1848a3f0980ee7b5614ec69a4f5714a41dfec587
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39         struct list_head list;
40         const char *dev_name;   /* The dev_name() for the consumer */
41         const char *supply;
42         struct regulator_dev *regulator;
43 };
44
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51         struct device *dev;
52         struct list_head list;
53         int uA_load;
54         int min_uV;
55         int max_uV;
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints && rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283         ssize_t ret;
284
285         mutex_lock(&rdev->mutex);
286         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287         mutex_unlock(&rdev->mutex);
288
289         return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293 static ssize_t regulator_status_show(struct device *dev,
294                                    struct device_attribute *attr, char *buf)
295 {
296         struct regulator_dev *rdev = dev_get_drvdata(dev);
297         int status;
298         char *label;
299
300         status = rdev->desc->ops->get_status(rdev);
301         if (status < 0)
302                 return status;
303
304         switch (status) {
305         case REGULATOR_STATUS_OFF:
306                 label = "off";
307                 break;
308         case REGULATOR_STATUS_ON:
309                 label = "on";
310                 break;
311         case REGULATOR_STATUS_ERROR:
312                 label = "error";
313                 break;
314         case REGULATOR_STATUS_FAST:
315                 label = "fast";
316                 break;
317         case REGULATOR_STATUS_NORMAL:
318                 label = "normal";
319                 break;
320         case REGULATOR_STATUS_IDLE:
321                 label = "idle";
322                 break;
323         case REGULATOR_STATUS_STANDBY:
324                 label = "standby";
325                 break;
326         default:
327                 return -ERANGE;
328         }
329
330         return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334 static ssize_t regulator_min_uA_show(struct device *dev,
335                                     struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         if (!rdev->constraints)
340                 return sprintf(buf, "constraint not defined\n");
341
342         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346 static ssize_t regulator_max_uA_show(struct device *dev,
347                                     struct device_attribute *attr, char *buf)
348 {
349         struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351         if (!rdev->constraints)
352                 return sprintf(buf, "constraint not defined\n");
353
354         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358 static ssize_t regulator_min_uV_show(struct device *dev,
359                                     struct device_attribute *attr, char *buf)
360 {
361         struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363         if (!rdev->constraints)
364                 return sprintf(buf, "constraint not defined\n");
365
366         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370 static ssize_t regulator_max_uV_show(struct device *dev,
371                                     struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375         if (!rdev->constraints)
376                 return sprintf(buf, "constraint not defined\n");
377
378         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382 static ssize_t regulator_total_uA_show(struct device *dev,
383                                       struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         struct regulator *regulator;
387         int uA = 0;
388
389         mutex_lock(&rdev->mutex);
390         list_for_each_entry(regulator, &rdev->consumer_list, list)
391             uA += regulator->uA_load;
392         mutex_unlock(&rdev->mutex);
393         return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397 static ssize_t regulator_num_users_show(struct device *dev,
398                                       struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         return sprintf(buf, "%d\n", rdev->use_count);
402 }
403
404 static ssize_t regulator_type_show(struct device *dev,
405                                   struct device_attribute *attr, char *buf)
406 {
407         struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409         switch (rdev->desc->type) {
410         case REGULATOR_VOLTAGE:
411                 return sprintf(buf, "voltage\n");
412         case REGULATOR_CURRENT:
413                 return sprintf(buf, "current\n");
414         }
415         return sprintf(buf, "unknown\n");
416 }
417
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419                                 struct device_attribute *attr, char *buf)
420 {
421         struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426                 regulator_suspend_mem_uV_show, NULL);
427
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429                                 struct device_attribute *attr, char *buf)
430 {
431         struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436                 regulator_suspend_disk_uV_show, NULL);
437
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439                                 struct device_attribute *attr, char *buf)
440 {
441         struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446                 regulator_suspend_standby_uV_show, NULL);
447
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449                                 struct device_attribute *attr, char *buf)
450 {
451         struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453         return regulator_print_opmode(buf,
454                 rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457                 regulator_suspend_mem_mode_show, NULL);
458
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460                                 struct device_attribute *attr, char *buf)
461 {
462         struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464         return regulator_print_opmode(buf,
465                 rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468                 regulator_suspend_disk_mode_show, NULL);
469
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return regulator_print_opmode(buf,
476                 rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479                 regulator_suspend_standby_mode_show, NULL);
480
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482                                    struct device_attribute *attr, char *buf)
483 {
484         struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486         return regulator_print_state(buf,
487                         rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490                 regulator_suspend_mem_state_show, NULL);
491
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493                                    struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497         return regulator_print_state(buf,
498                         rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501                 regulator_suspend_disk_state_show, NULL);
502
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504                                    struct device_attribute *attr, char *buf)
505 {
506         struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508         return regulator_print_state(buf,
509                         rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512                 regulator_suspend_standby_state_show, NULL);
513
514
515 /*
516  * These are the only attributes are present for all regulators.
517  * Other attributes are a function of regulator functionality.
518  */
519 static struct device_attribute regulator_dev_attrs[] = {
520         __ATTR(name, 0444, regulator_name_show, NULL),
521         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
522         __ATTR(type, 0444, regulator_type_show, NULL),
523         __ATTR_NULL,
524 };
525
526 static void regulator_dev_release(struct device *dev)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         kfree(rdev);
530 }
531
532 static struct class regulator_class = {
533         .name = "regulator",
534         .dev_release = regulator_dev_release,
535         .dev_attrs = regulator_dev_attrs,
536 };
537
538 /* Calculate the new optimum regulator operating mode based on the new total
539  * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542         struct regulator *sibling;
543         int current_uA = 0, output_uV, input_uV, err;
544         unsigned int mode;
545
546         err = regulator_check_drms(rdev);
547         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549                 return;
550
551         /* get output voltage */
552         output_uV = rdev->desc->ops->get_voltage(rdev);
553         if (output_uV <= 0)
554                 return;
555
556         /* get input voltage */
557         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559         else
560                 input_uV = rdev->constraints->input_uV;
561         if (input_uV <= 0)
562                 return;
563
564         /* calc total requested load */
565         list_for_each_entry(sibling, &rdev->consumer_list, list)
566             current_uA += sibling->uA_load;
567
568         /* now get the optimum mode for our new total regulator load */
569         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570                                                   output_uV, current_uA);
571
572         /* check the new mode is allowed */
573         err = regulator_check_mode(rdev, mode);
574         if (err == 0)
575                 rdev->desc->ops->set_mode(rdev, mode);
576 }
577
578 static int suspend_set_state(struct regulator_dev *rdev,
579         struct regulator_state *rstate)
580 {
581         int ret = 0;
582
583         /* enable & disable are mandatory for suspend control */
584         if (!rdev->desc->ops->set_suspend_enable ||
585                 !rdev->desc->ops->set_suspend_disable) {
586                 printk(KERN_ERR "%s: no way to set suspend state\n",
587                         __func__);
588                 return -EINVAL;
589         }
590
591         if (rstate->enabled)
592                 ret = rdev->desc->ops->set_suspend_enable(rdev);
593         else
594                 ret = rdev->desc->ops->set_suspend_disable(rdev);
595         if (ret < 0) {
596                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597                 return ret;
598         }
599
600         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602                 if (ret < 0) {
603                         printk(KERN_ERR "%s: failed to set voltage\n",
604                                 __func__);
605                         return ret;
606                 }
607         }
608
609         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611                 if (ret < 0) {
612                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
613                         return ret;
614                 }
615         }
616         return ret;
617 }
618
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622         if (!rdev->constraints)
623                 return -EINVAL;
624
625         switch (state) {
626         case PM_SUSPEND_STANDBY:
627                 return suspend_set_state(rdev,
628                         &rdev->constraints->state_standby);
629         case PM_SUSPEND_MEM:
630                 return suspend_set_state(rdev,
631                         &rdev->constraints->state_mem);
632         case PM_SUSPEND_MAX:
633                 return suspend_set_state(rdev,
634                         &rdev->constraints->state_disk);
635         default:
636                 return -EINVAL;
637         }
638 }
639
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642         struct regulation_constraints *constraints = rdev->constraints;
643         char buf[80];
644         int count;
645
646         if (rdev->desc->type == REGULATOR_VOLTAGE) {
647                 if (constraints->min_uV == constraints->max_uV)
648                         count = sprintf(buf, "%d mV ",
649                                         constraints->min_uV / 1000);
650                 else
651                         count = sprintf(buf, "%d <--> %d mV ",
652                                         constraints->min_uV / 1000,
653                                         constraints->max_uV / 1000);
654         } else {
655                 if (constraints->min_uA == constraints->max_uA)
656                         count = sprintf(buf, "%d mA ",
657                                         constraints->min_uA / 1000);
658                 else
659                         count = sprintf(buf, "%d <--> %d mA ",
660                                         constraints->min_uA / 1000,
661                                         constraints->max_uA / 1000);
662         }
663         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664                 count += sprintf(buf + count, "fast ");
665         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666                 count += sprintf(buf + count, "normal ");
667         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668                 count += sprintf(buf + count, "idle ");
669         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670                 count += sprintf(buf + count, "standby");
671
672         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673 }
674
675 static int machine_constraints_voltage(struct regulator_dev *rdev,
676         const char *name, struct regulation_constraints *constraints)
677 {
678         struct regulator_ops *ops = rdev->desc->ops;
679         int ret;
680
681         /* do we need to apply the constraint voltage */
682         if (rdev->constraints->apply_uV &&
683                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
684                 ops->set_voltage) {
685                 ret = ops->set_voltage(rdev,
686                         rdev->constraints->min_uV, rdev->constraints->max_uV);
687                         if (ret < 0) {
688                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
689                                        __func__,
690                                        rdev->constraints->min_uV, name);
691                                 rdev->constraints = NULL;
692                                 return ret;
693                         }
694         }
695
696         /* constrain machine-level voltage specs to fit
697          * the actual range supported by this regulator.
698          */
699         if (ops->list_voltage && rdev->desc->n_voltages) {
700                 int     count = rdev->desc->n_voltages;
701                 int     i;
702                 int     min_uV = INT_MAX;
703                 int     max_uV = INT_MIN;
704                 int     cmin = constraints->min_uV;
705                 int     cmax = constraints->max_uV;
706
707                 /* it's safe to autoconfigure fixed-voltage supplies
708                    and the constraints are used by list_voltage. */
709                 if (count == 1 && !cmin) {
710                         cmin = 1;
711                         cmax = INT_MAX;
712                         constraints->min_uV = cmin;
713                         constraints->max_uV = cmax;
714                 }
715
716                 /* voltage constraints are optional */
717                 if ((cmin == 0) && (cmax == 0))
718                         return 0;
719
720                 /* else require explicit machine-level constraints */
721                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
722                         pr_err("%s: %s '%s' voltage constraints\n",
723                                        __func__, "invalid", name);
724                         return -EINVAL;
725                 }
726
727                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728                 for (i = 0; i < count; i++) {
729                         int     value;
730
731                         value = ops->list_voltage(rdev, i);
732                         if (value <= 0)
733                                 continue;
734
735                         /* maybe adjust [min_uV..max_uV] */
736                         if (value >= cmin && value < min_uV)
737                                 min_uV = value;
738                         if (value <= cmax && value > max_uV)
739                                 max_uV = value;
740                 }
741
742                 /* final: [min_uV..max_uV] valid iff constraints valid */
743                 if (max_uV < min_uV) {
744                         pr_err("%s: %s '%s' voltage constraints\n",
745                                        __func__, "unsupportable", name);
746                         return -EINVAL;
747                 }
748
749                 /* use regulator's subset of machine constraints */
750                 if (constraints->min_uV < min_uV) {
751                         pr_debug("%s: override '%s' %s, %d -> %d\n",
752                                        __func__, name, "min_uV",
753                                         constraints->min_uV, min_uV);
754                         constraints->min_uV = min_uV;
755                 }
756                 if (constraints->max_uV > max_uV) {
757                         pr_debug("%s: override '%s' %s, %d -> %d\n",
758                                        __func__, name, "max_uV",
759                                         constraints->max_uV, max_uV);
760                         constraints->max_uV = max_uV;
761                 }
762         }
763
764         return 0;
765 }
766
767 /**
768  * set_machine_constraints - sets regulator constraints
769  * @rdev: regulator source
770  * @constraints: constraints to apply
771  *
772  * Allows platform initialisation code to define and constrain
773  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
774  * Constraints *must* be set by platform code in order for some
775  * regulator operations to proceed i.e. set_voltage, set_current_limit,
776  * set_mode.
777  */
778 static int set_machine_constraints(struct regulator_dev *rdev,
779         struct regulation_constraints *constraints)
780 {
781         int ret = 0;
782         const char *name;
783         struct regulator_ops *ops = rdev->desc->ops;
784
785         if (constraints->name)
786                 name = constraints->name;
787         else if (rdev->desc->name)
788                 name = rdev->desc->name;
789         else
790                 name = "regulator";
791
792         rdev->constraints = constraints;
793
794         ret = machine_constraints_voltage(rdev, name, constraints);
795         if (ret != 0)
796                 goto out;
797
798         /* do we need to setup our suspend state */
799         if (constraints->initial_state) {
800                 ret = suspend_prepare(rdev, constraints->initial_state);
801                 if (ret < 0) {
802                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
803                                __func__, name);
804                         rdev->constraints = NULL;
805                         goto out;
806                 }
807         }
808
809         if (constraints->initial_mode) {
810                 if (!ops->set_mode) {
811                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
812                                __func__, name);
813                         ret = -EINVAL;
814                         goto out;
815                 }
816
817                 ret = ops->set_mode(rdev, constraints->initial_mode);
818                 if (ret < 0) {
819                         printk(KERN_ERR
820                                "%s: failed to set initial mode for %s: %d\n",
821                                __func__, name, ret);
822                         goto out;
823                 }
824         }
825
826         /* If the constraints say the regulator should be on at this point
827          * and we have control then make sure it is enabled.
828          */
829         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
830                 ret = ops->enable(rdev);
831                 if (ret < 0) {
832                         printk(KERN_ERR "%s: failed to enable %s\n",
833                                __func__, name);
834                         rdev->constraints = NULL;
835                         goto out;
836                 }
837         }
838
839         print_constraints(rdev);
840 out:
841         return ret;
842 }
843
844 /**
845  * set_supply - set regulator supply regulator
846  * @rdev: regulator name
847  * @supply_rdev: supply regulator name
848  *
849  * Called by platform initialisation code to set the supply regulator for this
850  * regulator. This ensures that a regulators supply will also be enabled by the
851  * core if it's child is enabled.
852  */
853 static int set_supply(struct regulator_dev *rdev,
854         struct regulator_dev *supply_rdev)
855 {
856         int err;
857
858         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
859                                 "supply");
860         if (err) {
861                 printk(KERN_ERR
862                        "%s: could not add device link %s err %d\n",
863                        __func__, supply_rdev->dev.kobj.name, err);
864                        goto out;
865         }
866         rdev->supply = supply_rdev;
867         list_add(&rdev->slist, &supply_rdev->supply_list);
868 out:
869         return err;
870 }
871
872 /**
873  * set_consumer_device_supply: Bind a regulator to a symbolic supply
874  * @rdev:         regulator source
875  * @consumer_dev: device the supply applies to
876  * @consumer_dev_name: dev_name() string for device supply applies to
877  * @supply:       symbolic name for supply
878  *
879  * Allows platform initialisation code to map physical regulator
880  * sources to symbolic names for supplies for use by devices.  Devices
881  * should use these symbolic names to request regulators, avoiding the
882  * need to provide board-specific regulator names as platform data.
883  *
884  * Only one of consumer_dev and consumer_dev_name may be specified.
885  */
886 static int set_consumer_device_supply(struct regulator_dev *rdev,
887         struct device *consumer_dev, const char *consumer_dev_name,
888         const char *supply)
889 {
890         struct regulator_map *node;
891         int has_dev;
892
893         if (consumer_dev && consumer_dev_name)
894                 return -EINVAL;
895
896         if (!consumer_dev_name && consumer_dev)
897                 consumer_dev_name = dev_name(consumer_dev);
898
899         if (supply == NULL)
900                 return -EINVAL;
901
902         if (consumer_dev_name != NULL)
903                 has_dev = 1;
904         else
905                 has_dev = 0;
906
907         list_for_each_entry(node, &regulator_map_list, list) {
908                 if (consumer_dev_name != node->dev_name)
909                         continue;
910                 if (strcmp(node->supply, supply) != 0)
911                         continue;
912
913                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
914                                 dev_name(&node->regulator->dev),
915                                 node->regulator->desc->name,
916                                 supply,
917                                 dev_name(&rdev->dev), rdev->desc->name);
918                 return -EBUSY;
919         }
920
921         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
922         if (node == NULL)
923                 return -ENOMEM;
924
925         node->regulator = rdev;
926         node->supply = supply;
927
928         if (has_dev) {
929                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
930                 if (node->dev_name == NULL) {
931                         kfree(node);
932                         return -ENOMEM;
933                 }
934         }
935
936         list_add(&node->list, &regulator_map_list);
937         return 0;
938 }
939
940 static void unset_consumer_device_supply(struct regulator_dev *rdev,
941         const char *consumer_dev_name, struct device *consumer_dev)
942 {
943         struct regulator_map *node, *n;
944
945         if (consumer_dev && !consumer_dev_name)
946                 consumer_dev_name = dev_name(consumer_dev);
947
948         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
949                 if (rdev != node->regulator)
950                         continue;
951
952                 if (consumer_dev_name && node->dev_name &&
953                     strcmp(consumer_dev_name, node->dev_name))
954                         continue;
955
956                 list_del(&node->list);
957                 kfree(node->dev_name);
958                 kfree(node);
959                 return;
960         }
961 }
962
963 static void unset_regulator_supplies(struct regulator_dev *rdev)
964 {
965         struct regulator_map *node, *n;
966
967         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
968                 if (rdev == node->regulator) {
969                         list_del(&node->list);
970                         kfree(node->dev_name);
971                         kfree(node);
972                         return;
973                 }
974         }
975 }
976
977 #define REG_STR_SIZE    32
978
979 static struct regulator *create_regulator(struct regulator_dev *rdev,
980                                           struct device *dev,
981                                           const char *supply_name)
982 {
983         struct regulator *regulator;
984         char buf[REG_STR_SIZE];
985         int err, size;
986
987         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
988         if (regulator == NULL)
989                 return NULL;
990
991         mutex_lock(&rdev->mutex);
992         regulator->rdev = rdev;
993         list_add(&regulator->list, &rdev->consumer_list);
994
995         if (dev) {
996                 /* create a 'requested_microamps_name' sysfs entry */
997                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
998                         supply_name);
999                 if (size >= REG_STR_SIZE)
1000                         goto overflow_err;
1001
1002                 regulator->dev = dev;
1003                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1004                 if (regulator->dev_attr.attr.name == NULL)
1005                         goto attr_name_err;
1006
1007                 regulator->dev_attr.attr.owner = THIS_MODULE;
1008                 regulator->dev_attr.attr.mode = 0444;
1009                 regulator->dev_attr.show = device_requested_uA_show;
1010                 err = device_create_file(dev, &regulator->dev_attr);
1011                 if (err < 0) {
1012                         printk(KERN_WARNING "%s: could not add regulator_dev"
1013                                 " load sysfs\n", __func__);
1014                         goto attr_name_err;
1015                 }
1016
1017                 /* also add a link to the device sysfs entry */
1018                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1019                                  dev->kobj.name, supply_name);
1020                 if (size >= REG_STR_SIZE)
1021                         goto attr_err;
1022
1023                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1024                 if (regulator->supply_name == NULL)
1025                         goto attr_err;
1026
1027                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1028                                         buf);
1029                 if (err) {
1030                         printk(KERN_WARNING
1031                                "%s: could not add device link %s err %d\n",
1032                                __func__, dev->kobj.name, err);
1033                         device_remove_file(dev, &regulator->dev_attr);
1034                         goto link_name_err;
1035                 }
1036         }
1037         mutex_unlock(&rdev->mutex);
1038         return regulator;
1039 link_name_err:
1040         kfree(regulator->supply_name);
1041 attr_err:
1042         device_remove_file(regulator->dev, &regulator->dev_attr);
1043 attr_name_err:
1044         kfree(regulator->dev_attr.attr.name);
1045 overflow_err:
1046         list_del(&regulator->list);
1047         kfree(regulator);
1048         mutex_unlock(&rdev->mutex);
1049         return NULL;
1050 }
1051
1052 /* Internal regulator request function */
1053 static struct regulator *_regulator_get(struct device *dev, const char *id,
1054                                         int exclusive)
1055 {
1056         struct regulator_dev *rdev;
1057         struct regulator_map *map;
1058         struct regulator *regulator = ERR_PTR(-ENODEV);
1059         const char *devname = NULL;
1060         int ret;
1061
1062         if (id == NULL) {
1063                 printk(KERN_ERR "regulator: get() with no identifier\n");
1064                 return regulator;
1065         }
1066
1067         if (dev)
1068                 devname = dev_name(dev);
1069
1070         mutex_lock(&regulator_list_mutex);
1071
1072         list_for_each_entry(map, &regulator_map_list, list) {
1073                 /* If the mapping has a device set up it must match */
1074                 if (map->dev_name &&
1075                     (!devname || strcmp(map->dev_name, devname)))
1076                         continue;
1077
1078                 if (strcmp(map->supply, id) == 0) {
1079                         rdev = map->regulator;
1080                         goto found;
1081                 }
1082         }
1083         mutex_unlock(&regulator_list_mutex);
1084         return regulator;
1085
1086 found:
1087         if (rdev->exclusive) {
1088                 regulator = ERR_PTR(-EPERM);
1089                 goto out;
1090         }
1091
1092         if (exclusive && rdev->open_count) {
1093                 regulator = ERR_PTR(-EBUSY);
1094                 goto out;
1095         }
1096
1097         if (!try_module_get(rdev->owner))
1098                 goto out;
1099
1100         regulator = create_regulator(rdev, dev, id);
1101         if (regulator == NULL) {
1102                 regulator = ERR_PTR(-ENOMEM);
1103                 module_put(rdev->owner);
1104         }
1105
1106         rdev->open_count++;
1107         if (exclusive) {
1108                 rdev->exclusive = 1;
1109
1110                 ret = _regulator_is_enabled(rdev);
1111                 if (ret > 0)
1112                         rdev->use_count = 1;
1113                 else
1114                         rdev->use_count = 0;
1115         }
1116
1117 out:
1118         mutex_unlock(&regulator_list_mutex);
1119
1120         return regulator;
1121 }
1122
1123 /**
1124  * regulator_get - lookup and obtain a reference to a regulator.
1125  * @dev: device for regulator "consumer"
1126  * @id: Supply name or regulator ID.
1127  *
1128  * Returns a struct regulator corresponding to the regulator producer,
1129  * or IS_ERR() condition containing errno.
1130  *
1131  * Use of supply names configured via regulator_set_device_supply() is
1132  * strongly encouraged.  It is recommended that the supply name used
1133  * should match the name used for the supply and/or the relevant
1134  * device pins in the datasheet.
1135  */
1136 struct regulator *regulator_get(struct device *dev, const char *id)
1137 {
1138         return _regulator_get(dev, id, 0);
1139 }
1140 EXPORT_SYMBOL_GPL(regulator_get);
1141
1142 /**
1143  * regulator_get_exclusive - obtain exclusive access to a regulator.
1144  * @dev: device for regulator "consumer"
1145  * @id: Supply name or regulator ID.
1146  *
1147  * Returns a struct regulator corresponding to the regulator producer,
1148  * or IS_ERR() condition containing errno.  Other consumers will be
1149  * unable to obtain this reference is held and the use count for the
1150  * regulator will be initialised to reflect the current state of the
1151  * regulator.
1152  *
1153  * This is intended for use by consumers which cannot tolerate shared
1154  * use of the regulator such as those which need to force the
1155  * regulator off for correct operation of the hardware they are
1156  * controlling.
1157  *
1158  * Use of supply names configured via regulator_set_device_supply() is
1159  * strongly encouraged.  It is recommended that the supply name used
1160  * should match the name used for the supply and/or the relevant
1161  * device pins in the datasheet.
1162  */
1163 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1164 {
1165         return _regulator_get(dev, id, 1);
1166 }
1167 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1168
1169 /**
1170  * regulator_put - "free" the regulator source
1171  * @regulator: regulator source
1172  *
1173  * Note: drivers must ensure that all regulator_enable calls made on this
1174  * regulator source are balanced by regulator_disable calls prior to calling
1175  * this function.
1176  */
1177 void regulator_put(struct regulator *regulator)
1178 {
1179         struct regulator_dev *rdev;
1180
1181         if (regulator == NULL || IS_ERR(regulator))
1182                 return;
1183
1184         mutex_lock(&regulator_list_mutex);
1185         rdev = regulator->rdev;
1186
1187         /* remove any sysfs entries */
1188         if (regulator->dev) {
1189                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1190                 kfree(regulator->supply_name);
1191                 device_remove_file(regulator->dev, &regulator->dev_attr);
1192                 kfree(regulator->dev_attr.attr.name);
1193         }
1194         list_del(&regulator->list);
1195         kfree(regulator);
1196
1197         rdev->open_count--;
1198         rdev->exclusive = 0;
1199
1200         module_put(rdev->owner);
1201         mutex_unlock(&regulator_list_mutex);
1202 }
1203 EXPORT_SYMBOL_GPL(regulator_put);
1204
1205 static int _regulator_can_change_status(struct regulator_dev *rdev)
1206 {
1207         if (!rdev->constraints)
1208                 return 0;
1209
1210         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1211                 return 1;
1212         else
1213                 return 0;
1214 }
1215
1216 /* locks held by regulator_enable() */
1217 static int _regulator_enable(struct regulator_dev *rdev)
1218 {
1219         int ret;
1220
1221         /* do we need to enable the supply regulator first */
1222         if (rdev->supply) {
1223                 ret = _regulator_enable(rdev->supply);
1224                 if (ret < 0) {
1225                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1226                                __func__, rdev->desc->name, ret);
1227                         return ret;
1228                 }
1229         }
1230
1231         /* check voltage and requested load before enabling */
1232         if (rdev->constraints &&
1233             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1234                 drms_uA_update(rdev);
1235
1236         if (rdev->use_count == 0) {
1237                 /* The regulator may on if it's not switchable or left on */
1238                 ret = _regulator_is_enabled(rdev);
1239                 if (ret == -EINVAL || ret == 0) {
1240                         if (!_regulator_can_change_status(rdev))
1241                                 return -EPERM;
1242
1243                         if (rdev->desc->ops->enable) {
1244                                 ret = rdev->desc->ops->enable(rdev);
1245                                 if (ret < 0)
1246                                         return ret;
1247                         } else {
1248                                 return -EINVAL;
1249                         }
1250                 } else if (ret < 0) {
1251                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1252                                __func__, rdev->desc->name, ret);
1253                         return ret;
1254                 }
1255                 /* Fallthrough on positive return values - already enabled */
1256         }
1257
1258         rdev->use_count++;
1259
1260         return 0;
1261 }
1262
1263 /**
1264  * regulator_enable - enable regulator output
1265  * @regulator: regulator source
1266  *
1267  * Request that the regulator be enabled with the regulator output at
1268  * the predefined voltage or current value.  Calls to regulator_enable()
1269  * must be balanced with calls to regulator_disable().
1270  *
1271  * NOTE: the output value can be set by other drivers, boot loader or may be
1272  * hardwired in the regulator.
1273  */
1274 int regulator_enable(struct regulator *regulator)
1275 {
1276         struct regulator_dev *rdev = regulator->rdev;
1277         int ret = 0;
1278
1279         mutex_lock(&rdev->mutex);
1280         ret = _regulator_enable(rdev);
1281         mutex_unlock(&rdev->mutex);
1282         return ret;
1283 }
1284 EXPORT_SYMBOL_GPL(regulator_enable);
1285
1286 /* locks held by regulator_disable() */
1287 static int _regulator_disable(struct regulator_dev *rdev)
1288 {
1289         int ret = 0;
1290
1291         if (WARN(rdev->use_count <= 0,
1292                         "unbalanced disables for %s\n",
1293                         rdev->desc->name))
1294                 return -EIO;
1295
1296         /* are we the last user and permitted to disable ? */
1297         if (rdev->use_count == 1 &&
1298             (rdev->constraints && !rdev->constraints->always_on)) {
1299
1300                 /* we are last user */
1301                 if (_regulator_can_change_status(rdev) &&
1302                     rdev->desc->ops->disable) {
1303                         ret = rdev->desc->ops->disable(rdev);
1304                         if (ret < 0) {
1305                                 printk(KERN_ERR "%s: failed to disable %s\n",
1306                                        __func__, rdev->desc->name);
1307                                 return ret;
1308                         }
1309                 }
1310
1311                 /* decrease our supplies ref count and disable if required */
1312                 if (rdev->supply)
1313                         _regulator_disable(rdev->supply);
1314
1315                 rdev->use_count = 0;
1316         } else if (rdev->use_count > 1) {
1317
1318                 if (rdev->constraints &&
1319                         (rdev->constraints->valid_ops_mask &
1320                         REGULATOR_CHANGE_DRMS))
1321                         drms_uA_update(rdev);
1322
1323                 rdev->use_count--;
1324         }
1325         return ret;
1326 }
1327
1328 /**
1329  * regulator_disable - disable regulator output
1330  * @regulator: regulator source
1331  *
1332  * Disable the regulator output voltage or current.  Calls to
1333  * regulator_enable() must be balanced with calls to
1334  * regulator_disable().
1335  *
1336  * NOTE: this will only disable the regulator output if no other consumer
1337  * devices have it enabled, the regulator device supports disabling and
1338  * machine constraints permit this operation.
1339  */
1340 int regulator_disable(struct regulator *regulator)
1341 {
1342         struct regulator_dev *rdev = regulator->rdev;
1343         int ret = 0;
1344
1345         mutex_lock(&rdev->mutex);
1346         ret = _regulator_disable(rdev);
1347         mutex_unlock(&rdev->mutex);
1348         return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_disable);
1351
1352 /* locks held by regulator_force_disable() */
1353 static int _regulator_force_disable(struct regulator_dev *rdev)
1354 {
1355         int ret = 0;
1356
1357         /* force disable */
1358         if (rdev->desc->ops->disable) {
1359                 /* ah well, who wants to live forever... */
1360                 ret = rdev->desc->ops->disable(rdev);
1361                 if (ret < 0) {
1362                         printk(KERN_ERR "%s: failed to force disable %s\n",
1363                                __func__, rdev->desc->name);
1364                         return ret;
1365                 }
1366                 /* notify other consumers that power has been forced off */
1367                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1368                         NULL);
1369         }
1370
1371         /* decrease our supplies ref count and disable if required */
1372         if (rdev->supply)
1373                 _regulator_disable(rdev->supply);
1374
1375         rdev->use_count = 0;
1376         return ret;
1377 }
1378
1379 /**
1380  * regulator_force_disable - force disable regulator output
1381  * @regulator: regulator source
1382  *
1383  * Forcibly disable the regulator output voltage or current.
1384  * NOTE: this *will* disable the regulator output even if other consumer
1385  * devices have it enabled. This should be used for situations when device
1386  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1387  */
1388 int regulator_force_disable(struct regulator *regulator)
1389 {
1390         int ret;
1391
1392         mutex_lock(&regulator->rdev->mutex);
1393         regulator->uA_load = 0;
1394         ret = _regulator_force_disable(regulator->rdev);
1395         mutex_unlock(&regulator->rdev->mutex);
1396         return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(regulator_force_disable);
1399
1400 static int _regulator_is_enabled(struct regulator_dev *rdev)
1401 {
1402         /* sanity check */
1403         if (!rdev->desc->ops->is_enabled)
1404                 return -EINVAL;
1405
1406         return rdev->desc->ops->is_enabled(rdev);
1407 }
1408
1409 /**
1410  * regulator_is_enabled - is the regulator output enabled
1411  * @regulator: regulator source
1412  *
1413  * Returns positive if the regulator driver backing the source/client
1414  * has requested that the device be enabled, zero if it hasn't, else a
1415  * negative errno code.
1416  *
1417  * Note that the device backing this regulator handle can have multiple
1418  * users, so it might be enabled even if regulator_enable() was never
1419  * called for this particular source.
1420  */
1421 int regulator_is_enabled(struct regulator *regulator)
1422 {
1423         int ret;
1424
1425         mutex_lock(&regulator->rdev->mutex);
1426         ret = _regulator_is_enabled(regulator->rdev);
1427         mutex_unlock(&regulator->rdev->mutex);
1428
1429         return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1432
1433 /**
1434  * regulator_count_voltages - count regulator_list_voltage() selectors
1435  * @regulator: regulator source
1436  *
1437  * Returns number of selectors, or negative errno.  Selectors are
1438  * numbered starting at zero, and typically correspond to bitfields
1439  * in hardware registers.
1440  */
1441 int regulator_count_voltages(struct regulator *regulator)
1442 {
1443         struct regulator_dev    *rdev = regulator->rdev;
1444
1445         return rdev->desc->n_voltages ? : -EINVAL;
1446 }
1447 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1448
1449 /**
1450  * regulator_list_voltage - enumerate supported voltages
1451  * @regulator: regulator source
1452  * @selector: identify voltage to list
1453  * Context: can sleep
1454  *
1455  * Returns a voltage that can be passed to @regulator_set_voltage(),
1456  * zero if this selector code can't be used on this sytem, or a
1457  * negative errno.
1458  */
1459 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1460 {
1461         struct regulator_dev    *rdev = regulator->rdev;
1462         struct regulator_ops    *ops = rdev->desc->ops;
1463         int                     ret;
1464
1465         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1466                 return -EINVAL;
1467
1468         mutex_lock(&rdev->mutex);
1469         ret = ops->list_voltage(rdev, selector);
1470         mutex_unlock(&rdev->mutex);
1471
1472         if (ret > 0) {
1473                 if (ret < rdev->constraints->min_uV)
1474                         ret = 0;
1475                 else if (ret > rdev->constraints->max_uV)
1476                         ret = 0;
1477         }
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1482
1483 /**
1484  * regulator_is_supported_voltage - check if a voltage range can be supported
1485  *
1486  * @regulator: Regulator to check.
1487  * @min_uV: Minimum required voltage in uV.
1488  * @max_uV: Maximum required voltage in uV.
1489  *
1490  * Returns a boolean or a negative error code.
1491  */
1492 int regulator_is_supported_voltage(struct regulator *regulator,
1493                                    int min_uV, int max_uV)
1494 {
1495         int i, voltages, ret;
1496
1497         ret = regulator_count_voltages(regulator);
1498         if (ret < 0)
1499                 return ret;
1500         voltages = ret;
1501
1502         for (i = 0; i < voltages; i++) {
1503                 ret = regulator_list_voltage(regulator, i);
1504
1505                 if (ret >= min_uV && ret <= max_uV)
1506                         return 1;
1507         }
1508
1509         return 0;
1510 }
1511
1512 /**
1513  * regulator_set_voltage - set regulator output voltage
1514  * @regulator: regulator source
1515  * @min_uV: Minimum required voltage in uV
1516  * @max_uV: Maximum acceptable voltage in uV
1517  *
1518  * Sets a voltage regulator to the desired output voltage. This can be set
1519  * during any regulator state. IOW, regulator can be disabled or enabled.
1520  *
1521  * If the regulator is enabled then the voltage will change to the new value
1522  * immediately otherwise if the regulator is disabled the regulator will
1523  * output at the new voltage when enabled.
1524  *
1525  * NOTE: If the regulator is shared between several devices then the lowest
1526  * request voltage that meets the system constraints will be used.
1527  * Regulator system constraints must be set for this regulator before
1528  * calling this function otherwise this call will fail.
1529  */
1530 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1531 {
1532         struct regulator_dev *rdev = regulator->rdev;
1533         int ret;
1534
1535         mutex_lock(&rdev->mutex);
1536
1537         /* sanity check */
1538         if (!rdev->desc->ops->set_voltage) {
1539                 ret = -EINVAL;
1540                 goto out;
1541         }
1542
1543         /* constraints check */
1544         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1545         if (ret < 0)
1546                 goto out;
1547         regulator->min_uV = min_uV;
1548         regulator->max_uV = max_uV;
1549         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1550
1551 out:
1552         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1553         mutex_unlock(&rdev->mutex);
1554         return ret;
1555 }
1556 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1557
1558 static int _regulator_get_voltage(struct regulator_dev *rdev)
1559 {
1560         /* sanity check */
1561         if (rdev->desc->ops->get_voltage)
1562                 return rdev->desc->ops->get_voltage(rdev);
1563         else
1564                 return -EINVAL;
1565 }
1566
1567 /**
1568  * regulator_get_voltage - get regulator output voltage
1569  * @regulator: regulator source
1570  *
1571  * This returns the current regulator voltage in uV.
1572  *
1573  * NOTE: If the regulator is disabled it will return the voltage value. This
1574  * function should not be used to determine regulator state.
1575  */
1576 int regulator_get_voltage(struct regulator *regulator)
1577 {
1578         int ret;
1579
1580         mutex_lock(&regulator->rdev->mutex);
1581
1582         ret = _regulator_get_voltage(regulator->rdev);
1583
1584         mutex_unlock(&regulator->rdev->mutex);
1585
1586         return ret;
1587 }
1588 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1589
1590 /**
1591  * regulator_set_current_limit - set regulator output current limit
1592  * @regulator: regulator source
1593  * @min_uA: Minimuum supported current in uA
1594  * @max_uA: Maximum supported current in uA
1595  *
1596  * Sets current sink to the desired output current. This can be set during
1597  * any regulator state. IOW, regulator can be disabled or enabled.
1598  *
1599  * If the regulator is enabled then the current will change to the new value
1600  * immediately otherwise if the regulator is disabled the regulator will
1601  * output at the new current when enabled.
1602  *
1603  * NOTE: Regulator system constraints must be set for this regulator before
1604  * calling this function otherwise this call will fail.
1605  */
1606 int regulator_set_current_limit(struct regulator *regulator,
1607                                int min_uA, int max_uA)
1608 {
1609         struct regulator_dev *rdev = regulator->rdev;
1610         int ret;
1611
1612         mutex_lock(&rdev->mutex);
1613
1614         /* sanity check */
1615         if (!rdev->desc->ops->set_current_limit) {
1616                 ret = -EINVAL;
1617                 goto out;
1618         }
1619
1620         /* constraints check */
1621         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1622         if (ret < 0)
1623                 goto out;
1624
1625         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1626 out:
1627         mutex_unlock(&rdev->mutex);
1628         return ret;
1629 }
1630 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1631
1632 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1633 {
1634         int ret;
1635
1636         mutex_lock(&rdev->mutex);
1637
1638         /* sanity check */
1639         if (!rdev->desc->ops->get_current_limit) {
1640                 ret = -EINVAL;
1641                 goto out;
1642         }
1643
1644         ret = rdev->desc->ops->get_current_limit(rdev);
1645 out:
1646         mutex_unlock(&rdev->mutex);
1647         return ret;
1648 }
1649
1650 /**
1651  * regulator_get_current_limit - get regulator output current
1652  * @regulator: regulator source
1653  *
1654  * This returns the current supplied by the specified current sink in uA.
1655  *
1656  * NOTE: If the regulator is disabled it will return the current value. This
1657  * function should not be used to determine regulator state.
1658  */
1659 int regulator_get_current_limit(struct regulator *regulator)
1660 {
1661         return _regulator_get_current_limit(regulator->rdev);
1662 }
1663 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1664
1665 /**
1666  * regulator_set_mode - set regulator operating mode
1667  * @regulator: regulator source
1668  * @mode: operating mode - one of the REGULATOR_MODE constants
1669  *
1670  * Set regulator operating mode to increase regulator efficiency or improve
1671  * regulation performance.
1672  *
1673  * NOTE: Regulator system constraints must be set for this regulator before
1674  * calling this function otherwise this call will fail.
1675  */
1676 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1677 {
1678         struct regulator_dev *rdev = regulator->rdev;
1679         int ret;
1680
1681         mutex_lock(&rdev->mutex);
1682
1683         /* sanity check */
1684         if (!rdev->desc->ops->set_mode) {
1685                 ret = -EINVAL;
1686                 goto out;
1687         }
1688
1689         /* constraints check */
1690         ret = regulator_check_mode(rdev, mode);
1691         if (ret < 0)
1692                 goto out;
1693
1694         ret = rdev->desc->ops->set_mode(rdev, mode);
1695 out:
1696         mutex_unlock(&rdev->mutex);
1697         return ret;
1698 }
1699 EXPORT_SYMBOL_GPL(regulator_set_mode);
1700
1701 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1702 {
1703         int ret;
1704
1705         mutex_lock(&rdev->mutex);
1706
1707         /* sanity check */
1708         if (!rdev->desc->ops->get_mode) {
1709                 ret = -EINVAL;
1710                 goto out;
1711         }
1712
1713         ret = rdev->desc->ops->get_mode(rdev);
1714 out:
1715         mutex_unlock(&rdev->mutex);
1716         return ret;
1717 }
1718
1719 /**
1720  * regulator_get_mode - get regulator operating mode
1721  * @regulator: regulator source
1722  *
1723  * Get the current regulator operating mode.
1724  */
1725 unsigned int regulator_get_mode(struct regulator *regulator)
1726 {
1727         return _regulator_get_mode(regulator->rdev);
1728 }
1729 EXPORT_SYMBOL_GPL(regulator_get_mode);
1730
1731 /**
1732  * regulator_set_optimum_mode - set regulator optimum operating mode
1733  * @regulator: regulator source
1734  * @uA_load: load current
1735  *
1736  * Notifies the regulator core of a new device load. This is then used by
1737  * DRMS (if enabled by constraints) to set the most efficient regulator
1738  * operating mode for the new regulator loading.
1739  *
1740  * Consumer devices notify their supply regulator of the maximum power
1741  * they will require (can be taken from device datasheet in the power
1742  * consumption tables) when they change operational status and hence power
1743  * state. Examples of operational state changes that can affect power
1744  * consumption are :-
1745  *
1746  *    o Device is opened / closed.
1747  *    o Device I/O is about to begin or has just finished.
1748  *    o Device is idling in between work.
1749  *
1750  * This information is also exported via sysfs to userspace.
1751  *
1752  * DRMS will sum the total requested load on the regulator and change
1753  * to the most efficient operating mode if platform constraints allow.
1754  *
1755  * Returns the new regulator mode or error.
1756  */
1757 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1758 {
1759         struct regulator_dev *rdev = regulator->rdev;
1760         struct regulator *consumer;
1761         int ret, output_uV, input_uV, total_uA_load = 0;
1762         unsigned int mode;
1763
1764         mutex_lock(&rdev->mutex);
1765
1766         regulator->uA_load = uA_load;
1767         ret = regulator_check_drms(rdev);
1768         if (ret < 0)
1769                 goto out;
1770         ret = -EINVAL;
1771
1772         /* sanity check */
1773         if (!rdev->desc->ops->get_optimum_mode)
1774                 goto out;
1775
1776         /* get output voltage */
1777         output_uV = rdev->desc->ops->get_voltage(rdev);
1778         if (output_uV <= 0) {
1779                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1780                         __func__, rdev->desc->name);
1781                 goto out;
1782         }
1783
1784         /* get input voltage */
1785         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1786                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1787         else
1788                 input_uV = rdev->constraints->input_uV;
1789         if (input_uV <= 0) {
1790                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1791                         __func__, rdev->desc->name);
1792                 goto out;
1793         }
1794
1795         /* calc total requested load for this regulator */
1796         list_for_each_entry(consumer, &rdev->consumer_list, list)
1797             total_uA_load += consumer->uA_load;
1798
1799         mode = rdev->desc->ops->get_optimum_mode(rdev,
1800                                                  input_uV, output_uV,
1801                                                  total_uA_load);
1802         ret = regulator_check_mode(rdev, mode);
1803         if (ret < 0) {
1804                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1805                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1806                         total_uA_load, input_uV, output_uV);
1807                 goto out;
1808         }
1809
1810         ret = rdev->desc->ops->set_mode(rdev, mode);
1811         if (ret < 0) {
1812                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1813                         __func__, mode, rdev->desc->name);
1814                 goto out;
1815         }
1816         ret = mode;
1817 out:
1818         mutex_unlock(&rdev->mutex);
1819         return ret;
1820 }
1821 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1822
1823 /**
1824  * regulator_register_notifier - register regulator event notifier
1825  * @regulator: regulator source
1826  * @nb: notifier block
1827  *
1828  * Register notifier block to receive regulator events.
1829  */
1830 int regulator_register_notifier(struct regulator *regulator,
1831                               struct notifier_block *nb)
1832 {
1833         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1834                                                 nb);
1835 }
1836 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1837
1838 /**
1839  * regulator_unregister_notifier - unregister regulator event notifier
1840  * @regulator: regulator source
1841  * @nb: notifier block
1842  *
1843  * Unregister regulator event notifier block.
1844  */
1845 int regulator_unregister_notifier(struct regulator *regulator,
1846                                 struct notifier_block *nb)
1847 {
1848         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1849                                                   nb);
1850 }
1851 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1852
1853 /* notify regulator consumers and downstream regulator consumers.
1854  * Note mutex must be held by caller.
1855  */
1856 static void _notifier_call_chain(struct regulator_dev *rdev,
1857                                   unsigned long event, void *data)
1858 {
1859         struct regulator_dev *_rdev;
1860
1861         /* call rdev chain first */
1862         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1863
1864         /* now notify regulator we supply */
1865         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1866           mutex_lock(&_rdev->mutex);
1867           _notifier_call_chain(_rdev, event, data);
1868           mutex_unlock(&_rdev->mutex);
1869         }
1870 }
1871
1872 /**
1873  * regulator_bulk_get - get multiple regulator consumers
1874  *
1875  * @dev:           Device to supply
1876  * @num_consumers: Number of consumers to register
1877  * @consumers:     Configuration of consumers; clients are stored here.
1878  *
1879  * @return 0 on success, an errno on failure.
1880  *
1881  * This helper function allows drivers to get several regulator
1882  * consumers in one operation.  If any of the regulators cannot be
1883  * acquired then any regulators that were allocated will be freed
1884  * before returning to the caller.
1885  */
1886 int regulator_bulk_get(struct device *dev, int num_consumers,
1887                        struct regulator_bulk_data *consumers)
1888 {
1889         int i;
1890         int ret;
1891
1892         for (i = 0; i < num_consumers; i++)
1893                 consumers[i].consumer = NULL;
1894
1895         for (i = 0; i < num_consumers; i++) {
1896                 consumers[i].consumer = regulator_get(dev,
1897                                                       consumers[i].supply);
1898                 if (IS_ERR(consumers[i].consumer)) {
1899                         ret = PTR_ERR(consumers[i].consumer);
1900                         dev_err(dev, "Failed to get supply '%s': %d\n",
1901                                 consumers[i].supply, ret);
1902                         consumers[i].consumer = NULL;
1903                         goto err;
1904                 }
1905         }
1906
1907         return 0;
1908
1909 err:
1910         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1911                 regulator_put(consumers[i].consumer);
1912
1913         return ret;
1914 }
1915 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1916
1917 /**
1918  * regulator_bulk_enable - enable multiple regulator consumers
1919  *
1920  * @num_consumers: Number of consumers
1921  * @consumers:     Consumer data; clients are stored here.
1922  * @return         0 on success, an errno on failure
1923  *
1924  * This convenience API allows consumers to enable multiple regulator
1925  * clients in a single API call.  If any consumers cannot be enabled
1926  * then any others that were enabled will be disabled again prior to
1927  * return.
1928  */
1929 int regulator_bulk_enable(int num_consumers,
1930                           struct regulator_bulk_data *consumers)
1931 {
1932         int i;
1933         int ret;
1934
1935         for (i = 0; i < num_consumers; i++) {
1936                 ret = regulator_enable(consumers[i].consumer);
1937                 if (ret != 0)
1938                         goto err;
1939         }
1940
1941         return 0;
1942
1943 err:
1944         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1945         for (i = 0; i < num_consumers; i++)
1946                 regulator_disable(consumers[i].consumer);
1947
1948         return ret;
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1951
1952 /**
1953  * regulator_bulk_disable - disable multiple regulator consumers
1954  *
1955  * @num_consumers: Number of consumers
1956  * @consumers:     Consumer data; clients are stored here.
1957  * @return         0 on success, an errno on failure
1958  *
1959  * This convenience API allows consumers to disable multiple regulator
1960  * clients in a single API call.  If any consumers cannot be enabled
1961  * then any others that were disabled will be disabled again prior to
1962  * return.
1963  */
1964 int regulator_bulk_disable(int num_consumers,
1965                            struct regulator_bulk_data *consumers)
1966 {
1967         int i;
1968         int ret;
1969
1970         for (i = 0; i < num_consumers; i++) {
1971                 ret = regulator_disable(consumers[i].consumer);
1972                 if (ret != 0)
1973                         goto err;
1974         }
1975
1976         return 0;
1977
1978 err:
1979         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
1980                ret);
1981         for (i = 0; i < num_consumers; i++)
1982                 regulator_enable(consumers[i].consumer);
1983
1984         return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1987
1988 /**
1989  * regulator_bulk_free - free multiple regulator consumers
1990  *
1991  * @num_consumers: Number of consumers
1992  * @consumers:     Consumer data; clients are stored here.
1993  *
1994  * This convenience API allows consumers to free multiple regulator
1995  * clients in a single API call.
1996  */
1997 void regulator_bulk_free(int num_consumers,
1998                          struct regulator_bulk_data *consumers)
1999 {
2000         int i;
2001
2002         for (i = 0; i < num_consumers; i++) {
2003                 regulator_put(consumers[i].consumer);
2004                 consumers[i].consumer = NULL;
2005         }
2006 }
2007 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2008
2009 /**
2010  * regulator_notifier_call_chain - call regulator event notifier
2011  * @rdev: regulator source
2012  * @event: notifier block
2013  * @data: callback-specific data.
2014  *
2015  * Called by regulator drivers to notify clients a regulator event has
2016  * occurred. We also notify regulator clients downstream.
2017  * Note lock must be held by caller.
2018  */
2019 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2020                                   unsigned long event, void *data)
2021 {
2022         _notifier_call_chain(rdev, event, data);
2023         return NOTIFY_DONE;
2024
2025 }
2026 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2027
2028 /**
2029  * regulator_mode_to_status - convert a regulator mode into a status
2030  *
2031  * @mode: Mode to convert
2032  *
2033  * Convert a regulator mode into a status.
2034  */
2035 int regulator_mode_to_status(unsigned int mode)
2036 {
2037         switch (mode) {
2038         case REGULATOR_MODE_FAST:
2039                 return REGULATOR_STATUS_FAST;
2040         case REGULATOR_MODE_NORMAL:
2041                 return REGULATOR_STATUS_NORMAL;
2042         case REGULATOR_MODE_IDLE:
2043                 return REGULATOR_STATUS_IDLE;
2044         case REGULATOR_STATUS_STANDBY:
2045                 return REGULATOR_STATUS_STANDBY;
2046         default:
2047                 return 0;
2048         }
2049 }
2050 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2051
2052 /*
2053  * To avoid cluttering sysfs (and memory) with useless state, only
2054  * create attributes that can be meaningfully displayed.
2055  */
2056 static int add_regulator_attributes(struct regulator_dev *rdev)
2057 {
2058         struct device           *dev = &rdev->dev;
2059         struct regulator_ops    *ops = rdev->desc->ops;
2060         int                     status = 0;
2061
2062         /* some attributes need specific methods to be displayed */
2063         if (ops->get_voltage) {
2064                 status = device_create_file(dev, &dev_attr_microvolts);
2065                 if (status < 0)
2066                         return status;
2067         }
2068         if (ops->get_current_limit) {
2069                 status = device_create_file(dev, &dev_attr_microamps);
2070                 if (status < 0)
2071                         return status;
2072         }
2073         if (ops->get_mode) {
2074                 status = device_create_file(dev, &dev_attr_opmode);
2075                 if (status < 0)
2076                         return status;
2077         }
2078         if (ops->is_enabled) {
2079                 status = device_create_file(dev, &dev_attr_state);
2080                 if (status < 0)
2081                         return status;
2082         }
2083         if (ops->get_status) {
2084                 status = device_create_file(dev, &dev_attr_status);
2085                 if (status < 0)
2086                         return status;
2087         }
2088
2089         /* some attributes are type-specific */
2090         if (rdev->desc->type == REGULATOR_CURRENT) {
2091                 status = device_create_file(dev, &dev_attr_requested_microamps);
2092                 if (status < 0)
2093                         return status;
2094         }
2095
2096         /* all the other attributes exist to support constraints;
2097          * don't show them if there are no constraints, or if the
2098          * relevant supporting methods are missing.
2099          */
2100         if (!rdev->constraints)
2101                 return status;
2102
2103         /* constraints need specific supporting methods */
2104         if (ops->set_voltage) {
2105                 status = device_create_file(dev, &dev_attr_min_microvolts);
2106                 if (status < 0)
2107                         return status;
2108                 status = device_create_file(dev, &dev_attr_max_microvolts);
2109                 if (status < 0)
2110                         return status;
2111         }
2112         if (ops->set_current_limit) {
2113                 status = device_create_file(dev, &dev_attr_min_microamps);
2114                 if (status < 0)
2115                         return status;
2116                 status = device_create_file(dev, &dev_attr_max_microamps);
2117                 if (status < 0)
2118                         return status;
2119         }
2120
2121         /* suspend mode constraints need multiple supporting methods */
2122         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2123                 return status;
2124
2125         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2126         if (status < 0)
2127                 return status;
2128         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2129         if (status < 0)
2130                 return status;
2131         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2132         if (status < 0)
2133                 return status;
2134
2135         if (ops->set_suspend_voltage) {
2136                 status = device_create_file(dev,
2137                                 &dev_attr_suspend_standby_microvolts);
2138                 if (status < 0)
2139                         return status;
2140                 status = device_create_file(dev,
2141                                 &dev_attr_suspend_mem_microvolts);
2142                 if (status < 0)
2143                         return status;
2144                 status = device_create_file(dev,
2145                                 &dev_attr_suspend_disk_microvolts);
2146                 if (status < 0)
2147                         return status;
2148         }
2149
2150         if (ops->set_suspend_mode) {
2151                 status = device_create_file(dev,
2152                                 &dev_attr_suspend_standby_mode);
2153                 if (status < 0)
2154                         return status;
2155                 status = device_create_file(dev,
2156                                 &dev_attr_suspend_mem_mode);
2157                 if (status < 0)
2158                         return status;
2159                 status = device_create_file(dev,
2160                                 &dev_attr_suspend_disk_mode);
2161                 if (status < 0)
2162                         return status;
2163         }
2164
2165         return status;
2166 }
2167
2168 /**
2169  * regulator_register - register regulator
2170  * @regulator_desc: regulator to register
2171  * @dev: struct device for the regulator
2172  * @init_data: platform provided init data, passed through by driver
2173  * @driver_data: private regulator data
2174  *
2175  * Called by regulator drivers to register a regulator.
2176  * Returns 0 on success.
2177  */
2178 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2179         struct device *dev, struct regulator_init_data *init_data,
2180         void *driver_data)
2181 {
2182         static atomic_t regulator_no = ATOMIC_INIT(0);
2183         struct regulator_dev *rdev;
2184         int ret, i;
2185
2186         if (regulator_desc == NULL)
2187                 return ERR_PTR(-EINVAL);
2188
2189         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2190                 return ERR_PTR(-EINVAL);
2191
2192         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2193             regulator_desc->type != REGULATOR_CURRENT)
2194                 return ERR_PTR(-EINVAL);
2195
2196         if (!init_data)
2197                 return ERR_PTR(-EINVAL);
2198
2199         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2200         if (rdev == NULL)
2201                 return ERR_PTR(-ENOMEM);
2202
2203         mutex_lock(&regulator_list_mutex);
2204
2205         mutex_init(&rdev->mutex);
2206         rdev->reg_data = driver_data;
2207         rdev->owner = regulator_desc->owner;
2208         rdev->desc = regulator_desc;
2209         INIT_LIST_HEAD(&rdev->consumer_list);
2210         INIT_LIST_HEAD(&rdev->supply_list);
2211         INIT_LIST_HEAD(&rdev->list);
2212         INIT_LIST_HEAD(&rdev->slist);
2213         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2214
2215         /* preform any regulator specific init */
2216         if (init_data->regulator_init) {
2217                 ret = init_data->regulator_init(rdev->reg_data);
2218                 if (ret < 0)
2219                         goto clean;
2220         }
2221
2222         /* register with sysfs */
2223         rdev->dev.class = &regulator_class;
2224         rdev->dev.parent = dev;
2225         dev_set_name(&rdev->dev, "regulator.%d",
2226                      atomic_inc_return(&regulator_no) - 1);
2227         ret = device_register(&rdev->dev);
2228         if (ret != 0)
2229                 goto clean;
2230
2231         dev_set_drvdata(&rdev->dev, rdev);
2232
2233         /* set regulator constraints */
2234         ret = set_machine_constraints(rdev, &init_data->constraints);
2235         if (ret < 0)
2236                 goto scrub;
2237
2238         /* add attributes supported by this regulator */
2239         ret = add_regulator_attributes(rdev);
2240         if (ret < 0)
2241                 goto scrub;
2242
2243         /* set supply regulator if it exists */
2244         if (init_data->supply_regulator_dev) {
2245                 ret = set_supply(rdev,
2246                         dev_get_drvdata(init_data->supply_regulator_dev));
2247                 if (ret < 0)
2248                         goto scrub;
2249         }
2250
2251         /* add consumers devices */
2252         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2253                 ret = set_consumer_device_supply(rdev,
2254                         init_data->consumer_supplies[i].dev,
2255                         init_data->consumer_supplies[i].dev_name,
2256                         init_data->consumer_supplies[i].supply);
2257                 if (ret < 0) {
2258                         for (--i; i >= 0; i--)
2259                                 unset_consumer_device_supply(rdev,
2260                                     init_data->consumer_supplies[i].dev_name,
2261                                     init_data->consumer_supplies[i].dev);
2262                         goto scrub;
2263                 }
2264         }
2265
2266         list_add(&rdev->list, &regulator_list);
2267 out:
2268         mutex_unlock(&regulator_list_mutex);
2269         return rdev;
2270
2271 scrub:
2272         device_unregister(&rdev->dev);
2273         /* device core frees rdev */
2274         rdev = ERR_PTR(ret);
2275         goto out;
2276
2277 clean:
2278         kfree(rdev);
2279         rdev = ERR_PTR(ret);
2280         goto out;
2281 }
2282 EXPORT_SYMBOL_GPL(regulator_register);
2283
2284 /**
2285  * regulator_unregister - unregister regulator
2286  * @rdev: regulator to unregister
2287  *
2288  * Called by regulator drivers to unregister a regulator.
2289  */
2290 void regulator_unregister(struct regulator_dev *rdev)
2291 {
2292         if (rdev == NULL)
2293                 return;
2294
2295         mutex_lock(&regulator_list_mutex);
2296         WARN_ON(rdev->open_count);
2297         unset_regulator_supplies(rdev);
2298         list_del(&rdev->list);
2299         if (rdev->supply)
2300                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2301         device_unregister(&rdev->dev);
2302         mutex_unlock(&regulator_list_mutex);
2303 }
2304 EXPORT_SYMBOL_GPL(regulator_unregister);
2305
2306 /**
2307  * regulator_suspend_prepare - prepare regulators for system wide suspend
2308  * @state: system suspend state
2309  *
2310  * Configure each regulator with it's suspend operating parameters for state.
2311  * This will usually be called by machine suspend code prior to supending.
2312  */
2313 int regulator_suspend_prepare(suspend_state_t state)
2314 {
2315         struct regulator_dev *rdev;
2316         int ret = 0;
2317
2318         /* ON is handled by regulator active state */
2319         if (state == PM_SUSPEND_ON)
2320                 return -EINVAL;
2321
2322         mutex_lock(&regulator_list_mutex);
2323         list_for_each_entry(rdev, &regulator_list, list) {
2324
2325                 mutex_lock(&rdev->mutex);
2326                 ret = suspend_prepare(rdev, state);
2327                 mutex_unlock(&rdev->mutex);
2328
2329                 if (ret < 0) {
2330                         printk(KERN_ERR "%s: failed to prepare %s\n",
2331                                 __func__, rdev->desc->name);
2332                         goto out;
2333                 }
2334         }
2335 out:
2336         mutex_unlock(&regulator_list_mutex);
2337         return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2340
2341 /**
2342  * regulator_has_full_constraints - the system has fully specified constraints
2343  *
2344  * Calling this function will cause the regulator API to disable all
2345  * regulators which have a zero use count and don't have an always_on
2346  * constraint in a late_initcall.
2347  *
2348  * The intention is that this will become the default behaviour in a
2349  * future kernel release so users are encouraged to use this facility
2350  * now.
2351  */
2352 void regulator_has_full_constraints(void)
2353 {
2354         has_full_constraints = 1;
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2357
2358 /**
2359  * rdev_get_drvdata - get rdev regulator driver data
2360  * @rdev: regulator
2361  *
2362  * Get rdev regulator driver private data. This call can be used in the
2363  * regulator driver context.
2364  */
2365 void *rdev_get_drvdata(struct regulator_dev *rdev)
2366 {
2367         return rdev->reg_data;
2368 }
2369 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2370
2371 /**
2372  * regulator_get_drvdata - get regulator driver data
2373  * @regulator: regulator
2374  *
2375  * Get regulator driver private data. This call can be used in the consumer
2376  * driver context when non API regulator specific functions need to be called.
2377  */
2378 void *regulator_get_drvdata(struct regulator *regulator)
2379 {
2380         return regulator->rdev->reg_data;
2381 }
2382 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2383
2384 /**
2385  * regulator_set_drvdata - set regulator driver data
2386  * @regulator: regulator
2387  * @data: data
2388  */
2389 void regulator_set_drvdata(struct regulator *regulator, void *data)
2390 {
2391         regulator->rdev->reg_data = data;
2392 }
2393 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2394
2395 /**
2396  * regulator_get_id - get regulator ID
2397  * @rdev: regulator
2398  */
2399 int rdev_get_id(struct regulator_dev *rdev)
2400 {
2401         return rdev->desc->id;
2402 }
2403 EXPORT_SYMBOL_GPL(rdev_get_id);
2404
2405 struct device *rdev_get_dev(struct regulator_dev *rdev)
2406 {
2407         return &rdev->dev;
2408 }
2409 EXPORT_SYMBOL_GPL(rdev_get_dev);
2410
2411 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2412 {
2413         return reg_init_data->driver_data;
2414 }
2415 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2416
2417 static int __init regulator_init(void)
2418 {
2419         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2420         return class_register(&regulator_class);
2421 }
2422
2423 /* init early to allow our consumers to complete system booting */
2424 core_initcall(regulator_init);
2425
2426 static int __init regulator_init_complete(void)
2427 {
2428         struct regulator_dev *rdev;
2429         struct regulator_ops *ops;
2430         struct regulation_constraints *c;
2431         int enabled, ret;
2432         const char *name;
2433
2434         mutex_lock(&regulator_list_mutex);
2435
2436         /* If we have a full configuration then disable any regulators
2437          * which are not in use or always_on.  This will become the
2438          * default behaviour in the future.
2439          */
2440         list_for_each_entry(rdev, &regulator_list, list) {
2441                 ops = rdev->desc->ops;
2442                 c = rdev->constraints;
2443
2444                 if (c && c->name)
2445                         name = c->name;
2446                 else if (rdev->desc->name)
2447                         name = rdev->desc->name;
2448                 else
2449                         name = "regulator";
2450
2451                 if (!ops->disable || (c && c->always_on))
2452                         continue;
2453
2454                 mutex_lock(&rdev->mutex);
2455
2456                 if (rdev->use_count)
2457                         goto unlock;
2458
2459                 /* If we can't read the status assume it's on. */
2460                 if (ops->is_enabled)
2461                         enabled = ops->is_enabled(rdev);
2462                 else
2463                         enabled = 1;
2464
2465                 if (!enabled)
2466                         goto unlock;
2467
2468                 if (has_full_constraints) {
2469                         /* We log since this may kill the system if it
2470                          * goes wrong. */
2471                         printk(KERN_INFO "%s: disabling %s\n",
2472                                __func__, name);
2473                         ret = ops->disable(rdev);
2474                         if (ret != 0) {
2475                                 printk(KERN_ERR
2476                                        "%s: couldn't disable %s: %d\n",
2477                                        __func__, name, ret);
2478                         }
2479                 } else {
2480                         /* The intention is that in future we will
2481                          * assume that full constraints are provided
2482                          * so warn even if we aren't going to do
2483                          * anything here.
2484                          */
2485                         printk(KERN_WARNING
2486                                "%s: incomplete constraints, leaving %s on\n",
2487                                __func__, name);
2488                 }
2489
2490 unlock:
2491                 mutex_unlock(&rdev->mutex);
2492         }
2493
2494         mutex_unlock(&regulator_list_mutex);
2495
2496         return 0;
2497 }
2498 late_initcall(regulator_init_complete);