __ATTR(suspend_standby_mode, 0444,
527                 regulator_suspend_standby_mode_show, NULL),
528         __ATTR(suspend_mem_state, 0444,
529                 regulator_suspend_mem_state_show, NULL),
530         __ATTR(suspend_disk_state, 0444,
531                 regulator_suspend_disk_state_show, NULL),
532         __ATTR(suspend_standby_state, 0444,
533                 regulator_suspend_standby_state_show, NULL),
534         __ATTR_NULL,
535 };
536
537 static void regulator_dev_release(struct device *dev)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540         kfree(rdev);
541 }
542
543 static struct class regulator_class = {
544         .name = "regulator",
545         .dev_release = regulator_dev_release,
546         .dev_attrs = regulator_dev_attrs,
547 };
548
549 /* Calculate the new optimum regulator operating mode based on the new total
550  * consumer load. All locks held by caller */
551 static void drms_uA_update(struct regulator_dev *rdev)
552 {
553         struct regulator *sibling;
554         int current_uA = 0, output_uV, input_uV, err;
555         unsigned int mode;
556
557         err = regulator_check_drms(rdev);
558         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
559             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
560         return;
561
562         /* get output voltage */
563         output_uV = rdev->desc->ops->get_voltage(rdev);
564         if (output_uV <= 0)
565                 return;
566
567         /* get input voltage */
568         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
569                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
570         else
571                 input_uV = rdev->constraints->input_uV;
572         if (input_uV <= 0)
573                 return;
574
575         /* calc total requested load */
576         list_for_each_entry(sibling, &rdev->consumer_list, list)
577             current_uA += sibling->uA_load;
578
579         /* now get the optimum mode for our new total regulator load */
580         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
581                                                   output_uV, current_uA);
582
583         /* check the new mode is allowed */
584         err = regulator_check_mode(rdev, mode);
585         if (err == 0)
586                 rdev->desc->ops->set_mode(rdev, mode);
587 }
588
589 static int suspend_set_state(struct regulator_dev *rdev,
590         struct regulator_state *rstate)
591 {
592         int ret = 0;
593
594         /* enable & disable are mandatory for suspend control */
595         if (!rdev->desc->ops->set_suspend_enable ||
596                 !rdev->desc->ops->set_suspend_disable) {
597                 printk(KERN_ERR "%s: no way to set suspend state\n",
598                         __func__);
599                 return -EINVAL;
600         }
601
602         if (rstate->enabled)
603                 ret = rdev->desc->ops->set_suspend_enable(rdev);
604         else
605                 ret = rdev->desc->ops->set_suspend_disable(rdev);
606         if (ret < 0) {
607                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
608                 return ret;
609         }
610
611         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
612                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
613                 if (ret < 0) {
614                         printk(KERN_ERR "%s: failed to set voltage\n",
615                                 __func__);
616                         return ret;
617                 }
618         }
619
620         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
621                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
622                 if (ret < 0) {
623                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
624                         return ret;
625                 }
626         }
627         return ret;
628 }
629
630 /* locks held by caller */
631 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
632 {
633         if (!rdev->constraints)
634                 return -EINVAL;
635
636         switch (state) {
637         case PM_SUSPEND_STANDBY:
638                 return suspend_set_state(rdev,
639                         &rdev->constraints->state_standby);
640         case PM_SUSPEND_MEM:
641                 return suspend_set_state(rdev,
642                         &rdev->constraints->state_mem);
643         case PM_SUSPEND_MAX:
644                 return suspend_set_state(rdev,
645                         &rdev->constraints->state_disk);
646         default:
647                 return -EINVAL;
648         }
649 }
650
651 static void print_constraints(struct regulator_dev *rdev)
652 {
653         struct regulation_constraints *constraints = rdev->constraints;
654         char buf[80];
655         int count;
656
657         if (rdev->desc->type == REGULATOR_VOLTAGE) {
658                 if (constraints->min_uV == constraints->max_uV)
659                         count = sprintf(buf, "%d mV ",
660                                         constraints->min_uV / 1000);
661                 else
662                         count = sprintf(buf, "%d <--> %d mV ",
663                                         constraints->min_uV / 1000,
664                                         constraints->max_uV / 1000);
665         } else {
666                 if (constraints->min_uA == constraints->max_uA)
667                         count = sprintf(buf, "%d mA ",
668                                         constraints->min_uA / 1000);
669                 else
670                         count = sprintf(buf, "%d <--> %d mA ",
671                                         constraints->min_uA / 1000,
672                                         constraints->max_uA / 1000);
673         }
674         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
675                 count += sprintf(buf + count, "fast ");
676         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
677                 count += sprintf(buf + count, "normal ");
678         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
679                 count += sprintf(buf + count, "idle ");
680         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
681                 count += sprintf(buf + count, "standby");
682
683         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
684 }
685
686 /**
687  * set_machine_constraints - sets regulator constraints
688  * @regulator: regulator source
689  *
690  * Allows platform initialisation code to define and constrain
691  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
692  * Constraints *must* be set by platform code in order for some
693  * regulator operations to proceed i.e. set_voltage, set_current_limit,
694  * set_mode.
695  */
696 static int set_machine_constraints(struct regulator_dev *rdev,
697         struct regulation_constraints *constraints)
698 {
699         int ret = 0;
700         const char *name;
701         struct regulator_ops *ops = rdev->desc->ops;
702
703         if (constraints->name)
704                 name = constraints->name;
705         else if (rdev->desc->name)
706                 name = rdev->desc->name;
707         else
708                 name = "regulator";
709
710         rdev->constraints = constraints;
711
712         /* do we need to apply the constraint voltage */
713         if (rdev->constraints->apply_uV &&
714                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
715                 ops->set_voltage) {
716                 ret = ops->set_voltage(rdev,
717                         rdev->constraints->min_uV, rdev->constraints->max_uV);
718                         if (ret < 0) {
719                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
720                                        __func__,
721                                        rdev->constraints->min_uV, name);
722                                 rdev->constraints = NULL;
723                                 goto out;
724                         }
725         }
726
727         /* are we enabled at boot time by firmware / bootloader */
728         if (rdev->constraints->boot_on)
729                 rdev->use_count = 1;
730
731         /* do we need to setup our suspend state */
732         if (constraints->initial_state) {
733                 ret = suspend_prepare(rdev, constraints->initial_state);
734                 if (ret < 0) {
735                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
736                                __func__, name);
737                         rdev->constraints = NULL;
738                         goto out;
739                 }
740         }
741
742         /* if always_on is set then turn the regulator on if it's not
743          * already on. */
744         if (constraints->always_on && ops->enable &&
745             ((ops->is_enabled && !ops->is_enabled(rdev)) ||
746              (!ops->is_enabled && !constraints->boot_on))) {
747                 ret = ops->enable(rdev);
748                 if (ret < 0) {
749                         printk(KERN_ERR "%s: failed to enable %s\n",
750                                __func__, name);
751                         rdev->constraints = NULL;
752                         goto out;
753                 }
754         }
755
756         print_constraints(rdev);
757 out:
758         return ret;
759 }
760
761 /**
762  * set_supply - set regulator supply regulator
763  * @regulator: regulator name
764  * @supply: supply regulator name
765  *
766  * Called by platform initialisation code to set the supply regulator for this
767  * regulator. This ensures that a regulators supply will also be enabled by the
768  * core if it's child is enabled.
769  */
770 static int set_supply(struct regulator_dev *rdev,
771         struct regulator_dev *supply_rdev)
772 {
773         int err;
774
775         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
776                                 "supply");
777         if (err) {
778                 printk(KERN_ERR
779                        "%s: could not add device link %s err %d\n",
780                        __func__, supply_rdev->dev.kobj.name, err);
781                        goto out;
782         }
783         rdev->supply = supply_rdev;
784         list_add(&rdev->slist, &supply_rdev->supply_list);
785 out:
786         return err;
787 }
788
789 /**
790  * set_consumer_device_supply: Bind a regulator to a symbolic supply
791  * @regulator: regulator source
792  * @dev:       device the supply applies to
793  * @supply:    symbolic name for supply
794  *
795  * Allows platform initialisation code to map physical regulator
796  * sources to symbolic names for supplies for use by devices.  Devices
797  * should use these symbolic names to request regulators, avoiding the
798  * need to provide board-specific regulator names as platform data.
799  */
800 static int set_consumer_device_supply(struct regulator_dev *rdev,
801         struct device *consumer_dev, const char *supply)
802 {
803         struct regulator_map *node;
804
805         if (supply == NULL)
806                 return -EINVAL;
807
808         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
809         if (node == NULL)
810                 return -ENOMEM;
811
812         node->regulator = rdev;
813         node->dev = consumer_dev;
814         node->supply = supply;
815
816         list_add(&node->list, &regulator_map_list);
817         return 0;
818 }
819
820 static void unset_consumer_device_supply(struct regulator_dev *rdev,
821         struct device *consumer_dev)
822 {
823         struct regulator_map *node, *n;
824
825         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
826                 if (rdev == node->regulator &&
827                         consumer_dev == node->dev) {
828                         list_del(&node->list);
829                         kfree(node);
830                         return;
831                 }
832         }
833 }
834
835 #define REG_STR_SIZE    32
836
837 static struct regulator *create_regulator(struct regulator_dev *rdev,
838                                           struct device *dev,
839                                           const char *supply_name)
840 {
841         struct regulator *regulator;
842         char buf[REG_STR_SIZE];
843         int err, size;
844
845         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
846         if (regulator == NULL)
847                 return NULL;
848
849         mutex_lock(&rdev->mutex);
850         regulator->rdev = rdev;
851         list_add(&regulator->list, &rdev->consumer_list);
852
853         if (dev) {
854                 /* create a 'requested_microamps_name' sysfs entry */
855                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
856                         supply_name);
857                 if (size >= REG_STR_SIZE)
858                         goto overflow_err;
859
860                 regulator->dev = dev;
861                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
862                 if (regulator->dev_attr.attr.name == NULL)
863                         goto attr_name_err;
864
865                 regulator->dev_attr.attr.owner = THIS_MODULE;
866                 regulator->dev_attr.attr.mode = 0444;
867                 regulator->dev_attr.show = device_requested_uA_show;
868                 err = device_create_file(dev, &regulator->dev_attr);
869                 if (err < 0) {
870                         printk(KERN_WARNING "%s: could not add regulator_dev"
871                                 " load sysfs\n", __func__);
872                         goto attr_name_err;
873                 }
874
875                 /* also add a link to the device sysfs entry */
876                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
877                                  dev->kobj.name, supply_name);
878                 if (size >= REG_STR_SIZE)
879                         goto attr_err;
880
881                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
882                 if (regulator->supply_name == NULL)
883                         goto attr_err;
884
885                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
886                                         buf);
887                 if (err) {
888                         printk(KERN_WARNING
889                                "%s: could not add device link %s err %d\n",
890                                __func__, dev->kobj.name, err);
891                         device_remove_file(dev, &regulator->dev_attr);
892                         goto link_name_err;
893                 }
894         }
895         mutex_unlock(&rdev->mutex);
896         return regulator;
897 link_name_err:
898         kfree(regulator->supply_name);
899 attr_err:
900         device_remove_file(regulator->dev, &regulator->dev_attr);
901 attr_name_err:
902         kfree(regulator->dev_attr.attr.name);
903 overflow_err:
904         list_del(&regulator->list);
905         kfree(regulator);
906         mutex_unlock(&rdev->mutex);
907         return NULL;
908 }
909
910 /**
911  * regulator_get - lookup and obtain a reference to a regulator.
912  * @dev: device for regulator "consumer"
913  * @id: Supply name or regulator ID.
914  *
915  * Returns a struct regulator corresponding to the regulator producer,
916  * or IS_ERR() condition containing errno.  Use of supply names
917  * configured via regulator_set_device_supply() is strongly
918  * encouraged.
919  */
920 struct regulator *regulator_get(struct device *dev, const char *id)
921 {
922         struct regulator_dev *rdev;
923         struct regulator_map *map;
924         struct regulator *regulator = ERR_PTR(-ENODEV);
925
926         if (id == NULL) {
927                 printk(KERN_ERR "regulator: get() with no identifier\n");
928                 return regulator;
929         }
930
931         mutex_lock(&regulator_list_mutex);
932
933         list_for_each_entry(map, &regulator_map_list, list) {
934                 if (dev == map->dev &&
935                     strcmp(map->supply, id) == 0) {
936                         rdev = map->regulator;
937                         goto found;
938                 }
939         }
940         printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
941                id);
942         mutex_unlock(&regulator_list_mutex);
943         return regulator;
944
945 found:
946         if (!try_module_get(rdev->owner))
947                 goto out;
948
949         regulator = create_regulator(rdev, dev, id);
950         if (regulator == NULL) {
951                 regulator = ERR_PTR(-ENOMEM);
952                 module_put(rdev->owner);
953         }
954
955 out:
956         mutex_unlock(&regulator_list_mutex);
957         return regulator;
958 }
959 EXPORT_SYMBOL_GPL(regulator_get);
960
961 /**
962  * regulator_put - "free" the regulator source
963  * @regulator: regulator source
964  *
965  * Note: drivers must ensure that all regulator_enable calls made on this
966  * regulator source are balanced by regulator_disable calls prior to calling
967  * this function.
968  */
969 void regulator_put(struct regulator *regulator)
970 {
971         struct regulator_dev *rdev;
972
973         if (regulator == NULL || IS_ERR(regulator))
974                 return;
975
976         mutex_lock(&regulator_list_mutex);
977         rdev = regulator->rdev;
978
979         if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
980                                regulator->supply_name))
981                 _regulator_disable(rdev);
982
983         /* remove any sysfs entries */
984         if (regulator->dev) {
985                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
986                 kfree(regulator->supply_name);
987                 device_remove_file(regulator->dev, &regulator->dev_attr);
988                 kfree(regulator->dev_attr.attr.name);
989         }
990         list_del(&regulator->list);
991         kfree(regulator);
992
993         module_put(rdev->owner);
994         mutex_unlock(&regulator_list_mutex);
995 }
996 EXPORT_SYMBOL_GPL(regulator_put);
997
998 /* locks held by regulator_enable() */
999 static int _regulator_enable(struct regulator_dev *rdev)
1000 {
1001         int ret = -EINVAL;
1002
1003         if (!rdev->constraints) {
1004                 printk(KERN_ERR "%s: %s has no constraints\n",
1005                        __func__, rdev->desc->name);
1006                 return ret;
1007         }
1008
1009         /* do we need to enable the supply regulator first */
1010         if (rdev->supply) {
1011                 ret = _regulator_enable(rdev->supply);
1012                 if (ret < 0) {
1013                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1014                                __func__, rdev->desc->name, ret);
1015                         return ret;
1016                 }
1017         }
1018
1019         /* check voltage and requested load before enabling */
1020         if (rdev->desc->ops->enable) {
1021
1022                 if (rdev->constraints &&
1023                         (rdev->constraints->valid_ops_mask &
1024                         REGULATOR_CHANGE_DRMS))
1025                         drms_uA_update(rdev);
1026
1027                 ret = rdev->desc->ops->enable(rdev);
1028                 if (ret < 0) {
1029                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1030                                __func__, rdev->desc->name, ret);
1031                         return ret;
1032                 }
1033                 rdev->use_count++;
1034                 return ret;
1035         }
1036
1037         return ret;
1038 }
1039
1040 /**
1041  * regulator_enable - enable regulator output
1042  * @regulator: regulator source
1043  *
1044  * Enable the regulator output at the predefined voltage or current value.
1045  * NOTE: the output value can be set by other drivers, boot loader or may be
1046  * hardwired in the regulator.
1047  * NOTE: calls to regulator_enable() must be balanced with calls to
1048  * regulator_disable().
1049  */
1050 int regulator_enable(struct regulator *regulator)
1051 {
1052         struct regulator_dev *rdev = regulator->rdev;
1053         int ret = 0;
1054
1055         mutex_lock(&rdev->mutex);
1056         if (regulator->enabled == 0)
1057                 ret = _regulator_enable(rdev);
1058         else if (regulator->enabled < 0)
1059                 ret = -EIO;
1060         if (ret == 0)
1061                 regulator->enabled++;
1062         mutex_unlock(&rdev->mutex);
1063         return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(regulator_enable);
1066
1067 /* locks held by regulator_disable() */
1068 static int _regulator_disable(struct regulator_dev *rdev)
1069 {
1070         int ret = 0;
1071
1072         /* are we the last user and permitted to disable ? */
1073         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1074
1075                 /* we are last user */
1076                 if (rdev->desc->ops->disable) {
1077                         ret = rdev->desc->ops->disable(rdev);
1078                         if (ret < 0) {
1079                                 printk(KERN_ERR "%s: failed to disable %s\n",
1080                                        __func__, rdev->desc->name);
1081                                 return ret;
1082                         }
1083                 }
1084
1085                 /* decrease our supplies ref count and disable if required */
1086                 if (rdev->supply)
1087                         _regulator_disable(rdev->supply);
1088
1089                 rdev->use_count = 0;
1090         } else if (rdev->use_count > 1) {
1091
1092                 if (rdev->constraints &&
1093                         (rdev->constraints->valid_ops_mask &
1094                         REGULATOR_CHANGE_DRMS))
1095                         drms_uA_update(rdev);
1096
1097                 rdev->use_count--;
1098         }
1099         return ret;
1100 }
1101
1102 /**
1103  * regulator_disable - disable regulator output
1104  * @regulator: regulator source
1105  *
1106  * Disable the regulator output voltage or current.
1107  * NOTE: this will only disable the regulator output if no other consumer
1108  * devices have it enabled.
1109  * NOTE: calls to regulator_enable() must be balanced with calls to
1110  * regulator_disable().
1111  */
1112 int regulator_disable(struct regulator *regulator)
1113 {
1114         struct regulator_dev *rdev = regulator->rdev;
1115         int ret = 0;
1116
1117         mutex_lock(&rdev->mutex);
1118         if (regulator->enabled == 1) {
1119                 ret = _regulator_disable(rdev);
1120                 if (ret == 0)
1121                         regulator->uA_load = 0;
1122         } else if (WARN(regulator->enabled <= 0,
1123                         "unbalanced disables for supply %s\n",
1124                         regulator->supply_name))
1125                 ret = -EIO;
1126         if (ret == 0)
1127                 regulator->enabled--;
1128         mutex_unlock(&rdev->mutex);
1129         return ret;
1130 }
1131 EXPORT_SYMBOL_GPL(regulator_disable);
1132
1133 /* locks held by regulator_force_disable() */
1134 static int _regulator_force_disable(struct regulator_dev *rdev)
1135 {
1136         int ret = 0;
1137
1138         /* force disable */
1139         if (rdev->desc->ops->disable) {
1140                 /* ah well, who wants to live forever... */
1141                 ret = rdev->desc->ops->disable(rdev);
1142                 if (ret < 0) {
1143                         printk(KERN_ERR "%s: failed to force disable %s\n",
1144                                __func__, rdev->desc->name);
1145                         return ret;
1146                 }
1147                 /* notify other consumers that power has been forced off */
1148                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1149                         NULL);
1150         }
1151
1152         /* decrease our supplies ref count and disable if required */
1153         if (rdev->supply)
1154                 _regulator_disable(rdev->supply);
1155
1156         rdev->use_count = 0;
1157         return ret;
1158 }
1159
1160 /**
1161  * regulator_force_disable - force disable regulator output
1162  * @regulator: regulator source
1163  *
1164  * Forcibly disable the regulator output voltage or current.
1165  * NOTE: this *will* disable the regulator output even if other consumer
1166  * devices have it enabled. This should be used for situations when device
1167  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1168  */
1169 int regulator_force_disable(struct regulator *regulator)
1170 {
1171         int ret;
1172
1173         mutex_lock(&regulator->rdev->mutex);
1174         regulator->enabled = 0;
1175         regulator->uA_load = 0;
1176         ret = _regulator_force_disable(regulator->rdev);
1177         mutex_unlock(&regulator->rdev->mutex);
1178         return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(regulator_force_disable);
1181
1182 static int _regulator_is_enabled(struct regulator_dev *rdev)
1183 {
1184         int ret;
1185
1186         mutex_lock(&rdev->mutex);
1187
1188         /* sanity check */
1189         if (!rdev->desc->ops->is_enabled) {
1190                 ret = -EINVAL;
1191                 goto out;
1192         }
1193
1194         ret = rdev->desc->ops->is_enabled(rdev);
1195 out:
1196         mutex_unlock(&rdev->mutex);
1197         return ret;
1198 }
1199
1200 /**
1201  * regulator_is_enabled - is the regulator output enabled
1202  * @regulator: regulator source
1203  *
1204  * Returns positive if the regulator driver backing the source/client
1205  * has requested that the device be enabled, zero if it hasn't, else a
1206  * negative errno code.
1207  *
1208  * Note that the device backing this regulator handle can have multiple
1209  * users, so it might be enabled even if regulator_enable() was never
1210  * called for this particular source.
1211  */
1212 int regulator_is_enabled(struct regulator *regulator)
1213 {
1214         return _regulator_is_enabled(regulator->rdev);
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1217
1218 /**
1219  * regulator_set_voltage - set regulator output voltage
1220  * @regulator: regulator source
1221  * @min_uV: Minimum required voltage in uV
1222  * @max_uV: Maximum acceptable voltage in uV
1223  *
1224  * Sets a voltage regulator to the desired output voltage. This can be set
1225  * during any regulator state. IOW, regulator can be disabled or enabled.
1226  *
1227  * If the regulator is enabled then the voltage will change to the new value
1228  * immediately otherwise if the regulator is disabled the regulator will
1229  * output at the new voltage when enabled.
1230  *
1231  * NOTE: If the regulator is shared between several devices then the lowest
1232  * request voltage that meets the system constraints will be used.
1233  * NOTE: Regulator system constraints must be set for this regulator before
1234  * calling this function otherwise this call will fail.
1235  */
1236 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1237 {
1238         struct regulator_dev *rdev = regulator->rdev;
1239         int ret;
1240
1241         mutex_lock(&rdev->mutex);
1242
1243         /* sanity check */
1244         if (!rdev->desc->ops->set_voltage) {
1245                 ret = -EINVAL;
1246                 goto out;
1247         }
1248
1249         /* constraints check */
1250         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1251         if (ret < 0)
1252                 goto out;
1253         regulator->min_uV = min_uV;
1254         regulator->max_uV = max_uV;
1255         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1256
1257 out:
1258         mutex_unlock(&rdev->mutex);
1259         return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1262
1263 static int _regulator_get_voltage(struct regulator_dev *rdev)
1264 {
1265         /* sanity check */
1266         if (rdev->desc->ops->get_voltage)
1267                 return rdev->desc->ops->get_voltage(rdev);
1268         else
1269                 return -EINVAL;
1270 }
1271
1272 /**
1273  * regulator_get_voltage - get regulator output voltage
1274  * @regulator: regulator source
1275  *
1276  * This returns the current regulator voltage in uV.
1277  *
1278  * NOTE: If the regulator is disabled it will return the voltage value. This
1279  * function should not be used to determine regulator state.
1280  */
1281 int regulator_get_voltage(struct regulator *regulator)
1282 {
1283         int ret;
1284
1285         mutex_lock(&regulator->rdev->mutex);
1286
1287         ret = _regulator_get_voltage(regulator->rdev);
1288
1289         mutex_unlock(&regulator->rdev->mutex);
1290
1291         return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1294
1295 /**
1296  * regulator_set_current_limit - set regulator output current limit
1297  * @regulator: regulator source
1298  * @min_uA: Minimuum supported current in uA
1299  * @max_uA: Maximum supported current in uA
1300  *
1301  * Sets current sink to the desired output current. This can be set during
1302  * any regulator state. IOW, regulator can be disabled or enabled.
1303  *
1304  * If the regulator is enabled then the current will change to the new value
1305  * immediately otherwise if the regulator is disabled the regulator will
1306  * output at the new current when enabled.
1307  *
1308  * NOTE: Regulator system constraints must be set for this regulator before
1309  * calling this function otherwise this call will fail.
1310  */
1311 int regulator_set_current_limit(struct regulator *regulator,
1312                                int min_uA, int max_uA)
1313 {
1314         struct regulator_dev *rdev = regulator->rdev;
1315         int ret;
1316
1317         mutex_lock(&rdev->mutex);
1318
1319         /* sanity check */
1320         if (!rdev->desc->ops->set_current_limit) {
1321                 ret = -EINVAL;
1322                 goto out;
1323         }
1324
1325         /* constraints check */
1326         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1327         if (ret < 0)
1328                 goto out;
1329
1330         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1331 out:
1332         mutex_unlock(&rdev->mutex);
1333         return ret;
1334 }
1335 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1336
1337 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1338 {
1339         int ret;
1340
1341         mutex_lock(&rdev->mutex);
1342
1343         /* sanity check */
1344         if (!rdev->desc->ops->get_current_limit) {
1345                 ret = -EINVAL;
1346                 goto out;
1347         }
1348
1349         ret = rdev->desc->ops->get_current_limit(rdev);
1350 out:
1351         mutex_unlock(&rdev->mutex);
1352         return ret;
1353 }
1354
1355 /**
1356  * regulator_get_current_limit - get regulator output current
1357  * @regulator: regulator source
1358  *
1359  * This returns the current supplied by the specified current sink in uA.
1360  *
1361  * NOTE: If the regulator is disabled it will return the current value. This
1362  * function should not be used to determine regulator state.
1363  */
1364 int regulator_get_current_limit(struct regulator *regulator)
1365 {
1366         return _regulator_get_current_limit(regulator->rdev);
1367 }
1368 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1369
1370 /**
1371  * regulator_set_mode - set regulator operating mode
1372  * @regulator: regulator source
1373  * @mode: operating mode - one of the REGULATOR_MODE constants
1374  *
1375  * Set regulator operating mode to increase regulator efficiency or improve
1376  * regulation performance.
1377  *
1378  * NOTE: Regulator system constraints must be set for this regulator before
1379  * calling this function otherwise this call will fail.
1380  */
1381 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1382 {
1383         struct regulator_dev *rdev = regulator->rdev;
1384         int ret;
1385
1386         mutex_lock(&rdev->mutex);
1387
1388         /* sanity check */
1389         if (!rdev->desc->ops->set_mode) {
1390                 ret = -EINVAL;
1391                 goto out;
1392         }
1393
1394         /* constraints check */
1395         ret = regulator_check_mode(rdev, mode);
1396         if (ret < 0)
1397                 goto out;
1398
1399         ret = rdev->desc->ops->set_mode(rdev, mode);
1400 out:
1401         mutex_unlock(&rdev->mutex);
1402         return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(regulator_set_mode);
1405
1406 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1407 {
1408         int ret;
1409
1410         mutex_lock(&rdev->mutex);
1411
1412         /* sanity check */
1413         if (!rdev->desc->ops->get_mode) {
1414                 ret = -EINVAL;
1415                 goto out;
1416         }
1417
1418         ret = rdev->desc->ops->get_mode(rdev);
1419 out:
1420         mutex_unlock(&rdev->mutex);
1421         return ret;
1422 }
1423
1424 /**
1425  * regulator_get_mode - get regulator operating mode
1426  * @regulator: regulator source
1427  *
1428  * Get the current regulator operating mode.
1429  */
1430 unsigned int regulator_get_mode(struct regulator *regulator)
1431 {
1432         return _regulator_get_mode(regulator->rdev);
1433 }
1434 EXPORT_SYMBOL_GPL(regulator_get_mode);
1435
1436 /**
1437  * regulator_set_optimum_mode - set regulator optimum operating mode
1438  * @regulator: regulator source
1439  * @uA_load: load current
1440  *
1441  * Notifies the regulator core of a new device load. This is then used by
1442  * DRMS (if enabled by constraints) to set the most efficient regulator
1443  * operating mode for the new regulator loading.
1444  *
1445  * Consumer devices notify their supply regulator of the maximum power
1446  * they will require (can be taken from device datasheet in the power
1447  * consumption tables) when they change operational status and hence power
1448  * state. Examples of operational state changes that can affect power
1449  * consumption are :-
1450  *
1451  *    o Device is opened / closed.
1452  *    o Device I/O is about to begin or has just finished.
1453  *    o Device is idling in between work.
1454  *
1455  * This information is also exported via sysfs to userspace.
1456  *
1457  * DRMS will sum the total requested load on the regulator and change
1458  * to the most efficient operating mode if platform constraints allow.
1459  *
1460  * Returns the new regulator mode or error.
1461  */
1462 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1463 {
1464         struct regulator_dev *rdev = regulator->rdev;
1465         struct regulator *consumer;
1466         int ret, output_uV, input_uV, total_uA_load = 0;
1467         unsigned int mode;
1468
1469         mutex_lock(&rdev->mutex);
1470
1471         regulator->uA_load = uA_load;
1472         ret = regulator_check_drms(rdev);
1473         if (ret < 0)
1474                 goto out;
1475         ret = -EINVAL;
1476
1477         /* sanity check */
1478         if (!rdev->desc->ops->get_optimum_mode)
1479                 goto out;
1480
1481         /* get output voltage */
1482         output_uV = rdev->desc->ops->get_voltage(rdev);
1483         if (output_uV <= 0) {
1484                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1485                         __func__, rdev->desc->name);
1486                 goto out;
1487         }
1488
1489         /* get input voltage */
1490         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1491                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1492         else
1493                 input_uV = rdev->constraints->input_uV;
1494         if (input_uV <= 0) {
1495                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1496                         __func__, rdev->desc->name);
1497                 goto out;
1498         }
1499
1500         /* calc total requested load for this regulator */
1501         list_for_each_entry(consumer, &rdev->consumer_list, list)
1502             total_uA_load += consumer->uA_load;
1503
1504         mode = rdev->desc->ops->get_optimum_mode(rdev,
1505                                                  input_uV, output_uV,
1506                                                  total_uA_load);
1507         ret = regulator_check_mode(rdev, mode);
1508         if (ret < 0) {
1509                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1510                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1511                         total_uA_load, input_uV, output_uV);
1512                 goto out;
1513         }
1514
1515         ret = rdev->desc->ops->set_mode(rdev, mode);
1516         if (ret < 0) {
1517                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1518                         __func__, mode, rdev->desc->name);
1519                 goto out;
1520         }
1521         ret = mode;
1522 out:
1523         mutex_unlock(&rdev->mutex);
1524         return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1527
1528 /**
1529  * regulator_register_notifier - register regulator event notifier
1530  * @regulator: regulator source
1531  * @notifier_block: notifier block
1532  *
1533  * Register notifier block to receive regulator events.
1534  */
1535 int regulator_register_notifier(struct regulator *regulator,
1536                               struct notifier_block *nb)
1537 {
1538         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1539                                                 nb);
1540 }
1541 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1542
1543 /**
1544  * regulator_unregister_notifier - unregister regulator event notifier
1545  * @regulator: regulator source
1546  * @notifier_block: notifier block
1547  *
1548  * Unregister regulator event notifier block.
1549  */
1550 int regulator_unregister_notifier(struct regulator *regulator,
1551                                 struct notifier_block *nb)
1552 {
1553         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1554                                                   nb);
1555 }
1556 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1557
1558 /* notify regulator consumers and downstream regulator consumers */
1559 static void _notifier_call_chain(struct regulator_dev *rdev,
1560                                   unsigned long event, void *data)
1561 {
1562         struct regulator_dev *_rdev;
1563
1564         /* call rdev chain first */
1565         mutex_lock(&rdev->mutex);
1566         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1567         mutex_unlock(&rdev->mutex);
1568
1569         /* now notify regulator we supply */
1570         list_for_each_entry(_rdev, &rdev->supply_list, slist)
1571                 _notifier_call_chain(_rdev, event, data);
1572 }
1573
1574 /**
1575  * regulator_bulk_get - get multiple regulator consumers
1576  *
1577  * @dev:           Device to supply
1578  * @num_consumers: Number of consumers to register
1579  * @consumers:     Configuration of consumers; clients are stored here.
1580  *
1581  * @return 0 on success, an errno on failure.
1582  *
1583  * This helper function allows drivers to get several regulator
1584  * consumers in one operation.  If any of the regulators cannot be
1585  * acquired then any regulators that were allocated will be freed
1586  * before returning to the caller.
1587  */
1588 int regulator_bulk_get(struct device *dev, int num_consumers,
1589                        struct regulator_bulk_data *consumers)
1590 {
1591         int i;
1592         int ret;
1593
1594         for (i = 0; i < num_consumers; i++)
1595                 consumers[i].consumer = NULL;
1596
1597         for (i = 0; i < num_consumers; i++) {
1598                 consumers[i].consumer = regulator_get(dev,
1599                                                       consumers[i].supply);
1600                 if (IS_ERR(consumers[i].consumer)) {
1601                         dev_err(dev, "Failed to get supply '%s'\n",
1602                                 consumers[i].supply);
1603                         ret = PTR_ERR(consumers[i].consumer);
1604                         consumers[i].consumer = NULL;
1605                         goto err;
1606                 }
1607         }
1608
1609         return 0;
1610
1611 err:
1612         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1613                 regulator_put(consumers[i].consumer);
1614
1615         return ret;
1616 }
1617 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1618
1619 /**
1620  * regulator_bulk_enable - enable multiple regulator consumers
1621  *
1622  * @num_consumers: Number of consumers
1623  * @consumers:     Consumer data; clients are stored here.
1624  * @return         0 on success, an errno on failure
1625  *
1626  * This convenience API allows consumers to enable multiple regulator
1627  * clients in a single API call.  If any consumers cannot be enabled
1628  * then any others that were enabled will be disabled again prior to
1629  * return.
1630  */
1631 int regulator_bulk_enable(int num_consumers,
1632                           struct regulator_bulk_data *consumers)
1633 {
1634         int i;
1635         int ret;
1636
1637         for (i = 0; i < num_consumers; i++) {
1638                 ret = regulator_enable(consumers[i].consumer);
1639                 if (ret != 0)
1640                         goto err;
1641         }
1642
1643         return 0;
1644
1645 err:
1646         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1647         for (i = 0; i < num_consumers; i++)
1648                 regulator_disable(consumers[i].consumer);
1649
1650         return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1653
1654 /**
1655  * regulator_bulk_disable - disable multiple regulator consumers
1656  *
1657  * @num_consumers: Number of consumers
1658  * @consumers:     Consumer data; clients are stored here.
1659  * @return         0 on success, an errno on failure
1660  *
1661  * This convenience API allows consumers to disable multiple regulator
1662  * clients in a single API call.  If any consumers cannot be enabled
1663  * then any others that were disabled will be disabled again prior to
1664  * return.
1665  */
1666 int regulator_bulk_disable(int num_consumers,
1667                            struct regulator_bulk_data *consumers)
1668 {
1669         int i;
1670         int ret;
1671
1672         for (i = 0; i < num_consumers; i++) {
1673                 ret = regulator_disable(consumers[i].consumer);
1674                 if (ret != 0)
1675                         goto err;
1676         }
1677
1678         return 0;
1679
1680 err:
1681         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1682         for (i = 0; i < num_consumers; i++)
1683                 regulator_enable(consumers[i].consumer);
1684
1685         return ret;
1686 }
1687 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1688
1689 /**
1690  * regulator_bulk_free - free multiple regulator consumers
1691  *
1692  * @num_consumers: Number of consumers
1693  * @consumers:     Consumer data; clients are stored here.
1694  *
1695  * This convenience API allows consumers to free multiple regulator
1696  * clients in a single API call.
1697  */
1698 void regulator_bulk_free(int num_consumers,
1699                          struct regulator_bulk_data *consumers)
1700 {
1701         int i;
1702
1703         for (i = 0; i < num_consumers; i++) {
1704                 regulator_put(consumers[i].consumer);
1705                 consumers[i].consumer = NULL;
1706         }
1707 }
1708 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1709
1710 /**
1711  * regulator_notifier_call_chain - call regulator event notifier
1712  * @regulator: regulator source
1713  * @event: notifier block
1714  * @data:
1715  *
1716  * Called by regulator drivers to notify clients a regulator event has
1717  * occurred. We also notify regulator clients downstream.
1718  */
1719 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1720                                   unsigned long event, void *data)
1721 {
1722         _notifier_call_chain(rdev, event, data);
1723         return NOTIFY_DONE;
1724
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1727
1728 /**
1729  * regulator_register - register regulator
1730  * @regulator: regulator source
1731  * @reg_data: private regulator data
1732  *
1733  * Called by regulator drivers to register a regulator.
1734  * Returns 0 on success.
1735  */
1736 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1737         struct device *dev, void *driver_data)
1738 {
1739         static atomic_t regulator_no = ATOMIC_INIT(0);
1740         struct regulator_dev *rdev;
1741         struct regulator_init_data *init_data = dev->platform_data;
1742         int ret, i;
1743
1744         if (regulator_desc == NULL)
1745                 return ERR_PTR(-EINVAL);
1746
1747         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1748                 return ERR_PTR(-EINVAL);
1749
1750         if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1751             !regulator_desc->type == REGULATOR_CURRENT)
1752                 return ERR_PTR(-EINVAL);
1753
1754         if (!init_data)
1755                 return ERR_PTR(-EINVAL);
1756
1757         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1758         if (rdev == NULL)
1759                 return ERR_PTR(-ENOMEM);
1760
1761         mutex_lock(&regulator_list_mutex);
1762
1763         mutex_init(&rdev->mutex);
1764         rdev->reg_data = driver_data;
1765         rdev->owner = regulator_desc->owner;
1766         rdev->desc = regulator_desc;
1767         INIT_LIST_HEAD(&rdev->consumer_list);
1768         INIT_LIST_HEAD(&rdev->supply_list);
1769         INIT_LIST_HEAD(&rdev->list);
1770         INIT_LIST_HEAD(&rdev->slist);
1771         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1772
1773         /* preform any regulator specific init */
1774         if (init_data->regulator_init) {
1775                 ret = init_data->regulator_init(rdev->reg_data);
1776                 if (ret < 0) {
1777                         kfree(rdev);
1778                         rdev = ERR_PTR(ret);
1779                         goto out;
1780                 }
1781         }
1782
1783         /* set regulator constraints */
1784         ret = set_machine_constraints(rdev, &init_data->constraints);
1785         if (ret < 0) {
1786                 kfree(rdev);
1787                 rdev = ERR_PTR(ret);
1788                 goto out;
1789         }
1790
1791         /* register with sysfs */
1792         rdev->dev.class = &regulator_class;
1793         rdev->dev.parent = dev;
1794         dev_set_name(&rdev->dev, "regulator.%d",
1795                      atomic_inc_return(&regulator_no) - 1);
1796         ret = device_register(&rdev->dev);
1797         if (ret != 0) {
1798                 kfree(rdev);
1799                 rdev = ERR_PTR(ret);
1800                 goto out;
1801         }
1802
1803         dev_set_drvdata(&rdev->dev, rdev);
1804
1805         /* set supply regulator if it exists */
1806         if (init_data->supply_regulator_dev) {
1807                 ret = set_supply(rdev,
1808                         dev_get_drvdata(init_data->supply_regulator_dev));
1809                 if (ret < 0) {
1810                         device_unregister(&rdev->dev);
1811                         kfree(rdev);
1812                         rdev = ERR_PTR(ret);
1813                         goto out;
1814                 }
1815         }
1816
1817         /* add consumers devices */
1818         for (i = 0; i < init_data->num_consumer_supplies; i++) {
1819                 ret = set_consumer_device_supply(rdev,
1820                         init_data->consumer_supplies[i].dev,
1821                         init_data->consumer_supplies[i].supply);
1822                 if (ret < 0) {
1823                         for (--i; i >= 0; i--)
1824                                 unset_consumer_device_supply(rdev,
1825                                         init_data->consumer_supplies[i].dev);
1826                         device_unregister(&rdev->dev);
1827                         kfree(rdev);
1828                         rdev = ERR_PTR(ret);
1829                         goto out;
1830                 }
1831         }
1832
1833         list_add(&rdev->list, &regulator_list);
1834 out:
1835         mutex_unlock(&regulator_list_mutex);
1836         return rdev;
1837 }
1838 EXPORT_SYMBOL_GPL(regulator_register);
1839
1840 /**
1841  * regulator_unregister - unregister regulator
1842  * @regulator: regulator source
1843  *
1844  * Called by regulator drivers to unregister a regulator.
1845  */
1846 void regulator_unregister(struct regulator_dev *rdev)
1847 {
1848         if (rdev == NULL)
1849                 return;
1850
1851         mutex_lock(&regulator_list_mutex);
1852         list_del(&rdev->list);
1853         if (rdev->supply)
1854                 sysfs_remove_link(&rdev->dev.kobj, "supply");
1855         device_unregister(&rdev->dev);
1856         mutex_unlock(&regulator_list_mutex);
1857 }
1858 EXPORT_SYMBOL_GPL(regulator_unregister);
1859
1860 /**
1861  * regulator_suspend_prepare: prepare regulators for system wide suspend
1862  * @state: system suspend state
1863  *
1864  * Configure each regulator with it's suspend operating parameters for state.
1865  * This will usually be called by machine suspend code prior to supending.
1866  */
1867 int regulator_suspend_prepare(suspend_state_t state)
1868 {
1869         struct regulator_dev *rdev;
1870         int ret = 0;
1871
1872         /* ON is handled by regulator active state */
1873         if (state == PM_SUSPEND_ON)
1874                 return -EINVAL;
1875
1876         mutex_lock(&regulator_list_mutex);
1877         list_for_each_entry(rdev, &regulator_list, list) {
1878
1879                 mutex_lock(&rdev->mutex);
1880                 ret = suspend_prepare(rdev, state);
1881                 mutex_unlock(&rdev->mutex);
1882
1883                 if (ret < 0) {
1884                         printk(KERN_ERR "%s: failed to prepare %s\n",
1885                                 __func__, rdev->desc->name);
1886                         goto out;
1887                 }
1888         }
1889 out:
1890         mutex_unlock(&regulator_list_mutex);
1891         return ret;
1892 }
1893 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1894
1895 /**
1896  * rdev_get_drvdata - get rdev regulator driver data
1897  * @regulator: regulator
1898  *
1899  * Get rdev regulator driver private data. This call can be used in the
1900  * regulator driver context.
1901  */
1902 void *rdev_get_drvdata(struct regulator_dev *rdev)
1903 {
1904         return rdev->reg_data;
1905 }
1906 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1907
1908 /**
1909  * regulator_get_drvdata - get regulator driver data
1910  * @regulator: regulator
1911  *
1912  * Get regulator driver private data. This call can be used in the consumer
1913  * driver context when non API regulator specific functions need to be called.
1914  */
1915 void *regulator_get_drvdata(struct regulator *regulator)
1916 {
1917         return regulator->rdev->reg_data;
1918 }
1919 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1920
1921 /**
1922  * regulator_set_drvdata - set regulator driver data
1923  * @regulator: regulator
1924  * @data: data
1925  */
1926 void regulator_set_drvdata(struct regulator *regulator, void *data)
1927 {
1928         regulator->rdev->reg_data = data;
1929 }
1930 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1931
1932 /**
1933  * regulator_get_id - get regulator ID
1934  * @regulator: regulator
1935  */
1936 int rdev_get_id(struct regulator_dev *rdev)
1937 {
1938         return rdev->desc->id;
1939 }
1940 EXPORT_SYMBOL_GPL(rdev_get_id);
1941
1942 struct device *rdev_get_dev(struct regulator_dev *rdev)
1943 {
1944         return &rdev->dev;
1945 }
1946 EXPORT_SYMBOL_GPL(rdev_get_dev);
1947
1948 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
1949 {
1950         return reg_init_data->driver_data;
1951 }
1952 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
1953
1954 static int __init regulator_init(void)
1955 {
1956         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1957         return class_register(&regulator_class);
1958 }
1959
1960 /* init early to allow our consumers to complete system booting */
1961 core_initcall(regulator_init);