x64, x2apic/intr-remap: routines managing Interrupt remapping table entries.
[safe/jmp/linux-2.6] / drivers / pci / intr_remapping.c
1 #include <linux/dmar.h>
2 #include <linux/spinlock.h>
3 #include <linux/jiffies.h>
4 #include <linux/pci.h>
5 #include <linux/irq.h>
6 #include <asm/io_apic.h>
7 #include "intel-iommu.h"
8 #include "intr_remapping.h"
9
10 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
11 static int ir_ioapic_num;
12 int intr_remapping_enabled;
13
14 static struct {
15         struct intel_iommu *iommu;
16         u16 irte_index;
17         u16 sub_handle;
18         u8  irte_mask;
19 } irq_2_iommu[NR_IRQS];
20
21 static DEFINE_SPINLOCK(irq_2_ir_lock);
22
23 int irq_remapped(int irq)
24 {
25         if (irq > NR_IRQS)
26                 return 0;
27
28         if (!irq_2_iommu[irq].iommu)
29                 return 0;
30
31         return 1;
32 }
33
34 int get_irte(int irq, struct irte *entry)
35 {
36         int index;
37
38         if (!entry || irq > NR_IRQS)
39                 return -1;
40
41         spin_lock(&irq_2_ir_lock);
42         if (!irq_2_iommu[irq].iommu) {
43                 spin_unlock(&irq_2_ir_lock);
44                 return -1;
45         }
46
47         index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
48         *entry = *(irq_2_iommu[irq].iommu->ir_table->base + index);
49
50         spin_unlock(&irq_2_ir_lock);
51         return 0;
52 }
53
54 int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
55 {
56         struct ir_table *table = iommu->ir_table;
57         u16 index, start_index;
58         unsigned int mask = 0;
59         int i;
60
61         if (!count)
62                 return -1;
63
64         /*
65          * start the IRTE search from index 0.
66          */
67         index = start_index = 0;
68
69         if (count > 1) {
70                 count = __roundup_pow_of_two(count);
71                 mask = ilog2(count);
72         }
73
74         if (mask > ecap_max_handle_mask(iommu->ecap)) {
75                 printk(KERN_ERR
76                        "Requested mask %x exceeds the max invalidation handle"
77                        " mask value %Lx\n", mask,
78                        ecap_max_handle_mask(iommu->ecap));
79                 return -1;
80         }
81
82         spin_lock(&irq_2_ir_lock);
83         do {
84                 for (i = index; i < index + count; i++)
85                         if  (table->base[i].present)
86                                 break;
87                 /* empty index found */
88                 if (i == index + count)
89                         break;
90
91                 index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
92
93                 if (index == start_index) {
94                         spin_unlock(&irq_2_ir_lock);
95                         printk(KERN_ERR "can't allocate an IRTE\n");
96                         return -1;
97                 }
98         } while (1);
99
100         for (i = index; i < index + count; i++)
101                 table->base[i].present = 1;
102
103         irq_2_iommu[irq].iommu = iommu;
104         irq_2_iommu[irq].irte_index =  index;
105         irq_2_iommu[irq].sub_handle = 0;
106         irq_2_iommu[irq].irte_mask = mask;
107
108         spin_unlock(&irq_2_ir_lock);
109
110         return index;
111 }
112
113 static void qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
114 {
115         struct qi_desc desc;
116
117         desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
118                    | QI_IEC_SELECTIVE;
119         desc.high = 0;
120
121         qi_submit_sync(&desc, iommu);
122 }
123
124 int map_irq_to_irte_handle(int irq, u16 *sub_handle)
125 {
126         int index;
127
128         spin_lock(&irq_2_ir_lock);
129         if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
130                 spin_unlock(&irq_2_ir_lock);
131                 return -1;
132         }
133
134         *sub_handle = irq_2_iommu[irq].sub_handle;
135         index = irq_2_iommu[irq].irte_index;
136         spin_unlock(&irq_2_ir_lock);
137         return index;
138 }
139
140 int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
141 {
142         spin_lock(&irq_2_ir_lock);
143         if (irq >= NR_IRQS || irq_2_iommu[irq].iommu) {
144                 spin_unlock(&irq_2_ir_lock);
145                 return -1;
146         }
147
148         irq_2_iommu[irq].iommu = iommu;
149         irq_2_iommu[irq].irte_index = index;
150         irq_2_iommu[irq].sub_handle = subhandle;
151         irq_2_iommu[irq].irte_mask = 0;
152
153         spin_unlock(&irq_2_ir_lock);
154
155         return 0;
156 }
157
158 int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index)
159 {
160         spin_lock(&irq_2_ir_lock);
161         if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
162                 spin_unlock(&irq_2_ir_lock);
163                 return -1;
164         }
165
166         irq_2_iommu[irq].iommu = NULL;
167         irq_2_iommu[irq].irte_index = 0;
168         irq_2_iommu[irq].sub_handle = 0;
169         irq_2_iommu[irq].irte_mask = 0;
170
171         spin_unlock(&irq_2_ir_lock);
172
173         return 0;
174 }
175
176 int modify_irte(int irq, struct irte *irte_modified)
177 {
178         int index;
179         struct irte *irte;
180         struct intel_iommu *iommu;
181
182         spin_lock(&irq_2_ir_lock);
183         if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
184                 spin_unlock(&irq_2_ir_lock);
185                 return -1;
186         }
187
188         iommu = irq_2_iommu[irq].iommu;
189
190         index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
191         irte = &iommu->ir_table->base[index];
192
193         set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1));
194         __iommu_flush_cache(iommu, irte, sizeof(*irte));
195
196         qi_flush_iec(iommu, index, 0);
197
198         spin_unlock(&irq_2_ir_lock);
199         return 0;
200 }
201
202 int flush_irte(int irq)
203 {
204         int index;
205         struct intel_iommu *iommu;
206
207         spin_lock(&irq_2_ir_lock);
208         if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
209                 spin_unlock(&irq_2_ir_lock);
210                 return -1;
211         }
212
213         iommu = irq_2_iommu[irq].iommu;
214
215         index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
216
217         qi_flush_iec(iommu, index, irq_2_iommu[irq].irte_mask);
218         spin_unlock(&irq_2_ir_lock);
219
220         return 0;
221 }
222
223 int free_irte(int irq)
224 {
225         int index, i;
226         struct irte *irte;
227         struct intel_iommu *iommu;
228
229         spin_lock(&irq_2_ir_lock);
230         if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
231                 spin_unlock(&irq_2_ir_lock);
232                 return -1;
233         }
234
235         iommu = irq_2_iommu[irq].iommu;
236
237         index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
238         irte = &iommu->ir_table->base[index];
239
240         if (!irq_2_iommu[irq].sub_handle) {
241                 for (i = 0; i < (1 << irq_2_iommu[irq].irte_mask); i++)
242                         set_64bit((unsigned long *)irte, 0);
243                 qi_flush_iec(iommu, index, irq_2_iommu[irq].irte_mask);
244         }
245
246         irq_2_iommu[irq].iommu = NULL;
247         irq_2_iommu[irq].irte_index = 0;
248         irq_2_iommu[irq].sub_handle = 0;
249         irq_2_iommu[irq].irte_mask = 0;
250
251         spin_unlock(&irq_2_ir_lock);
252
253         return 0;
254 }
255
256 static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
257 {
258         u64 addr;
259         u32 cmd, sts;
260         unsigned long flags;
261
262         addr = virt_to_phys((void *)iommu->ir_table->base);
263
264         spin_lock_irqsave(&iommu->register_lock, flags);
265
266         dmar_writeq(iommu->reg + DMAR_IRTA_REG,
267                     (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
268
269         /* Set interrupt-remapping table pointer */
270         cmd = iommu->gcmd | DMA_GCMD_SIRTP;
271         writel(cmd, iommu->reg + DMAR_GCMD_REG);
272
273         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
274                       readl, (sts & DMA_GSTS_IRTPS), sts);
275         spin_unlock_irqrestore(&iommu->register_lock, flags);
276
277         /*
278          * global invalidation of interrupt entry cache before enabling
279          * interrupt-remapping.
280          */
281         qi_global_iec(iommu);
282
283         spin_lock_irqsave(&iommu->register_lock, flags);
284
285         /* Enable interrupt-remapping */
286         cmd = iommu->gcmd | DMA_GCMD_IRE;
287         iommu->gcmd |= DMA_GCMD_IRE;
288         writel(cmd, iommu->reg + DMAR_GCMD_REG);
289
290         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
291                       readl, (sts & DMA_GSTS_IRES), sts);
292
293         spin_unlock_irqrestore(&iommu->register_lock, flags);
294 }
295
296
297 static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
298 {
299         struct ir_table *ir_table;
300         struct page *pages;
301
302         ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
303                                              GFP_KERNEL);
304
305         if (!iommu->ir_table)
306                 return -ENOMEM;
307
308         pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER);
309
310         if (!pages) {
311                 printk(KERN_ERR "failed to allocate pages of order %d\n",
312                        INTR_REMAP_PAGE_ORDER);
313                 kfree(iommu->ir_table);
314                 return -ENOMEM;
315         }
316
317         ir_table->base = page_address(pages);
318
319         iommu_set_intr_remapping(iommu, mode);
320         return 0;
321 }
322
323 int __init enable_intr_remapping(int eim)
324 {
325         struct dmar_drhd_unit *drhd;
326         int setup = 0;
327
328         /*
329          * check for the Interrupt-remapping support
330          */
331         for_each_drhd_unit(drhd) {
332                 struct intel_iommu *iommu = drhd->iommu;
333
334                 if (!ecap_ir_support(iommu->ecap))
335                         continue;
336
337                 if (eim && !ecap_eim_support(iommu->ecap)) {
338                         printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
339                                " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
340                         return -1;
341                 }
342         }
343
344         /*
345          * Enable queued invalidation for all the DRHD's.
346          */
347         for_each_drhd_unit(drhd) {
348                 int ret;
349                 struct intel_iommu *iommu = drhd->iommu;
350                 ret = dmar_enable_qi(iommu);
351
352                 if (ret) {
353                         printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
354                                " invalidation, ecap %Lx, ret %d\n",
355                                drhd->reg_base_addr, iommu->ecap, ret);
356                         return -1;
357                 }
358         }
359
360         /*
361          * Setup Interrupt-remapping for all the DRHD's now.
362          */
363         for_each_drhd_unit(drhd) {
364                 struct intel_iommu *iommu = drhd->iommu;
365
366                 if (!ecap_ir_support(iommu->ecap))
367                         continue;
368
369                 if (setup_intr_remapping(iommu, eim))
370                         goto error;
371
372                 setup = 1;
373         }
374
375         if (!setup)
376                 goto error;
377
378         intr_remapping_enabled = 1;
379
380         return 0;
381
382 error:
383         /*
384          * handle error condition gracefully here!
385          */
386         return -1;
387 }
388
389 static int ir_parse_ioapic_scope(struct acpi_dmar_header *header,
390                                  struct intel_iommu *iommu)
391 {
392         struct acpi_dmar_hardware_unit *drhd;
393         struct acpi_dmar_device_scope *scope;
394         void *start, *end;
395
396         drhd = (struct acpi_dmar_hardware_unit *)header;
397
398         start = (void *)(drhd + 1);
399         end = ((void *)drhd) + header->length;
400
401         while (start < end) {
402                 scope = start;
403                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
404                         if (ir_ioapic_num == MAX_IO_APICS) {
405                                 printk(KERN_WARNING "Exceeded Max IO APICS\n");
406                                 return -1;
407                         }
408
409                         printk(KERN_INFO "IOAPIC id %d under DRHD base"
410                                " 0x%Lx\n", scope->enumeration_id,
411                                drhd->address);
412
413                         ir_ioapic[ir_ioapic_num].iommu = iommu;
414                         ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
415                         ir_ioapic_num++;
416                 }
417                 start += scope->length;
418         }
419
420         return 0;
421 }
422
423 /*
424  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
425  * hardware unit.
426  */
427 int __init parse_ioapics_under_ir(void)
428 {
429         struct dmar_drhd_unit *drhd;
430         int ir_supported = 0;
431
432         for_each_drhd_unit(drhd) {
433                 struct intel_iommu *iommu = drhd->iommu;
434
435                 if (ecap_ir_support(iommu->ecap)) {
436                         if (ir_parse_ioapic_scope(drhd->hdr, iommu))
437                                 return -1;
438
439                         ir_supported = 1;
440                 }
441         }
442
443         if (ir_supported && ir_ioapic_num != nr_ioapics) {
444                 printk(KERN_WARNING
445                        "Not all IO-APIC's listed under remapping hardware\n");
446                 return -1;
447         }
448
449         return ir_supported;
450 }