intel-iommu: Make dma_pte_free_pagetable() take pfns as argument
[safe/jmp/linux-2.6] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE               VTD_PAGE_SIZE
45 #define CONTEXT_SIZE            VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START      (0xfee00000)
51 #define IOAPIC_RANGE_END        (0xfeefffff)
52 #define IOVA_START_ADDR         (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw)  ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
60
61 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
64
65 #ifndef PHYSICAL_PAGE_MASK
66 #define PHYSICAL_PAGE_MASK PAGE_MASK
67 #endif
68
69 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
70    are never going to work. */
71 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
72 {
73         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
74 }
75
76 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
77 {
78         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
79 }
80 static inline unsigned long page_to_dma_pfn(struct page *pg)
81 {
82         return mm_to_dma_pfn(page_to_pfn(pg));
83 }
84 static inline unsigned long virt_to_dma_pfn(void *p)
85 {
86         return page_to_dma_pfn(virt_to_page(p));
87 }
88
89 /* global iommu list, set NULL for ignored DMAR units */
90 static struct intel_iommu **g_iommus;
91
92 static int rwbf_quirk;
93
94 /*
95  * 0: Present
96  * 1-11: Reserved
97  * 12-63: Context Ptr (12 - (haw-1))
98  * 64-127: Reserved
99  */
100 struct root_entry {
101         u64     val;
102         u64     rsvd1;
103 };
104 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
105 static inline bool root_present(struct root_entry *root)
106 {
107         return (root->val & 1);
108 }
109 static inline void set_root_present(struct root_entry *root)
110 {
111         root->val |= 1;
112 }
113 static inline void set_root_value(struct root_entry *root, unsigned long value)
114 {
115         root->val |= value & VTD_PAGE_MASK;
116 }
117
118 static inline struct context_entry *
119 get_context_addr_from_root(struct root_entry *root)
120 {
121         return (struct context_entry *)
122                 (root_present(root)?phys_to_virt(
123                 root->val & VTD_PAGE_MASK) :
124                 NULL);
125 }
126
127 /*
128  * low 64 bits:
129  * 0: present
130  * 1: fault processing disable
131  * 2-3: translation type
132  * 12-63: address space root
133  * high 64 bits:
134  * 0-2: address width
135  * 3-6: aval
136  * 8-23: domain id
137  */
138 struct context_entry {
139         u64 lo;
140         u64 hi;
141 };
142
143 static inline bool context_present(struct context_entry *context)
144 {
145         return (context->lo & 1);
146 }
147 static inline void context_set_present(struct context_entry *context)
148 {
149         context->lo |= 1;
150 }
151
152 static inline void context_set_fault_enable(struct context_entry *context)
153 {
154         context->lo &= (((u64)-1) << 2) | 1;
155 }
156
157 static inline void context_set_translation_type(struct context_entry *context,
158                                                 unsigned long value)
159 {
160         context->lo &= (((u64)-1) << 4) | 3;
161         context->lo |= (value & 3) << 2;
162 }
163
164 static inline void context_set_address_root(struct context_entry *context,
165                                             unsigned long value)
166 {
167         context->lo |= value & VTD_PAGE_MASK;
168 }
169
170 static inline void context_set_address_width(struct context_entry *context,
171                                              unsigned long value)
172 {
173         context->hi |= value & 7;
174 }
175
176 static inline void context_set_domain_id(struct context_entry *context,
177                                          unsigned long value)
178 {
179         context->hi |= (value & ((1 << 16) - 1)) << 8;
180 }
181
182 static inline void context_clear_entry(struct context_entry *context)
183 {
184         context->lo = 0;
185         context->hi = 0;
186 }
187
188 /*
189  * 0: readable
190  * 1: writable
191  * 2-6: reserved
192  * 7: super page
193  * 8-10: available
194  * 11: snoop behavior
195  * 12-63: Host physcial address
196  */
197 struct dma_pte {
198         u64 val;
199 };
200
201 static inline void dma_clear_pte(struct dma_pte *pte)
202 {
203         pte->val = 0;
204 }
205
206 static inline void dma_set_pte_readable(struct dma_pte *pte)
207 {
208         pte->val |= DMA_PTE_READ;
209 }
210
211 static inline void dma_set_pte_writable(struct dma_pte *pte)
212 {
213         pte->val |= DMA_PTE_WRITE;
214 }
215
216 static inline void dma_set_pte_snp(struct dma_pte *pte)
217 {
218         pte->val |= DMA_PTE_SNP;
219 }
220
221 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
222 {
223         pte->val = (pte->val & ~3) | (prot & 3);
224 }
225
226 static inline u64 dma_pte_addr(struct dma_pte *pte)
227 {
228         return (pte->val & VTD_PAGE_MASK);
229 }
230
231 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
232 {
233         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
234 }
235
236 static inline bool dma_pte_present(struct dma_pte *pte)
237 {
238         return (pte->val & 3) != 0;
239 }
240
241 /*
242  * This domain is a statically identity mapping domain.
243  *      1. This domain creats a static 1:1 mapping to all usable memory.
244  *      2. It maps to each iommu if successful.
245  *      3. Each iommu mapps to this domain if successful.
246  */
247 struct dmar_domain *si_domain;
248
249 /* devices under the same p2p bridge are owned in one domain */
250 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
251
252 /* domain represents a virtual machine, more than one devices
253  * across iommus may be owned in one domain, e.g. kvm guest.
254  */
255 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
256
257 /* si_domain contains mulitple devices */
258 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
259
260 struct dmar_domain {
261         int     id;                     /* domain id */
262         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
263
264         struct list_head devices;       /* all devices' list */
265         struct iova_domain iovad;       /* iova's that belong to this domain */
266
267         struct dma_pte  *pgd;           /* virtual address */
268         spinlock_t      mapping_lock;   /* page table lock */
269         int             gaw;            /* max guest address width */
270
271         /* adjusted guest address width, 0 is level 2 30-bit */
272         int             agaw;
273
274         int             flags;          /* flags to find out type of domain */
275
276         int             iommu_coherency;/* indicate coherency of iommu access */
277         int             iommu_snooping; /* indicate snooping control feature*/
278         int             iommu_count;    /* reference count of iommu */
279         spinlock_t      iommu_lock;     /* protect iommu set in domain */
280         u64             max_addr;       /* maximum mapped address */
281 };
282
283 /* PCI domain-device relationship */
284 struct device_domain_info {
285         struct list_head link;  /* link to domain siblings */
286         struct list_head global; /* link to global list */
287         int segment;            /* PCI domain */
288         u8 bus;                 /* PCI bus number */
289         u8 devfn;               /* PCI devfn number */
290         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
291         struct intel_iommu *iommu; /* IOMMU used by this device */
292         struct dmar_domain *domain; /* pointer to domain */
293 };
294
295 static void flush_unmaps_timeout(unsigned long data);
296
297 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
298
299 #define HIGH_WATER_MARK 250
300 struct deferred_flush_tables {
301         int next;
302         struct iova *iova[HIGH_WATER_MARK];
303         struct dmar_domain *domain[HIGH_WATER_MARK];
304 };
305
306 static struct deferred_flush_tables *deferred_flush;
307
308 /* bitmap for indexing intel_iommus */
309 static int g_num_of_iommus;
310
311 static DEFINE_SPINLOCK(async_umap_flush_lock);
312 static LIST_HEAD(unmaps_to_do);
313
314 static int timer_on;
315 static long list_size;
316
317 static void domain_remove_dev_info(struct dmar_domain *domain);
318
319 #ifdef CONFIG_DMAR_DEFAULT_ON
320 int dmar_disabled = 0;
321 #else
322 int dmar_disabled = 1;
323 #endif /*CONFIG_DMAR_DEFAULT_ON*/
324
325 static int __initdata dmar_map_gfx = 1;
326 static int dmar_forcedac;
327 static int intel_iommu_strict;
328
329 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
330 static DEFINE_SPINLOCK(device_domain_lock);
331 static LIST_HEAD(device_domain_list);
332
333 static struct iommu_ops intel_iommu_ops;
334
335 static int __init intel_iommu_setup(char *str)
336 {
337         if (!str)
338                 return -EINVAL;
339         while (*str) {
340                 if (!strncmp(str, "on", 2)) {
341                         dmar_disabled = 0;
342                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
343                 } else if (!strncmp(str, "off", 3)) {
344                         dmar_disabled = 1;
345                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
346                 } else if (!strncmp(str, "igfx_off", 8)) {
347                         dmar_map_gfx = 0;
348                         printk(KERN_INFO
349                                 "Intel-IOMMU: disable GFX device mapping\n");
350                 } else if (!strncmp(str, "forcedac", 8)) {
351                         printk(KERN_INFO
352                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
353                         dmar_forcedac = 1;
354                 } else if (!strncmp(str, "strict", 6)) {
355                         printk(KERN_INFO
356                                 "Intel-IOMMU: disable batched IOTLB flush\n");
357                         intel_iommu_strict = 1;
358                 }
359
360                 str += strcspn(str, ",");
361                 while (*str == ',')
362                         str++;
363         }
364         return 0;
365 }
366 __setup("intel_iommu=", intel_iommu_setup);
367
368 static struct kmem_cache *iommu_domain_cache;
369 static struct kmem_cache *iommu_devinfo_cache;
370 static struct kmem_cache *iommu_iova_cache;
371
372 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
373 {
374         unsigned int flags;
375         void *vaddr;
376
377         /* trying to avoid low memory issues */
378         flags = current->flags & PF_MEMALLOC;
379         current->flags |= PF_MEMALLOC;
380         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
381         current->flags &= (~PF_MEMALLOC | flags);
382         return vaddr;
383 }
384
385
386 static inline void *alloc_pgtable_page(void)
387 {
388         unsigned int flags;
389         void *vaddr;
390
391         /* trying to avoid low memory issues */
392         flags = current->flags & PF_MEMALLOC;
393         current->flags |= PF_MEMALLOC;
394         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
395         current->flags &= (~PF_MEMALLOC | flags);
396         return vaddr;
397 }
398
399 static inline void free_pgtable_page(void *vaddr)
400 {
401         free_page((unsigned long)vaddr);
402 }
403
404 static inline void *alloc_domain_mem(void)
405 {
406         return iommu_kmem_cache_alloc(iommu_domain_cache);
407 }
408
409 static void free_domain_mem(void *vaddr)
410 {
411         kmem_cache_free(iommu_domain_cache, vaddr);
412 }
413
414 static inline void * alloc_devinfo_mem(void)
415 {
416         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
417 }
418
419 static inline void free_devinfo_mem(void *vaddr)
420 {
421         kmem_cache_free(iommu_devinfo_cache, vaddr);
422 }
423
424 struct iova *alloc_iova_mem(void)
425 {
426         return iommu_kmem_cache_alloc(iommu_iova_cache);
427 }
428
429 void free_iova_mem(struct iova *iova)
430 {
431         kmem_cache_free(iommu_iova_cache, iova);
432 }
433
434
435 static inline int width_to_agaw(int width);
436
437 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
438 {
439         unsigned long sagaw;
440         int agaw = -1;
441
442         sagaw = cap_sagaw(iommu->cap);
443         for (agaw = width_to_agaw(max_gaw);
444              agaw >= 0; agaw--) {
445                 if (test_bit(agaw, &sagaw))
446                         break;
447         }
448
449         return agaw;
450 }
451
452 /*
453  * Calculate max SAGAW for each iommu.
454  */
455 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
456 {
457         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
458 }
459
460 /*
461  * calculate agaw for each iommu.
462  * "SAGAW" may be different across iommus, use a default agaw, and
463  * get a supported less agaw for iommus that don't support the default agaw.
464  */
465 int iommu_calculate_agaw(struct intel_iommu *iommu)
466 {
467         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
468 }
469
470 /* This functionin only returns single iommu in a domain */
471 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
472 {
473         int iommu_id;
474
475         /* si_domain and vm domain should not get here. */
476         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
477         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
478
479         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
480         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
481                 return NULL;
482
483         return g_iommus[iommu_id];
484 }
485
486 static void domain_update_iommu_coherency(struct dmar_domain *domain)
487 {
488         int i;
489
490         domain->iommu_coherency = 1;
491
492         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
493         for (; i < g_num_of_iommus; ) {
494                 if (!ecap_coherent(g_iommus[i]->ecap)) {
495                         domain->iommu_coherency = 0;
496                         break;
497                 }
498                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
499         }
500 }
501
502 static void domain_update_iommu_snooping(struct dmar_domain *domain)
503 {
504         int i;
505
506         domain->iommu_snooping = 1;
507
508         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
509         for (; i < g_num_of_iommus; ) {
510                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
511                         domain->iommu_snooping = 0;
512                         break;
513                 }
514                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
515         }
516 }
517
518 /* Some capabilities may be different across iommus */
519 static void domain_update_iommu_cap(struct dmar_domain *domain)
520 {
521         domain_update_iommu_coherency(domain);
522         domain_update_iommu_snooping(domain);
523 }
524
525 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
526 {
527         struct dmar_drhd_unit *drhd = NULL;
528         int i;
529
530         for_each_drhd_unit(drhd) {
531                 if (drhd->ignored)
532                         continue;
533                 if (segment != drhd->segment)
534                         continue;
535
536                 for (i = 0; i < drhd->devices_cnt; i++) {
537                         if (drhd->devices[i] &&
538                             drhd->devices[i]->bus->number == bus &&
539                             drhd->devices[i]->devfn == devfn)
540                                 return drhd->iommu;
541                         if (drhd->devices[i] &&
542                             drhd->devices[i]->subordinate &&
543                             drhd->devices[i]->subordinate->number <= bus &&
544                             drhd->devices[i]->subordinate->subordinate >= bus)
545                                 return drhd->iommu;
546                 }
547
548                 if (drhd->include_all)
549                         return drhd->iommu;
550         }
551
552         return NULL;
553 }
554
555 static void domain_flush_cache(struct dmar_domain *domain,
556                                void *addr, int size)
557 {
558         if (!domain->iommu_coherency)
559                 clflush_cache_range(addr, size);
560 }
561
562 /* Gets context entry for a given bus and devfn */
563 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
564                 u8 bus, u8 devfn)
565 {
566         struct root_entry *root;
567         struct context_entry *context;
568         unsigned long phy_addr;
569         unsigned long flags;
570
571         spin_lock_irqsave(&iommu->lock, flags);
572         root = &iommu->root_entry[bus];
573         context = get_context_addr_from_root(root);
574         if (!context) {
575                 context = (struct context_entry *)alloc_pgtable_page();
576                 if (!context) {
577                         spin_unlock_irqrestore(&iommu->lock, flags);
578                         return NULL;
579                 }
580                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
581                 phy_addr = virt_to_phys((void *)context);
582                 set_root_value(root, phy_addr);
583                 set_root_present(root);
584                 __iommu_flush_cache(iommu, root, sizeof(*root));
585         }
586         spin_unlock_irqrestore(&iommu->lock, flags);
587         return &context[devfn];
588 }
589
590 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
591 {
592         struct root_entry *root;
593         struct context_entry *context;
594         int ret;
595         unsigned long flags;
596
597         spin_lock_irqsave(&iommu->lock, flags);
598         root = &iommu->root_entry[bus];
599         context = get_context_addr_from_root(root);
600         if (!context) {
601                 ret = 0;
602                 goto out;
603         }
604         ret = context_present(&context[devfn]);
605 out:
606         spin_unlock_irqrestore(&iommu->lock, flags);
607         return ret;
608 }
609
610 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
611 {
612         struct root_entry *root;
613         struct context_entry *context;
614         unsigned long flags;
615
616         spin_lock_irqsave(&iommu->lock, flags);
617         root = &iommu->root_entry[bus];
618         context = get_context_addr_from_root(root);
619         if (context) {
620                 context_clear_entry(&context[devfn]);
621                 __iommu_flush_cache(iommu, &context[devfn], \
622                         sizeof(*context));
623         }
624         spin_unlock_irqrestore(&iommu->lock, flags);
625 }
626
627 static void free_context_table(struct intel_iommu *iommu)
628 {
629         struct root_entry *root;
630         int i;
631         unsigned long flags;
632         struct context_entry *context;
633
634         spin_lock_irqsave(&iommu->lock, flags);
635         if (!iommu->root_entry) {
636                 goto out;
637         }
638         for (i = 0; i < ROOT_ENTRY_NR; i++) {
639                 root = &iommu->root_entry[i];
640                 context = get_context_addr_from_root(root);
641                 if (context)
642                         free_pgtable_page(context);
643         }
644         free_pgtable_page(iommu->root_entry);
645         iommu->root_entry = NULL;
646 out:
647         spin_unlock_irqrestore(&iommu->lock, flags);
648 }
649
650 /* page table handling */
651 #define LEVEL_STRIDE            (9)
652 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
653
654 static inline int agaw_to_level(int agaw)
655 {
656         return agaw + 2;
657 }
658
659 static inline int agaw_to_width(int agaw)
660 {
661         return 30 + agaw * LEVEL_STRIDE;
662
663 }
664
665 static inline int width_to_agaw(int width)
666 {
667         return (width - 30) / LEVEL_STRIDE;
668 }
669
670 static inline unsigned int level_to_offset_bits(int level)
671 {
672         return (level - 1) * LEVEL_STRIDE;
673 }
674
675 static inline int pfn_level_offset(unsigned long pfn, int level)
676 {
677         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
678 }
679
680 static inline unsigned long level_mask(int level)
681 {
682         return -1UL << level_to_offset_bits(level);
683 }
684
685 static inline unsigned long level_size(int level)
686 {
687         return 1UL << level_to_offset_bits(level);
688 }
689
690 static inline unsigned long align_to_level(unsigned long pfn, int level)
691 {
692         return (pfn + level_size(level) - 1) & level_mask(level);
693 }
694
695 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
696 {
697         int addr_width = agaw_to_width(domain->agaw);
698         struct dma_pte *parent, *pte = NULL;
699         int level = agaw_to_level(domain->agaw);
700         int offset;
701         unsigned long flags;
702
703         BUG_ON(!domain->pgd);
704         BUG_ON(addr >> addr_width);
705         parent = domain->pgd;
706
707         spin_lock_irqsave(&domain->mapping_lock, flags);
708         while (level > 0) {
709                 void *tmp_page;
710
711                 offset = pfn_level_offset(addr >> VTD_PAGE_SHIFT, level);
712                 pte = &parent[offset];
713                 if (level == 1)
714                         break;
715
716                 if (!dma_pte_present(pte)) {
717                         tmp_page = alloc_pgtable_page();
718
719                         if (!tmp_page) {
720                                 spin_unlock_irqrestore(&domain->mapping_lock,
721                                         flags);
722                                 return NULL;
723                         }
724                         domain_flush_cache(domain, tmp_page, PAGE_SIZE);
725                         dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
726                         /*
727                          * high level table always sets r/w, last level page
728                          * table control read/write
729                          */
730                         dma_set_pte_readable(pte);
731                         dma_set_pte_writable(pte);
732                         domain_flush_cache(domain, pte, sizeof(*pte));
733                 }
734                 parent = phys_to_virt(dma_pte_addr(pte));
735                 level--;
736         }
737
738         spin_unlock_irqrestore(&domain->mapping_lock, flags);
739         return pte;
740 }
741
742 /* return address's pte at specific level */
743 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
744                                          unsigned long pfn,
745                                          int level)
746 {
747         struct dma_pte *parent, *pte = NULL;
748         int total = agaw_to_level(domain->agaw);
749         int offset;
750
751         parent = domain->pgd;
752         while (level <= total) {
753                 offset = pfn_level_offset(pfn, total);
754                 pte = &parent[offset];
755                 if (level == total)
756                         return pte;
757
758                 if (!dma_pte_present(pte))
759                         break;
760                 parent = phys_to_virt(dma_pte_addr(pte));
761                 total--;
762         }
763         return NULL;
764 }
765
766 /* clear one page's page table */
767 static void dma_pte_clear_one(struct dmar_domain *domain, unsigned long pfn)
768 {
769         struct dma_pte *pte = NULL;
770
771         /* get last level pte */
772         pte = dma_pfn_level_pte(domain, pfn, 1);
773
774         if (pte) {
775                 dma_clear_pte(pte);
776                 domain_flush_cache(domain, pte, sizeof(*pte));
777         }
778 }
779
780 /* clear last level pte, a tlb flush should be followed */
781 static void dma_pte_clear_range(struct dmar_domain *domain,
782                                 unsigned long start_pfn,
783                                 unsigned long last_pfn)
784 {
785         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
786
787         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
788         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
789
790         /* we don't need lock here; nobody else touches the iova range */
791         while (start_pfn <= last_pfn) {
792                 dma_pte_clear_one(domain, start_pfn);
793                 start_pfn++;
794         }
795 }
796
797 /* free page table pages. last level pte should already be cleared */
798 static void dma_pte_free_pagetable(struct dmar_domain *domain,
799                                    unsigned long start_pfn,
800                                    unsigned long last_pfn)
801 {
802         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
803         struct dma_pte *pte;
804         int total = agaw_to_level(domain->agaw);
805         int level;
806         unsigned long tmp;
807
808         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
809         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
810
811         /* we don't need lock here, nobody else touches the iova range */
812         level = 2;
813         while (level <= total) {
814                 tmp = align_to_level(start_pfn, level);
815
816                 /* Only clear this pte/pmd if we're asked to clear its
817                    _whole_ range */
818                 if (tmp + level_size(level) - 1 > last_pfn)
819                         return;
820
821                 while (tmp <= last_pfn) {
822                         pte = dma_pfn_level_pte(domain, tmp, level);
823                         if (pte) {
824                                 free_pgtable_page(
825                                         phys_to_virt(dma_pte_addr(pte)));
826                                 dma_clear_pte(pte);
827                                 domain_flush_cache(domain, pte, sizeof(*pte));
828                         }
829                         tmp += level_size(level);
830                 }
831                 level++;
832         }
833         /* free pgd */
834         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
835                 free_pgtable_page(domain->pgd);
836                 domain->pgd = NULL;
837         }
838 }
839
840 /* iommu handling */
841 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
842 {
843         struct root_entry *root;
844         unsigned long flags;
845
846         root = (struct root_entry *)alloc_pgtable_page();
847         if (!root)
848                 return -ENOMEM;
849
850         __iommu_flush_cache(iommu, root, ROOT_SIZE);
851
852         spin_lock_irqsave(&iommu->lock, flags);
853         iommu->root_entry = root;
854         spin_unlock_irqrestore(&iommu->lock, flags);
855
856         return 0;
857 }
858
859 static void iommu_set_root_entry(struct intel_iommu *iommu)
860 {
861         void *addr;
862         u32 sts;
863         unsigned long flag;
864
865         addr = iommu->root_entry;
866
867         spin_lock_irqsave(&iommu->register_lock, flag);
868         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
869
870         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
871
872         /* Make sure hardware complete it */
873         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
874                       readl, (sts & DMA_GSTS_RTPS), sts);
875
876         spin_unlock_irqrestore(&iommu->register_lock, flag);
877 }
878
879 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
880 {
881         u32 val;
882         unsigned long flag;
883
884         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
885                 return;
886
887         spin_lock_irqsave(&iommu->register_lock, flag);
888         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
889
890         /* Make sure hardware complete it */
891         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
892                       readl, (!(val & DMA_GSTS_WBFS)), val);
893
894         spin_unlock_irqrestore(&iommu->register_lock, flag);
895 }
896
897 /* return value determine if we need a write buffer flush */
898 static void __iommu_flush_context(struct intel_iommu *iommu,
899                                   u16 did, u16 source_id, u8 function_mask,
900                                   u64 type)
901 {
902         u64 val = 0;
903         unsigned long flag;
904
905         switch (type) {
906         case DMA_CCMD_GLOBAL_INVL:
907                 val = DMA_CCMD_GLOBAL_INVL;
908                 break;
909         case DMA_CCMD_DOMAIN_INVL:
910                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
911                 break;
912         case DMA_CCMD_DEVICE_INVL:
913                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
914                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
915                 break;
916         default:
917                 BUG();
918         }
919         val |= DMA_CCMD_ICC;
920
921         spin_lock_irqsave(&iommu->register_lock, flag);
922         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
923
924         /* Make sure hardware complete it */
925         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
926                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
927
928         spin_unlock_irqrestore(&iommu->register_lock, flag);
929 }
930
931 /* return value determine if we need a write buffer flush */
932 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
933                                 u64 addr, unsigned int size_order, u64 type)
934 {
935         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
936         u64 val = 0, val_iva = 0;
937         unsigned long flag;
938
939         switch (type) {
940         case DMA_TLB_GLOBAL_FLUSH:
941                 /* global flush doesn't need set IVA_REG */
942                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
943                 break;
944         case DMA_TLB_DSI_FLUSH:
945                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
946                 break;
947         case DMA_TLB_PSI_FLUSH:
948                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
949                 /* Note: always flush non-leaf currently */
950                 val_iva = size_order | addr;
951                 break;
952         default:
953                 BUG();
954         }
955         /* Note: set drain read/write */
956 #if 0
957         /*
958          * This is probably to be super secure.. Looks like we can
959          * ignore it without any impact.
960          */
961         if (cap_read_drain(iommu->cap))
962                 val |= DMA_TLB_READ_DRAIN;
963 #endif
964         if (cap_write_drain(iommu->cap))
965                 val |= DMA_TLB_WRITE_DRAIN;
966
967         spin_lock_irqsave(&iommu->register_lock, flag);
968         /* Note: Only uses first TLB reg currently */
969         if (val_iva)
970                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
971         dmar_writeq(iommu->reg + tlb_offset + 8, val);
972
973         /* Make sure hardware complete it */
974         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
975                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
976
977         spin_unlock_irqrestore(&iommu->register_lock, flag);
978
979         /* check IOTLB invalidation granularity */
980         if (DMA_TLB_IAIG(val) == 0)
981                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
982         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
983                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
984                         (unsigned long long)DMA_TLB_IIRG(type),
985                         (unsigned long long)DMA_TLB_IAIG(val));
986 }
987
988 static struct device_domain_info *iommu_support_dev_iotlb(
989         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
990 {
991         int found = 0;
992         unsigned long flags;
993         struct device_domain_info *info;
994         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
995
996         if (!ecap_dev_iotlb_support(iommu->ecap))
997                 return NULL;
998
999         if (!iommu->qi)
1000                 return NULL;
1001
1002         spin_lock_irqsave(&device_domain_lock, flags);
1003         list_for_each_entry(info, &domain->devices, link)
1004                 if (info->bus == bus && info->devfn == devfn) {
1005                         found = 1;
1006                         break;
1007                 }
1008         spin_unlock_irqrestore(&device_domain_lock, flags);
1009
1010         if (!found || !info->dev)
1011                 return NULL;
1012
1013         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1014                 return NULL;
1015
1016         if (!dmar_find_matched_atsr_unit(info->dev))
1017                 return NULL;
1018
1019         info->iommu = iommu;
1020
1021         return info;
1022 }
1023
1024 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1025 {
1026         if (!info)
1027                 return;
1028
1029         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1030 }
1031
1032 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1033 {
1034         if (!info->dev || !pci_ats_enabled(info->dev))
1035                 return;
1036
1037         pci_disable_ats(info->dev);
1038 }
1039
1040 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1041                                   u64 addr, unsigned mask)
1042 {
1043         u16 sid, qdep;
1044         unsigned long flags;
1045         struct device_domain_info *info;
1046
1047         spin_lock_irqsave(&device_domain_lock, flags);
1048         list_for_each_entry(info, &domain->devices, link) {
1049                 if (!info->dev || !pci_ats_enabled(info->dev))
1050                         continue;
1051
1052                 sid = info->bus << 8 | info->devfn;
1053                 qdep = pci_ats_queue_depth(info->dev);
1054                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1055         }
1056         spin_unlock_irqrestore(&device_domain_lock, flags);
1057 }
1058
1059 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1060                                   u64 addr, unsigned int pages)
1061 {
1062         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1063
1064         BUG_ON(addr & (~VTD_PAGE_MASK));
1065         BUG_ON(pages == 0);
1066
1067         /*
1068          * Fallback to domain selective flush if no PSI support or the size is
1069          * too big.
1070          * PSI requires page size to be 2 ^ x, and the base address is naturally
1071          * aligned to the size
1072          */
1073         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1074                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1075                                                 DMA_TLB_DSI_FLUSH);
1076         else
1077                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1078                                                 DMA_TLB_PSI_FLUSH);
1079
1080         /*
1081          * In caching mode, domain ID 0 is reserved for non-present to present
1082          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1083          */
1084         if (!cap_caching_mode(iommu->cap) || did)
1085                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1086 }
1087
1088 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1089 {
1090         u32 pmen;
1091         unsigned long flags;
1092
1093         spin_lock_irqsave(&iommu->register_lock, flags);
1094         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1095         pmen &= ~DMA_PMEN_EPM;
1096         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1097
1098         /* wait for the protected region status bit to clear */
1099         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1100                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1101
1102         spin_unlock_irqrestore(&iommu->register_lock, flags);
1103 }
1104
1105 static int iommu_enable_translation(struct intel_iommu *iommu)
1106 {
1107         u32 sts;
1108         unsigned long flags;
1109
1110         spin_lock_irqsave(&iommu->register_lock, flags);
1111         iommu->gcmd |= DMA_GCMD_TE;
1112         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1113
1114         /* Make sure hardware complete it */
1115         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1116                       readl, (sts & DMA_GSTS_TES), sts);
1117
1118         spin_unlock_irqrestore(&iommu->register_lock, flags);
1119         return 0;
1120 }
1121
1122 static int iommu_disable_translation(struct intel_iommu *iommu)
1123 {
1124         u32 sts;
1125         unsigned long flag;
1126
1127         spin_lock_irqsave(&iommu->register_lock, flag);
1128         iommu->gcmd &= ~DMA_GCMD_TE;
1129         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1130
1131         /* Make sure hardware complete it */
1132         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1133                       readl, (!(sts & DMA_GSTS_TES)), sts);
1134
1135         spin_unlock_irqrestore(&iommu->register_lock, flag);
1136         return 0;
1137 }
1138
1139
1140 static int iommu_init_domains(struct intel_iommu *iommu)
1141 {
1142         unsigned long ndomains;
1143         unsigned long nlongs;
1144
1145         ndomains = cap_ndoms(iommu->cap);
1146         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1147         nlongs = BITS_TO_LONGS(ndomains);
1148
1149         /* TBD: there might be 64K domains,
1150          * consider other allocation for future chip
1151          */
1152         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1153         if (!iommu->domain_ids) {
1154                 printk(KERN_ERR "Allocating domain id array failed\n");
1155                 return -ENOMEM;
1156         }
1157         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1158                         GFP_KERNEL);
1159         if (!iommu->domains) {
1160                 printk(KERN_ERR "Allocating domain array failed\n");
1161                 kfree(iommu->domain_ids);
1162                 return -ENOMEM;
1163         }
1164
1165         spin_lock_init(&iommu->lock);
1166
1167         /*
1168          * if Caching mode is set, then invalid translations are tagged
1169          * with domainid 0. Hence we need to pre-allocate it.
1170          */
1171         if (cap_caching_mode(iommu->cap))
1172                 set_bit(0, iommu->domain_ids);
1173         return 0;
1174 }
1175
1176
1177 static void domain_exit(struct dmar_domain *domain);
1178 static void vm_domain_exit(struct dmar_domain *domain);
1179
1180 void free_dmar_iommu(struct intel_iommu *iommu)
1181 {
1182         struct dmar_domain *domain;
1183         int i;
1184         unsigned long flags;
1185
1186         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1187         for (; i < cap_ndoms(iommu->cap); ) {
1188                 domain = iommu->domains[i];
1189                 clear_bit(i, iommu->domain_ids);
1190
1191                 spin_lock_irqsave(&domain->iommu_lock, flags);
1192                 if (--domain->iommu_count == 0) {
1193                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1194                                 vm_domain_exit(domain);
1195                         else
1196                                 domain_exit(domain);
1197                 }
1198                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1199
1200                 i = find_next_bit(iommu->domain_ids,
1201                         cap_ndoms(iommu->cap), i+1);
1202         }
1203
1204         if (iommu->gcmd & DMA_GCMD_TE)
1205                 iommu_disable_translation(iommu);
1206
1207         if (iommu->irq) {
1208                 set_irq_data(iommu->irq, NULL);
1209                 /* This will mask the irq */
1210                 free_irq(iommu->irq, iommu);
1211                 destroy_irq(iommu->irq);
1212         }
1213
1214         kfree(iommu->domains);
1215         kfree(iommu->domain_ids);
1216
1217         g_iommus[iommu->seq_id] = NULL;
1218
1219         /* if all iommus are freed, free g_iommus */
1220         for (i = 0; i < g_num_of_iommus; i++) {
1221                 if (g_iommus[i])
1222                         break;
1223         }
1224
1225         if (i == g_num_of_iommus)
1226                 kfree(g_iommus);
1227
1228         /* free context mapping */
1229         free_context_table(iommu);
1230 }
1231
1232 static struct dmar_domain *alloc_domain(void)
1233 {
1234         struct dmar_domain *domain;
1235
1236         domain = alloc_domain_mem();
1237         if (!domain)
1238                 return NULL;
1239
1240         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1241         domain->flags = 0;
1242
1243         return domain;
1244 }
1245
1246 static int iommu_attach_domain(struct dmar_domain *domain,
1247                                struct intel_iommu *iommu)
1248 {
1249         int num;
1250         unsigned long ndomains;
1251         unsigned long flags;
1252
1253         ndomains = cap_ndoms(iommu->cap);
1254
1255         spin_lock_irqsave(&iommu->lock, flags);
1256
1257         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1258         if (num >= ndomains) {
1259                 spin_unlock_irqrestore(&iommu->lock, flags);
1260                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1261                 return -ENOMEM;
1262         }
1263
1264         domain->id = num;
1265         set_bit(num, iommu->domain_ids);
1266         set_bit(iommu->seq_id, &domain->iommu_bmp);
1267         iommu->domains[num] = domain;
1268         spin_unlock_irqrestore(&iommu->lock, flags);
1269
1270         return 0;
1271 }
1272
1273 static void iommu_detach_domain(struct dmar_domain *domain,
1274                                 struct intel_iommu *iommu)
1275 {
1276         unsigned long flags;
1277         int num, ndomains;
1278         int found = 0;
1279
1280         spin_lock_irqsave(&iommu->lock, flags);
1281         ndomains = cap_ndoms(iommu->cap);
1282         num = find_first_bit(iommu->domain_ids, ndomains);
1283         for (; num < ndomains; ) {
1284                 if (iommu->domains[num] == domain) {
1285                         found = 1;
1286                         break;
1287                 }
1288                 num = find_next_bit(iommu->domain_ids,
1289                                     cap_ndoms(iommu->cap), num+1);
1290         }
1291
1292         if (found) {
1293                 clear_bit(num, iommu->domain_ids);
1294                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1295                 iommu->domains[num] = NULL;
1296         }
1297         spin_unlock_irqrestore(&iommu->lock, flags);
1298 }
1299
1300 static struct iova_domain reserved_iova_list;
1301 static struct lock_class_key reserved_alloc_key;
1302 static struct lock_class_key reserved_rbtree_key;
1303
1304 static void dmar_init_reserved_ranges(void)
1305 {
1306         struct pci_dev *pdev = NULL;
1307         struct iova *iova;
1308         int i;
1309         u64 addr, size;
1310
1311         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1312
1313         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1314                 &reserved_alloc_key);
1315         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1316                 &reserved_rbtree_key);
1317
1318         /* IOAPIC ranges shouldn't be accessed by DMA */
1319         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1320                 IOVA_PFN(IOAPIC_RANGE_END));
1321         if (!iova)
1322                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1323
1324         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1325         for_each_pci_dev(pdev) {
1326                 struct resource *r;
1327
1328                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1329                         r = &pdev->resource[i];
1330                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1331                                 continue;
1332                         addr = r->start;
1333                         addr &= PHYSICAL_PAGE_MASK;
1334                         size = r->end - addr;
1335                         size = PAGE_ALIGN(size);
1336                         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1337                                 IOVA_PFN(size + addr) - 1);
1338                         if (!iova)
1339                                 printk(KERN_ERR "Reserve iova failed\n");
1340                 }
1341         }
1342
1343 }
1344
1345 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1346 {
1347         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1348 }
1349
1350 static inline int guestwidth_to_adjustwidth(int gaw)
1351 {
1352         int agaw;
1353         int r = (gaw - 12) % 9;
1354
1355         if (r == 0)
1356                 agaw = gaw;
1357         else
1358                 agaw = gaw + 9 - r;
1359         if (agaw > 64)
1360                 agaw = 64;
1361         return agaw;
1362 }
1363
1364 static int domain_init(struct dmar_domain *domain, int guest_width)
1365 {
1366         struct intel_iommu *iommu;
1367         int adjust_width, agaw;
1368         unsigned long sagaw;
1369
1370         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1371         spin_lock_init(&domain->mapping_lock);
1372         spin_lock_init(&domain->iommu_lock);
1373
1374         domain_reserve_special_ranges(domain);
1375
1376         /* calculate AGAW */
1377         iommu = domain_get_iommu(domain);
1378         if (guest_width > cap_mgaw(iommu->cap))
1379                 guest_width = cap_mgaw(iommu->cap);
1380         domain->gaw = guest_width;
1381         adjust_width = guestwidth_to_adjustwidth(guest_width);
1382         agaw = width_to_agaw(adjust_width);
1383         sagaw = cap_sagaw(iommu->cap);
1384         if (!test_bit(agaw, &sagaw)) {
1385                 /* hardware doesn't support it, choose a bigger one */
1386                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1387                 agaw = find_next_bit(&sagaw, 5, agaw);
1388                 if (agaw >= 5)
1389                         return -ENODEV;
1390         }
1391         domain->agaw = agaw;
1392         INIT_LIST_HEAD(&domain->devices);
1393
1394         if (ecap_coherent(iommu->ecap))
1395                 domain->iommu_coherency = 1;
1396         else
1397                 domain->iommu_coherency = 0;
1398
1399         if (ecap_sc_support(iommu->ecap))
1400                 domain->iommu_snooping = 1;
1401         else
1402                 domain->iommu_snooping = 0;
1403
1404         domain->iommu_count = 1;
1405
1406         /* always allocate the top pgd */
1407         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1408         if (!domain->pgd)
1409                 return -ENOMEM;
1410         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1411         return 0;
1412 }
1413
1414 static void domain_exit(struct dmar_domain *domain)
1415 {
1416         struct dmar_drhd_unit *drhd;
1417         struct intel_iommu *iommu;
1418
1419         /* Domain 0 is reserved, so dont process it */
1420         if (!domain)
1421                 return;
1422
1423         domain_remove_dev_info(domain);
1424         /* destroy iovas */
1425         put_iova_domain(&domain->iovad);
1426
1427         /* clear ptes */
1428         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1429
1430         /* free page tables */
1431         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1432
1433         for_each_active_iommu(iommu, drhd)
1434                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1435                         iommu_detach_domain(domain, iommu);
1436
1437         free_domain_mem(domain);
1438 }
1439
1440 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1441                                  u8 bus, u8 devfn, int translation)
1442 {
1443         struct context_entry *context;
1444         unsigned long flags;
1445         struct intel_iommu *iommu;
1446         struct dma_pte *pgd;
1447         unsigned long num;
1448         unsigned long ndomains;
1449         int id;
1450         int agaw;
1451         struct device_domain_info *info = NULL;
1452
1453         pr_debug("Set context mapping for %02x:%02x.%d\n",
1454                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1455
1456         BUG_ON(!domain->pgd);
1457         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1458                translation != CONTEXT_TT_MULTI_LEVEL);
1459
1460         iommu = device_to_iommu(segment, bus, devfn);
1461         if (!iommu)
1462                 return -ENODEV;
1463
1464         context = device_to_context_entry(iommu, bus, devfn);
1465         if (!context)
1466                 return -ENOMEM;
1467         spin_lock_irqsave(&iommu->lock, flags);
1468         if (context_present(context)) {
1469                 spin_unlock_irqrestore(&iommu->lock, flags);
1470                 return 0;
1471         }
1472
1473         id = domain->id;
1474         pgd = domain->pgd;
1475
1476         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1477             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1478                 int found = 0;
1479
1480                 /* find an available domain id for this device in iommu */
1481                 ndomains = cap_ndoms(iommu->cap);
1482                 num = find_first_bit(iommu->domain_ids, ndomains);
1483                 for (; num < ndomains; ) {
1484                         if (iommu->domains[num] == domain) {
1485                                 id = num;
1486                                 found = 1;
1487                                 break;
1488                         }
1489                         num = find_next_bit(iommu->domain_ids,
1490                                             cap_ndoms(iommu->cap), num+1);
1491                 }
1492
1493                 if (found == 0) {
1494                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1495                         if (num >= ndomains) {
1496                                 spin_unlock_irqrestore(&iommu->lock, flags);
1497                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1498                                 return -EFAULT;
1499                         }
1500
1501                         set_bit(num, iommu->domain_ids);
1502                         set_bit(iommu->seq_id, &domain->iommu_bmp);
1503                         iommu->domains[num] = domain;
1504                         id = num;
1505                 }
1506
1507                 /* Skip top levels of page tables for
1508                  * iommu which has less agaw than default.
1509                  */
1510                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1511                         pgd = phys_to_virt(dma_pte_addr(pgd));
1512                         if (!dma_pte_present(pgd)) {
1513                                 spin_unlock_irqrestore(&iommu->lock, flags);
1514                                 return -ENOMEM;
1515                         }
1516                 }
1517         }
1518
1519         context_set_domain_id(context, id);
1520
1521         if (translation != CONTEXT_TT_PASS_THROUGH) {
1522                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1523                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1524                                      CONTEXT_TT_MULTI_LEVEL;
1525         }
1526         /*
1527          * In pass through mode, AW must be programmed to indicate the largest
1528          * AGAW value supported by hardware. And ASR is ignored by hardware.
1529          */
1530         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1531                 context_set_address_width(context, iommu->msagaw);
1532         else {
1533                 context_set_address_root(context, virt_to_phys(pgd));
1534                 context_set_address_width(context, iommu->agaw);
1535         }
1536
1537         context_set_translation_type(context, translation);
1538         context_set_fault_enable(context);
1539         context_set_present(context);
1540         domain_flush_cache(domain, context, sizeof(*context));
1541
1542         /*
1543          * It's a non-present to present mapping. If hardware doesn't cache
1544          * non-present entry we only need to flush the write-buffer. If the
1545          * _does_ cache non-present entries, then it does so in the special
1546          * domain #0, which we have to flush:
1547          */
1548         if (cap_caching_mode(iommu->cap)) {
1549                 iommu->flush.flush_context(iommu, 0,
1550                                            (((u16)bus) << 8) | devfn,
1551                                            DMA_CCMD_MASK_NOBIT,
1552                                            DMA_CCMD_DEVICE_INVL);
1553                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1554         } else {
1555                 iommu_flush_write_buffer(iommu);
1556         }
1557         iommu_enable_dev_iotlb(info);
1558         spin_unlock_irqrestore(&iommu->lock, flags);
1559
1560         spin_lock_irqsave(&domain->iommu_lock, flags);
1561         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1562                 domain->iommu_count++;
1563                 domain_update_iommu_cap(domain);
1564         }
1565         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1566         return 0;
1567 }
1568
1569 static int
1570 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1571                         int translation)
1572 {
1573         int ret;
1574         struct pci_dev *tmp, *parent;
1575
1576         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1577                                          pdev->bus->number, pdev->devfn,
1578                                          translation);
1579         if (ret)
1580                 return ret;
1581
1582         /* dependent device mapping */
1583         tmp = pci_find_upstream_pcie_bridge(pdev);
1584         if (!tmp)
1585                 return 0;
1586         /* Secondary interface's bus number and devfn 0 */
1587         parent = pdev->bus->self;
1588         while (parent != tmp) {
1589                 ret = domain_context_mapping_one(domain,
1590                                                  pci_domain_nr(parent->bus),
1591                                                  parent->bus->number,
1592                                                  parent->devfn, translation);
1593                 if (ret)
1594                         return ret;
1595                 parent = parent->bus->self;
1596         }
1597         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1598                 return domain_context_mapping_one(domain,
1599                                         pci_domain_nr(tmp->subordinate),
1600                                         tmp->subordinate->number, 0,
1601                                         translation);
1602         else /* this is a legacy PCI bridge */
1603                 return domain_context_mapping_one(domain,
1604                                                   pci_domain_nr(tmp->bus),
1605                                                   tmp->bus->number,
1606                                                   tmp->devfn,
1607                                                   translation);
1608 }
1609
1610 static int domain_context_mapped(struct pci_dev *pdev)
1611 {
1612         int ret;
1613         struct pci_dev *tmp, *parent;
1614         struct intel_iommu *iommu;
1615
1616         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1617                                 pdev->devfn);
1618         if (!iommu)
1619                 return -ENODEV;
1620
1621         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1622         if (!ret)
1623                 return ret;
1624         /* dependent device mapping */
1625         tmp = pci_find_upstream_pcie_bridge(pdev);
1626         if (!tmp)
1627                 return ret;
1628         /* Secondary interface's bus number and devfn 0 */
1629         parent = pdev->bus->self;
1630         while (parent != tmp) {
1631                 ret = device_context_mapped(iommu, parent->bus->number,
1632                                             parent->devfn);
1633                 if (!ret)
1634                         return ret;
1635                 parent = parent->bus->self;
1636         }
1637         if (tmp->is_pcie)
1638                 return device_context_mapped(iommu, tmp->subordinate->number,
1639                                              0);
1640         else
1641                 return device_context_mapped(iommu, tmp->bus->number,
1642                                              tmp->devfn);
1643 }
1644
1645 static int
1646 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1647                         u64 hpa, size_t size, int prot)
1648 {
1649         u64 start_pfn, end_pfn;
1650         struct dma_pte *pte;
1651         int index;
1652         int addr_width = agaw_to_width(domain->agaw);
1653
1654         BUG_ON(hpa >> addr_width);
1655
1656         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1657                 return -EINVAL;
1658         iova &= PAGE_MASK;
1659         start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1660         end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1661         index = 0;
1662         while (start_pfn < end_pfn) {
1663                 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1664                 if (!pte)
1665                         return -ENOMEM;
1666                 /* We don't need lock here, nobody else
1667                  * touches the iova range
1668                  */
1669                 BUG_ON(dma_pte_addr(pte));
1670                 dma_set_pte_pfn(pte, start_pfn);
1671                 dma_set_pte_prot(pte, prot);
1672                 if (prot & DMA_PTE_SNP)
1673                         dma_set_pte_snp(pte);
1674                 domain_flush_cache(domain, pte, sizeof(*pte));
1675                 start_pfn++;
1676                 index++;
1677         }
1678         return 0;
1679 }
1680
1681 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1682 {
1683         if (!iommu)
1684                 return;
1685
1686         clear_context_table(iommu, bus, devfn);
1687         iommu->flush.flush_context(iommu, 0, 0, 0,
1688                                            DMA_CCMD_GLOBAL_INVL);
1689         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1690 }
1691
1692 static void domain_remove_dev_info(struct dmar_domain *domain)
1693 {
1694         struct device_domain_info *info;
1695         unsigned long flags;
1696         struct intel_iommu *iommu;
1697
1698         spin_lock_irqsave(&device_domain_lock, flags);
1699         while (!list_empty(&domain->devices)) {
1700                 info = list_entry(domain->devices.next,
1701                         struct device_domain_info, link);
1702                 list_del(&info->link);
1703                 list_del(&info->global);
1704                 if (info->dev)
1705                         info->dev->dev.archdata.iommu = NULL;
1706                 spin_unlock_irqrestore(&device_domain_lock, flags);
1707
1708                 iommu_disable_dev_iotlb(info);
1709                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1710                 iommu_detach_dev(iommu, info->bus, info->devfn);
1711                 free_devinfo_mem(info);
1712
1713                 spin_lock_irqsave(&device_domain_lock, flags);
1714         }
1715         spin_unlock_irqrestore(&device_domain_lock, flags);
1716 }
1717
1718 /*
1719  * find_domain
1720  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1721  */
1722 static struct dmar_domain *
1723 find_domain(struct pci_dev *pdev)
1724 {
1725         struct device_domain_info *info;
1726
1727         /* No lock here, assumes no domain exit in normal case */
1728         info = pdev->dev.archdata.iommu;
1729         if (info)
1730                 return info->domain;
1731         return NULL;
1732 }
1733
1734 /* domain is initialized */
1735 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1736 {
1737         struct dmar_domain *domain, *found = NULL;
1738         struct intel_iommu *iommu;
1739         struct dmar_drhd_unit *drhd;
1740         struct device_domain_info *info, *tmp;
1741         struct pci_dev *dev_tmp;
1742         unsigned long flags;
1743         int bus = 0, devfn = 0;
1744         int segment;
1745         int ret;
1746
1747         domain = find_domain(pdev);
1748         if (domain)
1749                 return domain;
1750
1751         segment = pci_domain_nr(pdev->bus);
1752
1753         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1754         if (dev_tmp) {
1755                 if (dev_tmp->is_pcie) {
1756                         bus = dev_tmp->subordinate->number;
1757                         devfn = 0;
1758                 } else {
1759                         bus = dev_tmp->bus->number;
1760                         devfn = dev_tmp->devfn;
1761                 }
1762                 spin_lock_irqsave(&device_domain_lock, flags);
1763                 list_for_each_entry(info, &device_domain_list, global) {
1764                         if (info->segment == segment &&
1765                             info->bus == bus && info->devfn == devfn) {
1766                                 found = info->domain;
1767                                 break;
1768                         }
1769                 }
1770                 spin_unlock_irqrestore(&device_domain_lock, flags);
1771                 /* pcie-pci bridge already has a domain, uses it */
1772                 if (found) {
1773                         domain = found;
1774                         goto found_domain;
1775                 }
1776         }
1777
1778         domain = alloc_domain();
1779         if (!domain)
1780                 goto error;
1781
1782         /* Allocate new domain for the device */
1783         drhd = dmar_find_matched_drhd_unit(pdev);
1784         if (!drhd) {
1785                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1786                         pci_name(pdev));
1787                 return NULL;
1788         }
1789         iommu = drhd->iommu;
1790
1791         ret = iommu_attach_domain(domain, iommu);
1792         if (ret) {
1793                 domain_exit(domain);
1794                 goto error;
1795         }
1796
1797         if (domain_init(domain, gaw)) {
1798                 domain_exit(domain);
1799                 goto error;
1800         }
1801
1802         /* register pcie-to-pci device */
1803         if (dev_tmp) {
1804                 info = alloc_devinfo_mem();
1805                 if (!info) {
1806                         domain_exit(domain);
1807                         goto error;
1808                 }
1809                 info->segment = segment;
1810                 info->bus = bus;
1811                 info->devfn = devfn;
1812                 info->dev = NULL;
1813                 info->domain = domain;
1814                 /* This domain is shared by devices under p2p bridge */
1815                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1816
1817                 /* pcie-to-pci bridge already has a domain, uses it */
1818                 found = NULL;
1819                 spin_lock_irqsave(&device_domain_lock, flags);
1820                 list_for_each_entry(tmp, &device_domain_list, global) {
1821                         if (tmp->segment == segment &&
1822                             tmp->bus == bus && tmp->devfn == devfn) {
1823                                 found = tmp->domain;
1824                                 break;
1825                         }
1826                 }
1827                 if (found) {
1828                         free_devinfo_mem(info);
1829                         domain_exit(domain);
1830                         domain = found;
1831                 } else {
1832                         list_add(&info->link, &domain->devices);
1833                         list_add(&info->global, &device_domain_list);
1834                 }
1835                 spin_unlock_irqrestore(&device_domain_lock, flags);
1836         }
1837
1838 found_domain:
1839         info = alloc_devinfo_mem();
1840         if (!info)
1841                 goto error;
1842         info->segment = segment;
1843         info->bus = pdev->bus->number;
1844         info->devfn = pdev->devfn;
1845         info->dev = pdev;
1846         info->domain = domain;
1847         spin_lock_irqsave(&device_domain_lock, flags);
1848         /* somebody is fast */
1849         found = find_domain(pdev);
1850         if (found != NULL) {
1851                 spin_unlock_irqrestore(&device_domain_lock, flags);
1852                 if (found != domain) {
1853                         domain_exit(domain);
1854                         domain = found;
1855                 }
1856                 free_devinfo_mem(info);
1857                 return domain;
1858         }
1859         list_add(&info->link, &domain->devices);
1860         list_add(&info->global, &device_domain_list);
1861         pdev->dev.archdata.iommu = info;
1862         spin_unlock_irqrestore(&device_domain_lock, flags);
1863         return domain;
1864 error:
1865         /* recheck it here, maybe others set it */
1866         return find_domain(pdev);
1867 }
1868
1869 static int iommu_identity_mapping;
1870
1871 static int iommu_domain_identity_map(struct dmar_domain *domain,
1872                                      unsigned long long start,
1873                                      unsigned long long end)
1874 {
1875         unsigned long size;
1876         unsigned long long base;
1877
1878         /* The address might not be aligned */
1879         base = start & PAGE_MASK;
1880         size = end - base;
1881         size = PAGE_ALIGN(size);
1882         if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1883                         IOVA_PFN(base + size) - 1)) {
1884                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1885                 return -ENOMEM;
1886         }
1887
1888         pr_debug("Mapping reserved region %lx@%llx for domain %d\n",
1889                  size, base, domain->id);
1890         /*
1891          * RMRR range might have overlap with physical memory range,
1892          * clear it first
1893          */
1894         dma_pte_clear_range(domain, base >> VTD_PAGE_SHIFT,
1895                             (base + size - 1) >> VTD_PAGE_SHIFT);
1896
1897         return domain_page_mapping(domain, base, base, size,
1898                                    DMA_PTE_READ|DMA_PTE_WRITE);
1899 }
1900
1901 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1902                                       unsigned long long start,
1903                                       unsigned long long end)
1904 {
1905         struct dmar_domain *domain;
1906         int ret;
1907
1908         printk(KERN_INFO
1909                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1910                pci_name(pdev), start, end);
1911
1912         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1913         if (!domain)
1914                 return -ENOMEM;
1915
1916         ret = iommu_domain_identity_map(domain, start, end);
1917         if (ret)
1918                 goto error;
1919
1920         /* context entry init */
1921         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1922         if (ret)
1923                 goto error;
1924
1925         return 0;
1926
1927  error:
1928         domain_exit(domain);
1929         return ret;
1930 }
1931
1932 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1933         struct pci_dev *pdev)
1934 {
1935         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1936                 return 0;
1937         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1938                 rmrr->end_address + 1);
1939 }
1940
1941 #ifdef CONFIG_DMAR_FLOPPY_WA
1942 static inline void iommu_prepare_isa(void)
1943 {
1944         struct pci_dev *pdev;
1945         int ret;
1946
1947         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1948         if (!pdev)
1949                 return;
1950
1951         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1952         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1953
1954         if (ret)
1955                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1956                        "floppy might not work\n");
1957
1958 }
1959 #else
1960 static inline void iommu_prepare_isa(void)
1961 {
1962         return;
1963 }
1964 #endif /* !CONFIG_DMAR_FLPY_WA */
1965
1966 /* Initialize each context entry as pass through.*/
1967 static int __init init_context_pass_through(void)
1968 {
1969         struct pci_dev *pdev = NULL;
1970         struct dmar_domain *domain;
1971         int ret;
1972
1973         for_each_pci_dev(pdev) {
1974                 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1975                 ret = domain_context_mapping(domain, pdev,
1976                                              CONTEXT_TT_PASS_THROUGH);
1977                 if (ret)
1978                         return ret;
1979         }
1980         return 0;
1981 }
1982
1983 static int md_domain_init(struct dmar_domain *domain, int guest_width);
1984
1985 static int __init si_domain_work_fn(unsigned long start_pfn,
1986                                     unsigned long end_pfn, void *datax)
1987 {
1988         int *ret = datax;
1989
1990         *ret = iommu_domain_identity_map(si_domain,
1991                                          (uint64_t)start_pfn << PAGE_SHIFT,
1992                                          (uint64_t)end_pfn << PAGE_SHIFT);
1993         return *ret;
1994
1995 }
1996
1997 static int si_domain_init(void)
1998 {
1999         struct dmar_drhd_unit *drhd;
2000         struct intel_iommu *iommu;
2001         int nid, ret = 0;
2002
2003         si_domain = alloc_domain();
2004         if (!si_domain)
2005                 return -EFAULT;
2006
2007         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2008
2009         for_each_active_iommu(iommu, drhd) {
2010                 ret = iommu_attach_domain(si_domain, iommu);
2011                 if (ret) {
2012                         domain_exit(si_domain);
2013                         return -EFAULT;
2014                 }
2015         }
2016
2017         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2018                 domain_exit(si_domain);
2019                 return -EFAULT;
2020         }
2021
2022         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2023
2024         for_each_online_node(nid) {
2025                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2026                 if (ret)
2027                         return ret;
2028         }
2029
2030         return 0;
2031 }
2032
2033 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2034                                           struct pci_dev *pdev);
2035 static int identity_mapping(struct pci_dev *pdev)
2036 {
2037         struct device_domain_info *info;
2038
2039         if (likely(!iommu_identity_mapping))
2040                 return 0;
2041
2042
2043         list_for_each_entry(info, &si_domain->devices, link)
2044                 if (info->dev == pdev)
2045                         return 1;
2046         return 0;
2047 }
2048
2049 static int domain_add_dev_info(struct dmar_domain *domain,
2050                                   struct pci_dev *pdev)
2051 {
2052         struct device_domain_info *info;
2053         unsigned long flags;
2054
2055         info = alloc_devinfo_mem();
2056         if (!info)
2057                 return -ENOMEM;
2058
2059         info->segment = pci_domain_nr(pdev->bus);
2060         info->bus = pdev->bus->number;
2061         info->devfn = pdev->devfn;
2062         info->dev = pdev;
2063         info->domain = domain;
2064
2065         spin_lock_irqsave(&device_domain_lock, flags);
2066         list_add(&info->link, &domain->devices);
2067         list_add(&info->global, &device_domain_list);
2068         pdev->dev.archdata.iommu = info;
2069         spin_unlock_irqrestore(&device_domain_lock, flags);
2070
2071         return 0;
2072 }
2073
2074 static int iommu_prepare_static_identity_mapping(void)
2075 {
2076         struct pci_dev *pdev = NULL;
2077         int ret;
2078
2079         ret = si_domain_init();
2080         if (ret)
2081                 return -EFAULT;
2082
2083         for_each_pci_dev(pdev) {
2084                 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2085                        pci_name(pdev));
2086
2087                 ret = domain_context_mapping(si_domain, pdev,
2088                                              CONTEXT_TT_MULTI_LEVEL);
2089                 if (ret)
2090                         return ret;
2091                 ret = domain_add_dev_info(si_domain, pdev);
2092                 if (ret)
2093                         return ret;
2094         }
2095
2096         return 0;
2097 }
2098
2099 int __init init_dmars(void)
2100 {
2101         struct dmar_drhd_unit *drhd;
2102         struct dmar_rmrr_unit *rmrr;
2103         struct pci_dev *pdev;
2104         struct intel_iommu *iommu;
2105         int i, ret;
2106         int pass_through = 1;
2107
2108         /*
2109          * In case pass through can not be enabled, iommu tries to use identity
2110          * mapping.
2111          */
2112         if (iommu_pass_through)
2113                 iommu_identity_mapping = 1;
2114
2115         /*
2116          * for each drhd
2117          *    allocate root
2118          *    initialize and program root entry to not present
2119          * endfor
2120          */
2121         for_each_drhd_unit(drhd) {
2122                 g_num_of_iommus++;
2123                 /*
2124                  * lock not needed as this is only incremented in the single
2125                  * threaded kernel __init code path all other access are read
2126                  * only
2127                  */
2128         }
2129
2130         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2131                         GFP_KERNEL);
2132         if (!g_iommus) {
2133                 printk(KERN_ERR "Allocating global iommu array failed\n");
2134                 ret = -ENOMEM;
2135                 goto error;
2136         }
2137
2138         deferred_flush = kzalloc(g_num_of_iommus *
2139                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2140         if (!deferred_flush) {
2141                 kfree(g_iommus);
2142                 ret = -ENOMEM;
2143                 goto error;
2144         }
2145
2146         for_each_drhd_unit(drhd) {
2147                 if (drhd->ignored)
2148                         continue;
2149
2150                 iommu = drhd->iommu;
2151                 g_iommus[iommu->seq_id] = iommu;
2152
2153                 ret = iommu_init_domains(iommu);
2154                 if (ret)
2155                         goto error;
2156
2157                 /*
2158                  * TBD:
2159                  * we could share the same root & context tables
2160                  * amoung all IOMMU's. Need to Split it later.
2161                  */
2162                 ret = iommu_alloc_root_entry(iommu);
2163                 if (ret) {
2164                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2165                         goto error;
2166                 }
2167                 if (!ecap_pass_through(iommu->ecap))
2168                         pass_through = 0;
2169         }
2170         if (iommu_pass_through)
2171                 if (!pass_through) {
2172                         printk(KERN_INFO
2173                                "Pass Through is not supported by hardware.\n");
2174                         iommu_pass_through = 0;
2175                 }
2176
2177         /*
2178          * Start from the sane iommu hardware state.
2179          */
2180         for_each_drhd_unit(drhd) {
2181                 if (drhd->ignored)
2182                         continue;
2183
2184                 iommu = drhd->iommu;
2185
2186                 /*
2187                  * If the queued invalidation is already initialized by us
2188                  * (for example, while enabling interrupt-remapping) then
2189                  * we got the things already rolling from a sane state.
2190                  */
2191                 if (iommu->qi)
2192                         continue;
2193
2194                 /*
2195                  * Clear any previous faults.
2196                  */
2197                 dmar_fault(-1, iommu);
2198                 /*
2199                  * Disable queued invalidation if supported and already enabled
2200                  * before OS handover.
2201                  */
2202                 dmar_disable_qi(iommu);
2203         }
2204
2205         for_each_drhd_unit(drhd) {
2206                 if (drhd->ignored)
2207                         continue;
2208
2209                 iommu = drhd->iommu;
2210
2211                 if (dmar_enable_qi(iommu)) {
2212                         /*
2213                          * Queued Invalidate not enabled, use Register Based
2214                          * Invalidate
2215                          */
2216                         iommu->flush.flush_context = __iommu_flush_context;
2217                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2218                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2219                                "invalidation\n",
2220                                (unsigned long long)drhd->reg_base_addr);
2221                 } else {
2222                         iommu->flush.flush_context = qi_flush_context;
2223                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2224                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2225                                "invalidation\n",
2226                                (unsigned long long)drhd->reg_base_addr);
2227                 }
2228         }
2229
2230         /*
2231          * If pass through is set and enabled, context entries of all pci
2232          * devices are intialized by pass through translation type.
2233          */
2234         if (iommu_pass_through) {
2235                 ret = init_context_pass_through();
2236                 if (ret) {
2237                         printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2238                         iommu_pass_through = 0;
2239                 }
2240         }
2241
2242         /*
2243          * If pass through is not set or not enabled, setup context entries for
2244          * identity mappings for rmrr, gfx, and isa and may fall back to static
2245          * identity mapping if iommu_identity_mapping is set.
2246          */
2247         if (!iommu_pass_through) {
2248                 if (iommu_identity_mapping)
2249                         iommu_prepare_static_identity_mapping();
2250                 /*
2251                  * For each rmrr
2252                  *   for each dev attached to rmrr
2253                  *   do
2254                  *     locate drhd for dev, alloc domain for dev
2255                  *     allocate free domain
2256                  *     allocate page table entries for rmrr
2257                  *     if context not allocated for bus
2258                  *           allocate and init context
2259                  *           set present in root table for this bus
2260                  *     init context with domain, translation etc
2261                  *    endfor
2262                  * endfor
2263                  */
2264                 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2265                 for_each_rmrr_units(rmrr) {
2266                         for (i = 0; i < rmrr->devices_cnt; i++) {
2267                                 pdev = rmrr->devices[i];
2268                                 /*
2269                                  * some BIOS lists non-exist devices in DMAR
2270                                  * table.
2271                                  */
2272                                 if (!pdev)
2273                                         continue;
2274                                 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2275                                 if (ret)
2276                                         printk(KERN_ERR
2277                                  "IOMMU: mapping reserved region failed\n");
2278                         }
2279                 }
2280
2281                 iommu_prepare_isa();
2282         }
2283
2284         /*
2285          * for each drhd
2286          *   enable fault log
2287          *   global invalidate context cache
2288          *   global invalidate iotlb
2289          *   enable translation
2290          */
2291         for_each_drhd_unit(drhd) {
2292                 if (drhd->ignored)
2293                         continue;
2294                 iommu = drhd->iommu;
2295
2296                 iommu_flush_write_buffer(iommu);
2297
2298                 ret = dmar_set_interrupt(iommu);
2299                 if (ret)
2300                         goto error;
2301
2302                 iommu_set_root_entry(iommu);
2303
2304                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2305                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2306                 iommu_disable_protect_mem_regions(iommu);
2307
2308                 ret = iommu_enable_translation(iommu);
2309                 if (ret)
2310                         goto error;
2311         }
2312
2313         return 0;
2314 error:
2315         for_each_drhd_unit(drhd) {
2316                 if (drhd->ignored)
2317                         continue;
2318                 iommu = drhd->iommu;
2319                 free_iommu(iommu);
2320         }
2321         kfree(g_iommus);
2322         return ret;
2323 }
2324
2325 static inline u64 aligned_size(u64 host_addr, size_t size)
2326 {
2327         u64 addr;
2328         addr = (host_addr & (~PAGE_MASK)) + size;
2329         return PAGE_ALIGN(addr);
2330 }
2331
2332 struct iova *
2333 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2334 {
2335         struct iova *piova;
2336
2337         /* Make sure it's in range */
2338         end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2339         if (!size || (IOVA_START_ADDR + size > end))
2340                 return NULL;
2341
2342         piova = alloc_iova(&domain->iovad,
2343                         size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2344         return piova;
2345 }
2346
2347 static struct iova *
2348 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2349                    size_t size, u64 dma_mask)
2350 {
2351         struct pci_dev *pdev = to_pci_dev(dev);
2352         struct iova *iova = NULL;
2353
2354         if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2355                 iova = iommu_alloc_iova(domain, size, dma_mask);
2356         else {
2357                 /*
2358                  * First try to allocate an io virtual address in
2359                  * DMA_BIT_MASK(32) and if that fails then try allocating
2360                  * from higher range
2361                  */
2362                 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2363                 if (!iova)
2364                         iova = iommu_alloc_iova(domain, size, dma_mask);
2365         }
2366
2367         if (!iova) {
2368                 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2369                 return NULL;
2370         }
2371
2372         return iova;
2373 }
2374
2375 static struct dmar_domain *
2376 get_valid_domain_for_dev(struct pci_dev *pdev)
2377 {
2378         struct dmar_domain *domain;
2379         int ret;
2380
2381         domain = get_domain_for_dev(pdev,
2382                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2383         if (!domain) {
2384                 printk(KERN_ERR
2385                         "Allocating domain for %s failed", pci_name(pdev));
2386                 return NULL;
2387         }
2388
2389         /* make sure context mapping is ok */
2390         if (unlikely(!domain_context_mapped(pdev))) {
2391                 ret = domain_context_mapping(domain, pdev,
2392                                              CONTEXT_TT_MULTI_LEVEL);
2393                 if (ret) {
2394                         printk(KERN_ERR
2395                                 "Domain context map for %s failed",
2396                                 pci_name(pdev));
2397                         return NULL;
2398                 }
2399         }
2400
2401         return domain;
2402 }
2403
2404 static int iommu_dummy(struct pci_dev *pdev)
2405 {
2406         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2407 }
2408
2409 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2410 static int iommu_no_mapping(struct pci_dev *pdev)
2411 {
2412         int found;
2413
2414         if (!iommu_identity_mapping)
2415                 return iommu_dummy(pdev);
2416
2417         found = identity_mapping(pdev);
2418         if (found) {
2419                 if (pdev->dma_mask > DMA_BIT_MASK(32))
2420                         return 1;
2421                 else {
2422                         /*
2423                          * 32 bit DMA is removed from si_domain and fall back
2424                          * to non-identity mapping.
2425                          */
2426                         domain_remove_one_dev_info(si_domain, pdev);
2427                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2428                                pci_name(pdev));
2429                         return 0;
2430                 }
2431         } else {
2432                 /*
2433                  * In case of a detached 64 bit DMA device from vm, the device
2434                  * is put into si_domain for identity mapping.
2435                  */
2436                 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2437                         int ret;
2438                         ret = domain_add_dev_info(si_domain, pdev);
2439                         if (!ret) {
2440                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2441                                        pci_name(pdev));
2442                                 return 1;
2443                         }
2444                 }
2445         }
2446
2447         return iommu_dummy(pdev);
2448 }
2449
2450 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2451                                      size_t size, int dir, u64 dma_mask)
2452 {
2453         struct pci_dev *pdev = to_pci_dev(hwdev);
2454         struct dmar_domain *domain;
2455         phys_addr_t start_paddr;
2456         struct iova *iova;
2457         int prot = 0;
2458         int ret;
2459         struct intel_iommu *iommu;
2460
2461         BUG_ON(dir == DMA_NONE);
2462
2463         if (iommu_no_mapping(pdev))
2464                 return paddr;
2465
2466         domain = get_valid_domain_for_dev(pdev);
2467         if (!domain)
2468                 return 0;
2469
2470         iommu = domain_get_iommu(domain);
2471         size = aligned_size((u64)paddr, size);
2472
2473         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2474         if (!iova)
2475                 goto error;
2476
2477         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2478
2479         /*
2480          * Check if DMAR supports zero-length reads on write only
2481          * mappings..
2482          */
2483         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2484                         !cap_zlr(iommu->cap))
2485                 prot |= DMA_PTE_READ;
2486         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2487                 prot |= DMA_PTE_WRITE;
2488         /*
2489          * paddr - (paddr + size) might be partial page, we should map the whole
2490          * page.  Note: if two part of one page are separately mapped, we
2491          * might have two guest_addr mapping to the same host paddr, but this
2492          * is not a big problem
2493          */
2494         ret = domain_page_mapping(domain, start_paddr,
2495                                   ((u64)paddr) & PHYSICAL_PAGE_MASK,
2496                                   size, prot);
2497         if (ret)
2498                 goto error;
2499
2500         /* it's a non-present to present mapping. Only flush if caching mode */
2501         if (cap_caching_mode(iommu->cap))
2502                 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2503                                       size >> VTD_PAGE_SHIFT);
2504         else
2505                 iommu_flush_write_buffer(iommu);
2506
2507         return start_paddr + ((u64)paddr & (~PAGE_MASK));
2508
2509 error:
2510         if (iova)
2511                 __free_iova(&domain->iovad, iova);
2512         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2513                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2514         return 0;
2515 }
2516
2517 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2518                                  unsigned long offset, size_t size,
2519                                  enum dma_data_direction dir,
2520                                  struct dma_attrs *attrs)
2521 {
2522         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2523                                   dir, to_pci_dev(dev)->dma_mask);
2524 }
2525
2526 static void flush_unmaps(void)
2527 {
2528         int i, j;
2529
2530         timer_on = 0;
2531
2532         /* just flush them all */
2533         for (i = 0; i < g_num_of_iommus; i++) {
2534                 struct intel_iommu *iommu = g_iommus[i];
2535                 if (!iommu)
2536                         continue;
2537
2538                 if (!deferred_flush[i].next)
2539                         continue;
2540
2541                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2542                                          DMA_TLB_GLOBAL_FLUSH);
2543                 for (j = 0; j < deferred_flush[i].next; j++) {
2544                         unsigned long mask;
2545                         struct iova *iova = deferred_flush[i].iova[j];
2546
2547                         mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2548                         mask = ilog2(mask >> VTD_PAGE_SHIFT);
2549                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2550                                         iova->pfn_lo << PAGE_SHIFT, mask);
2551                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2552                 }
2553                 deferred_flush[i].next = 0;
2554         }
2555
2556         list_size = 0;
2557 }
2558
2559 static void flush_unmaps_timeout(unsigned long data)
2560 {
2561         unsigned long flags;
2562
2563         spin_lock_irqsave(&async_umap_flush_lock, flags);
2564         flush_unmaps();
2565         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2566 }
2567
2568 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2569 {
2570         unsigned long flags;
2571         int next, iommu_id;
2572         struct intel_iommu *iommu;
2573
2574         spin_lock_irqsave(&async_umap_flush_lock, flags);
2575         if (list_size == HIGH_WATER_MARK)
2576                 flush_unmaps();
2577
2578         iommu = domain_get_iommu(dom);
2579         iommu_id = iommu->seq_id;
2580
2581         next = deferred_flush[iommu_id].next;
2582         deferred_flush[iommu_id].domain[next] = dom;
2583         deferred_flush[iommu_id].iova[next] = iova;
2584         deferred_flush[iommu_id].next++;
2585
2586         if (!timer_on) {
2587                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2588                 timer_on = 1;
2589         }
2590         list_size++;
2591         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2592 }
2593
2594 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2595                              size_t size, enum dma_data_direction dir,
2596                              struct dma_attrs *attrs)
2597 {
2598         struct pci_dev *pdev = to_pci_dev(dev);
2599         struct dmar_domain *domain;
2600         unsigned long start_pfn, last_pfn;
2601         struct iova *iova;
2602         struct intel_iommu *iommu;
2603
2604         if (iommu_no_mapping(pdev))
2605                 return;
2606
2607         domain = find_domain(pdev);
2608         BUG_ON(!domain);
2609
2610         iommu = domain_get_iommu(domain);
2611
2612         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2613         if (!iova)
2614                 return;
2615
2616         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2617         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2618
2619         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2620                  pci_name(pdev), start_pfn, last_pfn);
2621
2622         /*  clear the whole page */
2623         dma_pte_clear_range(domain, start_pfn, last_pfn);
2624
2625         /* free page tables */
2626         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2627
2628         if (intel_iommu_strict) {
2629                 iommu_flush_iotlb_psi(iommu, domain->id,
2630                                       start_pfn << VTD_PAGE_SHIFT,
2631                                       last_pfn - start_pfn + 1);
2632                 /* free iova */
2633                 __free_iova(&domain->iovad, iova);
2634         } else {
2635                 add_unmap(domain, iova);
2636                 /*
2637                  * queue up the release of the unmap to save the 1/6th of the
2638                  * cpu used up by the iotlb flush operation...
2639                  */
2640         }
2641 }
2642
2643 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2644                                int dir)
2645 {
2646         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2647 }
2648
2649 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2650                                   dma_addr_t *dma_handle, gfp_t flags)
2651 {
2652         void *vaddr;
2653         int order;
2654
2655         size = PAGE_ALIGN(size);
2656         order = get_order(size);
2657         flags &= ~(GFP_DMA | GFP_DMA32);
2658
2659         vaddr = (void *)__get_free_pages(flags, order);
2660         if (!vaddr)
2661                 return NULL;
2662         memset(vaddr, 0, size);
2663
2664         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2665                                          DMA_BIDIRECTIONAL,
2666                                          hwdev->coherent_dma_mask);
2667         if (*dma_handle)
2668                 return vaddr;
2669         free_pages((unsigned long)vaddr, order);
2670         return NULL;
2671 }
2672
2673 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2674                                 dma_addr_t dma_handle)
2675 {
2676         int order;
2677
2678         size = PAGE_ALIGN(size);
2679         order = get_order(size);
2680
2681         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2682         free_pages((unsigned long)vaddr, order);
2683 }
2684
2685 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2686                            int nelems, enum dma_data_direction dir,
2687                            struct dma_attrs *attrs)
2688 {
2689         struct pci_dev *pdev = to_pci_dev(hwdev);
2690         struct dmar_domain *domain;
2691         unsigned long start_pfn, last_pfn;
2692         struct iova *iova;
2693         struct intel_iommu *iommu;
2694
2695         if (iommu_no_mapping(pdev))
2696                 return;
2697
2698         domain = find_domain(pdev);
2699         BUG_ON(!domain);
2700
2701         iommu = domain_get_iommu(domain);
2702
2703         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2704         if (!iova)
2705                 return;
2706
2707         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2708         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2709
2710         /*  clear the whole page */
2711         dma_pte_clear_range(domain, start_pfn, last_pfn);
2712
2713         /* free page tables */
2714         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2715
2716         iommu_flush_iotlb_psi(iommu, domain->id,
2717                               start_pfn << VTD_PAGE_SHIFT,
2718                               (last_pfn - start_pfn + 1));
2719
2720         /* free iova */
2721         __free_iova(&domain->iovad, iova);
2722 }
2723
2724 static int intel_nontranslate_map_sg(struct device *hddev,
2725         struct scatterlist *sglist, int nelems, int dir)
2726 {
2727         int i;
2728         struct scatterlist *sg;
2729
2730         for_each_sg(sglist, sg, nelems, i) {
2731                 BUG_ON(!sg_page(sg));
2732                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2733                 sg->dma_length = sg->length;
2734         }
2735         return nelems;
2736 }
2737
2738 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2739                         enum dma_data_direction dir, struct dma_attrs *attrs)
2740 {
2741         phys_addr_t addr;
2742         int i;
2743         struct pci_dev *pdev = to_pci_dev(hwdev);
2744         struct dmar_domain *domain;
2745         size_t size = 0;
2746         int prot = 0;
2747         size_t offset = 0;
2748         struct iova *iova = NULL;
2749         int ret;
2750         struct scatterlist *sg;
2751         unsigned long start_addr;
2752         struct intel_iommu *iommu;
2753
2754         BUG_ON(dir == DMA_NONE);
2755         if (iommu_no_mapping(pdev))
2756                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2757
2758         domain = get_valid_domain_for_dev(pdev);
2759         if (!domain)
2760                 return 0;
2761
2762         iommu = domain_get_iommu(domain);
2763
2764         for_each_sg(sglist, sg, nelems, i) {
2765                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2766                 size += aligned_size((u64)addr, sg->length);
2767         }
2768
2769         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2770         if (!iova) {
2771                 sglist->dma_length = 0;
2772                 return 0;
2773         }
2774
2775         /*
2776          * Check if DMAR supports zero-length reads on write only
2777          * mappings..
2778          */
2779         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2780                         !cap_zlr(iommu->cap))
2781                 prot |= DMA_PTE_READ;
2782         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2783                 prot |= DMA_PTE_WRITE;
2784
2785         start_addr = iova->pfn_lo << PAGE_SHIFT;
2786         offset = 0;
2787         for_each_sg(sglist, sg, nelems, i) {
2788                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2789                 size = aligned_size((u64)addr, sg->length);
2790                 ret = domain_page_mapping(domain, start_addr + offset,
2791                                           ((u64)addr) & PHYSICAL_PAGE_MASK,
2792                                           size, prot);
2793                 if (ret) {
2794                         /*  clear the page */
2795                         dma_pte_clear_range(domain,
2796                                             start_addr >> VTD_PAGE_SHIFT,
2797                                             (start_addr + offset - 1) >> VTD_PAGE_SHIFT);
2798                         /* free page tables */
2799                         dma_pte_free_pagetable(domain, start_addr >> VTD_PAGE_SHIFT,
2800                                                (start_addr + offset - 1) >> VTD_PAGE_SHIFT);
2801                         /* free iova */
2802                         __free_iova(&domain->iovad, iova);
2803                         return 0;
2804                 }
2805                 sg->dma_address = start_addr + offset +
2806                                 ((u64)addr & (~PAGE_MASK));
2807                 sg->dma_length = sg->length;
2808                 offset += size;
2809         }
2810
2811         /* it's a non-present to present mapping. Only flush if caching mode */
2812         if (cap_caching_mode(iommu->cap))
2813                 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2814                                       offset >> VTD_PAGE_SHIFT);
2815         else
2816                 iommu_flush_write_buffer(iommu);
2817
2818         return nelems;
2819 }
2820
2821 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2822 {
2823         return !dma_addr;
2824 }
2825
2826 struct dma_map_ops intel_dma_ops = {
2827         .alloc_coherent = intel_alloc_coherent,
2828         .free_coherent = intel_free_coherent,
2829         .map_sg = intel_map_sg,
2830         .unmap_sg = intel_unmap_sg,
2831         .map_page = intel_map_page,
2832         .unmap_page = intel_unmap_page,
2833         .mapping_error = intel_mapping_error,
2834 };
2835
2836 static inline int iommu_domain_cache_init(void)
2837 {
2838         int ret = 0;
2839
2840         iommu_domain_cache = kmem_cache_create("iommu_domain",
2841                                          sizeof(struct dmar_domain),
2842                                          0,
2843                                          SLAB_HWCACHE_ALIGN,
2844
2845                                          NULL);
2846         if (!iommu_domain_cache) {
2847                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2848                 ret = -ENOMEM;
2849         }
2850
2851         return ret;
2852 }
2853
2854 static inline int iommu_devinfo_cache_init(void)
2855 {
2856         int ret = 0;
2857
2858         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2859                                          sizeof(struct device_domain_info),
2860                                          0,
2861                                          SLAB_HWCACHE_ALIGN,
2862                                          NULL);
2863         if (!iommu_devinfo_cache) {
2864                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2865                 ret = -ENOMEM;
2866         }
2867
2868         return ret;
2869 }
2870
2871 static inline int iommu_iova_cache_init(void)
2872 {
2873         int ret = 0;
2874
2875         iommu_iova_cache = kmem_cache_create("iommu_iova",
2876                                          sizeof(struct iova),
2877                                          0,
2878                                          SLAB_HWCACHE_ALIGN,
2879                                          NULL);
2880         if (!iommu_iova_cache) {
2881                 printk(KERN_ERR "Couldn't create iova cache\n");
2882                 ret = -ENOMEM;
2883         }
2884
2885         return ret;
2886 }
2887
2888 static int __init iommu_init_mempool(void)
2889 {
2890         int ret;
2891         ret = iommu_iova_cache_init();
2892         if (ret)
2893                 return ret;
2894
2895         ret = iommu_domain_cache_init();
2896         if (ret)
2897                 goto domain_error;
2898
2899         ret = iommu_devinfo_cache_init();
2900         if (!ret)
2901                 return ret;
2902
2903         kmem_cache_destroy(iommu_domain_cache);
2904 domain_error:
2905         kmem_cache_destroy(iommu_iova_cache);
2906
2907         return -ENOMEM;
2908 }
2909
2910 static void __init iommu_exit_mempool(void)
2911 {
2912         kmem_cache_destroy(iommu_devinfo_cache);
2913         kmem_cache_destroy(iommu_domain_cache);
2914         kmem_cache_destroy(iommu_iova_cache);
2915
2916 }
2917
2918 static void __init init_no_remapping_devices(void)
2919 {
2920         struct dmar_drhd_unit *drhd;
2921
2922         for_each_drhd_unit(drhd) {
2923                 if (!drhd->include_all) {
2924                         int i;
2925                         for (i = 0; i < drhd->devices_cnt; i++)
2926                                 if (drhd->devices[i] != NULL)
2927                                         break;
2928                         /* ignore DMAR unit if no pci devices exist */
2929                         if (i == drhd->devices_cnt)
2930                                 drhd->ignored = 1;
2931                 }
2932         }
2933
2934         if (dmar_map_gfx)
2935                 return;
2936
2937         for_each_drhd_unit(drhd) {
2938                 int i;
2939                 if (drhd->ignored || drhd->include_all)
2940                         continue;
2941
2942                 for (i = 0; i < drhd->devices_cnt; i++)
2943                         if (drhd->devices[i] &&
2944                                 !IS_GFX_DEVICE(drhd->devices[i]))
2945                                 break;
2946
2947                 if (i < drhd->devices_cnt)
2948                         continue;
2949
2950                 /* bypass IOMMU if it is just for gfx devices */
2951                 drhd->ignored = 1;
2952                 for (i = 0; i < drhd->devices_cnt; i++) {
2953                         if (!drhd->devices[i])
2954                                 continue;
2955                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2956                 }
2957         }
2958 }
2959
2960 #ifdef CONFIG_SUSPEND
2961 static int init_iommu_hw(void)
2962 {
2963         struct dmar_drhd_unit *drhd;
2964         struct intel_iommu *iommu = NULL;
2965
2966         for_each_active_iommu(iommu, drhd)
2967                 if (iommu->qi)
2968                         dmar_reenable_qi(iommu);
2969
2970         for_each_active_iommu(iommu, drhd) {
2971                 iommu_flush_write_buffer(iommu);
2972
2973                 iommu_set_root_entry(iommu);
2974
2975                 iommu->flush.flush_context(iommu, 0, 0, 0,
2976                                            DMA_CCMD_GLOBAL_INVL);
2977                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2978                                          DMA_TLB_GLOBAL_FLUSH);
2979                 iommu_disable_protect_mem_regions(iommu);
2980                 iommu_enable_translation(iommu);
2981         }
2982
2983         return 0;
2984 }
2985
2986 static void iommu_flush_all(void)
2987 {
2988         struct dmar_drhd_unit *drhd;
2989         struct intel_iommu *iommu;
2990
2991         for_each_active_iommu(iommu, drhd) {
2992                 iommu->flush.flush_context(iommu, 0, 0, 0,
2993                                            DMA_CCMD_GLOBAL_INVL);
2994                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2995                                          DMA_TLB_GLOBAL_FLUSH);
2996         }
2997 }
2998
2999 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3000 {
3001         struct dmar_drhd_unit *drhd;
3002         struct intel_iommu *iommu = NULL;
3003         unsigned long flag;
3004
3005         for_each_active_iommu(iommu, drhd) {
3006                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3007                                                  GFP_ATOMIC);
3008                 if (!iommu->iommu_state)
3009                         goto nomem;
3010         }
3011
3012         iommu_flush_all();
3013
3014         for_each_active_iommu(iommu, drhd) {
3015                 iommu_disable_translation(iommu);
3016
3017                 spin_lock_irqsave(&iommu->register_lock, flag);
3018
3019                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3020                         readl(iommu->reg + DMAR_FECTL_REG);
3021                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3022                         readl(iommu->reg + DMAR_FEDATA_REG);
3023                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3024                         readl(iommu->reg + DMAR_FEADDR_REG);
3025                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3026                         readl(iommu->reg + DMAR_FEUADDR_REG);
3027
3028                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3029         }
3030         return 0;
3031
3032 nomem:
3033         for_each_active_iommu(iommu, drhd)
3034                 kfree(iommu->iommu_state);
3035
3036         return -ENOMEM;
3037 }
3038
3039 static int iommu_resume(struct sys_device *dev)
3040 {
3041         struct dmar_drhd_unit *drhd;
3042         struct intel_iommu *iommu = NULL;
3043         unsigned long flag;
3044
3045         if (init_iommu_hw()) {
3046                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3047                 return -EIO;
3048         }
3049
3050         for_each_active_iommu(iommu, drhd) {
3051
3052                 spin_lock_irqsave(&iommu->register_lock, flag);
3053
3054                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3055                         iommu->reg + DMAR_FECTL_REG);
3056                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3057                         iommu->reg + DMAR_FEDATA_REG);
3058                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3059                         iommu->reg + DMAR_FEADDR_REG);
3060                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3061                         iommu->reg + DMAR_FEUADDR_REG);
3062
3063                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3064         }
3065
3066         for_each_active_iommu(iommu, drhd)
3067                 kfree(iommu->iommu_state);
3068
3069         return 0;
3070 }
3071
3072 static struct sysdev_class iommu_sysclass = {
3073         .name           = "iommu",
3074         .resume         = iommu_resume,
3075         .suspend        = iommu_suspend,
3076 };
3077
3078 static struct sys_device device_iommu = {
3079         .cls    = &iommu_sysclass,
3080 };
3081
3082 static int __init init_iommu_sysfs(void)
3083 {
3084         int error;
3085
3086         error = sysdev_class_register(&iommu_sysclass);
3087         if (error)
3088                 return error;
3089
3090         error = sysdev_register(&device_iommu);
3091         if (error)
3092                 sysdev_class_unregister(&iommu_sysclass);
3093
3094         return error;
3095 }
3096
3097 #else
3098 static int __init init_iommu_sysfs(void)
3099 {
3100         return 0;
3101 }
3102 #endif  /* CONFIG_PM */
3103
3104 int __init intel_iommu_init(void)
3105 {
3106         int ret = 0;
3107
3108         if (dmar_table_init())
3109                 return  -ENODEV;
3110
3111         if (dmar_dev_scope_init())
3112                 return  -ENODEV;
3113
3114         /*
3115          * Check the need for DMA-remapping initialization now.
3116          * Above initialization will also be used by Interrupt-remapping.
3117          */
3118         if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3119                 return -ENODEV;
3120
3121         iommu_init_mempool();
3122         dmar_init_reserved_ranges();
3123
3124         init_no_remapping_devices();
3125
3126         ret = init_dmars();
3127         if (ret) {
3128                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3129                 put_iova_domain(&reserved_iova_list);
3130                 iommu_exit_mempool();
3131                 return ret;
3132         }
3133         printk(KERN_INFO
3134         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3135
3136         init_timer(&unmap_timer);
3137         force_iommu = 1;
3138
3139         if (!iommu_pass_through) {
3140                 printk(KERN_INFO
3141                        "Multi-level page-table translation for DMAR.\n");
3142                 dma_ops = &intel_dma_ops;
3143         } else
3144                 printk(KERN_INFO
3145                        "DMAR: Pass through translation for DMAR.\n");
3146
3147         init_iommu_sysfs();
3148
3149         register_iommu(&intel_iommu_ops);
3150
3151         return 0;
3152 }
3153
3154 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3155                                            struct pci_dev *pdev)
3156 {
3157         struct pci_dev *tmp, *parent;
3158
3159         if (!iommu || !pdev)
3160                 return;
3161
3162         /* dependent device detach */
3163         tmp = pci_find_upstream_pcie_bridge(pdev);
3164         /* Secondary interface's bus number and devfn 0 */
3165         if (tmp) {
3166                 parent = pdev->bus->self;
3167                 while (parent != tmp) {
3168                         iommu_detach_dev(iommu, parent->bus->number,
3169                                          parent->devfn);
3170                         parent = parent->bus->self;
3171                 }
3172                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3173                         iommu_detach_dev(iommu,
3174                                 tmp->subordinate->number, 0);
3175                 else /* this is a legacy PCI bridge */
3176                         iommu_detach_dev(iommu, tmp->bus->number,
3177                                          tmp->devfn);
3178         }
3179 }
3180
3181 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3182                                           struct pci_dev *pdev)
3183 {
3184         struct device_domain_info *info;
3185         struct intel_iommu *iommu;
3186         unsigned long flags;
3187         int found = 0;
3188         struct list_head *entry, *tmp;
3189
3190         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3191                                 pdev->devfn);
3192         if (!iommu)
3193                 return;
3194
3195         spin_lock_irqsave(&device_domain_lock, flags);
3196         list_for_each_safe(entry, tmp, &domain->devices) {
3197                 info = list_entry(entry, struct device_domain_info, link);
3198                 /* No need to compare PCI domain; it has to be the same */
3199                 if (info->bus == pdev->bus->number &&
3200                     info->devfn == pdev->devfn) {
3201                         list_del(&info->link);
3202                         list_del(&info->global);
3203                         if (info->dev)
3204                                 info->dev->dev.archdata.iommu = NULL;
3205                         spin_unlock_irqrestore(&device_domain_lock, flags);
3206
3207                         iommu_disable_dev_iotlb(info);
3208                         iommu_detach_dev(iommu, info->bus, info->devfn);
3209                         iommu_detach_dependent_devices(iommu, pdev);
3210                         free_devinfo_mem(info);
3211
3212                         spin_lock_irqsave(&device_domain_lock, flags);
3213
3214                         if (found)
3215                                 break;
3216                         else
3217                                 continue;
3218                 }
3219
3220                 /* if there is no other devices under the same iommu
3221                  * owned by this domain, clear this iommu in iommu_bmp
3222                  * update iommu count and coherency
3223                  */
3224                 if (iommu == device_to_iommu(info->segment, info->bus,
3225                                             info->devfn))
3226                         found = 1;
3227         }
3228
3229         if (found == 0) {
3230                 unsigned long tmp_flags;
3231                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3232                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3233                 domain->iommu_count--;
3234                 domain_update_iommu_cap(domain);
3235                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3236         }
3237
3238         spin_unlock_irqrestore(&device_domain_lock, flags);
3239 }
3240
3241 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3242 {
3243         struct device_domain_info *info;
3244         struct intel_iommu *iommu;
3245         unsigned long flags1, flags2;
3246
3247         spin_lock_irqsave(&device_domain_lock, flags1);
3248         while (!list_empty(&domain->devices)) {
3249                 info = list_entry(domain->devices.next,
3250                         struct device_domain_info, link);
3251                 list_del(&info->link);
3252                 list_del(&info->global);
3253                 if (info->dev)
3254                         info->dev->dev.archdata.iommu = NULL;
3255
3256                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3257
3258                 iommu_disable_dev_iotlb(info);
3259                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3260                 iommu_detach_dev(iommu, info->bus, info->devfn);
3261                 iommu_detach_dependent_devices(iommu, info->dev);
3262
3263                 /* clear this iommu in iommu_bmp, update iommu count
3264                  * and capabilities
3265                  */
3266                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3267                 if (test_and_clear_bit(iommu->seq_id,
3268                                        &domain->iommu_bmp)) {
3269                         domain->iommu_count--;
3270                         domain_update_iommu_cap(domain);
3271                 }
3272                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3273
3274                 free_devinfo_mem(info);
3275                 spin_lock_irqsave(&device_domain_lock, flags1);
3276         }
3277         spin_unlock_irqrestore(&device_domain_lock, flags1);
3278 }
3279
3280 /* domain id for virtual machine, it won't be set in context */
3281 static unsigned long vm_domid;
3282
3283 static int vm_domain_min_agaw(struct dmar_domain *domain)
3284 {
3285         int i;
3286         int min_agaw = domain->agaw;
3287
3288         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3289         for (; i < g_num_of_iommus; ) {
3290                 if (min_agaw > g_iommus[i]->agaw)
3291                         min_agaw = g_iommus[i]->agaw;
3292
3293                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3294         }
3295
3296         return min_agaw;
3297 }
3298
3299 static struct dmar_domain *iommu_alloc_vm_domain(void)
3300 {
3301         struct dmar_domain *domain;
3302
3303         domain = alloc_domain_mem();
3304         if (!domain)
3305                 return NULL;
3306
3307         domain->id = vm_domid++;
3308         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3309         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3310
3311         return domain;
3312 }
3313
3314 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3315 {
3316         int adjust_width;
3317
3318         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3319         spin_lock_init(&domain->mapping_lock);
3320         spin_lock_init(&domain->iommu_lock);
3321
3322         domain_reserve_special_ranges(domain);
3323
3324         /* calculate AGAW */
3325         domain->gaw = guest_width;
3326         adjust_width = guestwidth_to_adjustwidth(guest_width);
3327         domain->agaw = width_to_agaw(adjust_width);
3328
3329         INIT_LIST_HEAD(&domain->devices);
3330
3331         domain->iommu_count = 0;
3332         domain->iommu_coherency = 0;
3333         domain->max_addr = 0;
3334
3335         /* always allocate the top pgd */
3336         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3337         if (!domain->pgd)
3338                 return -ENOMEM;
3339         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3340         return 0;
3341 }
3342
3343 static void iommu_free_vm_domain(struct dmar_domain *domain)
3344 {
3345         unsigned long flags;
3346         struct dmar_drhd_unit *drhd;
3347         struct intel_iommu *iommu;
3348         unsigned long i;
3349         unsigned long ndomains;
3350
3351         for_each_drhd_unit(drhd) {
3352                 if (drhd->ignored)
3353                         continue;
3354                 iommu = drhd->iommu;
3355
3356                 ndomains = cap_ndoms(iommu->cap);
3357                 i = find_first_bit(iommu->domain_ids, ndomains);
3358                 for (; i < ndomains; ) {
3359                         if (iommu->domains[i] == domain) {
3360                                 spin_lock_irqsave(&iommu->lock, flags);
3361                                 clear_bit(i, iommu->domain_ids);
3362                                 iommu->domains[i] = NULL;
3363                                 spin_unlock_irqrestore(&iommu->lock, flags);
3364                                 break;
3365                         }
3366                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3367                 }
3368         }
3369 }
3370
3371 static void vm_domain_exit(struct dmar_domain *domain)
3372 {
3373         /* Domain 0 is reserved, so dont process it */
3374         if (!domain)
3375                 return;
3376
3377         vm_domain_remove_all_dev_info(domain);
3378         /* destroy iovas */
3379         put_iova_domain(&domain->iovad);
3380
3381         /* clear ptes */
3382         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3383
3384         /* free page tables */
3385         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3386
3387         iommu_free_vm_domain(domain);
3388         free_domain_mem(domain);
3389 }
3390
3391 static int intel_iommu_domain_init(struct iommu_domain *domain)
3392 {
3393         struct dmar_domain *dmar_domain;
3394
3395         dmar_domain = iommu_alloc_vm_domain();
3396         if (!dmar_domain) {
3397                 printk(KERN_ERR
3398                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3399                 return -ENOMEM;
3400         }
3401         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3402                 printk(KERN_ERR
3403                         "intel_iommu_domain_init() failed\n");
3404                 vm_domain_exit(dmar_domain);
3405                 return -ENOMEM;
3406         }
3407         domain->priv = dmar_domain;
3408
3409         return 0;
3410 }
3411
3412 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3413 {
3414         struct dmar_domain *dmar_domain = domain->priv;
3415
3416         domain->priv = NULL;
3417         vm_domain_exit(dmar_domain);
3418 }
3419
3420 static int intel_iommu_attach_device(struct iommu_domain *domain,
3421                                      struct device *dev)
3422 {
3423         struct dmar_domain *dmar_domain = domain->priv;
3424         struct pci_dev *pdev = to_pci_dev(dev);
3425         struct intel_iommu *iommu;
3426         int addr_width;
3427         u64 end;
3428         int ret;
3429
3430         /* normally pdev is not mapped */
3431         if (unlikely(domain_context_mapped(pdev))) {
3432                 struct dmar_domain *old_domain;
3433
3434                 old_domain = find_domain(pdev);
3435                 if (old_domain) {
3436                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3437                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3438                                 domain_remove_one_dev_info(old_domain, pdev);
3439                         else
3440                                 domain_remove_dev_info(old_domain);
3441                 }
3442         }
3443
3444         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3445                                 pdev->devfn);
3446         if (!iommu)
3447                 return -ENODEV;
3448
3449         /* check if this iommu agaw is sufficient for max mapped address */
3450         addr_width = agaw_to_width(iommu->agaw);
3451         end = DOMAIN_MAX_ADDR(addr_width);
3452         end = end & VTD_PAGE_MASK;
3453         if (end < dmar_domain->max_addr) {
3454                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3455                        "sufficient for the mapped address (%llx)\n",
3456                        __func__, iommu->agaw, dmar_domain->max_addr);
3457                 return -EFAULT;
3458         }
3459
3460         ret = domain_add_dev_info(dmar_domain, pdev);
3461         if (ret)
3462                 return ret;
3463
3464         ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3465         return ret;
3466 }
3467
3468 static void intel_iommu_detach_device(struct iommu_domain *domain,
3469                                       struct device *dev)
3470 {
3471         struct dmar_domain *dmar_domain = domain->priv;
3472         struct pci_dev *pdev = to_pci_dev(dev);
3473
3474         domain_remove_one_dev_info(dmar_domain, pdev);
3475 }
3476
3477 static int intel_iommu_map_range(struct iommu_domain *domain,
3478                                  unsigned long iova, phys_addr_t hpa,
3479                                  size_t size, int iommu_prot)
3480 {
3481         struct dmar_domain *dmar_domain = domain->priv;
3482         u64 max_addr;
3483         int addr_width;
3484         int prot = 0;
3485         int ret;
3486
3487         if (iommu_prot & IOMMU_READ)
3488                 prot |= DMA_PTE_READ;
3489         if (iommu_prot & IOMMU_WRITE)
3490                 prot |= DMA_PTE_WRITE;
3491         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3492                 prot |= DMA_PTE_SNP;
3493
3494         max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3495         if (dmar_domain->max_addr < max_addr) {
3496                 int min_agaw;
3497                 u64 end;
3498
3499                 /* check if minimum agaw is sufficient for mapped address */
3500                 min_agaw = vm_domain_min_agaw(dmar_domain);
3501                 addr_width = agaw_to_width(min_agaw);
3502                 end = DOMAIN_MAX_ADDR(addr_width);
3503                 end = end & VTD_PAGE_MASK;
3504                 if (end < max_addr) {
3505                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3506                                "sufficient for the mapped address (%llx)\n",
3507                                __func__, min_agaw, max_addr);
3508                         return -EFAULT;
3509                 }
3510                 dmar_domain->max_addr = max_addr;
3511         }
3512
3513         ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3514         return ret;
3515 }
3516
3517 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3518                                     unsigned long iova, size_t size)
3519 {
3520         struct dmar_domain *dmar_domain = domain->priv;
3521         dma_addr_t base;
3522
3523         /* The address might not be aligned */
3524         base = iova & VTD_PAGE_MASK;
3525         size = VTD_PAGE_ALIGN(size);
3526         dma_pte_clear_range(dmar_domain, base >> VTD_PAGE_SHIFT,
3527                             (base + size - 1) >> VTD_PAGE_SHIFT);
3528
3529         if (dmar_domain->max_addr == base + size)
3530                 dmar_domain->max_addr = base;
3531 }
3532
3533 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3534                                             unsigned long iova)
3535 {
3536         struct dmar_domain *dmar_domain = domain->priv;
3537         struct dma_pte *pte;
3538         u64 phys = 0;
3539
3540         pte = addr_to_dma_pte(dmar_domain, iova);
3541         if (pte)
3542                 phys = dma_pte_addr(pte);
3543
3544         return phys;
3545 }
3546
3547 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3548                                       unsigned long cap)
3549 {
3550         struct dmar_domain *dmar_domain = domain->priv;
3551
3552         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3553                 return dmar_domain->iommu_snooping;
3554
3555         return 0;
3556 }
3557
3558 static struct iommu_ops intel_iommu_ops = {
3559         .domain_init    = intel_iommu_domain_init,
3560         .domain_destroy = intel_iommu_domain_destroy,
3561         .attach_dev     = intel_iommu_attach_device,
3562         .detach_dev     = intel_iommu_detach_device,
3563         .map            = intel_iommu_map_range,
3564         .unmap          = intel_iommu_unmap_range,
3565         .iova_to_phys   = intel_iommu_iova_to_phys,
3566         .domain_has_cap = intel_iommu_domain_has_cap,
3567 };
3568
3569 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3570 {
3571         /*
3572          * Mobile 4 Series Chipset neglects to set RWBF capability,
3573          * but needs it:
3574          */
3575         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3576         rwbf_quirk = 1;
3577 }
3578
3579 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);