intel-iommu: Change dma_set_pte_addr() to dma_set_pte_pfn()
[safe/jmp/linux-2.6] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE               VTD_PAGE_SIZE
45 #define CONTEXT_SIZE            VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START      (0xfee00000)
51 #define IOAPIC_RANGE_END        (0xfeefffff)
52 #define IOVA_START_ADDR         (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59
60 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
61 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
62 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
63
64 #ifndef PHYSICAL_PAGE_MASK
65 #define PHYSICAL_PAGE_MASK PAGE_MASK
66 #endif
67
68 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
69    are never going to work. */
70 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
71 {
72         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
73 }
74
75 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
76 {
77         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
78 }
79 static inline unsigned long page_to_dma_pfn(struct page *pg)
80 {
81         return mm_to_dma_pfn(page_to_pfn(pg));
82 }
83 static inline unsigned long virt_to_dma_pfn(void *p)
84 {
85         return page_to_dma_pfn(virt_to_page(p));
86 }
87
88 /* global iommu list, set NULL for ignored DMAR units */
89 static struct intel_iommu **g_iommus;
90
91 static int rwbf_quirk;
92
93 /*
94  * 0: Present
95  * 1-11: Reserved
96  * 12-63: Context Ptr (12 - (haw-1))
97  * 64-127: Reserved
98  */
99 struct root_entry {
100         u64     val;
101         u64     rsvd1;
102 };
103 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
104 static inline bool root_present(struct root_entry *root)
105 {
106         return (root->val & 1);
107 }
108 static inline void set_root_present(struct root_entry *root)
109 {
110         root->val |= 1;
111 }
112 static inline void set_root_value(struct root_entry *root, unsigned long value)
113 {
114         root->val |= value & VTD_PAGE_MASK;
115 }
116
117 static inline struct context_entry *
118 get_context_addr_from_root(struct root_entry *root)
119 {
120         return (struct context_entry *)
121                 (root_present(root)?phys_to_virt(
122                 root->val & VTD_PAGE_MASK) :
123                 NULL);
124 }
125
126 /*
127  * low 64 bits:
128  * 0: present
129  * 1: fault processing disable
130  * 2-3: translation type
131  * 12-63: address space root
132  * high 64 bits:
133  * 0-2: address width
134  * 3-6: aval
135  * 8-23: domain id
136  */
137 struct context_entry {
138         u64 lo;
139         u64 hi;
140 };
141
142 static inline bool context_present(struct context_entry *context)
143 {
144         return (context->lo & 1);
145 }
146 static inline void context_set_present(struct context_entry *context)
147 {
148         context->lo |= 1;
149 }
150
151 static inline void context_set_fault_enable(struct context_entry *context)
152 {
153         context->lo &= (((u64)-1) << 2) | 1;
154 }
155
156 static inline void context_set_translation_type(struct context_entry *context,
157                                                 unsigned long value)
158 {
159         context->lo &= (((u64)-1) << 4) | 3;
160         context->lo |= (value & 3) << 2;
161 }
162
163 static inline void context_set_address_root(struct context_entry *context,
164                                             unsigned long value)
165 {
166         context->lo |= value & VTD_PAGE_MASK;
167 }
168
169 static inline void context_set_address_width(struct context_entry *context,
170                                              unsigned long value)
171 {
172         context->hi |= value & 7;
173 }
174
175 static inline void context_set_domain_id(struct context_entry *context,
176                                          unsigned long value)
177 {
178         context->hi |= (value & ((1 << 16) - 1)) << 8;
179 }
180
181 static inline void context_clear_entry(struct context_entry *context)
182 {
183         context->lo = 0;
184         context->hi = 0;
185 }
186
187 /*
188  * 0: readable
189  * 1: writable
190  * 2-6: reserved
191  * 7: super page
192  * 8-10: available
193  * 11: snoop behavior
194  * 12-63: Host physcial address
195  */
196 struct dma_pte {
197         u64 val;
198 };
199
200 static inline void dma_clear_pte(struct dma_pte *pte)
201 {
202         pte->val = 0;
203 }
204
205 static inline void dma_set_pte_readable(struct dma_pte *pte)
206 {
207         pte->val |= DMA_PTE_READ;
208 }
209
210 static inline void dma_set_pte_writable(struct dma_pte *pte)
211 {
212         pte->val |= DMA_PTE_WRITE;
213 }
214
215 static inline void dma_set_pte_snp(struct dma_pte *pte)
216 {
217         pte->val |= DMA_PTE_SNP;
218 }
219
220 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
221 {
222         pte->val = (pte->val & ~3) | (prot & 3);
223 }
224
225 static inline u64 dma_pte_addr(struct dma_pte *pte)
226 {
227         return (pte->val & VTD_PAGE_MASK);
228 }
229
230 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
231 {
232         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
233 }
234
235 static inline bool dma_pte_present(struct dma_pte *pte)
236 {
237         return (pte->val & 3) != 0;
238 }
239
240 /*
241  * This domain is a statically identity mapping domain.
242  *      1. This domain creats a static 1:1 mapping to all usable memory.
243  *      2. It maps to each iommu if successful.
244  *      3. Each iommu mapps to this domain if successful.
245  */
246 struct dmar_domain *si_domain;
247
248 /* devices under the same p2p bridge are owned in one domain */
249 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
250
251 /* domain represents a virtual machine, more than one devices
252  * across iommus may be owned in one domain, e.g. kvm guest.
253  */
254 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
255
256 /* si_domain contains mulitple devices */
257 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
258
259 struct dmar_domain {
260         int     id;                     /* domain id */
261         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
262
263         struct list_head devices;       /* all devices' list */
264         struct iova_domain iovad;       /* iova's that belong to this domain */
265
266         struct dma_pte  *pgd;           /* virtual address */
267         spinlock_t      mapping_lock;   /* page table lock */
268         int             gaw;            /* max guest address width */
269
270         /* adjusted guest address width, 0 is level 2 30-bit */
271         int             agaw;
272
273         int             flags;          /* flags to find out type of domain */
274
275         int             iommu_coherency;/* indicate coherency of iommu access */
276         int             iommu_snooping; /* indicate snooping control feature*/
277         int             iommu_count;    /* reference count of iommu */
278         spinlock_t      iommu_lock;     /* protect iommu set in domain */
279         u64             max_addr;       /* maximum mapped address */
280 };
281
282 /* PCI domain-device relationship */
283 struct device_domain_info {
284         struct list_head link;  /* link to domain siblings */
285         struct list_head global; /* link to global list */
286         int segment;            /* PCI domain */
287         u8 bus;                 /* PCI bus number */
288         u8 devfn;               /* PCI devfn number */
289         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
290         struct intel_iommu *iommu; /* IOMMU used by this device */
291         struct dmar_domain *domain; /* pointer to domain */
292 };
293
294 static void flush_unmaps_timeout(unsigned long data);
295
296 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
297
298 #define HIGH_WATER_MARK 250
299 struct deferred_flush_tables {
300         int next;
301         struct iova *iova[HIGH_WATER_MARK];
302         struct dmar_domain *domain[HIGH_WATER_MARK];
303 };
304
305 static struct deferred_flush_tables *deferred_flush;
306
307 /* bitmap for indexing intel_iommus */
308 static int g_num_of_iommus;
309
310 static DEFINE_SPINLOCK(async_umap_flush_lock);
311 static LIST_HEAD(unmaps_to_do);
312
313 static int timer_on;
314 static long list_size;
315
316 static void domain_remove_dev_info(struct dmar_domain *domain);
317
318 #ifdef CONFIG_DMAR_DEFAULT_ON
319 int dmar_disabled = 0;
320 #else
321 int dmar_disabled = 1;
322 #endif /*CONFIG_DMAR_DEFAULT_ON*/
323
324 static int __initdata dmar_map_gfx = 1;
325 static int dmar_forcedac;
326 static int intel_iommu_strict;
327
328 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
329 static DEFINE_SPINLOCK(device_domain_lock);
330 static LIST_HEAD(device_domain_list);
331
332 static struct iommu_ops intel_iommu_ops;
333
334 static int __init intel_iommu_setup(char *str)
335 {
336         if (!str)
337                 return -EINVAL;
338         while (*str) {
339                 if (!strncmp(str, "on", 2)) {
340                         dmar_disabled = 0;
341                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
342                 } else if (!strncmp(str, "off", 3)) {
343                         dmar_disabled = 1;
344                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
345                 } else if (!strncmp(str, "igfx_off", 8)) {
346                         dmar_map_gfx = 0;
347                         printk(KERN_INFO
348                                 "Intel-IOMMU: disable GFX device mapping\n");
349                 } else if (!strncmp(str, "forcedac", 8)) {
350                         printk(KERN_INFO
351                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
352                         dmar_forcedac = 1;
353                 } else if (!strncmp(str, "strict", 6)) {
354                         printk(KERN_INFO
355                                 "Intel-IOMMU: disable batched IOTLB flush\n");
356                         intel_iommu_strict = 1;
357                 }
358
359                 str += strcspn(str, ",");
360                 while (*str == ',')
361                         str++;
362         }
363         return 0;
364 }
365 __setup("intel_iommu=", intel_iommu_setup);
366
367 static struct kmem_cache *iommu_domain_cache;
368 static struct kmem_cache *iommu_devinfo_cache;
369 static struct kmem_cache *iommu_iova_cache;
370
371 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
372 {
373         unsigned int flags;
374         void *vaddr;
375
376         /* trying to avoid low memory issues */
377         flags = current->flags & PF_MEMALLOC;
378         current->flags |= PF_MEMALLOC;
379         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
380         current->flags &= (~PF_MEMALLOC | flags);
381         return vaddr;
382 }
383
384
385 static inline void *alloc_pgtable_page(void)
386 {
387         unsigned int flags;
388         void *vaddr;
389
390         /* trying to avoid low memory issues */
391         flags = current->flags & PF_MEMALLOC;
392         current->flags |= PF_MEMALLOC;
393         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
394         current->flags &= (~PF_MEMALLOC | flags);
395         return vaddr;
396 }
397
398 static inline void free_pgtable_page(void *vaddr)
399 {
400         free_page((unsigned long)vaddr);
401 }
402
403 static inline void *alloc_domain_mem(void)
404 {
405         return iommu_kmem_cache_alloc(iommu_domain_cache);
406 }
407
408 static void free_domain_mem(void *vaddr)
409 {
410         kmem_cache_free(iommu_domain_cache, vaddr);
411 }
412
413 static inline void * alloc_devinfo_mem(void)
414 {
415         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
416 }
417
418 static inline void free_devinfo_mem(void *vaddr)
419 {
420         kmem_cache_free(iommu_devinfo_cache, vaddr);
421 }
422
423 struct iova *alloc_iova_mem(void)
424 {
425         return iommu_kmem_cache_alloc(iommu_iova_cache);
426 }
427
428 void free_iova_mem(struct iova *iova)
429 {
430         kmem_cache_free(iommu_iova_cache, iova);
431 }
432
433
434 static inline int width_to_agaw(int width);
435
436 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
437 {
438         unsigned long sagaw;
439         int agaw = -1;
440
441         sagaw = cap_sagaw(iommu->cap);
442         for (agaw = width_to_agaw(max_gaw);
443              agaw >= 0; agaw--) {
444                 if (test_bit(agaw, &sagaw))
445                         break;
446         }
447
448         return agaw;
449 }
450
451 /*
452  * Calculate max SAGAW for each iommu.
453  */
454 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
455 {
456         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
457 }
458
459 /*
460  * calculate agaw for each iommu.
461  * "SAGAW" may be different across iommus, use a default agaw, and
462  * get a supported less agaw for iommus that don't support the default agaw.
463  */
464 int iommu_calculate_agaw(struct intel_iommu *iommu)
465 {
466         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
467 }
468
469 /* This functionin only returns single iommu in a domain */
470 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
471 {
472         int iommu_id;
473
474         /* si_domain and vm domain should not get here. */
475         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
476         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
477
478         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
479         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
480                 return NULL;
481
482         return g_iommus[iommu_id];
483 }
484
485 static void domain_update_iommu_coherency(struct dmar_domain *domain)
486 {
487         int i;
488
489         domain->iommu_coherency = 1;
490
491         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
492         for (; i < g_num_of_iommus; ) {
493                 if (!ecap_coherent(g_iommus[i]->ecap)) {
494                         domain->iommu_coherency = 0;
495                         break;
496                 }
497                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
498         }
499 }
500
501 static void domain_update_iommu_snooping(struct dmar_domain *domain)
502 {
503         int i;
504
505         domain->iommu_snooping = 1;
506
507         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
508         for (; i < g_num_of_iommus; ) {
509                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
510                         domain->iommu_snooping = 0;
511                         break;
512                 }
513                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
514         }
515 }
516
517 /* Some capabilities may be different across iommus */
518 static void domain_update_iommu_cap(struct dmar_domain *domain)
519 {
520         domain_update_iommu_coherency(domain);
521         domain_update_iommu_snooping(domain);
522 }
523
524 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
525 {
526         struct dmar_drhd_unit *drhd = NULL;
527         int i;
528
529         for_each_drhd_unit(drhd) {
530                 if (drhd->ignored)
531                         continue;
532                 if (segment != drhd->segment)
533                         continue;
534
535                 for (i = 0; i < drhd->devices_cnt; i++) {
536                         if (drhd->devices[i] &&
537                             drhd->devices[i]->bus->number == bus &&
538                             drhd->devices[i]->devfn == devfn)
539                                 return drhd->iommu;
540                         if (drhd->devices[i] &&
541                             drhd->devices[i]->subordinate &&
542                             drhd->devices[i]->subordinate->number <= bus &&
543                             drhd->devices[i]->subordinate->subordinate >= bus)
544                                 return drhd->iommu;
545                 }
546
547                 if (drhd->include_all)
548                         return drhd->iommu;
549         }
550
551         return NULL;
552 }
553
554 static void domain_flush_cache(struct dmar_domain *domain,
555                                void *addr, int size)
556 {
557         if (!domain->iommu_coherency)
558                 clflush_cache_range(addr, size);
559 }
560
561 /* Gets context entry for a given bus and devfn */
562 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
563                 u8 bus, u8 devfn)
564 {
565         struct root_entry *root;
566         struct context_entry *context;
567         unsigned long phy_addr;
568         unsigned long flags;
569
570         spin_lock_irqsave(&iommu->lock, flags);
571         root = &iommu->root_entry[bus];
572         context = get_context_addr_from_root(root);
573         if (!context) {
574                 context = (struct context_entry *)alloc_pgtable_page();
575                 if (!context) {
576                         spin_unlock_irqrestore(&iommu->lock, flags);
577                         return NULL;
578                 }
579                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
580                 phy_addr = virt_to_phys((void *)context);
581                 set_root_value(root, phy_addr);
582                 set_root_present(root);
583                 __iommu_flush_cache(iommu, root, sizeof(*root));
584         }
585         spin_unlock_irqrestore(&iommu->lock, flags);
586         return &context[devfn];
587 }
588
589 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
590 {
591         struct root_entry *root;
592         struct context_entry *context;
593         int ret;
594         unsigned long flags;
595
596         spin_lock_irqsave(&iommu->lock, flags);
597         root = &iommu->root_entry[bus];
598         context = get_context_addr_from_root(root);
599         if (!context) {
600                 ret = 0;
601                 goto out;
602         }
603         ret = context_present(&context[devfn]);
604 out:
605         spin_unlock_irqrestore(&iommu->lock, flags);
606         return ret;
607 }
608
609 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
610 {
611         struct root_entry *root;
612         struct context_entry *context;
613         unsigned long flags;
614
615         spin_lock_irqsave(&iommu->lock, flags);
616         root = &iommu->root_entry[bus];
617         context = get_context_addr_from_root(root);
618         if (context) {
619                 context_clear_entry(&context[devfn]);
620                 __iommu_flush_cache(iommu, &context[devfn], \
621                         sizeof(*context));
622         }
623         spin_unlock_irqrestore(&iommu->lock, flags);
624 }
625
626 static void free_context_table(struct intel_iommu *iommu)
627 {
628         struct root_entry *root;
629         int i;
630         unsigned long flags;
631         struct context_entry *context;
632
633         spin_lock_irqsave(&iommu->lock, flags);
634         if (!iommu->root_entry) {
635                 goto out;
636         }
637         for (i = 0; i < ROOT_ENTRY_NR; i++) {
638                 root = &iommu->root_entry[i];
639                 context = get_context_addr_from_root(root);
640                 if (context)
641                         free_pgtable_page(context);
642         }
643         free_pgtable_page(iommu->root_entry);
644         iommu->root_entry = NULL;
645 out:
646         spin_unlock_irqrestore(&iommu->lock, flags);
647 }
648
649 /* page table handling */
650 #define LEVEL_STRIDE            (9)
651 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
652
653 static inline int agaw_to_level(int agaw)
654 {
655         return agaw + 2;
656 }
657
658 static inline int agaw_to_width(int agaw)
659 {
660         return 30 + agaw * LEVEL_STRIDE;
661
662 }
663
664 static inline int width_to_agaw(int width)
665 {
666         return (width - 30) / LEVEL_STRIDE;
667 }
668
669 static inline unsigned int level_to_offset_bits(int level)
670 {
671         return (12 + (level - 1) * LEVEL_STRIDE);
672 }
673
674 static inline int address_level_offset(u64 addr, int level)
675 {
676         return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
677 }
678
679 static inline u64 level_mask(int level)
680 {
681         return ((u64)-1 << level_to_offset_bits(level));
682 }
683
684 static inline u64 level_size(int level)
685 {
686         return ((u64)1 << level_to_offset_bits(level));
687 }
688
689 static inline u64 align_to_level(u64 addr, int level)
690 {
691         return ((addr + level_size(level) - 1) & level_mask(level));
692 }
693
694 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
695 {
696         int addr_width = agaw_to_width(domain->agaw);
697         struct dma_pte *parent, *pte = NULL;
698         int level = agaw_to_level(domain->agaw);
699         int offset;
700         unsigned long flags;
701
702         BUG_ON(!domain->pgd);
703
704         addr &= (((u64)1) << addr_width) - 1;
705         parent = domain->pgd;
706
707         spin_lock_irqsave(&domain->mapping_lock, flags);
708         while (level > 0) {
709                 void *tmp_page;
710
711                 offset = address_level_offset(addr, level);
712                 pte = &parent[offset];
713                 if (level == 1)
714                         break;
715
716                 if (!dma_pte_present(pte)) {
717                         tmp_page = alloc_pgtable_page();
718
719                         if (!tmp_page) {
720                                 spin_unlock_irqrestore(&domain->mapping_lock,
721                                         flags);
722                                 return NULL;
723                         }
724                         domain_flush_cache(domain, tmp_page, PAGE_SIZE);
725                         dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
726                         /*
727                          * high level table always sets r/w, last level page
728                          * table control read/write
729                          */
730                         dma_set_pte_readable(pte);
731                         dma_set_pte_writable(pte);
732                         domain_flush_cache(domain, pte, sizeof(*pte));
733                 }
734                 parent = phys_to_virt(dma_pte_addr(pte));
735                 level--;
736         }
737
738         spin_unlock_irqrestore(&domain->mapping_lock, flags);
739         return pte;
740 }
741
742 /* return address's pte at specific level */
743 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
744                 int level)
745 {
746         struct dma_pte *parent, *pte = NULL;
747         int total = agaw_to_level(domain->agaw);
748         int offset;
749
750         parent = domain->pgd;
751         while (level <= total) {
752                 offset = address_level_offset(addr, total);
753                 pte = &parent[offset];
754                 if (level == total)
755                         return pte;
756
757                 if (!dma_pte_present(pte))
758                         break;
759                 parent = phys_to_virt(dma_pte_addr(pte));
760                 total--;
761         }
762         return NULL;
763 }
764
765 /* clear one page's page table */
766 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
767 {
768         struct dma_pte *pte = NULL;
769
770         /* get last level pte */
771         pte = dma_addr_level_pte(domain, addr, 1);
772
773         if (pte) {
774                 dma_clear_pte(pte);
775                 domain_flush_cache(domain, pte, sizeof(*pte));
776         }
777 }
778
779 /* clear last level pte, a tlb flush should be followed */
780 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
781 {
782         int addr_width = agaw_to_width(domain->agaw);
783         int npages;
784
785         start &= (((u64)1) << addr_width) - 1;
786         end &= (((u64)1) << addr_width) - 1;
787         /* in case it's partial page */
788         start &= PAGE_MASK;
789         end = PAGE_ALIGN(end);
790         npages = (end - start) / VTD_PAGE_SIZE;
791
792         /* we don't need lock here, nobody else touches the iova range */
793         while (npages--) {
794                 dma_pte_clear_one(domain, start);
795                 start += VTD_PAGE_SIZE;
796         }
797 }
798
799 /* free page table pages. last level pte should already be cleared */
800 static void dma_pte_free_pagetable(struct dmar_domain *domain,
801         u64 start, u64 end)
802 {
803         int addr_width = agaw_to_width(domain->agaw);
804         struct dma_pte *pte;
805         int total = agaw_to_level(domain->agaw);
806         int level;
807         u64 tmp;
808
809         start &= (((u64)1) << addr_width) - 1;
810         end &= (((u64)1) << addr_width) - 1;
811
812         /* we don't need lock here, nobody else touches the iova range */
813         level = 2;
814         while (level <= total) {
815                 tmp = align_to_level(start, level);
816                 if (tmp >= end || (tmp + level_size(level) > end))
817                         return;
818
819                 while (tmp < end) {
820                         pte = dma_addr_level_pte(domain, tmp, level);
821                         if (pte) {
822                                 free_pgtable_page(
823                                         phys_to_virt(dma_pte_addr(pte)));
824                                 dma_clear_pte(pte);
825                                 domain_flush_cache(domain, pte, sizeof(*pte));
826                         }
827                         tmp += level_size(level);
828                 }
829                 level++;
830         }
831         /* free pgd */
832         if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
833                 free_pgtable_page(domain->pgd);
834                 domain->pgd = NULL;
835         }
836 }
837
838 /* iommu handling */
839 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
840 {
841         struct root_entry *root;
842         unsigned long flags;
843
844         root = (struct root_entry *)alloc_pgtable_page();
845         if (!root)
846                 return -ENOMEM;
847
848         __iommu_flush_cache(iommu, root, ROOT_SIZE);
849
850         spin_lock_irqsave(&iommu->lock, flags);
851         iommu->root_entry = root;
852         spin_unlock_irqrestore(&iommu->lock, flags);
853
854         return 0;
855 }
856
857 static void iommu_set_root_entry(struct intel_iommu *iommu)
858 {
859         void *addr;
860         u32 sts;
861         unsigned long flag;
862
863         addr = iommu->root_entry;
864
865         spin_lock_irqsave(&iommu->register_lock, flag);
866         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
867
868         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
869
870         /* Make sure hardware complete it */
871         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
872                       readl, (sts & DMA_GSTS_RTPS), sts);
873
874         spin_unlock_irqrestore(&iommu->register_lock, flag);
875 }
876
877 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
878 {
879         u32 val;
880         unsigned long flag;
881
882         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
883                 return;
884
885         spin_lock_irqsave(&iommu->register_lock, flag);
886         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
887
888         /* Make sure hardware complete it */
889         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
890                       readl, (!(val & DMA_GSTS_WBFS)), val);
891
892         spin_unlock_irqrestore(&iommu->register_lock, flag);
893 }
894
895 /* return value determine if we need a write buffer flush */
896 static void __iommu_flush_context(struct intel_iommu *iommu,
897                                   u16 did, u16 source_id, u8 function_mask,
898                                   u64 type)
899 {
900         u64 val = 0;
901         unsigned long flag;
902
903         switch (type) {
904         case DMA_CCMD_GLOBAL_INVL:
905                 val = DMA_CCMD_GLOBAL_INVL;
906                 break;
907         case DMA_CCMD_DOMAIN_INVL:
908                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
909                 break;
910         case DMA_CCMD_DEVICE_INVL:
911                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
912                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
913                 break;
914         default:
915                 BUG();
916         }
917         val |= DMA_CCMD_ICC;
918
919         spin_lock_irqsave(&iommu->register_lock, flag);
920         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
921
922         /* Make sure hardware complete it */
923         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
924                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
925
926         spin_unlock_irqrestore(&iommu->register_lock, flag);
927 }
928
929 /* return value determine if we need a write buffer flush */
930 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
931                                 u64 addr, unsigned int size_order, u64 type)
932 {
933         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
934         u64 val = 0, val_iva = 0;
935         unsigned long flag;
936
937         switch (type) {
938         case DMA_TLB_GLOBAL_FLUSH:
939                 /* global flush doesn't need set IVA_REG */
940                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
941                 break;
942         case DMA_TLB_DSI_FLUSH:
943                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
944                 break;
945         case DMA_TLB_PSI_FLUSH:
946                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
947                 /* Note: always flush non-leaf currently */
948                 val_iva = size_order | addr;
949                 break;
950         default:
951                 BUG();
952         }
953         /* Note: set drain read/write */
954 #if 0
955         /*
956          * This is probably to be super secure.. Looks like we can
957          * ignore it without any impact.
958          */
959         if (cap_read_drain(iommu->cap))
960                 val |= DMA_TLB_READ_DRAIN;
961 #endif
962         if (cap_write_drain(iommu->cap))
963                 val |= DMA_TLB_WRITE_DRAIN;
964
965         spin_lock_irqsave(&iommu->register_lock, flag);
966         /* Note: Only uses first TLB reg currently */
967         if (val_iva)
968                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
969         dmar_writeq(iommu->reg + tlb_offset + 8, val);
970
971         /* Make sure hardware complete it */
972         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
973                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
974
975         spin_unlock_irqrestore(&iommu->register_lock, flag);
976
977         /* check IOTLB invalidation granularity */
978         if (DMA_TLB_IAIG(val) == 0)
979                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
980         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
981                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
982                         (unsigned long long)DMA_TLB_IIRG(type),
983                         (unsigned long long)DMA_TLB_IAIG(val));
984 }
985
986 static struct device_domain_info *iommu_support_dev_iotlb(
987         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
988 {
989         int found = 0;
990         unsigned long flags;
991         struct device_domain_info *info;
992         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
993
994         if (!ecap_dev_iotlb_support(iommu->ecap))
995                 return NULL;
996
997         if (!iommu->qi)
998                 return NULL;
999
1000         spin_lock_irqsave(&device_domain_lock, flags);
1001         list_for_each_entry(info, &domain->devices, link)
1002                 if (info->bus == bus && info->devfn == devfn) {
1003                         found = 1;
1004                         break;
1005                 }
1006         spin_unlock_irqrestore(&device_domain_lock, flags);
1007
1008         if (!found || !info->dev)
1009                 return NULL;
1010
1011         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1012                 return NULL;
1013
1014         if (!dmar_find_matched_atsr_unit(info->dev))
1015                 return NULL;
1016
1017         info->iommu = iommu;
1018
1019         return info;
1020 }
1021
1022 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1023 {
1024         if (!info)
1025                 return;
1026
1027         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1028 }
1029
1030 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1031 {
1032         if (!info->dev || !pci_ats_enabled(info->dev))
1033                 return;
1034
1035         pci_disable_ats(info->dev);
1036 }
1037
1038 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1039                                   u64 addr, unsigned mask)
1040 {
1041         u16 sid, qdep;
1042         unsigned long flags;
1043         struct device_domain_info *info;
1044
1045         spin_lock_irqsave(&device_domain_lock, flags);
1046         list_for_each_entry(info, &domain->devices, link) {
1047                 if (!info->dev || !pci_ats_enabled(info->dev))
1048                         continue;
1049
1050                 sid = info->bus << 8 | info->devfn;
1051                 qdep = pci_ats_queue_depth(info->dev);
1052                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1053         }
1054         spin_unlock_irqrestore(&device_domain_lock, flags);
1055 }
1056
1057 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1058                                   u64 addr, unsigned int pages)
1059 {
1060         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1061
1062         BUG_ON(addr & (~VTD_PAGE_MASK));
1063         BUG_ON(pages == 0);
1064
1065         /*
1066          * Fallback to domain selective flush if no PSI support or the size is
1067          * too big.
1068          * PSI requires page size to be 2 ^ x, and the base address is naturally
1069          * aligned to the size
1070          */
1071         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1072                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1073                                                 DMA_TLB_DSI_FLUSH);
1074         else
1075                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1076                                                 DMA_TLB_PSI_FLUSH);
1077
1078         /*
1079          * In caching mode, domain ID 0 is reserved for non-present to present
1080          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1081          */
1082         if (!cap_caching_mode(iommu->cap) || did)
1083                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1084 }
1085
1086 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1087 {
1088         u32 pmen;
1089         unsigned long flags;
1090
1091         spin_lock_irqsave(&iommu->register_lock, flags);
1092         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1093         pmen &= ~DMA_PMEN_EPM;
1094         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1095
1096         /* wait for the protected region status bit to clear */
1097         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1098                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1099
1100         spin_unlock_irqrestore(&iommu->register_lock, flags);
1101 }
1102
1103 static int iommu_enable_translation(struct intel_iommu *iommu)
1104 {
1105         u32 sts;
1106         unsigned long flags;
1107
1108         spin_lock_irqsave(&iommu->register_lock, flags);
1109         iommu->gcmd |= DMA_GCMD_TE;
1110         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1111
1112         /* Make sure hardware complete it */
1113         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1114                       readl, (sts & DMA_GSTS_TES), sts);
1115
1116         spin_unlock_irqrestore(&iommu->register_lock, flags);
1117         return 0;
1118 }
1119
1120 static int iommu_disable_translation(struct intel_iommu *iommu)
1121 {
1122         u32 sts;
1123         unsigned long flag;
1124
1125         spin_lock_irqsave(&iommu->register_lock, flag);
1126         iommu->gcmd &= ~DMA_GCMD_TE;
1127         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1128
1129         /* Make sure hardware complete it */
1130         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1131                       readl, (!(sts & DMA_GSTS_TES)), sts);
1132
1133         spin_unlock_irqrestore(&iommu->register_lock, flag);
1134         return 0;
1135 }
1136
1137
1138 static int iommu_init_domains(struct intel_iommu *iommu)
1139 {
1140         unsigned long ndomains;
1141         unsigned long nlongs;
1142
1143         ndomains = cap_ndoms(iommu->cap);
1144         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1145         nlongs = BITS_TO_LONGS(ndomains);
1146
1147         /* TBD: there might be 64K domains,
1148          * consider other allocation for future chip
1149          */
1150         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1151         if (!iommu->domain_ids) {
1152                 printk(KERN_ERR "Allocating domain id array failed\n");
1153                 return -ENOMEM;
1154         }
1155         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1156                         GFP_KERNEL);
1157         if (!iommu->domains) {
1158                 printk(KERN_ERR "Allocating domain array failed\n");
1159                 kfree(iommu->domain_ids);
1160                 return -ENOMEM;
1161         }
1162
1163         spin_lock_init(&iommu->lock);
1164
1165         /*
1166          * if Caching mode is set, then invalid translations are tagged
1167          * with domainid 0. Hence we need to pre-allocate it.
1168          */
1169         if (cap_caching_mode(iommu->cap))
1170                 set_bit(0, iommu->domain_ids);
1171         return 0;
1172 }
1173
1174
1175 static void domain_exit(struct dmar_domain *domain);
1176 static void vm_domain_exit(struct dmar_domain *domain);
1177
1178 void free_dmar_iommu(struct intel_iommu *iommu)
1179 {
1180         struct dmar_domain *domain;
1181         int i;
1182         unsigned long flags;
1183
1184         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1185         for (; i < cap_ndoms(iommu->cap); ) {
1186                 domain = iommu->domains[i];
1187                 clear_bit(i, iommu->domain_ids);
1188
1189                 spin_lock_irqsave(&domain->iommu_lock, flags);
1190                 if (--domain->iommu_count == 0) {
1191                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1192                                 vm_domain_exit(domain);
1193                         else
1194                                 domain_exit(domain);
1195                 }
1196                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1197
1198                 i = find_next_bit(iommu->domain_ids,
1199                         cap_ndoms(iommu->cap), i+1);
1200         }
1201
1202         if (iommu->gcmd & DMA_GCMD_TE)
1203                 iommu_disable_translation(iommu);
1204
1205         if (iommu->irq) {
1206                 set_irq_data(iommu->irq, NULL);
1207                 /* This will mask the irq */
1208                 free_irq(iommu->irq, iommu);
1209                 destroy_irq(iommu->irq);
1210         }
1211
1212         kfree(iommu->domains);
1213         kfree(iommu->domain_ids);
1214
1215         g_iommus[iommu->seq_id] = NULL;
1216
1217         /* if all iommus are freed, free g_iommus */
1218         for (i = 0; i < g_num_of_iommus; i++) {
1219                 if (g_iommus[i])
1220                         break;
1221         }
1222
1223         if (i == g_num_of_iommus)
1224                 kfree(g_iommus);
1225
1226         /* free context mapping */
1227         free_context_table(iommu);
1228 }
1229
1230 static struct dmar_domain *alloc_domain(void)
1231 {
1232         struct dmar_domain *domain;
1233
1234         domain = alloc_domain_mem();
1235         if (!domain)
1236                 return NULL;
1237
1238         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1239         domain->flags = 0;
1240
1241         return domain;
1242 }
1243
1244 static int iommu_attach_domain(struct dmar_domain *domain,
1245                                struct intel_iommu *iommu)
1246 {
1247         int num;
1248         unsigned long ndomains;
1249         unsigned long flags;
1250
1251         ndomains = cap_ndoms(iommu->cap);
1252
1253         spin_lock_irqsave(&iommu->lock, flags);
1254
1255         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1256         if (num >= ndomains) {
1257                 spin_unlock_irqrestore(&iommu->lock, flags);
1258                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1259                 return -ENOMEM;
1260         }
1261
1262         domain->id = num;
1263         set_bit(num, iommu->domain_ids);
1264         set_bit(iommu->seq_id, &domain->iommu_bmp);
1265         iommu->domains[num] = domain;
1266         spin_unlock_irqrestore(&iommu->lock, flags);
1267
1268         return 0;
1269 }
1270
1271 static void iommu_detach_domain(struct dmar_domain *domain,
1272                                 struct intel_iommu *iommu)
1273 {
1274         unsigned long flags;
1275         int num, ndomains;
1276         int found = 0;
1277
1278         spin_lock_irqsave(&iommu->lock, flags);
1279         ndomains = cap_ndoms(iommu->cap);
1280         num = find_first_bit(iommu->domain_ids, ndomains);
1281         for (; num < ndomains; ) {
1282                 if (iommu->domains[num] == domain) {
1283                         found = 1;
1284                         break;
1285                 }
1286                 num = find_next_bit(iommu->domain_ids,
1287                                     cap_ndoms(iommu->cap), num+1);
1288         }
1289
1290         if (found) {
1291                 clear_bit(num, iommu->domain_ids);
1292                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1293                 iommu->domains[num] = NULL;
1294         }
1295         spin_unlock_irqrestore(&iommu->lock, flags);
1296 }
1297
1298 static struct iova_domain reserved_iova_list;
1299 static struct lock_class_key reserved_alloc_key;
1300 static struct lock_class_key reserved_rbtree_key;
1301
1302 static void dmar_init_reserved_ranges(void)
1303 {
1304         struct pci_dev *pdev = NULL;
1305         struct iova *iova;
1306         int i;
1307         u64 addr, size;
1308
1309         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1310
1311         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1312                 &reserved_alloc_key);
1313         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1314                 &reserved_rbtree_key);
1315
1316         /* IOAPIC ranges shouldn't be accessed by DMA */
1317         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1318                 IOVA_PFN(IOAPIC_RANGE_END));
1319         if (!iova)
1320                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1321
1322         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1323         for_each_pci_dev(pdev) {
1324                 struct resource *r;
1325
1326                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1327                         r = &pdev->resource[i];
1328                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1329                                 continue;
1330                         addr = r->start;
1331                         addr &= PHYSICAL_PAGE_MASK;
1332                         size = r->end - addr;
1333                         size = PAGE_ALIGN(size);
1334                         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1335                                 IOVA_PFN(size + addr) - 1);
1336                         if (!iova)
1337                                 printk(KERN_ERR "Reserve iova failed\n");
1338                 }
1339         }
1340
1341 }
1342
1343 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1344 {
1345         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1346 }
1347
1348 static inline int guestwidth_to_adjustwidth(int gaw)
1349 {
1350         int agaw;
1351         int r = (gaw - 12) % 9;
1352
1353         if (r == 0)
1354                 agaw = gaw;
1355         else
1356                 agaw = gaw + 9 - r;
1357         if (agaw > 64)
1358                 agaw = 64;
1359         return agaw;
1360 }
1361
1362 static int domain_init(struct dmar_domain *domain, int guest_width)
1363 {
1364         struct intel_iommu *iommu;
1365         int adjust_width, agaw;
1366         unsigned long sagaw;
1367
1368         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1369         spin_lock_init(&domain->mapping_lock);
1370         spin_lock_init(&domain->iommu_lock);
1371
1372         domain_reserve_special_ranges(domain);
1373
1374         /* calculate AGAW */
1375         iommu = domain_get_iommu(domain);
1376         if (guest_width > cap_mgaw(iommu->cap))
1377                 guest_width = cap_mgaw(iommu->cap);
1378         domain->gaw = guest_width;
1379         adjust_width = guestwidth_to_adjustwidth(guest_width);
1380         agaw = width_to_agaw(adjust_width);
1381         sagaw = cap_sagaw(iommu->cap);
1382         if (!test_bit(agaw, &sagaw)) {
1383                 /* hardware doesn't support it, choose a bigger one */
1384                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1385                 agaw = find_next_bit(&sagaw, 5, agaw);
1386                 if (agaw >= 5)
1387                         return -ENODEV;
1388         }
1389         domain->agaw = agaw;
1390         INIT_LIST_HEAD(&domain->devices);
1391
1392         if (ecap_coherent(iommu->ecap))
1393                 domain->iommu_coherency = 1;
1394         else
1395                 domain->iommu_coherency = 0;
1396
1397         if (ecap_sc_support(iommu->ecap))
1398                 domain->iommu_snooping = 1;
1399         else
1400                 domain->iommu_snooping = 0;
1401
1402         domain->iommu_count = 1;
1403
1404         /* always allocate the top pgd */
1405         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1406         if (!domain->pgd)
1407                 return -ENOMEM;
1408         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1409         return 0;
1410 }
1411
1412 static void domain_exit(struct dmar_domain *domain)
1413 {
1414         struct dmar_drhd_unit *drhd;
1415         struct intel_iommu *iommu;
1416         u64 end;
1417
1418         /* Domain 0 is reserved, so dont process it */
1419         if (!domain)
1420                 return;
1421
1422         domain_remove_dev_info(domain);
1423         /* destroy iovas */
1424         put_iova_domain(&domain->iovad);
1425         end = DOMAIN_MAX_ADDR(domain->gaw);
1426         end = end & (~PAGE_MASK);
1427
1428         /* clear ptes */
1429         dma_pte_clear_range(domain, 0, end);
1430
1431         /* free page tables */
1432         dma_pte_free_pagetable(domain, 0, end);
1433
1434         for_each_active_iommu(iommu, drhd)
1435                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1436                         iommu_detach_domain(domain, iommu);
1437
1438         free_domain_mem(domain);
1439 }
1440
1441 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1442                                  u8 bus, u8 devfn, int translation)
1443 {
1444         struct context_entry *context;
1445         unsigned long flags;
1446         struct intel_iommu *iommu;
1447         struct dma_pte *pgd;
1448         unsigned long num;
1449         unsigned long ndomains;
1450         int id;
1451         int agaw;
1452         struct device_domain_info *info = NULL;
1453
1454         pr_debug("Set context mapping for %02x:%02x.%d\n",
1455                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1456
1457         BUG_ON(!domain->pgd);
1458         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1459                translation != CONTEXT_TT_MULTI_LEVEL);
1460
1461         iommu = device_to_iommu(segment, bus, devfn);
1462         if (!iommu)
1463                 return -ENODEV;
1464
1465         context = device_to_context_entry(iommu, bus, devfn);
1466         if (!context)
1467                 return -ENOMEM;
1468         spin_lock_irqsave(&iommu->lock, flags);
1469         if (context_present(context)) {
1470                 spin_unlock_irqrestore(&iommu->lock, flags);
1471                 return 0;
1472         }
1473
1474         id = domain->id;
1475         pgd = domain->pgd;
1476
1477         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1478             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1479                 int found = 0;
1480
1481                 /* find an available domain id for this device in iommu */
1482                 ndomains = cap_ndoms(iommu->cap);
1483                 num = find_first_bit(iommu->domain_ids, ndomains);
1484                 for (; num < ndomains; ) {
1485                         if (iommu->domains[num] == domain) {
1486                                 id = num;
1487                                 found = 1;
1488                                 break;
1489                         }
1490                         num = find_next_bit(iommu->domain_ids,
1491                                             cap_ndoms(iommu->cap), num+1);
1492                 }
1493
1494                 if (found == 0) {
1495                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1496                         if (num >= ndomains) {
1497                                 spin_unlock_irqrestore(&iommu->lock, flags);
1498                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1499                                 return -EFAULT;
1500                         }
1501
1502                         set_bit(num, iommu->domain_ids);
1503                         set_bit(iommu->seq_id, &domain->iommu_bmp);
1504                         iommu->domains[num] = domain;
1505                         id = num;
1506                 }
1507
1508                 /* Skip top levels of page tables for
1509                  * iommu which has less agaw than default.
1510                  */
1511                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1512                         pgd = phys_to_virt(dma_pte_addr(pgd));
1513                         if (!dma_pte_present(pgd)) {
1514                                 spin_unlock_irqrestore(&iommu->lock, flags);
1515                                 return -ENOMEM;
1516                         }
1517                 }
1518         }
1519
1520         context_set_domain_id(context, id);
1521
1522         if (translation != CONTEXT_TT_PASS_THROUGH) {
1523                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1524                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1525                                      CONTEXT_TT_MULTI_LEVEL;
1526         }
1527         /*
1528          * In pass through mode, AW must be programmed to indicate the largest
1529          * AGAW value supported by hardware. And ASR is ignored by hardware.
1530          */
1531         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1532                 context_set_address_width(context, iommu->msagaw);
1533         else {
1534                 context_set_address_root(context, virt_to_phys(pgd));
1535                 context_set_address_width(context, iommu->agaw);
1536         }
1537
1538         context_set_translation_type(context, translation);
1539         context_set_fault_enable(context);
1540         context_set_present(context);
1541         domain_flush_cache(domain, context, sizeof(*context));
1542
1543         /*
1544          * It's a non-present to present mapping. If hardware doesn't cache
1545          * non-present entry we only need to flush the write-buffer. If the
1546          * _does_ cache non-present entries, then it does so in the special
1547          * domain #0, which we have to flush:
1548          */
1549         if (cap_caching_mode(iommu->cap)) {
1550                 iommu->flush.flush_context(iommu, 0,
1551                                            (((u16)bus) << 8) | devfn,
1552                                            DMA_CCMD_MASK_NOBIT,
1553                                            DMA_CCMD_DEVICE_INVL);
1554                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1555         } else {
1556                 iommu_flush_write_buffer(iommu);
1557         }
1558         iommu_enable_dev_iotlb(info);
1559         spin_unlock_irqrestore(&iommu->lock, flags);
1560
1561         spin_lock_irqsave(&domain->iommu_lock, flags);
1562         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1563                 domain->iommu_count++;
1564                 domain_update_iommu_cap(domain);
1565         }
1566         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1567         return 0;
1568 }
1569
1570 static int
1571 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1572                         int translation)
1573 {
1574         int ret;
1575         struct pci_dev *tmp, *parent;
1576
1577         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1578                                          pdev->bus->number, pdev->devfn,
1579                                          translation);
1580         if (ret)
1581                 return ret;
1582
1583         /* dependent device mapping */
1584         tmp = pci_find_upstream_pcie_bridge(pdev);
1585         if (!tmp)
1586                 return 0;
1587         /* Secondary interface's bus number and devfn 0 */
1588         parent = pdev->bus->self;
1589         while (parent != tmp) {
1590                 ret = domain_context_mapping_one(domain,
1591                                                  pci_domain_nr(parent->bus),
1592                                                  parent->bus->number,
1593                                                  parent->devfn, translation);
1594                 if (ret)
1595                         return ret;
1596                 parent = parent->bus->self;
1597         }
1598         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1599                 return domain_context_mapping_one(domain,
1600                                         pci_domain_nr(tmp->subordinate),
1601                                         tmp->subordinate->number, 0,
1602                                         translation);
1603         else /* this is a legacy PCI bridge */
1604                 return domain_context_mapping_one(domain,
1605                                                   pci_domain_nr(tmp->bus),
1606                                                   tmp->bus->number,
1607                                                   tmp->devfn,
1608                                                   translation);
1609 }
1610
1611 static int domain_context_mapped(struct pci_dev *pdev)
1612 {
1613         int ret;
1614         struct pci_dev *tmp, *parent;
1615         struct intel_iommu *iommu;
1616
1617         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1618                                 pdev->devfn);
1619         if (!iommu)
1620                 return -ENODEV;
1621
1622         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1623         if (!ret)
1624                 return ret;
1625         /* dependent device mapping */
1626         tmp = pci_find_upstream_pcie_bridge(pdev);
1627         if (!tmp)
1628                 return ret;
1629         /* Secondary interface's bus number and devfn 0 */
1630         parent = pdev->bus->self;
1631         while (parent != tmp) {
1632                 ret = device_context_mapped(iommu, parent->bus->number,
1633                                             parent->devfn);
1634                 if (!ret)
1635                         return ret;
1636                 parent = parent->bus->self;
1637         }
1638         if (tmp->is_pcie)
1639                 return device_context_mapped(iommu, tmp->subordinate->number,
1640                                              0);
1641         else
1642                 return device_context_mapped(iommu, tmp->bus->number,
1643                                              tmp->devfn);
1644 }
1645
1646 static int
1647 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1648                         u64 hpa, size_t size, int prot)
1649 {
1650         u64 start_pfn, end_pfn;
1651         struct dma_pte *pte;
1652         int index;
1653         int addr_width = agaw_to_width(domain->agaw);
1654
1655         hpa &= (((u64)1) << addr_width) - 1;
1656
1657         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1658                 return -EINVAL;
1659         iova &= PAGE_MASK;
1660         start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1661         end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1662         index = 0;
1663         while (start_pfn < end_pfn) {
1664                 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1665                 if (!pte)
1666                         return -ENOMEM;
1667                 /* We don't need lock here, nobody else
1668                  * touches the iova range
1669                  */
1670                 BUG_ON(dma_pte_addr(pte));
1671                 dma_set_pte_pfn(pte, start_pfn);
1672                 dma_set_pte_prot(pte, prot);
1673                 if (prot & DMA_PTE_SNP)
1674                         dma_set_pte_snp(pte);
1675                 domain_flush_cache(domain, pte, sizeof(*pte));
1676                 start_pfn++;
1677                 index++;
1678         }
1679         return 0;
1680 }
1681
1682 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1683 {
1684         if (!iommu)
1685                 return;
1686
1687         clear_context_table(iommu, bus, devfn);
1688         iommu->flush.flush_context(iommu, 0, 0, 0,
1689                                            DMA_CCMD_GLOBAL_INVL);
1690         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1691 }
1692
1693 static void domain_remove_dev_info(struct dmar_domain *domain)
1694 {
1695         struct device_domain_info *info;
1696         unsigned long flags;
1697         struct intel_iommu *iommu;
1698
1699         spin_lock_irqsave(&device_domain_lock, flags);
1700         while (!list_empty(&domain->devices)) {
1701                 info = list_entry(domain->devices.next,
1702                         struct device_domain_info, link);
1703                 list_del(&info->link);
1704                 list_del(&info->global);
1705                 if (info->dev)
1706                         info->dev->dev.archdata.iommu = NULL;
1707                 spin_unlock_irqrestore(&device_domain_lock, flags);
1708
1709                 iommu_disable_dev_iotlb(info);
1710                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1711                 iommu_detach_dev(iommu, info->bus, info->devfn);
1712                 free_devinfo_mem(info);
1713
1714                 spin_lock_irqsave(&device_domain_lock, flags);
1715         }
1716         spin_unlock_irqrestore(&device_domain_lock, flags);
1717 }
1718
1719 /*
1720  * find_domain
1721  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1722  */
1723 static struct dmar_domain *
1724 find_domain(struct pci_dev *pdev)
1725 {
1726         struct device_domain_info *info;
1727
1728         /* No lock here, assumes no domain exit in normal case */
1729         info = pdev->dev.archdata.iommu;
1730         if (info)
1731                 return info->domain;
1732         return NULL;
1733 }
1734
1735 /* domain is initialized */
1736 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1737 {
1738         struct dmar_domain *domain, *found = NULL;
1739         struct intel_iommu *iommu;
1740         struct dmar_drhd_unit *drhd;
1741         struct device_domain_info *info, *tmp;
1742         struct pci_dev *dev_tmp;
1743         unsigned long flags;
1744         int bus = 0, devfn = 0;
1745         int segment;
1746         int ret;
1747
1748         domain = find_domain(pdev);
1749         if (domain)
1750                 return domain;
1751
1752         segment = pci_domain_nr(pdev->bus);
1753
1754         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1755         if (dev_tmp) {
1756                 if (dev_tmp->is_pcie) {
1757                         bus = dev_tmp->subordinate->number;
1758                         devfn = 0;
1759                 } else {
1760                         bus = dev_tmp->bus->number;
1761                         devfn = dev_tmp->devfn;
1762                 }
1763                 spin_lock_irqsave(&device_domain_lock, flags);
1764                 list_for_each_entry(info, &device_domain_list, global) {
1765                         if (info->segment == segment &&
1766                             info->bus == bus && info->devfn == devfn) {
1767                                 found = info->domain;
1768                                 break;
1769                         }
1770                 }
1771                 spin_unlock_irqrestore(&device_domain_lock, flags);
1772                 /* pcie-pci bridge already has a domain, uses it */
1773                 if (found) {
1774                         domain = found;
1775                         goto found_domain;
1776                 }
1777         }
1778
1779         domain = alloc_domain();
1780         if (!domain)
1781                 goto error;
1782
1783         /* Allocate new domain for the device */
1784         drhd = dmar_find_matched_drhd_unit(pdev);
1785         if (!drhd) {
1786                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1787                         pci_name(pdev));
1788                 return NULL;
1789         }
1790         iommu = drhd->iommu;
1791
1792         ret = iommu_attach_domain(domain, iommu);
1793         if (ret) {
1794                 domain_exit(domain);
1795                 goto error;
1796         }
1797
1798         if (domain_init(domain, gaw)) {
1799                 domain_exit(domain);
1800                 goto error;
1801         }
1802
1803         /* register pcie-to-pci device */
1804         if (dev_tmp) {
1805                 info = alloc_devinfo_mem();
1806                 if (!info) {
1807                         domain_exit(domain);
1808                         goto error;
1809                 }
1810                 info->segment = segment;
1811                 info->bus = bus;
1812                 info->devfn = devfn;
1813                 info->dev = NULL;
1814                 info->domain = domain;
1815                 /* This domain is shared by devices under p2p bridge */
1816                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1817
1818                 /* pcie-to-pci bridge already has a domain, uses it */
1819                 found = NULL;
1820                 spin_lock_irqsave(&device_domain_lock, flags);
1821                 list_for_each_entry(tmp, &device_domain_list, global) {
1822                         if (tmp->segment == segment &&
1823                             tmp->bus == bus && tmp->devfn == devfn) {
1824                                 found = tmp->domain;
1825                                 break;
1826                         }
1827                 }
1828                 if (found) {
1829                         free_devinfo_mem(info);
1830                         domain_exit(domain);
1831                         domain = found;
1832                 } else {
1833                         list_add(&info->link, &domain->devices);
1834                         list_add(&info->global, &device_domain_list);
1835                 }
1836                 spin_unlock_irqrestore(&device_domain_lock, flags);
1837         }
1838
1839 found_domain:
1840         info = alloc_devinfo_mem();
1841         if (!info)
1842                 goto error;
1843         info->segment = segment;
1844         info->bus = pdev->bus->number;
1845         info->devfn = pdev->devfn;
1846         info->dev = pdev;
1847         info->domain = domain;
1848         spin_lock_irqsave(&device_domain_lock, flags);
1849         /* somebody is fast */
1850         found = find_domain(pdev);
1851         if (found != NULL) {
1852                 spin_unlock_irqrestore(&device_domain_lock, flags);
1853                 if (found != domain) {
1854                         domain_exit(domain);
1855                         domain = found;
1856                 }
1857                 free_devinfo_mem(info);
1858                 return domain;
1859         }
1860         list_add(&info->link, &domain->devices);
1861         list_add(&info->global, &device_domain_list);
1862         pdev->dev.archdata.iommu = info;
1863         spin_unlock_irqrestore(&device_domain_lock, flags);
1864         return domain;
1865 error:
1866         /* recheck it here, maybe others set it */
1867         return find_domain(pdev);
1868 }
1869
1870 static int iommu_identity_mapping;
1871
1872 static int iommu_domain_identity_map(struct dmar_domain *domain,
1873                                      unsigned long long start,
1874                                      unsigned long long end)
1875 {
1876         unsigned long size;
1877         unsigned long long base;
1878
1879         /* The address might not be aligned */
1880         base = start & PAGE_MASK;
1881         size = end - base;
1882         size = PAGE_ALIGN(size);
1883         if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1884                         IOVA_PFN(base + size) - 1)) {
1885                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1886                 return -ENOMEM;
1887         }
1888
1889         pr_debug("Mapping reserved region %lx@%llx for domain %d\n",
1890                  size, base, domain->id);
1891         /*
1892          * RMRR range might have overlap with physical memory range,
1893          * clear it first
1894          */
1895         dma_pte_clear_range(domain, base, base + size);
1896
1897         return domain_page_mapping(domain, base, base, size,
1898                                    DMA_PTE_READ|DMA_PTE_WRITE);
1899 }
1900
1901 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1902                                       unsigned long long start,
1903                                       unsigned long long end)
1904 {
1905         struct dmar_domain *domain;
1906         int ret;
1907
1908         printk(KERN_INFO
1909                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1910                pci_name(pdev), start, end);
1911
1912         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1913         if (!domain)
1914                 return -ENOMEM;
1915
1916         ret = iommu_domain_identity_map(domain, start, end);
1917         if (ret)
1918                 goto error;
1919
1920         /* context entry init */
1921         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1922         if (ret)
1923                 goto error;
1924
1925         return 0;
1926
1927  error:
1928         domain_exit(domain);
1929         return ret;
1930 }
1931
1932 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1933         struct pci_dev *pdev)
1934 {
1935         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1936                 return 0;
1937         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1938                 rmrr->end_address + 1);
1939 }
1940
1941 #ifdef CONFIG_DMAR_FLOPPY_WA
1942 static inline void iommu_prepare_isa(void)
1943 {
1944         struct pci_dev *pdev;
1945         int ret;
1946
1947         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1948         if (!pdev)
1949                 return;
1950
1951         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1952         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1953
1954         if (ret)
1955                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1956                        "floppy might not work\n");
1957
1958 }
1959 #else
1960 static inline void iommu_prepare_isa(void)
1961 {
1962         return;
1963 }
1964 #endif /* !CONFIG_DMAR_FLPY_WA */
1965
1966 /* Initialize each context entry as pass through.*/
1967 static int __init init_context_pass_through(void)
1968 {
1969         struct pci_dev *pdev = NULL;
1970         struct dmar_domain *domain;
1971         int ret;
1972
1973         for_each_pci_dev(pdev) {
1974                 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1975                 ret = domain_context_mapping(domain, pdev,
1976                                              CONTEXT_TT_PASS_THROUGH);
1977                 if (ret)
1978                         return ret;
1979         }
1980         return 0;
1981 }
1982
1983 static int md_domain_init(struct dmar_domain *domain, int guest_width);
1984
1985 static int __init si_domain_work_fn(unsigned long start_pfn,
1986                                     unsigned long end_pfn, void *datax)
1987 {
1988         int *ret = datax;
1989
1990         *ret = iommu_domain_identity_map(si_domain,
1991                                          (uint64_t)start_pfn << PAGE_SHIFT,
1992                                          (uint64_t)end_pfn << PAGE_SHIFT);
1993         return *ret;
1994
1995 }
1996
1997 static int si_domain_init(void)
1998 {
1999         struct dmar_drhd_unit *drhd;
2000         struct intel_iommu *iommu;
2001         int nid, ret = 0;
2002
2003         si_domain = alloc_domain();
2004         if (!si_domain)
2005                 return -EFAULT;
2006
2007         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2008
2009         for_each_active_iommu(iommu, drhd) {
2010                 ret = iommu_attach_domain(si_domain, iommu);
2011                 if (ret) {
2012                         domain_exit(si_domain);
2013                         return -EFAULT;
2014                 }
2015         }
2016
2017         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2018                 domain_exit(si_domain);
2019                 return -EFAULT;
2020         }
2021
2022         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2023
2024         for_each_online_node(nid) {
2025                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2026                 if (ret)
2027                         return ret;
2028         }
2029
2030         return 0;
2031 }
2032
2033 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2034                                           struct pci_dev *pdev);
2035 static int identity_mapping(struct pci_dev *pdev)
2036 {
2037         struct device_domain_info *info;
2038
2039         if (likely(!iommu_identity_mapping))
2040                 return 0;
2041
2042
2043         list_for_each_entry(info, &si_domain->devices, link)
2044                 if (info->dev == pdev)
2045                         return 1;
2046         return 0;
2047 }
2048
2049 static int domain_add_dev_info(struct dmar_domain *domain,
2050                                   struct pci_dev *pdev)
2051 {
2052         struct device_domain_info *info;
2053         unsigned long flags;
2054
2055         info = alloc_devinfo_mem();
2056         if (!info)
2057                 return -ENOMEM;
2058
2059         info->segment = pci_domain_nr(pdev->bus);
2060         info->bus = pdev->bus->number;
2061         info->devfn = pdev->devfn;
2062         info->dev = pdev;
2063         info->domain = domain;
2064
2065         spin_lock_irqsave(&device_domain_lock, flags);
2066         list_add(&info->link, &domain->devices);
2067         list_add(&info->global, &device_domain_list);
2068         pdev->dev.archdata.iommu = info;
2069         spin_unlock_irqrestore(&device_domain_lock, flags);
2070
2071         return 0;
2072 }
2073
2074 static int iommu_prepare_static_identity_mapping(void)
2075 {
2076         struct pci_dev *pdev = NULL;
2077         int ret;
2078
2079         ret = si_domain_init();
2080         if (ret)
2081                 return -EFAULT;
2082
2083         for_each_pci_dev(pdev) {
2084                 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2085                        pci_name(pdev));
2086
2087                 ret = domain_context_mapping(si_domain, pdev,
2088                                              CONTEXT_TT_MULTI_LEVEL);
2089                 if (ret)
2090                         return ret;
2091                 ret = domain_add_dev_info(si_domain, pdev);
2092                 if (ret)
2093                         return ret;
2094         }
2095
2096         return 0;
2097 }
2098
2099 int __init init_dmars(void)
2100 {
2101         struct dmar_drhd_unit *drhd;
2102         struct dmar_rmrr_unit *rmrr;
2103         struct pci_dev *pdev;
2104         struct intel_iommu *iommu;
2105         int i, ret;
2106         int pass_through = 1;
2107
2108         /*
2109          * In case pass through can not be enabled, iommu tries to use identity
2110          * mapping.
2111          */
2112         if (iommu_pass_through)
2113                 iommu_identity_mapping = 1;
2114
2115         /*
2116          * for each drhd
2117          *    allocate root
2118          *    initialize and program root entry to not present
2119          * endfor
2120          */
2121         for_each_drhd_unit(drhd) {
2122                 g_num_of_iommus++;
2123                 /*
2124                  * lock not needed as this is only incremented in the single
2125                  * threaded kernel __init code path all other access are read
2126                  * only
2127                  */
2128         }
2129
2130         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2131                         GFP_KERNEL);
2132         if (!g_iommus) {
2133                 printk(KERN_ERR "Allocating global iommu array failed\n");
2134                 ret = -ENOMEM;
2135                 goto error;
2136         }
2137
2138         deferred_flush = kzalloc(g_num_of_iommus *
2139                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2140         if (!deferred_flush) {
2141                 kfree(g_iommus);
2142                 ret = -ENOMEM;
2143                 goto error;
2144         }
2145
2146         for_each_drhd_unit(drhd) {
2147                 if (drhd->ignored)
2148                         continue;
2149
2150                 iommu = drhd->iommu;
2151                 g_iommus[iommu->seq_id] = iommu;
2152
2153                 ret = iommu_init_domains(iommu);
2154                 if (ret)
2155                         goto error;
2156
2157                 /*
2158                  * TBD:
2159                  * we could share the same root & context tables
2160                  * amoung all IOMMU's. Need to Split it later.
2161                  */
2162                 ret = iommu_alloc_root_entry(iommu);
2163                 if (ret) {
2164                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2165                         goto error;
2166                 }
2167                 if (!ecap_pass_through(iommu->ecap))
2168                         pass_through = 0;
2169         }
2170         if (iommu_pass_through)
2171                 if (!pass_through) {
2172                         printk(KERN_INFO
2173                                "Pass Through is not supported by hardware.\n");
2174                         iommu_pass_through = 0;
2175                 }
2176
2177         /*
2178          * Start from the sane iommu hardware state.
2179          */
2180         for_each_drhd_unit(drhd) {
2181                 if (drhd->ignored)
2182                         continue;
2183
2184                 iommu = drhd->iommu;
2185
2186                 /*
2187                  * If the queued invalidation is already initialized by us
2188                  * (for example, while enabling interrupt-remapping) then
2189                  * we got the things already rolling from a sane state.
2190                  */
2191                 if (iommu->qi)
2192                         continue;
2193
2194                 /*
2195                  * Clear any previous faults.
2196                  */
2197                 dmar_fault(-1, iommu);
2198                 /*
2199                  * Disable queued invalidation if supported and already enabled
2200                  * before OS handover.
2201                  */
2202                 dmar_disable_qi(iommu);
2203         }
2204
2205         for_each_drhd_unit(drhd) {
2206                 if (drhd->ignored)
2207                         continue;
2208
2209                 iommu = drhd->iommu;
2210
2211                 if (dmar_enable_qi(iommu)) {
2212                         /*
2213                          * Queued Invalidate not enabled, use Register Based
2214                          * Invalidate
2215                          */
2216                         iommu->flush.flush_context = __iommu_flush_context;
2217                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2218                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2219                                "invalidation\n",
2220                                (unsigned long long)drhd->reg_base_addr);
2221                 } else {
2222                         iommu->flush.flush_context = qi_flush_context;
2223                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2224                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2225                                "invalidation\n",
2226                                (unsigned long long)drhd->reg_base_addr);
2227                 }
2228         }
2229
2230         /*
2231          * If pass through is set and enabled, context entries of all pci
2232          * devices are intialized by pass through translation type.
2233          */
2234         if (iommu_pass_through) {
2235                 ret = init_context_pass_through();
2236                 if (ret) {
2237                         printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2238                         iommu_pass_through = 0;
2239                 }
2240         }
2241
2242         /*
2243          * If pass through is not set or not enabled, setup context entries for
2244          * identity mappings for rmrr, gfx, and isa and may fall back to static
2245          * identity mapping if iommu_identity_mapping is set.
2246          */
2247         if (!iommu_pass_through) {
2248                 if (iommu_identity_mapping)
2249                         iommu_prepare_static_identity_mapping();
2250                 /*
2251                  * For each rmrr
2252                  *   for each dev attached to rmrr
2253                  *   do
2254                  *     locate drhd for dev, alloc domain for dev
2255                  *     allocate free domain
2256                  *     allocate page table entries for rmrr
2257                  *     if context not allocated for bus
2258                  *           allocate and init context
2259                  *           set present in root table for this bus
2260                  *     init context with domain, translation etc
2261                  *    endfor
2262                  * endfor
2263                  */
2264                 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2265                 for_each_rmrr_units(rmrr) {
2266                         for (i = 0; i < rmrr->devices_cnt; i++) {
2267                                 pdev = rmrr->devices[i];
2268                                 /*
2269                                  * some BIOS lists non-exist devices in DMAR
2270                                  * table.
2271                                  */
2272                                 if (!pdev)
2273                                         continue;
2274                                 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2275                                 if (ret)
2276                                         printk(KERN_ERR
2277                                  "IOMMU: mapping reserved region failed\n");
2278                         }
2279                 }
2280
2281                 iommu_prepare_isa();
2282         }
2283
2284         /*
2285          * for each drhd
2286          *   enable fault log
2287          *   global invalidate context cache
2288          *   global invalidate iotlb
2289          *   enable translation
2290          */
2291         for_each_drhd_unit(drhd) {
2292                 if (drhd->ignored)
2293                         continue;
2294                 iommu = drhd->iommu;
2295
2296                 iommu_flush_write_buffer(iommu);
2297
2298                 ret = dmar_set_interrupt(iommu);
2299                 if (ret)
2300                         goto error;
2301
2302                 iommu_set_root_entry(iommu);
2303
2304                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2305                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2306                 iommu_disable_protect_mem_regions(iommu);
2307
2308                 ret = iommu_enable_translation(iommu);
2309                 if (ret)
2310                         goto error;
2311         }
2312
2313         return 0;
2314 error:
2315         for_each_drhd_unit(drhd) {
2316                 if (drhd->ignored)
2317                         continue;
2318                 iommu = drhd->iommu;
2319                 free_iommu(iommu);
2320         }
2321         kfree(g_iommus);
2322         return ret;
2323 }
2324
2325 static inline u64 aligned_size(u64 host_addr, size_t size)
2326 {
2327         u64 addr;
2328         addr = (host_addr & (~PAGE_MASK)) + size;
2329         return PAGE_ALIGN(addr);
2330 }
2331
2332 struct iova *
2333 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2334 {
2335         struct iova *piova;
2336
2337         /* Make sure it's in range */
2338         end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2339         if (!size || (IOVA_START_ADDR + size > end))
2340                 return NULL;
2341
2342         piova = alloc_iova(&domain->iovad,
2343                         size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2344         return piova;
2345 }
2346
2347 static struct iova *
2348 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2349                    size_t size, u64 dma_mask)
2350 {
2351         struct pci_dev *pdev = to_pci_dev(dev);
2352         struct iova *iova = NULL;
2353
2354         if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2355                 iova = iommu_alloc_iova(domain, size, dma_mask);
2356         else {
2357                 /*
2358                  * First try to allocate an io virtual address in
2359                  * DMA_BIT_MASK(32) and if that fails then try allocating
2360                  * from higher range
2361                  */
2362                 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2363                 if (!iova)
2364                         iova = iommu_alloc_iova(domain, size, dma_mask);
2365         }
2366
2367         if (!iova) {
2368                 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2369                 return NULL;
2370         }
2371
2372         return iova;
2373 }
2374
2375 static struct dmar_domain *
2376 get_valid_domain_for_dev(struct pci_dev *pdev)
2377 {
2378         struct dmar_domain *domain;
2379         int ret;
2380
2381         domain = get_domain_for_dev(pdev,
2382                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2383         if (!domain) {
2384                 printk(KERN_ERR
2385                         "Allocating domain for %s failed", pci_name(pdev));
2386                 return NULL;
2387         }
2388
2389         /* make sure context mapping is ok */
2390         if (unlikely(!domain_context_mapped(pdev))) {
2391                 ret = domain_context_mapping(domain, pdev,
2392                                              CONTEXT_TT_MULTI_LEVEL);
2393                 if (ret) {
2394                         printk(KERN_ERR
2395                                 "Domain context map for %s failed",
2396                                 pci_name(pdev));
2397                         return NULL;
2398                 }
2399         }
2400
2401         return domain;
2402 }
2403
2404 static int iommu_dummy(struct pci_dev *pdev)
2405 {
2406         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2407 }
2408
2409 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2410 static int iommu_no_mapping(struct pci_dev *pdev)
2411 {
2412         int found;
2413
2414         if (!iommu_identity_mapping)
2415                 return iommu_dummy(pdev);
2416
2417         found = identity_mapping(pdev);
2418         if (found) {
2419                 if (pdev->dma_mask > DMA_BIT_MASK(32))
2420                         return 1;
2421                 else {
2422                         /*
2423                          * 32 bit DMA is removed from si_domain and fall back
2424                          * to non-identity mapping.
2425                          */
2426                         domain_remove_one_dev_info(si_domain, pdev);
2427                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2428                                pci_name(pdev));
2429                         return 0;
2430                 }
2431         } else {
2432                 /*
2433                  * In case of a detached 64 bit DMA device from vm, the device
2434                  * is put into si_domain for identity mapping.
2435                  */
2436                 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2437                         int ret;
2438                         ret = domain_add_dev_info(si_domain, pdev);
2439                         if (!ret) {
2440                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2441                                        pci_name(pdev));
2442                                 return 1;
2443                         }
2444                 }
2445         }
2446
2447         return iommu_dummy(pdev);
2448 }
2449
2450 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2451                                      size_t size, int dir, u64 dma_mask)
2452 {
2453         struct pci_dev *pdev = to_pci_dev(hwdev);
2454         struct dmar_domain *domain;
2455         phys_addr_t start_paddr;
2456         struct iova *iova;
2457         int prot = 0;
2458         int ret;
2459         struct intel_iommu *iommu;
2460
2461         BUG_ON(dir == DMA_NONE);
2462
2463         if (iommu_no_mapping(pdev))
2464                 return paddr;
2465
2466         domain = get_valid_domain_for_dev(pdev);
2467         if (!domain)
2468                 return 0;
2469
2470         iommu = domain_get_iommu(domain);
2471         size = aligned_size((u64)paddr, size);
2472
2473         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2474         if (!iova)
2475                 goto error;
2476
2477         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2478
2479         /*
2480          * Check if DMAR supports zero-length reads on write only
2481          * mappings..
2482          */
2483         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2484                         !cap_zlr(iommu->cap))
2485                 prot |= DMA_PTE_READ;
2486         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2487                 prot |= DMA_PTE_WRITE;
2488         /*
2489          * paddr - (paddr + size) might be partial page, we should map the whole
2490          * page.  Note: if two part of one page are separately mapped, we
2491          * might have two guest_addr mapping to the same host paddr, but this
2492          * is not a big problem
2493          */
2494         ret = domain_page_mapping(domain, start_paddr,
2495                                   ((u64)paddr) & PHYSICAL_PAGE_MASK,
2496                                   size, prot);
2497         if (ret)
2498                 goto error;
2499
2500         /* it's a non-present to present mapping. Only flush if caching mode */
2501         if (cap_caching_mode(iommu->cap))
2502                 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2503                                       size >> VTD_PAGE_SHIFT);
2504         else
2505                 iommu_flush_write_buffer(iommu);
2506
2507         return start_paddr + ((u64)paddr & (~PAGE_MASK));
2508
2509 error:
2510         if (iova)
2511                 __free_iova(&domain->iovad, iova);
2512         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2513                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2514         return 0;
2515 }
2516
2517 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2518                                  unsigned long offset, size_t size,
2519                                  enum dma_data_direction dir,
2520                                  struct dma_attrs *attrs)
2521 {
2522         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2523                                   dir, to_pci_dev(dev)->dma_mask);
2524 }
2525
2526 static void flush_unmaps(void)
2527 {
2528         int i, j;
2529
2530         timer_on = 0;
2531
2532         /* just flush them all */
2533         for (i = 0; i < g_num_of_iommus; i++) {
2534                 struct intel_iommu *iommu = g_iommus[i];
2535                 if (!iommu)
2536                         continue;
2537
2538                 if (!deferred_flush[i].next)
2539                         continue;
2540
2541                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2542                                          DMA_TLB_GLOBAL_FLUSH);
2543                 for (j = 0; j < deferred_flush[i].next; j++) {
2544                         unsigned long mask;
2545                         struct iova *iova = deferred_flush[i].iova[j];
2546
2547                         mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2548                         mask = ilog2(mask >> VTD_PAGE_SHIFT);
2549                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2550                                         iova->pfn_lo << PAGE_SHIFT, mask);
2551                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2552                 }
2553                 deferred_flush[i].next = 0;
2554         }
2555
2556         list_size = 0;
2557 }
2558
2559 static void flush_unmaps_timeout(unsigned long data)
2560 {
2561         unsigned long flags;
2562
2563         spin_lock_irqsave(&async_umap_flush_lock, flags);
2564         flush_unmaps();
2565         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2566 }
2567
2568 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2569 {
2570         unsigned long flags;
2571         int next, iommu_id;
2572         struct intel_iommu *iommu;
2573
2574         spin_lock_irqsave(&async_umap_flush_lock, flags);
2575         if (list_size == HIGH_WATER_MARK)
2576                 flush_unmaps();
2577
2578         iommu = domain_get_iommu(dom);
2579         iommu_id = iommu->seq_id;
2580
2581         next = deferred_flush[iommu_id].next;
2582         deferred_flush[iommu_id].domain[next] = dom;
2583         deferred_flush[iommu_id].iova[next] = iova;
2584         deferred_flush[iommu_id].next++;
2585
2586         if (!timer_on) {
2587                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2588                 timer_on = 1;
2589         }
2590         list_size++;
2591         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2592 }
2593
2594 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2595                              size_t size, enum dma_data_direction dir,
2596                              struct dma_attrs *attrs)
2597 {
2598         struct pci_dev *pdev = to_pci_dev(dev);
2599         struct dmar_domain *domain;
2600         unsigned long start_addr;
2601         struct iova *iova;
2602         struct intel_iommu *iommu;
2603
2604         if (iommu_no_mapping(pdev))
2605                 return;
2606
2607         domain = find_domain(pdev);
2608         BUG_ON(!domain);
2609
2610         iommu = domain_get_iommu(domain);
2611
2612         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2613         if (!iova)
2614                 return;
2615
2616         start_addr = iova->pfn_lo << PAGE_SHIFT;
2617         size = aligned_size((u64)dev_addr, size);
2618
2619         pr_debug("Device %s unmapping: %zx@%llx\n",
2620                 pci_name(pdev), size, (unsigned long long)start_addr);
2621
2622         /*  clear the whole page */
2623         dma_pte_clear_range(domain, start_addr, start_addr + size);
2624         /* free page tables */
2625         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2626         if (intel_iommu_strict) {
2627                 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2628                                       size >> VTD_PAGE_SHIFT);
2629                 /* free iova */
2630                 __free_iova(&domain->iovad, iova);
2631         } else {
2632                 add_unmap(domain, iova);
2633                 /*
2634                  * queue up the release of the unmap to save the 1/6th of the
2635                  * cpu used up by the iotlb flush operation...
2636                  */
2637         }
2638 }
2639
2640 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2641                                int dir)
2642 {
2643         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2644 }
2645
2646 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2647                                   dma_addr_t *dma_handle, gfp_t flags)
2648 {
2649         void *vaddr;
2650         int order;
2651
2652         size = PAGE_ALIGN(size);
2653         order = get_order(size);
2654         flags &= ~(GFP_DMA | GFP_DMA32);
2655
2656         vaddr = (void *)__get_free_pages(flags, order);
2657         if (!vaddr)
2658                 return NULL;
2659         memset(vaddr, 0, size);
2660
2661         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2662                                          DMA_BIDIRECTIONAL,
2663                                          hwdev->coherent_dma_mask);
2664         if (*dma_handle)
2665                 return vaddr;
2666         free_pages((unsigned long)vaddr, order);
2667         return NULL;
2668 }
2669
2670 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2671                                 dma_addr_t dma_handle)
2672 {
2673         int order;
2674
2675         size = PAGE_ALIGN(size);
2676         order = get_order(size);
2677
2678         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2679         free_pages((unsigned long)vaddr, order);
2680 }
2681
2682 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2683                            int nelems, enum dma_data_direction dir,
2684                            struct dma_attrs *attrs)
2685 {
2686         int i;
2687         struct pci_dev *pdev = to_pci_dev(hwdev);
2688         struct dmar_domain *domain;
2689         unsigned long start_addr;
2690         struct iova *iova;
2691         size_t size = 0;
2692         phys_addr_t addr;
2693         struct scatterlist *sg;
2694         struct intel_iommu *iommu;
2695
2696         if (iommu_no_mapping(pdev))
2697                 return;
2698
2699         domain = find_domain(pdev);
2700         BUG_ON(!domain);
2701
2702         iommu = domain_get_iommu(domain);
2703
2704         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2705         if (!iova)
2706                 return;
2707         for_each_sg(sglist, sg, nelems, i) {
2708                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2709                 size += aligned_size((u64)addr, sg->length);
2710         }
2711
2712         start_addr = iova->pfn_lo << PAGE_SHIFT;
2713
2714         /*  clear the whole page */
2715         dma_pte_clear_range(domain, start_addr, start_addr + size);
2716         /* free page tables */
2717         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2718
2719         iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2720                               size >> VTD_PAGE_SHIFT);
2721
2722         /* free iova */
2723         __free_iova(&domain->iovad, iova);
2724 }
2725
2726 static int intel_nontranslate_map_sg(struct device *hddev,
2727         struct scatterlist *sglist, int nelems, int dir)
2728 {
2729         int i;
2730         struct scatterlist *sg;
2731
2732         for_each_sg(sglist, sg, nelems, i) {
2733                 BUG_ON(!sg_page(sg));
2734                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2735                 sg->dma_length = sg->length;
2736         }
2737         return nelems;
2738 }
2739
2740 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2741                         enum dma_data_direction dir, struct dma_attrs *attrs)
2742 {
2743         phys_addr_t addr;
2744         int i;
2745         struct pci_dev *pdev = to_pci_dev(hwdev);
2746         struct dmar_domain *domain;
2747         size_t size = 0;
2748         int prot = 0;
2749         size_t offset = 0;
2750         struct iova *iova = NULL;
2751         int ret;
2752         struct scatterlist *sg;
2753         unsigned long start_addr;
2754         struct intel_iommu *iommu;
2755
2756         BUG_ON(dir == DMA_NONE);
2757         if (iommu_no_mapping(pdev))
2758                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2759
2760         domain = get_valid_domain_for_dev(pdev);
2761         if (!domain)
2762                 return 0;
2763
2764         iommu = domain_get_iommu(domain);
2765
2766         for_each_sg(sglist, sg, nelems, i) {
2767                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2768                 size += aligned_size((u64)addr, sg->length);
2769         }
2770
2771         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2772         if (!iova) {
2773                 sglist->dma_length = 0;
2774                 return 0;
2775         }
2776
2777         /*
2778          * Check if DMAR supports zero-length reads on write only
2779          * mappings..
2780          */
2781         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2782                         !cap_zlr(iommu->cap))
2783                 prot |= DMA_PTE_READ;
2784         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2785                 prot |= DMA_PTE_WRITE;
2786
2787         start_addr = iova->pfn_lo << PAGE_SHIFT;
2788         offset = 0;
2789         for_each_sg(sglist, sg, nelems, i) {
2790                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2791                 size = aligned_size((u64)addr, sg->length);
2792                 ret = domain_page_mapping(domain, start_addr + offset,
2793                                           ((u64)addr) & PHYSICAL_PAGE_MASK,
2794                                           size, prot);
2795                 if (ret) {
2796                         /*  clear the page */
2797                         dma_pte_clear_range(domain, start_addr,
2798                                   start_addr + offset);
2799                         /* free page tables */
2800                         dma_pte_free_pagetable(domain, start_addr,
2801                                   start_addr + offset);
2802                         /* free iova */
2803                         __free_iova(&domain->iovad, iova);
2804                         return 0;
2805                 }
2806                 sg->dma_address = start_addr + offset +
2807                                 ((u64)addr & (~PAGE_MASK));
2808                 sg->dma_length = sg->length;
2809                 offset += size;
2810         }
2811
2812         /* it's a non-present to present mapping. Only flush if caching mode */
2813         if (cap_caching_mode(iommu->cap))
2814                 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2815                                       offset >> VTD_PAGE_SHIFT);
2816         else
2817                 iommu_flush_write_buffer(iommu);
2818
2819         return nelems;
2820 }
2821
2822 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2823 {
2824         return !dma_addr;
2825 }
2826
2827 struct dma_map_ops intel_dma_ops = {
2828         .alloc_coherent = intel_alloc_coherent,
2829         .free_coherent = intel_free_coherent,
2830         .map_sg = intel_map_sg,
2831         .unmap_sg = intel_unmap_sg,
2832         .map_page = intel_map_page,
2833         .unmap_page = intel_unmap_page,
2834         .mapping_error = intel_mapping_error,
2835 };
2836
2837 static inline int iommu_domain_cache_init(void)
2838 {
2839         int ret = 0;
2840
2841         iommu_domain_cache = kmem_cache_create("iommu_domain",
2842                                          sizeof(struct dmar_domain),
2843                                          0,
2844                                          SLAB_HWCACHE_ALIGN,
2845
2846                                          NULL);
2847         if (!iommu_domain_cache) {
2848                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2849                 ret = -ENOMEM;
2850         }
2851
2852         return ret;
2853 }
2854
2855 static inline int iommu_devinfo_cache_init(void)
2856 {
2857         int ret = 0;
2858
2859         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2860                                          sizeof(struct device_domain_info),
2861                                          0,
2862                                          SLAB_HWCACHE_ALIGN,
2863                                          NULL);
2864         if (!iommu_devinfo_cache) {
2865                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2866                 ret = -ENOMEM;
2867         }
2868
2869         return ret;
2870 }
2871
2872 static inline int iommu_iova_cache_init(void)
2873 {
2874         int ret = 0;
2875
2876         iommu_iova_cache = kmem_cache_create("iommu_iova",
2877                                          sizeof(struct iova),
2878                                          0,
2879                                          SLAB_HWCACHE_ALIGN,
2880                                          NULL);
2881         if (!iommu_iova_cache) {
2882                 printk(KERN_ERR "Couldn't create iova cache\n");
2883                 ret = -ENOMEM;
2884         }
2885
2886         return ret;
2887 }
2888
2889 static int __init iommu_init_mempool(void)
2890 {
2891         int ret;
2892         ret = iommu_iova_cache_init();
2893         if (ret)
2894                 return ret;
2895
2896         ret = iommu_domain_cache_init();
2897         if (ret)
2898                 goto domain_error;
2899
2900         ret = iommu_devinfo_cache_init();
2901         if (!ret)
2902                 return ret;
2903
2904         kmem_cache_destroy(iommu_domain_cache);
2905 domain_error:
2906         kmem_cache_destroy(iommu_iova_cache);
2907
2908         return -ENOMEM;
2909 }
2910
2911 static void __init iommu_exit_mempool(void)
2912 {
2913         kmem_cache_destroy(iommu_devinfo_cache);
2914         kmem_cache_destroy(iommu_domain_cache);
2915         kmem_cache_destroy(iommu_iova_cache);
2916
2917 }
2918
2919 static void __init init_no_remapping_devices(void)
2920 {
2921         struct dmar_drhd_unit *drhd;
2922
2923         for_each_drhd_unit(drhd) {
2924                 if (!drhd->include_all) {
2925                         int i;
2926                         for (i = 0; i < drhd->devices_cnt; i++)
2927                                 if (drhd->devices[i] != NULL)
2928                                         break;
2929                         /* ignore DMAR unit if no pci devices exist */
2930                         if (i == drhd->devices_cnt)
2931                                 drhd->ignored = 1;
2932                 }
2933         }
2934
2935         if (dmar_map_gfx)
2936                 return;
2937
2938         for_each_drhd_unit(drhd) {
2939                 int i;
2940                 if (drhd->ignored || drhd->include_all)
2941                         continue;
2942
2943                 for (i = 0; i < drhd->devices_cnt; i++)
2944                         if (drhd->devices[i] &&
2945                                 !IS_GFX_DEVICE(drhd->devices[i]))
2946                                 break;
2947
2948                 if (i < drhd->devices_cnt)
2949                         continue;
2950
2951                 /* bypass IOMMU if it is just for gfx devices */
2952                 drhd->ignored = 1;
2953                 for (i = 0; i < drhd->devices_cnt; i++) {
2954                         if (!drhd->devices[i])
2955                                 continue;
2956                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2957                 }
2958         }
2959 }
2960
2961 #ifdef CONFIG_SUSPEND
2962 static int init_iommu_hw(void)
2963 {
2964         struct dmar_drhd_unit *drhd;
2965         struct intel_iommu *iommu = NULL;
2966
2967         for_each_active_iommu(iommu, drhd)
2968                 if (iommu->qi)
2969                         dmar_reenable_qi(iommu);
2970
2971         for_each_active_iommu(iommu, drhd) {
2972                 iommu_flush_write_buffer(iommu);
2973
2974                 iommu_set_root_entry(iommu);
2975
2976                 iommu->flush.flush_context(iommu, 0, 0, 0,
2977                                            DMA_CCMD_GLOBAL_INVL);
2978                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2979                                          DMA_TLB_GLOBAL_FLUSH);
2980                 iommu_disable_protect_mem_regions(iommu);
2981                 iommu_enable_translation(iommu);
2982         }
2983
2984         return 0;
2985 }
2986
2987 static void iommu_flush_all(void)
2988 {
2989         struct dmar_drhd_unit *drhd;
2990         struct intel_iommu *iommu;
2991
2992         for_each_active_iommu(iommu, drhd) {
2993                 iommu->flush.flush_context(iommu, 0, 0, 0,
2994                                            DMA_CCMD_GLOBAL_INVL);
2995                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2996                                          DMA_TLB_GLOBAL_FLUSH);
2997         }
2998 }
2999
3000 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3001 {
3002         struct dmar_drhd_unit *drhd;
3003         struct intel_iommu *iommu = NULL;
3004         unsigned long flag;
3005
3006         for_each_active_iommu(iommu, drhd) {
3007                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3008                                                  GFP_ATOMIC);
3009                 if (!iommu->iommu_state)
3010                         goto nomem;
3011         }
3012
3013         iommu_flush_all();
3014
3015         for_each_active_iommu(iommu, drhd) {
3016                 iommu_disable_translation(iommu);
3017
3018                 spin_lock_irqsave(&iommu->register_lock, flag);
3019
3020                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3021                         readl(iommu->reg + DMAR_FECTL_REG);
3022                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3023                         readl(iommu->reg + DMAR_FEDATA_REG);
3024                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3025                         readl(iommu->reg + DMAR_FEADDR_REG);
3026                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3027                         readl(iommu->reg + DMAR_FEUADDR_REG);
3028
3029                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3030         }
3031         return 0;
3032
3033 nomem:
3034         for_each_active_iommu(iommu, drhd)
3035                 kfree(iommu->iommu_state);
3036
3037         return -ENOMEM;
3038 }
3039
3040 static int iommu_resume(struct sys_device *dev)
3041 {
3042         struct dmar_drhd_unit *drhd;
3043         struct intel_iommu *iommu = NULL;
3044         unsigned long flag;
3045
3046         if (init_iommu_hw()) {
3047                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3048                 return -EIO;
3049         }
3050
3051         for_each_active_iommu(iommu, drhd) {
3052
3053                 spin_lock_irqsave(&iommu->register_lock, flag);
3054
3055                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3056                         iommu->reg + DMAR_FECTL_REG);
3057                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3058                         iommu->reg + DMAR_FEDATA_REG);
3059                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3060                         iommu->reg + DMAR_FEADDR_REG);
3061                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3062                         iommu->reg + DMAR_FEUADDR_REG);
3063
3064                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3065         }
3066
3067         for_each_active_iommu(iommu, drhd)
3068                 kfree(iommu->iommu_state);
3069
3070         return 0;
3071 }
3072
3073 static struct sysdev_class iommu_sysclass = {
3074         .name           = "iommu",
3075         .resume         = iommu_resume,
3076         .suspend        = iommu_suspend,
3077 };
3078
3079 static struct sys_device device_iommu = {
3080         .cls    = &iommu_sysclass,
3081 };
3082
3083 static int __init init_iommu_sysfs(void)
3084 {
3085         int error;
3086
3087         error = sysdev_class_register(&iommu_sysclass);
3088         if (error)
3089                 return error;
3090
3091         error = sysdev_register(&device_iommu);
3092         if (error)
3093                 sysdev_class_unregister(&iommu_sysclass);
3094
3095         return error;
3096 }
3097
3098 #else
3099 static int __init init_iommu_sysfs(void)
3100 {
3101         return 0;
3102 }
3103 #endif  /* CONFIG_PM */
3104
3105 int __init intel_iommu_init(void)
3106 {
3107         int ret = 0;
3108
3109         if (dmar_table_init())
3110                 return  -ENODEV;
3111
3112         if (dmar_dev_scope_init())
3113                 return  -ENODEV;
3114
3115         /*
3116          * Check the need for DMA-remapping initialization now.
3117          * Above initialization will also be used by Interrupt-remapping.
3118          */
3119         if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3120                 return -ENODEV;
3121
3122         iommu_init_mempool();
3123         dmar_init_reserved_ranges();
3124
3125         init_no_remapping_devices();
3126
3127         ret = init_dmars();
3128         if (ret) {
3129                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3130                 put_iova_domain(&reserved_iova_list);
3131                 iommu_exit_mempool();
3132                 return ret;
3133         }
3134         printk(KERN_INFO
3135         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3136
3137         init_timer(&unmap_timer);
3138         force_iommu = 1;
3139
3140         if (!iommu_pass_through) {
3141                 printk(KERN_INFO
3142                        "Multi-level page-table translation for DMAR.\n");
3143                 dma_ops = &intel_dma_ops;
3144         } else
3145                 printk(KERN_INFO
3146                        "DMAR: Pass through translation for DMAR.\n");
3147
3148         init_iommu_sysfs();
3149
3150         register_iommu(&intel_iommu_ops);
3151
3152         return 0;
3153 }
3154
3155 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3156                                            struct pci_dev *pdev)
3157 {
3158         struct pci_dev *tmp, *parent;
3159
3160         if (!iommu || !pdev)
3161                 return;
3162
3163         /* dependent device detach */
3164         tmp = pci_find_upstream_pcie_bridge(pdev);
3165         /* Secondary interface's bus number and devfn 0 */
3166         if (tmp) {
3167                 parent = pdev->bus->self;
3168                 while (parent != tmp) {
3169                         iommu_detach_dev(iommu, parent->bus->number,
3170                                          parent->devfn);
3171                         parent = parent->bus->self;
3172                 }
3173                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3174                         iommu_detach_dev(iommu,
3175                                 tmp->subordinate->number, 0);
3176                 else /* this is a legacy PCI bridge */
3177                         iommu_detach_dev(iommu, tmp->bus->number,
3178                                          tmp->devfn);
3179         }
3180 }
3181
3182 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3183                                           struct pci_dev *pdev)
3184 {
3185         struct device_domain_info *info;
3186         struct intel_iommu *iommu;
3187         unsigned long flags;
3188         int found = 0;
3189         struct list_head *entry, *tmp;
3190
3191         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3192                                 pdev->devfn);
3193         if (!iommu)
3194                 return;
3195
3196         spin_lock_irqsave(&device_domain_lock, flags);
3197         list_for_each_safe(entry, tmp, &domain->devices) {
3198                 info = list_entry(entry, struct device_domain_info, link);
3199                 /* No need to compare PCI domain; it has to be the same */
3200                 if (info->bus == pdev->bus->number &&
3201                     info->devfn == pdev->devfn) {
3202                         list_del(&info->link);
3203                         list_del(&info->global);
3204                         if (info->dev)
3205                                 info->dev->dev.archdata.iommu = NULL;
3206                         spin_unlock_irqrestore(&device_domain_lock, flags);
3207
3208                         iommu_disable_dev_iotlb(info);
3209                         iommu_detach_dev(iommu, info->bus, info->devfn);
3210                         iommu_detach_dependent_devices(iommu, pdev);
3211                         free_devinfo_mem(info);
3212
3213                         spin_lock_irqsave(&device_domain_lock, flags);
3214
3215                         if (found)
3216                                 break;
3217                         else
3218                                 continue;
3219                 }
3220
3221                 /* if there is no other devices under the same iommu
3222                  * owned by this domain, clear this iommu in iommu_bmp
3223                  * update iommu count and coherency
3224                  */
3225                 if (iommu == device_to_iommu(info->segment, info->bus,
3226                                             info->devfn))
3227                         found = 1;
3228         }
3229
3230         if (found == 0) {
3231                 unsigned long tmp_flags;
3232                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3233                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3234                 domain->iommu_count--;
3235                 domain_update_iommu_cap(domain);
3236                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3237         }
3238
3239         spin_unlock_irqrestore(&device_domain_lock, flags);
3240 }
3241
3242 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3243 {
3244         struct device_domain_info *info;
3245         struct intel_iommu *iommu;
3246         unsigned long flags1, flags2;
3247
3248         spin_lock_irqsave(&device_domain_lock, flags1);
3249         while (!list_empty(&domain->devices)) {
3250                 info = list_entry(domain->devices.next,
3251                         struct device_domain_info, link);
3252                 list_del(&info->link);
3253                 list_del(&info->global);
3254                 if (info->dev)
3255                         info->dev->dev.archdata.iommu = NULL;
3256
3257                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3258
3259                 iommu_disable_dev_iotlb(info);
3260                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3261                 iommu_detach_dev(iommu, info->bus, info->devfn);
3262                 iommu_detach_dependent_devices(iommu, info->dev);
3263
3264                 /* clear this iommu in iommu_bmp, update iommu count
3265                  * and capabilities
3266                  */
3267                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3268                 if (test_and_clear_bit(iommu->seq_id,
3269                                        &domain->iommu_bmp)) {
3270                         domain->iommu_count--;
3271                         domain_update_iommu_cap(domain);
3272                 }
3273                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3274
3275                 free_devinfo_mem(info);
3276                 spin_lock_irqsave(&device_domain_lock, flags1);
3277         }
3278         spin_unlock_irqrestore(&device_domain_lock, flags1);
3279 }
3280
3281 /* domain id for virtual machine, it won't be set in context */
3282 static unsigned long vm_domid;
3283
3284 static int vm_domain_min_agaw(struct dmar_domain *domain)
3285 {
3286         int i;
3287         int min_agaw = domain->agaw;
3288
3289         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3290         for (; i < g_num_of_iommus; ) {
3291                 if (min_agaw > g_iommus[i]->agaw)
3292                         min_agaw = g_iommus[i]->agaw;
3293
3294                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3295         }
3296
3297         return min_agaw;
3298 }
3299
3300 static struct dmar_domain *iommu_alloc_vm_domain(void)
3301 {
3302         struct dmar_domain *domain;
3303
3304         domain = alloc_domain_mem();
3305         if (!domain)
3306                 return NULL;
3307
3308         domain->id = vm_domid++;
3309         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3310         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3311
3312         return domain;
3313 }
3314
3315 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3316 {
3317         int adjust_width;
3318
3319         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3320         spin_lock_init(&domain->mapping_lock);
3321         spin_lock_init(&domain->iommu_lock);
3322
3323         domain_reserve_special_ranges(domain);
3324
3325         /* calculate AGAW */
3326         domain->gaw = guest_width;
3327         adjust_width = guestwidth_to_adjustwidth(guest_width);
3328         domain->agaw = width_to_agaw(adjust_width);
3329
3330         INIT_LIST_HEAD(&domain->devices);
3331
3332         domain->iommu_count = 0;
3333         domain->iommu_coherency = 0;
3334         domain->max_addr = 0;
3335
3336         /* always allocate the top pgd */
3337         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3338         if (!domain->pgd)
3339                 return -ENOMEM;
3340         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3341         return 0;
3342 }
3343
3344 static void iommu_free_vm_domain(struct dmar_domain *domain)
3345 {
3346         unsigned long flags;
3347         struct dmar_drhd_unit *drhd;
3348         struct intel_iommu *iommu;
3349         unsigned long i;
3350         unsigned long ndomains;
3351
3352         for_each_drhd_unit(drhd) {
3353                 if (drhd->ignored)
3354                         continue;
3355                 iommu = drhd->iommu;
3356
3357                 ndomains = cap_ndoms(iommu->cap);
3358                 i = find_first_bit(iommu->domain_ids, ndomains);
3359                 for (; i < ndomains; ) {
3360                         if (iommu->domains[i] == domain) {
3361                                 spin_lock_irqsave(&iommu->lock, flags);
3362                                 clear_bit(i, iommu->domain_ids);
3363                                 iommu->domains[i] = NULL;
3364                                 spin_unlock_irqrestore(&iommu->lock, flags);
3365                                 break;
3366                         }
3367                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3368                 }
3369         }
3370 }
3371
3372 static void vm_domain_exit(struct dmar_domain *domain)
3373 {
3374         u64 end;
3375
3376         /* Domain 0 is reserved, so dont process it */
3377         if (!domain)
3378                 return;
3379
3380         vm_domain_remove_all_dev_info(domain);
3381         /* destroy iovas */
3382         put_iova_domain(&domain->iovad);
3383         end = DOMAIN_MAX_ADDR(domain->gaw);
3384         end = end & (~VTD_PAGE_MASK);
3385
3386         /* clear ptes */
3387         dma_pte_clear_range(domain, 0, end);
3388
3389         /* free page tables */
3390         dma_pte_free_pagetable(domain, 0, end);
3391
3392         iommu_free_vm_domain(domain);
3393         free_domain_mem(domain);
3394 }
3395
3396 static int intel_iommu_domain_init(struct iommu_domain *domain)
3397 {
3398         struct dmar_domain *dmar_domain;
3399
3400         dmar_domain = iommu_alloc_vm_domain();
3401         if (!dmar_domain) {
3402                 printk(KERN_ERR
3403                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3404                 return -ENOMEM;
3405         }
3406         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3407                 printk(KERN_ERR
3408                         "intel_iommu_domain_init() failed\n");
3409                 vm_domain_exit(dmar_domain);
3410                 return -ENOMEM;
3411         }
3412         domain->priv = dmar_domain;
3413
3414         return 0;
3415 }
3416
3417 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3418 {
3419         struct dmar_domain *dmar_domain = domain->priv;
3420
3421         domain->priv = NULL;
3422         vm_domain_exit(dmar_domain);
3423 }
3424
3425 static int intel_iommu_attach_device(struct iommu_domain *domain,
3426                                      struct device *dev)
3427 {
3428         struct dmar_domain *dmar_domain = domain->priv;
3429         struct pci_dev *pdev = to_pci_dev(dev);
3430         struct intel_iommu *iommu;
3431         int addr_width;
3432         u64 end;
3433         int ret;
3434
3435         /* normally pdev is not mapped */
3436         if (unlikely(domain_context_mapped(pdev))) {
3437                 struct dmar_domain *old_domain;
3438
3439                 old_domain = find_domain(pdev);
3440                 if (old_domain) {
3441                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3442                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3443                                 domain_remove_one_dev_info(old_domain, pdev);
3444                         else
3445                                 domain_remove_dev_info(old_domain);
3446                 }
3447         }
3448
3449         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3450                                 pdev->devfn);
3451         if (!iommu)
3452                 return -ENODEV;
3453
3454         /* check if this iommu agaw is sufficient for max mapped address */
3455         addr_width = agaw_to_width(iommu->agaw);
3456         end = DOMAIN_MAX_ADDR(addr_width);
3457         end = end & VTD_PAGE_MASK;
3458         if (end < dmar_domain->max_addr) {
3459                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3460                        "sufficient for the mapped address (%llx)\n",
3461                        __func__, iommu->agaw, dmar_domain->max_addr);
3462                 return -EFAULT;
3463         }
3464
3465         ret = domain_add_dev_info(dmar_domain, pdev);
3466         if (ret)
3467                 return ret;
3468
3469         ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3470         return ret;
3471 }
3472
3473 static void intel_iommu_detach_device(struct iommu_domain *domain,
3474                                       struct device *dev)
3475 {
3476         struct dmar_domain *dmar_domain = domain->priv;
3477         struct pci_dev *pdev = to_pci_dev(dev);
3478
3479         domain_remove_one_dev_info(dmar_domain, pdev);
3480 }
3481
3482 static int intel_iommu_map_range(struct iommu_domain *domain,
3483                                  unsigned long iova, phys_addr_t hpa,
3484                                  size_t size, int iommu_prot)
3485 {
3486         struct dmar_domain *dmar_domain = domain->priv;
3487         u64 max_addr;
3488         int addr_width;
3489         int prot = 0;
3490         int ret;
3491
3492         if (iommu_prot & IOMMU_READ)
3493                 prot |= DMA_PTE_READ;
3494         if (iommu_prot & IOMMU_WRITE)
3495                 prot |= DMA_PTE_WRITE;
3496         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3497                 prot |= DMA_PTE_SNP;
3498
3499         max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3500         if (dmar_domain->max_addr < max_addr) {
3501                 int min_agaw;
3502                 u64 end;
3503
3504                 /* check if minimum agaw is sufficient for mapped address */
3505                 min_agaw = vm_domain_min_agaw(dmar_domain);
3506                 addr_width = agaw_to_width(min_agaw);
3507                 end = DOMAIN_MAX_ADDR(addr_width);
3508                 end = end & VTD_PAGE_MASK;
3509                 if (end < max_addr) {
3510                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3511                                "sufficient for the mapped address (%llx)\n",
3512                                __func__, min_agaw, max_addr);
3513                         return -EFAULT;
3514                 }
3515                 dmar_domain->max_addr = max_addr;
3516         }
3517
3518         ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3519         return ret;
3520 }
3521
3522 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3523                                     unsigned long iova, size_t size)
3524 {
3525         struct dmar_domain *dmar_domain = domain->priv;
3526         dma_addr_t base;
3527
3528         /* The address might not be aligned */
3529         base = iova & VTD_PAGE_MASK;
3530         size = VTD_PAGE_ALIGN(size);
3531         dma_pte_clear_range(dmar_domain, base, base + size);
3532
3533         if (dmar_domain->max_addr == base + size)
3534                 dmar_domain->max_addr = base;
3535 }
3536
3537 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3538                                             unsigned long iova)
3539 {
3540         struct dmar_domain *dmar_domain = domain->priv;
3541         struct dma_pte *pte;
3542         u64 phys = 0;
3543
3544         pte = addr_to_dma_pte(dmar_domain, iova);
3545         if (pte)
3546                 phys = dma_pte_addr(pte);
3547
3548         return phys;
3549 }
3550
3551 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3552                                       unsigned long cap)
3553 {
3554         struct dmar_domain *dmar_domain = domain->priv;
3555
3556         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3557                 return dmar_domain->iommu_snooping;
3558
3559         return 0;
3560 }
3561
3562 static struct iommu_ops intel_iommu_ops = {
3563         .domain_init    = intel_iommu_domain_init,
3564         .domain_destroy = intel_iommu_domain_destroy,
3565         .attach_dev     = intel_iommu_attach_device,
3566         .detach_dev     = intel_iommu_detach_device,
3567         .map            = intel_iommu_map_range,
3568         .unmap          = intel_iommu_unmap_range,
3569         .iova_to_phys   = intel_iommu_iova_to_phys,
3570         .domain_has_cap = intel_iommu_domain_has_cap,
3571 };
3572
3573 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3574 {
3575         /*
3576          * Mobile 4 Series Chipset neglects to set RWBF capability,
3577          * but needs it:
3578          */
3579         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3580         rwbf_quirk = 1;
3581 }
3582
3583 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);