dcf0295a9b602f3efd18e28989409720c065f44a
[safe/jmp/linux-2.6] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE               VTD_PAGE_SIZE
45 #define CONTEXT_SIZE            VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START      (0xfee00000)
51 #define IOAPIC_RANGE_END        (0xfeefffff)
52 #define IOVA_START_ADDR         (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw)  ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
60
61 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
64
65
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67    are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
69 {
70         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
71 }
72
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
74 {
75         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
76 }
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
78 {
79         return mm_to_dma_pfn(page_to_pfn(pg));
80 }
81 static inline unsigned long virt_to_dma_pfn(void *p)
82 {
83         return page_to_dma_pfn(virt_to_page(p));
84 }
85
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
88
89 static int rwbf_quirk;
90
91 /*
92  * 0: Present
93  * 1-11: Reserved
94  * 12-63: Context Ptr (12 - (haw-1))
95  * 64-127: Reserved
96  */
97 struct root_entry {
98         u64     val;
99         u64     rsvd1;
100 };
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
103 {
104         return (root->val & 1);
105 }
106 static inline void set_root_present(struct root_entry *root)
107 {
108         root->val |= 1;
109 }
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
111 {
112         root->val |= value & VTD_PAGE_MASK;
113 }
114
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
117 {
118         return (struct context_entry *)
119                 (root_present(root)?phys_to_virt(
120                 root->val & VTD_PAGE_MASK) :
121                 NULL);
122 }
123
124 /*
125  * low 64 bits:
126  * 0: present
127  * 1: fault processing disable
128  * 2-3: translation type
129  * 12-63: address space root
130  * high 64 bits:
131  * 0-2: address width
132  * 3-6: aval
133  * 8-23: domain id
134  */
135 struct context_entry {
136         u64 lo;
137         u64 hi;
138 };
139
140 static inline bool context_present(struct context_entry *context)
141 {
142         return (context->lo & 1);
143 }
144 static inline void context_set_present(struct context_entry *context)
145 {
146         context->lo |= 1;
147 }
148
149 static inline void context_set_fault_enable(struct context_entry *context)
150 {
151         context->lo &= (((u64)-1) << 2) | 1;
152 }
153
154 static inline void context_set_translation_type(struct context_entry *context,
155                                                 unsigned long value)
156 {
157         context->lo &= (((u64)-1) << 4) | 3;
158         context->lo |= (value & 3) << 2;
159 }
160
161 static inline void context_set_address_root(struct context_entry *context,
162                                             unsigned long value)
163 {
164         context->lo |= value & VTD_PAGE_MASK;
165 }
166
167 static inline void context_set_address_width(struct context_entry *context,
168                                              unsigned long value)
169 {
170         context->hi |= value & 7;
171 }
172
173 static inline void context_set_domain_id(struct context_entry *context,
174                                          unsigned long value)
175 {
176         context->hi |= (value & ((1 << 16) - 1)) << 8;
177 }
178
179 static inline void context_clear_entry(struct context_entry *context)
180 {
181         context->lo = 0;
182         context->hi = 0;
183 }
184
185 /*
186  * 0: readable
187  * 1: writable
188  * 2-6: reserved
189  * 7: super page
190  * 8-10: available
191  * 11: snoop behavior
192  * 12-63: Host physcial address
193  */
194 struct dma_pte {
195         u64 val;
196 };
197
198 static inline void dma_clear_pte(struct dma_pte *pte)
199 {
200         pte->val = 0;
201 }
202
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
204 {
205         pte->val |= DMA_PTE_READ;
206 }
207
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
209 {
210         pte->val |= DMA_PTE_WRITE;
211 }
212
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
214 {
215         pte->val |= DMA_PTE_SNP;
216 }
217
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
219 {
220         pte->val = (pte->val & ~3) | (prot & 3);
221 }
222
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
224 {
225 #ifdef CONFIG_64BIT
226         return pte->val & VTD_PAGE_MASK;
227 #else
228         /* Must have a full atomic 64-bit read */
229         return  __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
230 #endif
231 }
232
233 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
234 {
235         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
236 }
237
238 static inline bool dma_pte_present(struct dma_pte *pte)
239 {
240         return (pte->val & 3) != 0;
241 }
242
243 static inline int first_pte_in_page(struct dma_pte *pte)
244 {
245         return !((unsigned long)pte & ~VTD_PAGE_MASK);
246 }
247
248 /*
249  * This domain is a statically identity mapping domain.
250  *      1. This domain creats a static 1:1 mapping to all usable memory.
251  *      2. It maps to each iommu if successful.
252  *      3. Each iommu mapps to this domain if successful.
253  */
254 struct dmar_domain *si_domain;
255
256 /* devices under the same p2p bridge are owned in one domain */
257 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
258
259 /* domain represents a virtual machine, more than one devices
260  * across iommus may be owned in one domain, e.g. kvm guest.
261  */
262 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
263
264 /* si_domain contains mulitple devices */
265 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
266
267 struct dmar_domain {
268         int     id;                     /* domain id */
269         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
270
271         struct list_head devices;       /* all devices' list */
272         struct iova_domain iovad;       /* iova's that belong to this domain */
273
274         struct dma_pte  *pgd;           /* virtual address */
275         int             gaw;            /* max guest address width */
276
277         /* adjusted guest address width, 0 is level 2 30-bit */
278         int             agaw;
279
280         int             flags;          /* flags to find out type of domain */
281
282         int             iommu_coherency;/* indicate coherency of iommu access */
283         int             iommu_snooping; /* indicate snooping control feature*/
284         int             iommu_count;    /* reference count of iommu */
285         spinlock_t      iommu_lock;     /* protect iommu set in domain */
286         u64             max_addr;       /* maximum mapped address */
287 };
288
289 /* PCI domain-device relationship */
290 struct device_domain_info {
291         struct list_head link;  /* link to domain siblings */
292         struct list_head global; /* link to global list */
293         int segment;            /* PCI domain */
294         u8 bus;                 /* PCI bus number */
295         u8 devfn;               /* PCI devfn number */
296         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
297         struct intel_iommu *iommu; /* IOMMU used by this device */
298         struct dmar_domain *domain; /* pointer to domain */
299 };
300
301 static void flush_unmaps_timeout(unsigned long data);
302
303 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
304
305 #define HIGH_WATER_MARK 250
306 struct deferred_flush_tables {
307         int next;
308         struct iova *iova[HIGH_WATER_MARK];
309         struct dmar_domain *domain[HIGH_WATER_MARK];
310 };
311
312 static struct deferred_flush_tables *deferred_flush;
313
314 /* bitmap for indexing intel_iommus */
315 static int g_num_of_iommus;
316
317 static DEFINE_SPINLOCK(async_umap_flush_lock);
318 static LIST_HEAD(unmaps_to_do);
319
320 static int timer_on;
321 static long list_size;
322
323 static void domain_remove_dev_info(struct dmar_domain *domain);
324
325 #ifdef CONFIG_DMAR_DEFAULT_ON
326 int dmar_disabled = 0;
327 #else
328 int dmar_disabled = 1;
329 #endif /*CONFIG_DMAR_DEFAULT_ON*/
330
331 static int __initdata dmar_map_gfx = 1;
332 static int dmar_forcedac;
333 static int intel_iommu_strict;
334
335 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
336 static DEFINE_SPINLOCK(device_domain_lock);
337 static LIST_HEAD(device_domain_list);
338
339 static struct iommu_ops intel_iommu_ops;
340
341 static int __init intel_iommu_setup(char *str)
342 {
343         if (!str)
344                 return -EINVAL;
345         while (*str) {
346                 if (!strncmp(str, "on", 2)) {
347                         dmar_disabled = 0;
348                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
349                 } else if (!strncmp(str, "off", 3)) {
350                         dmar_disabled = 1;
351                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
352                 } else if (!strncmp(str, "igfx_off", 8)) {
353                         dmar_map_gfx = 0;
354                         printk(KERN_INFO
355                                 "Intel-IOMMU: disable GFX device mapping\n");
356                 } else if (!strncmp(str, "forcedac", 8)) {
357                         printk(KERN_INFO
358                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
359                         dmar_forcedac = 1;
360                 } else if (!strncmp(str, "strict", 6)) {
361                         printk(KERN_INFO
362                                 "Intel-IOMMU: disable batched IOTLB flush\n");
363                         intel_iommu_strict = 1;
364                 }
365
366                 str += strcspn(str, ",");
367                 while (*str == ',')
368                         str++;
369         }
370         return 0;
371 }
372 __setup("intel_iommu=", intel_iommu_setup);
373
374 static struct kmem_cache *iommu_domain_cache;
375 static struct kmem_cache *iommu_devinfo_cache;
376 static struct kmem_cache *iommu_iova_cache;
377
378 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
379 {
380         unsigned int flags;
381         void *vaddr;
382
383         /* trying to avoid low memory issues */
384         flags = current->flags & PF_MEMALLOC;
385         current->flags |= PF_MEMALLOC;
386         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
387         current->flags &= (~PF_MEMALLOC | flags);
388         return vaddr;
389 }
390
391
392 static inline void *alloc_pgtable_page(void)
393 {
394         unsigned int flags;
395         void *vaddr;
396
397         /* trying to avoid low memory issues */
398         flags = current->flags & PF_MEMALLOC;
399         current->flags |= PF_MEMALLOC;
400         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
401         current->flags &= (~PF_MEMALLOC | flags);
402         return vaddr;
403 }
404
405 static inline void free_pgtable_page(void *vaddr)
406 {
407         free_page((unsigned long)vaddr);
408 }
409
410 static inline void *alloc_domain_mem(void)
411 {
412         return iommu_kmem_cache_alloc(iommu_domain_cache);
413 }
414
415 static void free_domain_mem(void *vaddr)
416 {
417         kmem_cache_free(iommu_domain_cache, vaddr);
418 }
419
420 static inline void * alloc_devinfo_mem(void)
421 {
422         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
423 }
424
425 static inline void free_devinfo_mem(void *vaddr)
426 {
427         kmem_cache_free(iommu_devinfo_cache, vaddr);
428 }
429
430 struct iova *alloc_iova_mem(void)
431 {
432         return iommu_kmem_cache_alloc(iommu_iova_cache);
433 }
434
435 void free_iova_mem(struct iova *iova)
436 {
437         kmem_cache_free(iommu_iova_cache, iova);
438 }
439
440
441 static inline int width_to_agaw(int width);
442
443 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
444 {
445         unsigned long sagaw;
446         int agaw = -1;
447
448         sagaw = cap_sagaw(iommu->cap);
449         for (agaw = width_to_agaw(max_gaw);
450              agaw >= 0; agaw--) {
451                 if (test_bit(agaw, &sagaw))
452                         break;
453         }
454
455         return agaw;
456 }
457
458 /*
459  * Calculate max SAGAW for each iommu.
460  */
461 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
462 {
463         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
464 }
465
466 /*
467  * calculate agaw for each iommu.
468  * "SAGAW" may be different across iommus, use a default agaw, and
469  * get a supported less agaw for iommus that don't support the default agaw.
470  */
471 int iommu_calculate_agaw(struct intel_iommu *iommu)
472 {
473         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
474 }
475
476 /* This functionin only returns single iommu in a domain */
477 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
478 {
479         int iommu_id;
480
481         /* si_domain and vm domain should not get here. */
482         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
483         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
484
485         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
486         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
487                 return NULL;
488
489         return g_iommus[iommu_id];
490 }
491
492 static void domain_update_iommu_coherency(struct dmar_domain *domain)
493 {
494         int i;
495
496         domain->iommu_coherency = 1;
497
498         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
499         for (; i < g_num_of_iommus; ) {
500                 if (!ecap_coherent(g_iommus[i]->ecap)) {
501                         domain->iommu_coherency = 0;
502                         break;
503                 }
504                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
505         }
506 }
507
508 static void domain_update_iommu_snooping(struct dmar_domain *domain)
509 {
510         int i;
511
512         domain->iommu_snooping = 1;
513
514         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
515         for (; i < g_num_of_iommus; ) {
516                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
517                         domain->iommu_snooping = 0;
518                         break;
519                 }
520                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
521         }
522 }
523
524 /* Some capabilities may be different across iommus */
525 static void domain_update_iommu_cap(struct dmar_domain *domain)
526 {
527         domain_update_iommu_coherency(domain);
528         domain_update_iommu_snooping(domain);
529 }
530
531 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
532 {
533         struct dmar_drhd_unit *drhd = NULL;
534         int i;
535
536         for_each_drhd_unit(drhd) {
537                 if (drhd->ignored)
538                         continue;
539                 if (segment != drhd->segment)
540                         continue;
541
542                 for (i = 0; i < drhd->devices_cnt; i++) {
543                         if (drhd->devices[i] &&
544                             drhd->devices[i]->bus->number == bus &&
545                             drhd->devices[i]->devfn == devfn)
546                                 return drhd->iommu;
547                         if (drhd->devices[i] &&
548                             drhd->devices[i]->subordinate &&
549                             drhd->devices[i]->subordinate->number <= bus &&
550                             drhd->devices[i]->subordinate->subordinate >= bus)
551                                 return drhd->iommu;
552                 }
553
554                 if (drhd->include_all)
555                         return drhd->iommu;
556         }
557
558         return NULL;
559 }
560
561 static void domain_flush_cache(struct dmar_domain *domain,
562                                void *addr, int size)
563 {
564         if (!domain->iommu_coherency)
565                 clflush_cache_range(addr, size);
566 }
567
568 /* Gets context entry for a given bus and devfn */
569 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
570                 u8 bus, u8 devfn)
571 {
572         struct root_entry *root;
573         struct context_entry *context;
574         unsigned long phy_addr;
575         unsigned long flags;
576
577         spin_lock_irqsave(&iommu->lock, flags);
578         root = &iommu->root_entry[bus];
579         context = get_context_addr_from_root(root);
580         if (!context) {
581                 context = (struct context_entry *)alloc_pgtable_page();
582                 if (!context) {
583                         spin_unlock_irqrestore(&iommu->lock, flags);
584                         return NULL;
585                 }
586                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
587                 phy_addr = virt_to_phys((void *)context);
588                 set_root_value(root, phy_addr);
589                 set_root_present(root);
590                 __iommu_flush_cache(iommu, root, sizeof(*root));
591         }
592         spin_unlock_irqrestore(&iommu->lock, flags);
593         return &context[devfn];
594 }
595
596 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
597 {
598         struct root_entry *root;
599         struct context_entry *context;
600         int ret;
601         unsigned long flags;
602
603         spin_lock_irqsave(&iommu->lock, flags);
604         root = &iommu->root_entry[bus];
605         context = get_context_addr_from_root(root);
606         if (!context) {
607                 ret = 0;
608                 goto out;
609         }
610         ret = context_present(&context[devfn]);
611 out:
612         spin_unlock_irqrestore(&iommu->lock, flags);
613         return ret;
614 }
615
616 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
617 {
618         struct root_entry *root;
619         struct context_entry *context;
620         unsigned long flags;
621
622         spin_lock_irqsave(&iommu->lock, flags);
623         root = &iommu->root_entry[bus];
624         context = get_context_addr_from_root(root);
625         if (context) {
626                 context_clear_entry(&context[devfn]);
627                 __iommu_flush_cache(iommu, &context[devfn], \
628                         sizeof(*context));
629         }
630         spin_unlock_irqrestore(&iommu->lock, flags);
631 }
632
633 static void free_context_table(struct intel_iommu *iommu)
634 {
635         struct root_entry *root;
636         int i;
637         unsigned long flags;
638         struct context_entry *context;
639
640         spin_lock_irqsave(&iommu->lock, flags);
641         if (!iommu->root_entry) {
642                 goto out;
643         }
644         for (i = 0; i < ROOT_ENTRY_NR; i++) {
645                 root = &iommu->root_entry[i];
646                 context = get_context_addr_from_root(root);
647                 if (context)
648                         free_pgtable_page(context);
649         }
650         free_pgtable_page(iommu->root_entry);
651         iommu->root_entry = NULL;
652 out:
653         spin_unlock_irqrestore(&iommu->lock, flags);
654 }
655
656 /* page table handling */
657 #define LEVEL_STRIDE            (9)
658 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
659
660 static inline int agaw_to_level(int agaw)
661 {
662         return agaw + 2;
663 }
664
665 static inline int agaw_to_width(int agaw)
666 {
667         return 30 + agaw * LEVEL_STRIDE;
668
669 }
670
671 static inline int width_to_agaw(int width)
672 {
673         return (width - 30) / LEVEL_STRIDE;
674 }
675
676 static inline unsigned int level_to_offset_bits(int level)
677 {
678         return (level - 1) * LEVEL_STRIDE;
679 }
680
681 static inline int pfn_level_offset(unsigned long pfn, int level)
682 {
683         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
684 }
685
686 static inline unsigned long level_mask(int level)
687 {
688         return -1UL << level_to_offset_bits(level);
689 }
690
691 static inline unsigned long level_size(int level)
692 {
693         return 1UL << level_to_offset_bits(level);
694 }
695
696 static inline unsigned long align_to_level(unsigned long pfn, int level)
697 {
698         return (pfn + level_size(level) - 1) & level_mask(level);
699 }
700
701 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
702                                       unsigned long pfn)
703 {
704         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
705         struct dma_pte *parent, *pte = NULL;
706         int level = agaw_to_level(domain->agaw);
707         int offset;
708
709         BUG_ON(!domain->pgd);
710         BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
711         parent = domain->pgd;
712
713         while (level > 0) {
714                 void *tmp_page;
715
716                 offset = pfn_level_offset(pfn, level);
717                 pte = &parent[offset];
718                 if (level == 1)
719                         break;
720
721                 if (!dma_pte_present(pte)) {
722                         uint64_t pteval;
723
724                         tmp_page = alloc_pgtable_page();
725
726                         if (!tmp_page)
727                                 return NULL;
728
729                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
730                         pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
731                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
732                                 /* Someone else set it while we were thinking; use theirs. */
733                                 free_pgtable_page(tmp_page);
734                         } else {
735                                 dma_pte_addr(pte);
736                                 domain_flush_cache(domain, pte, sizeof(*pte));
737                         }
738                 }
739                 parent = phys_to_virt(dma_pte_addr(pte));
740                 level--;
741         }
742
743         return pte;
744 }
745
746 /* return address's pte at specific level */
747 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
748                                          unsigned long pfn,
749                                          int level)
750 {
751         struct dma_pte *parent, *pte = NULL;
752         int total = agaw_to_level(domain->agaw);
753         int offset;
754
755         parent = domain->pgd;
756         while (level <= total) {
757                 offset = pfn_level_offset(pfn, total);
758                 pte = &parent[offset];
759                 if (level == total)
760                         return pte;
761
762                 if (!dma_pte_present(pte))
763                         break;
764                 parent = phys_to_virt(dma_pte_addr(pte));
765                 total--;
766         }
767         return NULL;
768 }
769
770 /* clear last level pte, a tlb flush should be followed */
771 static void dma_pte_clear_range(struct dmar_domain *domain,
772                                 unsigned long start_pfn,
773                                 unsigned long last_pfn)
774 {
775         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
776         struct dma_pte *first_pte, *pte;
777
778         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
779         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
780
781         /* we don't need lock here; nobody else touches the iova range */
782         while (start_pfn <= last_pfn) {
783                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
784                 if (!pte) {
785                         start_pfn = align_to_level(start_pfn + 1, 2);
786                         continue;
787                 }
788                 do { 
789                         dma_clear_pte(pte);
790                         start_pfn++;
791                         pte++;
792                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
793
794                 domain_flush_cache(domain, first_pte,
795                                    (void *)pte - (void *)first_pte);
796         }
797 }
798
799 /* free page table pages. last level pte should already be cleared */
800 static void dma_pte_free_pagetable(struct dmar_domain *domain,
801                                    unsigned long start_pfn,
802                                    unsigned long last_pfn)
803 {
804         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
805         struct dma_pte *first_pte, *pte;
806         int total = agaw_to_level(domain->agaw);
807         int level;
808         unsigned long tmp;
809
810         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
811         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
812
813         /* We don't need lock here; nobody else touches the iova range */
814         level = 2;
815         while (level <= total) {
816                 tmp = align_to_level(start_pfn, level);
817
818                 /* If we can't even clear one PTE at this level, we're done */
819                 if (tmp + level_size(level) - 1 > last_pfn)
820                         return;
821
822                 while (tmp + level_size(level) - 1 <= last_pfn) {
823                         first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
824                         if (!pte) {
825                                 tmp = align_to_level(tmp + 1, level + 1);
826                                 continue;
827                         }
828                         do {
829                                 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
830                                 dma_clear_pte(pte);
831                                 pte++;
832                                 tmp += level_size(level);
833                         } while (!first_pte_in_page(pte) &&
834                                  tmp + level_size(level) - 1 <= last_pfn);
835
836                         domain_flush_cache(domain, first_pte,
837                                            (void *)pte - (void *)first_pte);
838                         
839                 }
840                 level++;
841         }
842         /* free pgd */
843         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
844                 free_pgtable_page(domain->pgd);
845                 domain->pgd = NULL;
846         }
847 }
848
849 /* iommu handling */
850 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
851 {
852         struct root_entry *root;
853         unsigned long flags;
854
855         root = (struct root_entry *)alloc_pgtable_page();
856         if (!root)
857                 return -ENOMEM;
858
859         __iommu_flush_cache(iommu, root, ROOT_SIZE);
860
861         spin_lock_irqsave(&iommu->lock, flags);
862         iommu->root_entry = root;
863         spin_unlock_irqrestore(&iommu->lock, flags);
864
865         return 0;
866 }
867
868 static void iommu_set_root_entry(struct intel_iommu *iommu)
869 {
870         void *addr;
871         u32 sts;
872         unsigned long flag;
873
874         addr = iommu->root_entry;
875
876         spin_lock_irqsave(&iommu->register_lock, flag);
877         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
878
879         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
880
881         /* Make sure hardware complete it */
882         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
883                       readl, (sts & DMA_GSTS_RTPS), sts);
884
885         spin_unlock_irqrestore(&iommu->register_lock, flag);
886 }
887
888 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
889 {
890         u32 val;
891         unsigned long flag;
892
893         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
894                 return;
895
896         spin_lock_irqsave(&iommu->register_lock, flag);
897         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
898
899         /* Make sure hardware complete it */
900         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
901                       readl, (!(val & DMA_GSTS_WBFS)), val);
902
903         spin_unlock_irqrestore(&iommu->register_lock, flag);
904 }
905
906 /* return value determine if we need a write buffer flush */
907 static void __iommu_flush_context(struct intel_iommu *iommu,
908                                   u16 did, u16 source_id, u8 function_mask,
909                                   u64 type)
910 {
911         u64 val = 0;
912         unsigned long flag;
913
914         switch (type) {
915         case DMA_CCMD_GLOBAL_INVL:
916                 val = DMA_CCMD_GLOBAL_INVL;
917                 break;
918         case DMA_CCMD_DOMAIN_INVL:
919                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
920                 break;
921         case DMA_CCMD_DEVICE_INVL:
922                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
923                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
924                 break;
925         default:
926                 BUG();
927         }
928         val |= DMA_CCMD_ICC;
929
930         spin_lock_irqsave(&iommu->register_lock, flag);
931         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
932
933         /* Make sure hardware complete it */
934         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
935                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
936
937         spin_unlock_irqrestore(&iommu->register_lock, flag);
938 }
939
940 /* return value determine if we need a write buffer flush */
941 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
942                                 u64 addr, unsigned int size_order, u64 type)
943 {
944         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
945         u64 val = 0, val_iva = 0;
946         unsigned long flag;
947
948         switch (type) {
949         case DMA_TLB_GLOBAL_FLUSH:
950                 /* global flush doesn't need set IVA_REG */
951                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
952                 break;
953         case DMA_TLB_DSI_FLUSH:
954                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
955                 break;
956         case DMA_TLB_PSI_FLUSH:
957                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
958                 /* Note: always flush non-leaf currently */
959                 val_iva = size_order | addr;
960                 break;
961         default:
962                 BUG();
963         }
964         /* Note: set drain read/write */
965 #if 0
966         /*
967          * This is probably to be super secure.. Looks like we can
968          * ignore it without any impact.
969          */
970         if (cap_read_drain(iommu->cap))
971                 val |= DMA_TLB_READ_DRAIN;
972 #endif
973         if (cap_write_drain(iommu->cap))
974                 val |= DMA_TLB_WRITE_DRAIN;
975
976         spin_lock_irqsave(&iommu->register_lock, flag);
977         /* Note: Only uses first TLB reg currently */
978         if (val_iva)
979                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
980         dmar_writeq(iommu->reg + tlb_offset + 8, val);
981
982         /* Make sure hardware complete it */
983         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
984                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
985
986         spin_unlock_irqrestore(&iommu->register_lock, flag);
987
988         /* check IOTLB invalidation granularity */
989         if (DMA_TLB_IAIG(val) == 0)
990                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
991         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
992                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
993                         (unsigned long long)DMA_TLB_IIRG(type),
994                         (unsigned long long)DMA_TLB_IAIG(val));
995 }
996
997 static struct device_domain_info *iommu_support_dev_iotlb(
998         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
999 {
1000         int found = 0;
1001         unsigned long flags;
1002         struct device_domain_info *info;
1003         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1004
1005         if (!ecap_dev_iotlb_support(iommu->ecap))
1006                 return NULL;
1007
1008         if (!iommu->qi)
1009                 return NULL;
1010
1011         spin_lock_irqsave(&device_domain_lock, flags);
1012         list_for_each_entry(info, &domain->devices, link)
1013                 if (info->bus == bus && info->devfn == devfn) {
1014                         found = 1;
1015                         break;
1016                 }
1017         spin_unlock_irqrestore(&device_domain_lock, flags);
1018
1019         if (!found || !info->dev)
1020                 return NULL;
1021
1022         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1023                 return NULL;
1024
1025         if (!dmar_find_matched_atsr_unit(info->dev))
1026                 return NULL;
1027
1028         info->iommu = iommu;
1029
1030         return info;
1031 }
1032
1033 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1034 {
1035         if (!info)
1036                 return;
1037
1038         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1039 }
1040
1041 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1042 {
1043         if (!info->dev || !pci_ats_enabled(info->dev))
1044                 return;
1045
1046         pci_disable_ats(info->dev);
1047 }
1048
1049 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1050                                   u64 addr, unsigned mask)
1051 {
1052         u16 sid, qdep;
1053         unsigned long flags;
1054         struct device_domain_info *info;
1055
1056         spin_lock_irqsave(&device_domain_lock, flags);
1057         list_for_each_entry(info, &domain->devices, link) {
1058                 if (!info->dev || !pci_ats_enabled(info->dev))
1059                         continue;
1060
1061                 sid = info->bus << 8 | info->devfn;
1062                 qdep = pci_ats_queue_depth(info->dev);
1063                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1064         }
1065         spin_unlock_irqrestore(&device_domain_lock, flags);
1066 }
1067
1068 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1069                                   unsigned long pfn, unsigned int pages)
1070 {
1071         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1072         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1073
1074         BUG_ON(pages == 0);
1075
1076         /*
1077          * Fallback to domain selective flush if no PSI support or the size is
1078          * too big.
1079          * PSI requires page size to be 2 ^ x, and the base address is naturally
1080          * aligned to the size
1081          */
1082         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1083                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1084                                                 DMA_TLB_DSI_FLUSH);
1085         else
1086                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1087                                                 DMA_TLB_PSI_FLUSH);
1088
1089         /*
1090          * In caching mode, domain ID 0 is reserved for non-present to present
1091          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1092          */
1093         if (!cap_caching_mode(iommu->cap) || did)
1094                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1095 }
1096
1097 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1098 {
1099         u32 pmen;
1100         unsigned long flags;
1101
1102         spin_lock_irqsave(&iommu->register_lock, flags);
1103         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1104         pmen &= ~DMA_PMEN_EPM;
1105         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1106
1107         /* wait for the protected region status bit to clear */
1108         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1109                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1110
1111         spin_unlock_irqrestore(&iommu->register_lock, flags);
1112 }
1113
1114 static int iommu_enable_translation(struct intel_iommu *iommu)
1115 {
1116         u32 sts;
1117         unsigned long flags;
1118
1119         spin_lock_irqsave(&iommu->register_lock, flags);
1120         iommu->gcmd |= DMA_GCMD_TE;
1121         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1122
1123         /* Make sure hardware complete it */
1124         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1125                       readl, (sts & DMA_GSTS_TES), sts);
1126
1127         spin_unlock_irqrestore(&iommu->register_lock, flags);
1128         return 0;
1129 }
1130
1131 static int iommu_disable_translation(struct intel_iommu *iommu)
1132 {
1133         u32 sts;
1134         unsigned long flag;
1135
1136         spin_lock_irqsave(&iommu->register_lock, flag);
1137         iommu->gcmd &= ~DMA_GCMD_TE;
1138         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1139
1140         /* Make sure hardware complete it */
1141         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1142                       readl, (!(sts & DMA_GSTS_TES)), sts);
1143
1144         spin_unlock_irqrestore(&iommu->register_lock, flag);
1145         return 0;
1146 }
1147
1148
1149 static int iommu_init_domains(struct intel_iommu *iommu)
1150 {
1151         unsigned long ndomains;
1152         unsigned long nlongs;
1153
1154         ndomains = cap_ndoms(iommu->cap);
1155         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1156         nlongs = BITS_TO_LONGS(ndomains);
1157
1158         /* TBD: there might be 64K domains,
1159          * consider other allocation for future chip
1160          */
1161         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1162         if (!iommu->domain_ids) {
1163                 printk(KERN_ERR "Allocating domain id array failed\n");
1164                 return -ENOMEM;
1165         }
1166         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1167                         GFP_KERNEL);
1168         if (!iommu->domains) {
1169                 printk(KERN_ERR "Allocating domain array failed\n");
1170                 kfree(iommu->domain_ids);
1171                 return -ENOMEM;
1172         }
1173
1174         spin_lock_init(&iommu->lock);
1175
1176         /*
1177          * if Caching mode is set, then invalid translations are tagged
1178          * with domainid 0. Hence we need to pre-allocate it.
1179          */
1180         if (cap_caching_mode(iommu->cap))
1181                 set_bit(0, iommu->domain_ids);
1182         return 0;
1183 }
1184
1185
1186 static void domain_exit(struct dmar_domain *domain);
1187 static void vm_domain_exit(struct dmar_domain *domain);
1188
1189 void free_dmar_iommu(struct intel_iommu *iommu)
1190 {
1191         struct dmar_domain *domain;
1192         int i;
1193         unsigned long flags;
1194
1195         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1196         for (; i < cap_ndoms(iommu->cap); ) {
1197                 domain = iommu->domains[i];
1198                 clear_bit(i, iommu->domain_ids);
1199
1200                 spin_lock_irqsave(&domain->iommu_lock, flags);
1201                 if (--domain->iommu_count == 0) {
1202                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1203                                 vm_domain_exit(domain);
1204                         else
1205                                 domain_exit(domain);
1206                 }
1207                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1208
1209                 i = find_next_bit(iommu->domain_ids,
1210                         cap_ndoms(iommu->cap), i+1);
1211         }
1212
1213         if (iommu->gcmd & DMA_GCMD_TE)
1214                 iommu_disable_translation(iommu);
1215
1216         if (iommu->irq) {
1217                 set_irq_data(iommu->irq, NULL);
1218                 /* This will mask the irq */
1219                 free_irq(iommu->irq, iommu);
1220                 destroy_irq(iommu->irq);
1221         }
1222
1223         kfree(iommu->domains);
1224         kfree(iommu->domain_ids);
1225
1226         g_iommus[iommu->seq_id] = NULL;
1227
1228         /* if all iommus are freed, free g_iommus */
1229         for (i = 0; i < g_num_of_iommus; i++) {
1230                 if (g_iommus[i])
1231                         break;
1232         }
1233
1234         if (i == g_num_of_iommus)
1235                 kfree(g_iommus);
1236
1237         /* free context mapping */
1238         free_context_table(iommu);
1239 }
1240
1241 static struct dmar_domain *alloc_domain(void)
1242 {
1243         struct dmar_domain *domain;
1244
1245         domain = alloc_domain_mem();
1246         if (!domain)
1247                 return NULL;
1248
1249         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1250         domain->flags = 0;
1251
1252         return domain;
1253 }
1254
1255 static int iommu_attach_domain(struct dmar_domain *domain,
1256                                struct intel_iommu *iommu)
1257 {
1258         int num;
1259         unsigned long ndomains;
1260         unsigned long flags;
1261
1262         ndomains = cap_ndoms(iommu->cap);
1263
1264         spin_lock_irqsave(&iommu->lock, flags);
1265
1266         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1267         if (num >= ndomains) {
1268                 spin_unlock_irqrestore(&iommu->lock, flags);
1269                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1270                 return -ENOMEM;
1271         }
1272
1273         domain->id = num;
1274         set_bit(num, iommu->domain_ids);
1275         set_bit(iommu->seq_id, &domain->iommu_bmp);
1276         iommu->domains[num] = domain;
1277         spin_unlock_irqrestore(&iommu->lock, flags);
1278
1279         return 0;
1280 }
1281
1282 static void iommu_detach_domain(struct dmar_domain *domain,
1283                                 struct intel_iommu *iommu)
1284 {
1285         unsigned long flags;
1286         int num, ndomains;
1287         int found = 0;
1288
1289         spin_lock_irqsave(&iommu->lock, flags);
1290         ndomains = cap_ndoms(iommu->cap);
1291         num = find_first_bit(iommu->domain_ids, ndomains);
1292         for (; num < ndomains; ) {
1293                 if (iommu->domains[num] == domain) {
1294                         found = 1;
1295                         break;
1296                 }
1297                 num = find_next_bit(iommu->domain_ids,
1298                                     cap_ndoms(iommu->cap), num+1);
1299         }
1300
1301         if (found) {
1302                 clear_bit(num, iommu->domain_ids);
1303                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1304                 iommu->domains[num] = NULL;
1305         }
1306         spin_unlock_irqrestore(&iommu->lock, flags);
1307 }
1308
1309 static struct iova_domain reserved_iova_list;
1310 static struct lock_class_key reserved_alloc_key;
1311 static struct lock_class_key reserved_rbtree_key;
1312
1313 static void dmar_init_reserved_ranges(void)
1314 {
1315         struct pci_dev *pdev = NULL;
1316         struct iova *iova;
1317         int i;
1318
1319         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1320
1321         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1322                 &reserved_alloc_key);
1323         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1324                 &reserved_rbtree_key);
1325
1326         /* IOAPIC ranges shouldn't be accessed by DMA */
1327         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1328                 IOVA_PFN(IOAPIC_RANGE_END));
1329         if (!iova)
1330                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1331
1332         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1333         for_each_pci_dev(pdev) {
1334                 struct resource *r;
1335
1336                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1337                         r = &pdev->resource[i];
1338                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1339                                 continue;
1340                         iova = reserve_iova(&reserved_iova_list,
1341                                             IOVA_PFN(r->start),
1342                                             IOVA_PFN(r->end));
1343                         if (!iova)
1344                                 printk(KERN_ERR "Reserve iova failed\n");
1345                 }
1346         }
1347
1348 }
1349
1350 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1351 {
1352         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1353 }
1354
1355 static inline int guestwidth_to_adjustwidth(int gaw)
1356 {
1357         int agaw;
1358         int r = (gaw - 12) % 9;
1359
1360         if (r == 0)
1361                 agaw = gaw;
1362         else
1363                 agaw = gaw + 9 - r;
1364         if (agaw > 64)
1365                 agaw = 64;
1366         return agaw;
1367 }
1368
1369 static int domain_init(struct dmar_domain *domain, int guest_width)
1370 {
1371         struct intel_iommu *iommu;
1372         int adjust_width, agaw;
1373         unsigned long sagaw;
1374
1375         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1376         spin_lock_init(&domain->iommu_lock);
1377
1378         domain_reserve_special_ranges(domain);
1379
1380         /* calculate AGAW */
1381         iommu = domain_get_iommu(domain);
1382         if (guest_width > cap_mgaw(iommu->cap))
1383                 guest_width = cap_mgaw(iommu->cap);
1384         domain->gaw = guest_width;
1385         adjust_width = guestwidth_to_adjustwidth(guest_width);
1386         agaw = width_to_agaw(adjust_width);
1387         sagaw = cap_sagaw(iommu->cap);
1388         if (!test_bit(agaw, &sagaw)) {
1389                 /* hardware doesn't support it, choose a bigger one */
1390                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1391                 agaw = find_next_bit(&sagaw, 5, agaw);
1392                 if (agaw >= 5)
1393                         return -ENODEV;
1394         }
1395         domain->agaw = agaw;
1396         INIT_LIST_HEAD(&domain->devices);
1397
1398         if (ecap_coherent(iommu->ecap))
1399                 domain->iommu_coherency = 1;
1400         else
1401                 domain->iommu_coherency = 0;
1402
1403         if (ecap_sc_support(iommu->ecap))
1404                 domain->iommu_snooping = 1;
1405         else
1406                 domain->iommu_snooping = 0;
1407
1408         domain->iommu_count = 1;
1409
1410         /* always allocate the top pgd */
1411         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1412         if (!domain->pgd)
1413                 return -ENOMEM;
1414         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1415         return 0;
1416 }
1417
1418 static void domain_exit(struct dmar_domain *domain)
1419 {
1420         struct dmar_drhd_unit *drhd;
1421         struct intel_iommu *iommu;
1422
1423         /* Domain 0 is reserved, so dont process it */
1424         if (!domain)
1425                 return;
1426
1427         domain_remove_dev_info(domain);
1428         /* destroy iovas */
1429         put_iova_domain(&domain->iovad);
1430
1431         /* clear ptes */
1432         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1433
1434         /* free page tables */
1435         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1436
1437         for_each_active_iommu(iommu, drhd)
1438                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1439                         iommu_detach_domain(domain, iommu);
1440
1441         free_domain_mem(domain);
1442 }
1443
1444 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1445                                  u8 bus, u8 devfn, int translation)
1446 {
1447         struct context_entry *context;
1448         unsigned long flags;
1449         struct intel_iommu *iommu;
1450         struct dma_pte *pgd;
1451         unsigned long num;
1452         unsigned long ndomains;
1453         int id;
1454         int agaw;
1455         struct device_domain_info *info = NULL;
1456
1457         pr_debug("Set context mapping for %02x:%02x.%d\n",
1458                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1459
1460         BUG_ON(!domain->pgd);
1461         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1462                translation != CONTEXT_TT_MULTI_LEVEL);
1463
1464         iommu = device_to_iommu(segment, bus, devfn);
1465         if (!iommu)
1466                 return -ENODEV;
1467
1468         context = device_to_context_entry(iommu, bus, devfn);
1469         if (!context)
1470                 return -ENOMEM;
1471         spin_lock_irqsave(&iommu->lock, flags);
1472         if (context_present(context)) {
1473                 spin_unlock_irqrestore(&iommu->lock, flags);
1474                 return 0;
1475         }
1476
1477         id = domain->id;
1478         pgd = domain->pgd;
1479
1480         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1481             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1482                 int found = 0;
1483
1484                 /* find an available domain id for this device in iommu */
1485                 ndomains = cap_ndoms(iommu->cap);
1486                 num = find_first_bit(iommu->domain_ids, ndomains);
1487                 for (; num < ndomains; ) {
1488                         if (iommu->domains[num] == domain) {
1489                                 id = num;
1490                                 found = 1;
1491                                 break;
1492                         }
1493                         num = find_next_bit(iommu->domain_ids,
1494                                             cap_ndoms(iommu->cap), num+1);
1495                 }
1496
1497                 if (found == 0) {
1498                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1499                         if (num >= ndomains) {
1500                                 spin_unlock_irqrestore(&iommu->lock, flags);
1501                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1502                                 return -EFAULT;
1503                         }
1504
1505                         set_bit(num, iommu->domain_ids);
1506                         set_bit(iommu->seq_id, &domain->iommu_bmp);
1507                         iommu->domains[num] = domain;
1508                         id = num;
1509                 }
1510
1511                 /* Skip top levels of page tables for
1512                  * iommu which has less agaw than default.
1513                  */
1514                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1515                         pgd = phys_to_virt(dma_pte_addr(pgd));
1516                         if (!dma_pte_present(pgd)) {
1517                                 spin_unlock_irqrestore(&iommu->lock, flags);
1518                                 return -ENOMEM;
1519                         }
1520                 }
1521         }
1522
1523         context_set_domain_id(context, id);
1524
1525         if (translation != CONTEXT_TT_PASS_THROUGH) {
1526                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1527                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1528                                      CONTEXT_TT_MULTI_LEVEL;
1529         }
1530         /*
1531          * In pass through mode, AW must be programmed to indicate the largest
1532          * AGAW value supported by hardware. And ASR is ignored by hardware.
1533          */
1534         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1535                 context_set_address_width(context, iommu->msagaw);
1536         else {
1537                 context_set_address_root(context, virt_to_phys(pgd));
1538                 context_set_address_width(context, iommu->agaw);
1539         }
1540
1541         context_set_translation_type(context, translation);
1542         context_set_fault_enable(context);
1543         context_set_present(context);
1544         domain_flush_cache(domain, context, sizeof(*context));
1545
1546         /*
1547          * It's a non-present to present mapping. If hardware doesn't cache
1548          * non-present entry we only need to flush the write-buffer. If the
1549          * _does_ cache non-present entries, then it does so in the special
1550          * domain #0, which we have to flush:
1551          */
1552         if (cap_caching_mode(iommu->cap)) {
1553                 iommu->flush.flush_context(iommu, 0,
1554                                            (((u16)bus) << 8) | devfn,
1555                                            DMA_CCMD_MASK_NOBIT,
1556                                            DMA_CCMD_DEVICE_INVL);
1557                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1558         } else {
1559                 iommu_flush_write_buffer(iommu);
1560         }
1561         iommu_enable_dev_iotlb(info);
1562         spin_unlock_irqrestore(&iommu->lock, flags);
1563
1564         spin_lock_irqsave(&domain->iommu_lock, flags);
1565         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1566                 domain->iommu_count++;
1567                 domain_update_iommu_cap(domain);
1568         }
1569         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1570         return 0;
1571 }
1572
1573 static int
1574 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1575                         int translation)
1576 {
1577         int ret;
1578         struct pci_dev *tmp, *parent;
1579
1580         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1581                                          pdev->bus->number, pdev->devfn,
1582                                          translation);
1583         if (ret)
1584                 return ret;
1585
1586         /* dependent device mapping */
1587         tmp = pci_find_upstream_pcie_bridge(pdev);
1588         if (!tmp)
1589                 return 0;
1590         /* Secondary interface's bus number and devfn 0 */
1591         parent = pdev->bus->self;
1592         while (parent != tmp) {
1593                 ret = domain_context_mapping_one(domain,
1594                                                  pci_domain_nr(parent->bus),
1595                                                  parent->bus->number,
1596                                                  parent->devfn, translation);
1597                 if (ret)
1598                         return ret;
1599                 parent = parent->bus->self;
1600         }
1601         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1602                 return domain_context_mapping_one(domain,
1603                                         pci_domain_nr(tmp->subordinate),
1604                                         tmp->subordinate->number, 0,
1605                                         translation);
1606         else /* this is a legacy PCI bridge */
1607                 return domain_context_mapping_one(domain,
1608                                                   pci_domain_nr(tmp->bus),
1609                                                   tmp->bus->number,
1610                                                   tmp->devfn,
1611                                                   translation);
1612 }
1613
1614 static int domain_context_mapped(struct pci_dev *pdev)
1615 {
1616         int ret;
1617         struct pci_dev *tmp, *parent;
1618         struct intel_iommu *iommu;
1619
1620         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1621                                 pdev->devfn);
1622         if (!iommu)
1623                 return -ENODEV;
1624
1625         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1626         if (!ret)
1627                 return ret;
1628         /* dependent device mapping */
1629         tmp = pci_find_upstream_pcie_bridge(pdev);
1630         if (!tmp)
1631                 return ret;
1632         /* Secondary interface's bus number and devfn 0 */
1633         parent = pdev->bus->self;
1634         while (parent != tmp) {
1635                 ret = device_context_mapped(iommu, parent->bus->number,
1636                                             parent->devfn);
1637                 if (!ret)
1638                         return ret;
1639                 parent = parent->bus->self;
1640         }
1641         if (tmp->is_pcie)
1642                 return device_context_mapped(iommu, tmp->subordinate->number,
1643                                              0);
1644         else
1645                 return device_context_mapped(iommu, tmp->bus->number,
1646                                              tmp->devfn);
1647 }
1648
1649 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1650                             struct scatterlist *sg, unsigned long phys_pfn,
1651                             unsigned long nr_pages, int prot)
1652 {
1653         struct dma_pte *first_pte = NULL, *pte = NULL;
1654         phys_addr_t uninitialized_var(pteval);
1655         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1656         unsigned long sg_res;
1657
1658         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1659
1660         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1661                 return -EINVAL;
1662
1663         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1664
1665         if (sg)
1666                 sg_res = 0;
1667         else {
1668                 sg_res = nr_pages + 1;
1669                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1670         }
1671
1672         while (nr_pages--) {
1673                 uint64_t tmp;
1674
1675                 if (!sg_res) {
1676                         sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
1677                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1678                         sg->dma_length = sg->length;
1679                         pteval = page_to_phys(sg_page(sg)) | prot;
1680                 }
1681                 if (!pte) {
1682                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1683                         if (!pte)
1684                                 return -ENOMEM;
1685                 }
1686                 /* We don't need lock here, nobody else
1687                  * touches the iova range
1688                  */
1689                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1690                 if (tmp) {
1691                         static int dumps = 5;
1692                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1693                                iov_pfn, tmp, (unsigned long long)pteval);
1694                         if (dumps) {
1695                                 dumps--;
1696                                 debug_dma_dump_mappings(NULL);
1697                         }
1698                         WARN_ON(1);
1699                 }
1700                 pte++;
1701                 if (!nr_pages || first_pte_in_page(pte)) {
1702                         domain_flush_cache(domain, first_pte,
1703                                            (void *)pte - (void *)first_pte);
1704                         pte = NULL;
1705                 }
1706                 iov_pfn++;
1707                 pteval += VTD_PAGE_SIZE;
1708                 sg_res--;
1709                 if (!sg_res)
1710                         sg = sg_next(sg);
1711         }
1712         return 0;
1713 }
1714
1715 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1716                                     struct scatterlist *sg, unsigned long nr_pages,
1717                                     int prot)
1718 {
1719         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1720 }
1721
1722 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1723                                      unsigned long phys_pfn, unsigned long nr_pages,
1724                                      int prot)
1725 {
1726         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1727 }
1728
1729 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1730 {
1731         if (!iommu)
1732                 return;
1733
1734         clear_context_table(iommu, bus, devfn);
1735         iommu->flush.flush_context(iommu, 0, 0, 0,
1736                                            DMA_CCMD_GLOBAL_INVL);
1737         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1738 }
1739
1740 static void domain_remove_dev_info(struct dmar_domain *domain)
1741 {
1742         struct device_domain_info *info;
1743         unsigned long flags;
1744         struct intel_iommu *iommu;
1745
1746         spin_lock_irqsave(&device_domain_lock, flags);
1747         while (!list_empty(&domain->devices)) {
1748                 info = list_entry(domain->devices.next,
1749                         struct device_domain_info, link);
1750                 list_del(&info->link);
1751                 list_del(&info->global);
1752                 if (info->dev)
1753                         info->dev->dev.archdata.iommu = NULL;
1754                 spin_unlock_irqrestore(&device_domain_lock, flags);
1755
1756                 iommu_disable_dev_iotlb(info);
1757                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1758                 iommu_detach_dev(iommu, info->bus, info->devfn);
1759                 free_devinfo_mem(info);
1760
1761                 spin_lock_irqsave(&device_domain_lock, flags);
1762         }
1763         spin_unlock_irqrestore(&device_domain_lock, flags);
1764 }
1765
1766 /*
1767  * find_domain
1768  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1769  */
1770 static struct dmar_domain *
1771 find_domain(struct pci_dev *pdev)
1772 {
1773         struct device_domain_info *info;
1774
1775         /* No lock here, assumes no domain exit in normal case */
1776         info = pdev->dev.archdata.iommu;
1777         if (info)
1778                 return info->domain;
1779         return NULL;
1780 }
1781
1782 /* domain is initialized */
1783 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1784 {
1785         struct dmar_domain *domain, *found = NULL;
1786         struct intel_iommu *iommu;
1787         struct dmar_drhd_unit *drhd;
1788         struct device_domain_info *info, *tmp;
1789         struct pci_dev *dev_tmp;
1790         unsigned long flags;
1791         int bus = 0, devfn = 0;
1792         int segment;
1793         int ret;
1794
1795         domain = find_domain(pdev);
1796         if (domain)
1797                 return domain;
1798
1799         segment = pci_domain_nr(pdev->bus);
1800
1801         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1802         if (dev_tmp) {
1803                 if (dev_tmp->is_pcie) {
1804                         bus = dev_tmp->subordinate->number;
1805                         devfn = 0;
1806                 } else {
1807                         bus = dev_tmp->bus->number;
1808                         devfn = dev_tmp->devfn;
1809                 }
1810                 spin_lock_irqsave(&device_domain_lock, flags);
1811                 list_for_each_entry(info, &device_domain_list, global) {
1812                         if (info->segment == segment &&
1813                             info->bus == bus && info->devfn == devfn) {
1814                                 found = info->domain;
1815                                 break;
1816                         }
1817                 }
1818                 spin_unlock_irqrestore(&device_domain_lock, flags);
1819                 /* pcie-pci bridge already has a domain, uses it */
1820                 if (found) {
1821                         domain = found;
1822                         goto found_domain;
1823                 }
1824         }
1825
1826         domain = alloc_domain();
1827         if (!domain)
1828                 goto error;
1829
1830         /* Allocate new domain for the device */
1831         drhd = dmar_find_matched_drhd_unit(pdev);
1832         if (!drhd) {
1833                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1834                         pci_name(pdev));
1835                 return NULL;
1836         }
1837         iommu = drhd->iommu;
1838
1839         ret = iommu_attach_domain(domain, iommu);
1840         if (ret) {
1841                 domain_exit(domain);
1842                 goto error;
1843         }
1844
1845         if (domain_init(domain, gaw)) {
1846                 domain_exit(domain);
1847                 goto error;
1848         }
1849
1850         /* register pcie-to-pci device */
1851         if (dev_tmp) {
1852                 info = alloc_devinfo_mem();
1853                 if (!info) {
1854                         domain_exit(domain);
1855                         goto error;
1856                 }
1857                 info->segment = segment;
1858                 info->bus = bus;
1859                 info->devfn = devfn;
1860                 info->dev = NULL;
1861                 info->domain = domain;
1862                 /* This domain is shared by devices under p2p bridge */
1863                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1864
1865                 /* pcie-to-pci bridge already has a domain, uses it */
1866                 found = NULL;
1867                 spin_lock_irqsave(&device_domain_lock, flags);
1868                 list_for_each_entry(tmp, &device_domain_list, global) {
1869                         if (tmp->segment == segment &&
1870                             tmp->bus == bus && tmp->devfn == devfn) {
1871                                 found = tmp->domain;
1872                                 break;
1873                         }
1874                 }
1875                 if (found) {
1876                         free_devinfo_mem(info);
1877                         domain_exit(domain);
1878                         domain = found;
1879                 } else {
1880                         list_add(&info->link, &domain->devices);
1881                         list_add(&info->global, &device_domain_list);
1882                 }
1883                 spin_unlock_irqrestore(&device_domain_lock, flags);
1884         }
1885
1886 found_domain:
1887         info = alloc_devinfo_mem();
1888         if (!info)
1889                 goto error;
1890         info->segment = segment;
1891         info->bus = pdev->bus->number;
1892         info->devfn = pdev->devfn;
1893         info->dev = pdev;
1894         info->domain = domain;
1895         spin_lock_irqsave(&device_domain_lock, flags);
1896         /* somebody is fast */
1897         found = find_domain(pdev);
1898         if (found != NULL) {
1899                 spin_unlock_irqrestore(&device_domain_lock, flags);
1900                 if (found != domain) {
1901                         domain_exit(domain);
1902                         domain = found;
1903                 }
1904                 free_devinfo_mem(info);
1905                 return domain;
1906         }
1907         list_add(&info->link, &domain->devices);
1908         list_add(&info->global, &device_domain_list);
1909         pdev->dev.archdata.iommu = info;
1910         spin_unlock_irqrestore(&device_domain_lock, flags);
1911         return domain;
1912 error:
1913         /* recheck it here, maybe others set it */
1914         return find_domain(pdev);
1915 }
1916
1917 static int iommu_identity_mapping;
1918
1919 static int iommu_domain_identity_map(struct dmar_domain *domain,
1920                                      unsigned long long start,
1921                                      unsigned long long end)
1922 {
1923         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1924         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1925
1926         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1927                           dma_to_mm_pfn(last_vpfn))) {
1928                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1929                 return -ENOMEM;
1930         }
1931
1932         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1933                  start, end, domain->id);
1934         /*
1935          * RMRR range might have overlap with physical memory range,
1936          * clear it first
1937          */
1938         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1939
1940         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1941                                   last_vpfn - first_vpfn + 1,
1942                                   DMA_PTE_READ|DMA_PTE_WRITE);
1943 }
1944
1945 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1946                                       unsigned long long start,
1947                                       unsigned long long end)
1948 {
1949         struct dmar_domain *domain;
1950         int ret;
1951
1952         printk(KERN_INFO
1953                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1954                pci_name(pdev), start, end);
1955
1956         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1957         if (!domain)
1958                 return -ENOMEM;
1959
1960         ret = iommu_domain_identity_map(domain, start, end);
1961         if (ret)
1962                 goto error;
1963
1964         /* context entry init */
1965         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1966         if (ret)
1967                 goto error;
1968
1969         return 0;
1970
1971  error:
1972         domain_exit(domain);
1973         return ret;
1974 }
1975
1976 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1977         struct pci_dev *pdev)
1978 {
1979         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1980                 return 0;
1981         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1982                 rmrr->end_address + 1);
1983 }
1984
1985 #ifdef CONFIG_DMAR_FLOPPY_WA
1986 static inline void iommu_prepare_isa(void)
1987 {
1988         struct pci_dev *pdev;
1989         int ret;
1990
1991         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1992         if (!pdev)
1993                 return;
1994
1995         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1996         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1997
1998         if (ret)
1999                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2000                        "floppy might not work\n");
2001
2002 }
2003 #else
2004 static inline void iommu_prepare_isa(void)
2005 {
2006         return;
2007 }
2008 #endif /* !CONFIG_DMAR_FLPY_WA */
2009
2010 /* Initialize each context entry as pass through.*/
2011 static int __init init_context_pass_through(void)
2012 {
2013         struct pci_dev *pdev = NULL;
2014         struct dmar_domain *domain;
2015         int ret;
2016
2017         for_each_pci_dev(pdev) {
2018                 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2019                 ret = domain_context_mapping(domain, pdev,
2020                                              CONTEXT_TT_PASS_THROUGH);
2021                 if (ret)
2022                         return ret;
2023         }
2024         return 0;
2025 }
2026
2027 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2028
2029 static int __init si_domain_work_fn(unsigned long start_pfn,
2030                                     unsigned long end_pfn, void *datax)
2031 {
2032         int *ret = datax;
2033
2034         *ret = iommu_domain_identity_map(si_domain,
2035                                          (uint64_t)start_pfn << PAGE_SHIFT,
2036                                          (uint64_t)end_pfn << PAGE_SHIFT);
2037         return *ret;
2038
2039 }
2040
2041 static int si_domain_init(void)
2042 {
2043         struct dmar_drhd_unit *drhd;
2044         struct intel_iommu *iommu;
2045         int nid, ret = 0;
2046
2047         si_domain = alloc_domain();
2048         if (!si_domain)
2049                 return -EFAULT;
2050
2051         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2052
2053         for_each_active_iommu(iommu, drhd) {
2054                 ret = iommu_attach_domain(si_domain, iommu);
2055                 if (ret) {
2056                         domain_exit(si_domain);
2057                         return -EFAULT;
2058                 }
2059         }
2060
2061         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2062                 domain_exit(si_domain);
2063                 return -EFAULT;
2064         }
2065
2066         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2067
2068         for_each_online_node(nid) {
2069                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2070                 if (ret)
2071                         return ret;
2072         }
2073
2074         return 0;
2075 }
2076
2077 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2078                                           struct pci_dev *pdev);
2079 static int identity_mapping(struct pci_dev *pdev)
2080 {
2081         struct device_domain_info *info;
2082
2083         if (likely(!iommu_identity_mapping))
2084                 return 0;
2085
2086
2087         list_for_each_entry(info, &si_domain->devices, link)
2088                 if (info->dev == pdev)
2089                         return 1;
2090         return 0;
2091 }
2092
2093 static int domain_add_dev_info(struct dmar_domain *domain,
2094                                   struct pci_dev *pdev)
2095 {
2096         struct device_domain_info *info;
2097         unsigned long flags;
2098
2099         info = alloc_devinfo_mem();
2100         if (!info)
2101                 return -ENOMEM;
2102
2103         info->segment = pci_domain_nr(pdev->bus);
2104         info->bus = pdev->bus->number;
2105         info->devfn = pdev->devfn;
2106         info->dev = pdev;
2107         info->domain = domain;
2108
2109         spin_lock_irqsave(&device_domain_lock, flags);
2110         list_add(&info->link, &domain->devices);
2111         list_add(&info->global, &device_domain_list);
2112         pdev->dev.archdata.iommu = info;
2113         spin_unlock_irqrestore(&device_domain_lock, flags);
2114
2115         return 0;
2116 }
2117
2118 static int iommu_prepare_static_identity_mapping(void)
2119 {
2120         struct pci_dev *pdev = NULL;
2121         int ret;
2122
2123         ret = si_domain_init();
2124         if (ret)
2125                 return -EFAULT;
2126
2127         for_each_pci_dev(pdev) {
2128                 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2129                        pci_name(pdev));
2130
2131                 ret = domain_context_mapping(si_domain, pdev,
2132                                              CONTEXT_TT_MULTI_LEVEL);
2133                 if (ret)
2134                         return ret;
2135                 ret = domain_add_dev_info(si_domain, pdev);
2136                 if (ret)
2137                         return ret;
2138         }
2139
2140         return 0;
2141 }
2142
2143 int __init init_dmars(void)
2144 {
2145         struct dmar_drhd_unit *drhd;
2146         struct dmar_rmrr_unit *rmrr;
2147         struct pci_dev *pdev;
2148         struct intel_iommu *iommu;
2149         int i, ret;
2150         int pass_through = 1;
2151
2152         /*
2153          * In case pass through can not be enabled, iommu tries to use identity
2154          * mapping.
2155          */
2156         if (iommu_pass_through)
2157                 iommu_identity_mapping = 1;
2158
2159         /*
2160          * for each drhd
2161          *    allocate root
2162          *    initialize and program root entry to not present
2163          * endfor
2164          */
2165         for_each_drhd_unit(drhd) {
2166                 g_num_of_iommus++;
2167                 /*
2168                  * lock not needed as this is only incremented in the single
2169                  * threaded kernel __init code path all other access are read
2170                  * only
2171                  */
2172         }
2173
2174         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2175                         GFP_KERNEL);
2176         if (!g_iommus) {
2177                 printk(KERN_ERR "Allocating global iommu array failed\n");
2178                 ret = -ENOMEM;
2179                 goto error;
2180         }
2181
2182         deferred_flush = kzalloc(g_num_of_iommus *
2183                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2184         if (!deferred_flush) {
2185                 kfree(g_iommus);
2186                 ret = -ENOMEM;
2187                 goto error;
2188         }
2189
2190         for_each_drhd_unit(drhd) {
2191                 if (drhd->ignored)
2192                         continue;
2193
2194                 iommu = drhd->iommu;
2195                 g_iommus[iommu->seq_id] = iommu;
2196
2197                 ret = iommu_init_domains(iommu);
2198                 if (ret)
2199                         goto error;
2200
2201                 /*
2202                  * TBD:
2203                  * we could share the same root & context tables
2204                  * amoung all IOMMU's. Need to Split it later.
2205                  */
2206                 ret = iommu_alloc_root_entry(iommu);
2207                 if (ret) {
2208                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2209                         goto error;
2210                 }
2211                 if (!ecap_pass_through(iommu->ecap))
2212                         pass_through = 0;
2213         }
2214         if (iommu_pass_through)
2215                 if (!pass_through) {
2216                         printk(KERN_INFO
2217                                "Pass Through is not supported by hardware.\n");
2218                         iommu_pass_through = 0;
2219                 }
2220
2221         /*
2222          * Start from the sane iommu hardware state.
2223          */
2224         for_each_drhd_unit(drhd) {
2225                 if (drhd->ignored)
2226                         continue;
2227
2228                 iommu = drhd->iommu;
2229
2230                 /*
2231                  * If the queued invalidation is already initialized by us
2232                  * (for example, while enabling interrupt-remapping) then
2233                  * we got the things already rolling from a sane state.
2234                  */
2235                 if (iommu->qi)
2236                         continue;
2237
2238                 /*
2239                  * Clear any previous faults.
2240                  */
2241                 dmar_fault(-1, iommu);
2242                 /*
2243                  * Disable queued invalidation if supported and already enabled
2244                  * before OS handover.
2245                  */
2246                 dmar_disable_qi(iommu);
2247         }
2248
2249         for_each_drhd_unit(drhd) {
2250                 if (drhd->ignored)
2251                         continue;
2252
2253                 iommu = drhd->iommu;
2254
2255                 if (dmar_enable_qi(iommu)) {
2256                         /*
2257                          * Queued Invalidate not enabled, use Register Based
2258                          * Invalidate
2259                          */
2260                         iommu->flush.flush_context = __iommu_flush_context;
2261                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2262                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2263                                "invalidation\n",
2264                                (unsigned long long)drhd->reg_base_addr);
2265                 } else {
2266                         iommu->flush.flush_context = qi_flush_context;
2267                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2268                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2269                                "invalidation\n",
2270                                (unsigned long long)drhd->reg_base_addr);
2271                 }
2272         }
2273
2274         /*
2275          * If pass through is set and enabled, context entries of all pci
2276          * devices are intialized by pass through translation type.
2277          */
2278         if (iommu_pass_through) {
2279                 ret = init_context_pass_through();
2280                 if (ret) {
2281                         printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2282                         iommu_pass_through = 0;
2283                 }
2284         }
2285
2286         /*
2287          * If pass through is not set or not enabled, setup context entries for
2288          * identity mappings for rmrr, gfx, and isa and may fall back to static
2289          * identity mapping if iommu_identity_mapping is set.
2290          */
2291         if (!iommu_pass_through) {
2292                 if (iommu_identity_mapping)
2293                         iommu_prepare_static_identity_mapping();
2294                 /*
2295                  * For each rmrr
2296                  *   for each dev attached to rmrr
2297                  *   do
2298                  *     locate drhd for dev, alloc domain for dev
2299                  *     allocate free domain
2300                  *     allocate page table entries for rmrr
2301                  *     if context not allocated for bus
2302                  *           allocate and init context
2303                  *           set present in root table for this bus
2304                  *     init context with domain, translation etc
2305                  *    endfor
2306                  * endfor
2307                  */
2308                 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2309                 for_each_rmrr_units(rmrr) {
2310                         for (i = 0; i < rmrr->devices_cnt; i++) {
2311                                 pdev = rmrr->devices[i];
2312                                 /*
2313                                  * some BIOS lists non-exist devices in DMAR
2314                                  * table.
2315                                  */
2316                                 if (!pdev)
2317                                         continue;
2318                                 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2319                                 if (ret)
2320                                         printk(KERN_ERR
2321                                  "IOMMU: mapping reserved region failed\n");
2322                         }
2323                 }
2324
2325                 iommu_prepare_isa();
2326         }
2327
2328         /*
2329          * for each drhd
2330          *   enable fault log
2331          *   global invalidate context cache
2332          *   global invalidate iotlb
2333          *   enable translation
2334          */
2335         for_each_drhd_unit(drhd) {
2336                 if (drhd->ignored)
2337                         continue;
2338                 iommu = drhd->iommu;
2339
2340                 iommu_flush_write_buffer(iommu);
2341
2342                 ret = dmar_set_interrupt(iommu);
2343                 if (ret)
2344                         goto error;
2345
2346                 iommu_set_root_entry(iommu);
2347
2348                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2349                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2350                 iommu_disable_protect_mem_regions(iommu);
2351
2352                 ret = iommu_enable_translation(iommu);
2353                 if (ret)
2354                         goto error;
2355         }
2356
2357         return 0;
2358 error:
2359         for_each_drhd_unit(drhd) {
2360                 if (drhd->ignored)
2361                         continue;
2362                 iommu = drhd->iommu;
2363                 free_iommu(iommu);
2364         }
2365         kfree(g_iommus);
2366         return ret;
2367 }
2368
2369 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2370                                             size_t size)
2371 {
2372         host_addr &= ~PAGE_MASK;
2373         host_addr += size + PAGE_SIZE - 1;
2374
2375         return host_addr >> VTD_PAGE_SHIFT;
2376 }
2377
2378 static struct iova *intel_alloc_iova(struct device *dev,
2379                                      struct dmar_domain *domain,
2380                                      unsigned long nrpages, uint64_t dma_mask)
2381 {
2382         struct pci_dev *pdev = to_pci_dev(dev);
2383         struct iova *iova = NULL;
2384
2385         /* Restrict dma_mask to the width that the iommu can handle */
2386         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2387
2388         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2389                 /*
2390                  * First try to allocate an io virtual address in
2391                  * DMA_BIT_MASK(32) and if that fails then try allocating
2392                  * from higher range
2393                  */
2394                 iova = alloc_iova(&domain->iovad, nrpages,
2395                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2396                 if (iova)
2397                         return iova;
2398         }
2399         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2400         if (unlikely(!iova)) {
2401                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2402                        nrpages, pci_name(pdev));
2403                 return NULL;
2404         }
2405
2406         return iova;
2407 }
2408
2409 static struct dmar_domain *
2410 get_valid_domain_for_dev(struct pci_dev *pdev)
2411 {
2412         struct dmar_domain *domain;
2413         int ret;
2414
2415         domain = get_domain_for_dev(pdev,
2416                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2417         if (!domain) {
2418                 printk(KERN_ERR
2419                         "Allocating domain for %s failed", pci_name(pdev));
2420                 return NULL;
2421         }
2422
2423         /* make sure context mapping is ok */
2424         if (unlikely(!domain_context_mapped(pdev))) {
2425                 ret = domain_context_mapping(domain, pdev,
2426                                              CONTEXT_TT_MULTI_LEVEL);
2427                 if (ret) {
2428                         printk(KERN_ERR
2429                                 "Domain context map for %s failed",
2430                                 pci_name(pdev));
2431                         return NULL;
2432                 }
2433         }
2434
2435         return domain;
2436 }
2437
2438 static int iommu_dummy(struct pci_dev *pdev)
2439 {
2440         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2441 }
2442
2443 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2444 static int iommu_no_mapping(struct pci_dev *pdev)
2445 {
2446         int found;
2447
2448         if (!iommu_identity_mapping)
2449                 return iommu_dummy(pdev);
2450
2451         found = identity_mapping(pdev);
2452         if (found) {
2453                 if (pdev->dma_mask > DMA_BIT_MASK(32))
2454                         return 1;
2455                 else {
2456                         /*
2457                          * 32 bit DMA is removed from si_domain and fall back
2458                          * to non-identity mapping.
2459                          */
2460                         domain_remove_one_dev_info(si_domain, pdev);
2461                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2462                                pci_name(pdev));
2463                         return 0;
2464                 }
2465         } else {
2466                 /*
2467                  * In case of a detached 64 bit DMA device from vm, the device
2468                  * is put into si_domain for identity mapping.
2469                  */
2470                 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2471                         int ret;
2472                         ret = domain_add_dev_info(si_domain, pdev);
2473                         if (!ret) {
2474                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2475                                        pci_name(pdev));
2476                                 return 1;
2477                         }
2478                 }
2479         }
2480
2481         return iommu_dummy(pdev);
2482 }
2483
2484 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2485                                      size_t size, int dir, u64 dma_mask)
2486 {
2487         struct pci_dev *pdev = to_pci_dev(hwdev);
2488         struct dmar_domain *domain;
2489         phys_addr_t start_paddr;
2490         struct iova *iova;
2491         int prot = 0;
2492         int ret;
2493         struct intel_iommu *iommu;
2494
2495         BUG_ON(dir == DMA_NONE);
2496
2497         if (iommu_no_mapping(pdev))
2498                 return paddr;
2499
2500         domain = get_valid_domain_for_dev(pdev);
2501         if (!domain)
2502                 return 0;
2503
2504         iommu = domain_get_iommu(domain);
2505         size = aligned_nrpages(paddr, size);
2506
2507         iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2508         if (!iova)
2509                 goto error;
2510
2511         /*
2512          * Check if DMAR supports zero-length reads on write only
2513          * mappings..
2514          */
2515         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2516                         !cap_zlr(iommu->cap))
2517                 prot |= DMA_PTE_READ;
2518         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2519                 prot |= DMA_PTE_WRITE;
2520         /*
2521          * paddr - (paddr + size) might be partial page, we should map the whole
2522          * page.  Note: if two part of one page are separately mapped, we
2523          * might have two guest_addr mapping to the same host paddr, but this
2524          * is not a big problem
2525          */
2526         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2527                                  paddr >> VTD_PAGE_SHIFT, size, prot);
2528         if (ret)
2529                 goto error;
2530
2531         /* it's a non-present to present mapping. Only flush if caching mode */
2532         if (cap_caching_mode(iommu->cap))
2533                 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2534         else
2535                 iommu_flush_write_buffer(iommu);
2536
2537         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2538         start_paddr += paddr & ~PAGE_MASK;
2539         return start_paddr;
2540
2541 error:
2542         if (iova)
2543                 __free_iova(&domain->iovad, iova);
2544         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2545                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2546         return 0;
2547 }
2548
2549 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2550                                  unsigned long offset, size_t size,
2551                                  enum dma_data_direction dir,
2552                                  struct dma_attrs *attrs)
2553 {
2554         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2555                                   dir, to_pci_dev(dev)->dma_mask);
2556 }
2557
2558 static void flush_unmaps(void)
2559 {
2560         int i, j;
2561
2562         timer_on = 0;
2563
2564         /* just flush them all */
2565         for (i = 0; i < g_num_of_iommus; i++) {
2566                 struct intel_iommu *iommu = g_iommus[i];
2567                 if (!iommu)
2568                         continue;
2569
2570                 if (!deferred_flush[i].next)
2571                         continue;
2572
2573                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2574                                          DMA_TLB_GLOBAL_FLUSH);
2575                 for (j = 0; j < deferred_flush[i].next; j++) {
2576                         unsigned long mask;
2577                         struct iova *iova = deferred_flush[i].iova[j];
2578
2579                         mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2580                         mask = ilog2(mask >> VTD_PAGE_SHIFT);
2581                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2582                                         iova->pfn_lo << PAGE_SHIFT, mask);
2583                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2584                 }
2585                 deferred_flush[i].next = 0;
2586         }
2587
2588         list_size = 0;
2589 }
2590
2591 static void flush_unmaps_timeout(unsigned long data)
2592 {
2593         unsigned long flags;
2594
2595         spin_lock_irqsave(&async_umap_flush_lock, flags);
2596         flush_unmaps();
2597         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2598 }
2599
2600 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2601 {
2602         unsigned long flags;
2603         int next, iommu_id;
2604         struct intel_iommu *iommu;
2605
2606         spin_lock_irqsave(&async_umap_flush_lock, flags);
2607         if (list_size == HIGH_WATER_MARK)
2608                 flush_unmaps();
2609
2610         iommu = domain_get_iommu(dom);
2611         iommu_id = iommu->seq_id;
2612
2613         next = deferred_flush[iommu_id].next;
2614         deferred_flush[iommu_id].domain[next] = dom;
2615         deferred_flush[iommu_id].iova[next] = iova;
2616         deferred_flush[iommu_id].next++;
2617
2618         if (!timer_on) {
2619                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2620                 timer_on = 1;
2621         }
2622         list_size++;
2623         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2624 }
2625
2626 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2627                              size_t size, enum dma_data_direction dir,
2628                              struct dma_attrs *attrs)
2629 {
2630         struct pci_dev *pdev = to_pci_dev(dev);
2631         struct dmar_domain *domain;
2632         unsigned long start_pfn, last_pfn;
2633         struct iova *iova;
2634         struct intel_iommu *iommu;
2635
2636         if (iommu_no_mapping(pdev))
2637                 return;
2638
2639         domain = find_domain(pdev);
2640         BUG_ON(!domain);
2641
2642         iommu = domain_get_iommu(domain);
2643
2644         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2645         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2646                       (unsigned long long)dev_addr))
2647                 return;
2648
2649         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2650         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2651
2652         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2653                  pci_name(pdev), start_pfn, last_pfn);
2654
2655         /*  clear the whole page */
2656         dma_pte_clear_range(domain, start_pfn, last_pfn);
2657
2658         /* free page tables */
2659         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2660
2661         if (intel_iommu_strict) {
2662                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2663                                       last_pfn - start_pfn + 1);
2664                 /* free iova */
2665                 __free_iova(&domain->iovad, iova);
2666         } else {
2667                 add_unmap(domain, iova);
2668                 /*
2669                  * queue up the release of the unmap to save the 1/6th of the
2670                  * cpu used up by the iotlb flush operation...
2671                  */
2672         }
2673 }
2674
2675 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2676                                int dir)
2677 {
2678         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2679 }
2680
2681 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2682                                   dma_addr_t *dma_handle, gfp_t flags)
2683 {
2684         void *vaddr;
2685         int order;
2686
2687         size = PAGE_ALIGN(size);
2688         order = get_order(size);
2689         flags &= ~(GFP_DMA | GFP_DMA32);
2690
2691         vaddr = (void *)__get_free_pages(flags, order);
2692         if (!vaddr)
2693                 return NULL;
2694         memset(vaddr, 0, size);
2695
2696         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2697                                          DMA_BIDIRECTIONAL,
2698                                          hwdev->coherent_dma_mask);
2699         if (*dma_handle)
2700                 return vaddr;
2701         free_pages((unsigned long)vaddr, order);
2702         return NULL;
2703 }
2704
2705 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2706                                 dma_addr_t dma_handle)
2707 {
2708         int order;
2709
2710         size = PAGE_ALIGN(size);
2711         order = get_order(size);
2712
2713         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2714         free_pages((unsigned long)vaddr, order);
2715 }
2716
2717 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2718                            int nelems, enum dma_data_direction dir,
2719                            struct dma_attrs *attrs)
2720 {
2721         struct pci_dev *pdev = to_pci_dev(hwdev);
2722         struct dmar_domain *domain;
2723         unsigned long start_pfn, last_pfn;
2724         struct iova *iova;
2725         struct intel_iommu *iommu;
2726
2727         if (iommu_no_mapping(pdev))
2728                 return;
2729
2730         domain = find_domain(pdev);
2731         BUG_ON(!domain);
2732
2733         iommu = domain_get_iommu(domain);
2734
2735         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2736         if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2737                       (unsigned long long)sglist[0].dma_address))
2738                 return;
2739
2740         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2741         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2742
2743         /*  clear the whole page */
2744         dma_pte_clear_range(domain, start_pfn, last_pfn);
2745
2746         /* free page tables */
2747         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2748
2749         iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2750                               (last_pfn - start_pfn + 1));
2751
2752         /* free iova */
2753         __free_iova(&domain->iovad, iova);
2754 }
2755
2756 static int intel_nontranslate_map_sg(struct device *hddev,
2757         struct scatterlist *sglist, int nelems, int dir)
2758 {
2759         int i;
2760         struct scatterlist *sg;
2761
2762         for_each_sg(sglist, sg, nelems, i) {
2763                 BUG_ON(!sg_page(sg));
2764                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2765                 sg->dma_length = sg->length;
2766         }
2767         return nelems;
2768 }
2769
2770 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2771                         enum dma_data_direction dir, struct dma_attrs *attrs)
2772 {
2773         int i;
2774         struct pci_dev *pdev = to_pci_dev(hwdev);
2775         struct dmar_domain *domain;
2776         size_t size = 0;
2777         int prot = 0;
2778         size_t offset_pfn = 0;
2779         struct iova *iova = NULL;
2780         int ret;
2781         struct scatterlist *sg;
2782         unsigned long start_vpfn;
2783         struct intel_iommu *iommu;
2784
2785         BUG_ON(dir == DMA_NONE);
2786         if (iommu_no_mapping(pdev))
2787                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2788
2789         domain = get_valid_domain_for_dev(pdev);
2790         if (!domain)
2791                 return 0;
2792
2793         iommu = domain_get_iommu(domain);
2794
2795         for_each_sg(sglist, sg, nelems, i)
2796                 size += aligned_nrpages(sg->offset, sg->length);
2797
2798         iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2799         if (!iova) {
2800                 sglist->dma_length = 0;
2801                 return 0;
2802         }
2803
2804         /*
2805          * Check if DMAR supports zero-length reads on write only
2806          * mappings..
2807          */
2808         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2809                         !cap_zlr(iommu->cap))
2810                 prot |= DMA_PTE_READ;
2811         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2812                 prot |= DMA_PTE_WRITE;
2813
2814         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2815
2816         ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
2817         if (unlikely(ret)) {
2818                 /*  clear the page */
2819                 dma_pte_clear_range(domain, start_vpfn,
2820                                     start_vpfn + size - 1);
2821                 /* free page tables */
2822                 dma_pte_free_pagetable(domain, start_vpfn,
2823                                        start_vpfn + size - 1);
2824                 /* free iova */
2825                 __free_iova(&domain->iovad, iova);
2826                 return 0;
2827         }
2828
2829         /* it's a non-present to present mapping. Only flush if caching mode */
2830         if (cap_caching_mode(iommu->cap))
2831                 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2832         else
2833                 iommu_flush_write_buffer(iommu);
2834
2835         return nelems;
2836 }
2837
2838 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2839 {
2840         return !dma_addr;
2841 }
2842
2843 struct dma_map_ops intel_dma_ops = {
2844         .alloc_coherent = intel_alloc_coherent,
2845         .free_coherent = intel_free_coherent,
2846         .map_sg = intel_map_sg,
2847         .unmap_sg = intel_unmap_sg,
2848         .map_page = intel_map_page,
2849         .unmap_page = intel_unmap_page,
2850         .mapping_error = intel_mapping_error,
2851 };
2852
2853 static inline int iommu_domain_cache_init(void)
2854 {
2855         int ret = 0;
2856
2857         iommu_domain_cache = kmem_cache_create("iommu_domain",
2858                                          sizeof(struct dmar_domain),
2859                                          0,
2860                                          SLAB_HWCACHE_ALIGN,
2861
2862                                          NULL);
2863         if (!iommu_domain_cache) {
2864                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2865                 ret = -ENOMEM;
2866         }
2867
2868         return ret;
2869 }
2870
2871 static inline int iommu_devinfo_cache_init(void)
2872 {
2873         int ret = 0;
2874
2875         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2876                                          sizeof(struct device_domain_info),
2877                                          0,
2878                                          SLAB_HWCACHE_ALIGN,
2879                                          NULL);
2880         if (!iommu_devinfo_cache) {
2881                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2882                 ret = -ENOMEM;
2883         }
2884
2885         return ret;
2886 }
2887
2888 static inline int iommu_iova_cache_init(void)
2889 {
2890         int ret = 0;
2891
2892         iommu_iova_cache = kmem_cache_create("iommu_iova",
2893                                          sizeof(struct iova),
2894                                          0,
2895                                          SLAB_HWCACHE_ALIGN,
2896                                          NULL);
2897         if (!iommu_iova_cache) {
2898                 printk(KERN_ERR "Couldn't create iova cache\n");
2899                 ret = -ENOMEM;
2900         }
2901
2902         return ret;
2903 }
2904
2905 static int __init iommu_init_mempool(void)
2906 {
2907         int ret;
2908         ret = iommu_iova_cache_init();
2909         if (ret)
2910                 return ret;
2911
2912         ret = iommu_domain_cache_init();
2913         if (ret)
2914                 goto domain_error;
2915
2916         ret = iommu_devinfo_cache_init();
2917         if (!ret)
2918                 return ret;
2919
2920         kmem_cache_destroy(iommu_domain_cache);
2921 domain_error:
2922         kmem_cache_destroy(iommu_iova_cache);
2923
2924         return -ENOMEM;
2925 }
2926
2927 static void __init iommu_exit_mempool(void)
2928 {
2929         kmem_cache_destroy(iommu_devinfo_cache);
2930         kmem_cache_destroy(iommu_domain_cache);
2931         kmem_cache_destroy(iommu_iova_cache);
2932
2933 }
2934
2935 static void __init init_no_remapping_devices(void)
2936 {
2937         struct dmar_drhd_unit *drhd;
2938
2939         for_each_drhd_unit(drhd) {
2940                 if (!drhd->include_all) {
2941                         int i;
2942                         for (i = 0; i < drhd->devices_cnt; i++)
2943                                 if (drhd->devices[i] != NULL)
2944                                         break;
2945                         /* ignore DMAR unit if no pci devices exist */
2946                         if (i == drhd->devices_cnt)
2947                                 drhd->ignored = 1;
2948                 }
2949         }
2950
2951         if (dmar_map_gfx)
2952                 return;
2953
2954         for_each_drhd_unit(drhd) {
2955                 int i;
2956                 if (drhd->ignored || drhd->include_all)
2957                         continue;
2958
2959                 for (i = 0; i < drhd->devices_cnt; i++)
2960                         if (drhd->devices[i] &&
2961                                 !IS_GFX_DEVICE(drhd->devices[i]))
2962                                 break;
2963
2964                 if (i < drhd->devices_cnt)
2965                         continue;
2966
2967                 /* bypass IOMMU if it is just for gfx devices */
2968                 drhd->ignored = 1;
2969                 for (i = 0; i < drhd->devices_cnt; i++) {
2970                         if (!drhd->devices[i])
2971                                 continue;
2972                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2973                 }
2974         }
2975 }
2976
2977 #ifdef CONFIG_SUSPEND
2978 static int init_iommu_hw(void)
2979 {
2980         struct dmar_drhd_unit *drhd;
2981         struct intel_iommu *iommu = NULL;
2982
2983         for_each_active_iommu(iommu, drhd)
2984                 if (iommu->qi)
2985                         dmar_reenable_qi(iommu);
2986
2987         for_each_active_iommu(iommu, drhd) {
2988                 iommu_flush_write_buffer(iommu);
2989
2990                 iommu_set_root_entry(iommu);
2991
2992                 iommu->flush.flush_context(iommu, 0, 0, 0,
2993                                            DMA_CCMD_GLOBAL_INVL);
2994                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2995                                          DMA_TLB_GLOBAL_FLUSH);
2996                 iommu_disable_protect_mem_regions(iommu);
2997                 iommu_enable_translation(iommu);
2998         }
2999
3000         return 0;
3001 }
3002
3003 static void iommu_flush_all(void)
3004 {
3005         struct dmar_drhd_unit *drhd;
3006         struct intel_iommu *iommu;
3007
3008         for_each_active_iommu(iommu, drhd) {
3009                 iommu->flush.flush_context(iommu, 0, 0, 0,
3010                                            DMA_CCMD_GLOBAL_INVL);
3011                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3012                                          DMA_TLB_GLOBAL_FLUSH);
3013         }
3014 }
3015
3016 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3017 {
3018         struct dmar_drhd_unit *drhd;
3019         struct intel_iommu *iommu = NULL;
3020         unsigned long flag;
3021
3022         for_each_active_iommu(iommu, drhd) {
3023                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3024                                                  GFP_ATOMIC);
3025                 if (!iommu->iommu_state)
3026                         goto nomem;
3027         }
3028
3029         iommu_flush_all();
3030
3031         for_each_active_iommu(iommu, drhd) {
3032                 iommu_disable_translation(iommu);
3033
3034                 spin_lock_irqsave(&iommu->register_lock, flag);
3035
3036                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3037                         readl(iommu->reg + DMAR_FECTL_REG);
3038                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3039                         readl(iommu->reg + DMAR_FEDATA_REG);
3040                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3041                         readl(iommu->reg + DMAR_FEADDR_REG);
3042                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3043                         readl(iommu->reg + DMAR_FEUADDR_REG);
3044
3045                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3046         }
3047         return 0;
3048
3049 nomem:
3050         for_each_active_iommu(iommu, drhd)
3051                 kfree(iommu->iommu_state);
3052
3053         return -ENOMEM;
3054 }
3055
3056 static int iommu_resume(struct sys_device *dev)
3057 {
3058         struct dmar_drhd_unit *drhd;
3059         struct intel_iommu *iommu = NULL;
3060         unsigned long flag;
3061
3062         if (init_iommu_hw()) {
3063                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3064                 return -EIO;
3065         }
3066
3067         for_each_active_iommu(iommu, drhd) {
3068
3069                 spin_lock_irqsave(&iommu->register_lock, flag);
3070
3071                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3072                         iommu->reg + DMAR_FECTL_REG);
3073                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3074                         iommu->reg + DMAR_FEDATA_REG);
3075                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3076                         iommu->reg + DMAR_FEADDR_REG);
3077                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3078                         iommu->reg + DMAR_FEUADDR_REG);
3079
3080                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3081         }
3082
3083         for_each_active_iommu(iommu, drhd)
3084                 kfree(iommu->iommu_state);
3085
3086         return 0;
3087 }
3088
3089 static struct sysdev_class iommu_sysclass = {
3090         .name           = "iommu",
3091         .resume         = iommu_resume,
3092         .suspend        = iommu_suspend,
3093 };
3094
3095 static struct sys_device device_iommu = {
3096         .cls    = &iommu_sysclass,
3097 };
3098
3099 static int __init init_iommu_sysfs(void)
3100 {
3101         int error;
3102
3103         error = sysdev_class_register(&iommu_sysclass);
3104         if (error)
3105                 return error;
3106
3107         error = sysdev_register(&device_iommu);
3108         if (error)
3109                 sysdev_class_unregister(&iommu_sysclass);
3110
3111         return error;
3112 }
3113
3114 #else
3115 static int __init init_iommu_sysfs(void)
3116 {
3117         return 0;
3118 }
3119 #endif  /* CONFIG_PM */
3120
3121 int __init intel_iommu_init(void)
3122 {
3123         int ret = 0;
3124
3125         if (dmar_table_init())
3126                 return  -ENODEV;
3127
3128         if (dmar_dev_scope_init())
3129                 return  -ENODEV;
3130
3131         /*
3132          * Check the need for DMA-remapping initialization now.
3133          * Above initialization will also be used by Interrupt-remapping.
3134          */
3135         if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3136                 return -ENODEV;
3137
3138         iommu_init_mempool();
3139         dmar_init_reserved_ranges();
3140
3141         init_no_remapping_devices();
3142
3143         ret = init_dmars();
3144         if (ret) {
3145                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3146                 put_iova_domain(&reserved_iova_list);
3147                 iommu_exit_mempool();
3148                 return ret;
3149         }
3150         printk(KERN_INFO
3151         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3152
3153         init_timer(&unmap_timer);
3154         force_iommu = 1;
3155
3156         if (!iommu_pass_through) {
3157                 printk(KERN_INFO
3158                        "Multi-level page-table translation for DMAR.\n");
3159                 dma_ops = &intel_dma_ops;
3160         } else
3161                 printk(KERN_INFO
3162                        "DMAR: Pass through translation for DMAR.\n");
3163
3164         init_iommu_sysfs();
3165
3166         register_iommu(&intel_iommu_ops);
3167
3168         return 0;
3169 }
3170
3171 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3172                                            struct pci_dev *pdev)
3173 {
3174         struct pci_dev *tmp, *parent;
3175
3176         if (!iommu || !pdev)
3177                 return;
3178
3179         /* dependent device detach */
3180         tmp = pci_find_upstream_pcie_bridge(pdev);
3181         /* Secondary interface's bus number and devfn 0 */
3182         if (tmp) {
3183                 parent = pdev->bus->self;
3184                 while (parent != tmp) {
3185                         iommu_detach_dev(iommu, parent->bus->number,
3186                                          parent->devfn);
3187                         parent = parent->bus->self;
3188                 }
3189                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3190                         iommu_detach_dev(iommu,
3191                                 tmp->subordinate->number, 0);
3192                 else /* this is a legacy PCI bridge */
3193                         iommu_detach_dev(iommu, tmp->bus->number,
3194                                          tmp->devfn);
3195         }
3196 }
3197
3198 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3199                                           struct pci_dev *pdev)
3200 {
3201         struct device_domain_info *info;
3202         struct intel_iommu *iommu;
3203         unsigned long flags;
3204         int found = 0;
3205         struct list_head *entry, *tmp;
3206
3207         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3208                                 pdev->devfn);
3209         if (!iommu)
3210                 return;
3211
3212         spin_lock_irqsave(&device_domain_lock, flags);
3213         list_for_each_safe(entry, tmp, &domain->devices) {
3214                 info = list_entry(entry, struct device_domain_info, link);
3215                 /* No need to compare PCI domain; it has to be the same */
3216                 if (info->bus == pdev->bus->number &&
3217                     info->devfn == pdev->devfn) {
3218                         list_del(&info->link);
3219                         list_del(&info->global);
3220                         if (info->dev)
3221                                 info->dev->dev.archdata.iommu = NULL;
3222                         spin_unlock_irqrestore(&device_domain_lock, flags);
3223
3224                         iommu_disable_dev_iotlb(info);
3225                         iommu_detach_dev(iommu, info->bus, info->devfn);
3226                         iommu_detach_dependent_devices(iommu, pdev);
3227                         free_devinfo_mem(info);
3228
3229                         spin_lock_irqsave(&device_domain_lock, flags);
3230
3231                         if (found)
3232                                 break;
3233                         else
3234                                 continue;
3235                 }
3236
3237                 /* if there is no other devices under the same iommu
3238                  * owned by this domain, clear this iommu in iommu_bmp
3239                  * update iommu count and coherency
3240                  */
3241                 if (iommu == device_to_iommu(info->segment, info->bus,
3242                                             info->devfn))
3243                         found = 1;
3244         }
3245
3246         if (found == 0) {
3247                 unsigned long tmp_flags;
3248                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3249                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3250                 domain->iommu_count--;
3251                 domain_update_iommu_cap(domain);
3252                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3253         }
3254
3255         spin_unlock_irqrestore(&device_domain_lock, flags);
3256 }
3257
3258 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3259 {
3260         struct device_domain_info *info;
3261         struct intel_iommu *iommu;
3262         unsigned long flags1, flags2;
3263
3264         spin_lock_irqsave(&device_domain_lock, flags1);
3265         while (!list_empty(&domain->devices)) {
3266                 info = list_entry(domain->devices.next,
3267                         struct device_domain_info, link);
3268                 list_del(&info->link);
3269                 list_del(&info->global);
3270                 if (info->dev)
3271                         info->dev->dev.archdata.iommu = NULL;
3272
3273                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3274
3275                 iommu_disable_dev_iotlb(info);
3276                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3277                 iommu_detach_dev(iommu, info->bus, info->devfn);
3278                 iommu_detach_dependent_devices(iommu, info->dev);
3279
3280                 /* clear this iommu in iommu_bmp, update iommu count
3281                  * and capabilities
3282                  */
3283                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3284                 if (test_and_clear_bit(iommu->seq_id,
3285                                        &domain->iommu_bmp)) {
3286                         domain->iommu_count--;
3287                         domain_update_iommu_cap(domain);
3288                 }
3289                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3290
3291                 free_devinfo_mem(info);
3292                 spin_lock_irqsave(&device_domain_lock, flags1);
3293         }
3294         spin_unlock_irqrestore(&device_domain_lock, flags1);
3295 }
3296
3297 /* domain id for virtual machine, it won't be set in context */
3298 static unsigned long vm_domid;
3299
3300 static int vm_domain_min_agaw(struct dmar_domain *domain)
3301 {
3302         int i;
3303         int min_agaw = domain->agaw;
3304
3305         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3306         for (; i < g_num_of_iommus; ) {
3307                 if (min_agaw > g_iommus[i]->agaw)
3308                         min_agaw = g_iommus[i]->agaw;
3309
3310                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3311         }
3312
3313         return min_agaw;
3314 }
3315
3316 static struct dmar_domain *iommu_alloc_vm_domain(void)
3317 {
3318         struct dmar_domain *domain;
3319
3320         domain = alloc_domain_mem();
3321         if (!domain)
3322                 return NULL;
3323
3324         domain->id = vm_domid++;
3325         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3326         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3327
3328         return domain;
3329 }
3330
3331 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3332 {
3333         int adjust_width;
3334
3335         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3336         spin_lock_init(&domain->iommu_lock);
3337
3338         domain_reserve_special_ranges(domain);
3339
3340         /* calculate AGAW */
3341         domain->gaw = guest_width;
3342         adjust_width = guestwidth_to_adjustwidth(guest_width);
3343         domain->agaw = width_to_agaw(adjust_width);
3344
3345         INIT_LIST_HEAD(&domain->devices);
3346
3347         domain->iommu_count = 0;
3348         domain->iommu_coherency = 0;
3349         domain->max_addr = 0;
3350
3351         /* always allocate the top pgd */
3352         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3353         if (!domain->pgd)
3354                 return -ENOMEM;
3355         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3356         return 0;
3357 }
3358
3359 static void iommu_free_vm_domain(struct dmar_domain *domain)
3360 {
3361         unsigned long flags;
3362         struct dmar_drhd_unit *drhd;
3363         struct intel_iommu *iommu;
3364         unsigned long i;
3365         unsigned long ndomains;
3366
3367         for_each_drhd_unit(drhd) {
3368                 if (drhd->ignored)
3369                         continue;
3370                 iommu = drhd->iommu;
3371
3372                 ndomains = cap_ndoms(iommu->cap);
3373                 i = find_first_bit(iommu->domain_ids, ndomains);
3374                 for (; i < ndomains; ) {
3375                         if (iommu->domains[i] == domain) {
3376                                 spin_lock_irqsave(&iommu->lock, flags);
3377                                 clear_bit(i, iommu->domain_ids);
3378                                 iommu->domains[i] = NULL;
3379                                 spin_unlock_irqrestore(&iommu->lock, flags);
3380                                 break;
3381                         }
3382                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3383                 }
3384         }
3385 }
3386
3387 static void vm_domain_exit(struct dmar_domain *domain)
3388 {
3389         /* Domain 0 is reserved, so dont process it */
3390         if (!domain)
3391                 return;
3392
3393         vm_domain_remove_all_dev_info(domain);
3394         /* destroy iovas */
3395         put_iova_domain(&domain->iovad);
3396
3397         /* clear ptes */
3398         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3399
3400         /* free page tables */
3401         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3402
3403         iommu_free_vm_domain(domain);
3404         free_domain_mem(domain);
3405 }
3406
3407 static int intel_iommu_domain_init(struct iommu_domain *domain)
3408 {
3409         struct dmar_domain *dmar_domain;
3410
3411         dmar_domain = iommu_alloc_vm_domain();
3412         if (!dmar_domain) {
3413                 printk(KERN_ERR
3414                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3415                 return -ENOMEM;
3416         }
3417         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3418                 printk(KERN_ERR
3419                         "intel_iommu_domain_init() failed\n");
3420                 vm_domain_exit(dmar_domain);
3421                 return -ENOMEM;
3422         }
3423         domain->priv = dmar_domain;
3424
3425         return 0;
3426 }
3427
3428 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3429 {
3430         struct dmar_domain *dmar_domain = domain->priv;
3431
3432         domain->priv = NULL;
3433         vm_domain_exit(dmar_domain);
3434 }
3435
3436 static int intel_iommu_attach_device(struct iommu_domain *domain,
3437                                      struct device *dev)
3438 {
3439         struct dmar_domain *dmar_domain = domain->priv;
3440         struct pci_dev *pdev = to_pci_dev(dev);
3441         struct intel_iommu *iommu;
3442         int addr_width;
3443         u64 end;
3444         int ret;
3445
3446         /* normally pdev is not mapped */
3447         if (unlikely(domain_context_mapped(pdev))) {
3448                 struct dmar_domain *old_domain;
3449
3450                 old_domain = find_domain(pdev);
3451                 if (old_domain) {
3452                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3453                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3454                                 domain_remove_one_dev_info(old_domain, pdev);
3455                         else
3456                                 domain_remove_dev_info(old_domain);
3457                 }
3458         }
3459
3460         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3461                                 pdev->devfn);
3462         if (!iommu)
3463                 return -ENODEV;
3464
3465         /* check if this iommu agaw is sufficient for max mapped address */
3466         addr_width = agaw_to_width(iommu->agaw);
3467         end = DOMAIN_MAX_ADDR(addr_width);
3468         end = end & VTD_PAGE_MASK;
3469         if (end < dmar_domain->max_addr) {
3470                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3471                        "sufficient for the mapped address (%llx)\n",
3472                        __func__, iommu->agaw, dmar_domain->max_addr);
3473                 return -EFAULT;
3474         }
3475
3476         ret = domain_add_dev_info(dmar_domain, pdev);
3477         if (ret)
3478                 return ret;
3479
3480         ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3481         return ret;
3482 }
3483
3484 static void intel_iommu_detach_device(struct iommu_domain *domain,
3485                                       struct device *dev)
3486 {
3487         struct dmar_domain *dmar_domain = domain->priv;
3488         struct pci_dev *pdev = to_pci_dev(dev);
3489
3490         domain_remove_one_dev_info(dmar_domain, pdev);
3491 }
3492
3493 static int intel_iommu_map_range(struct iommu_domain *domain,
3494                                  unsigned long iova, phys_addr_t hpa,
3495                                  size_t size, int iommu_prot)
3496 {
3497         struct dmar_domain *dmar_domain = domain->priv;
3498         u64 max_addr;
3499         int addr_width;
3500         int prot = 0;
3501         int ret;
3502
3503         if (iommu_prot & IOMMU_READ)
3504                 prot |= DMA_PTE_READ;
3505         if (iommu_prot & IOMMU_WRITE)
3506                 prot |= DMA_PTE_WRITE;
3507         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3508                 prot |= DMA_PTE_SNP;
3509
3510         max_addr = iova + size;
3511         if (dmar_domain->max_addr < max_addr) {
3512                 int min_agaw;
3513                 u64 end;
3514
3515                 /* check if minimum agaw is sufficient for mapped address */
3516                 min_agaw = vm_domain_min_agaw(dmar_domain);
3517                 addr_width = agaw_to_width(min_agaw);
3518                 end = DOMAIN_MAX_ADDR(addr_width);
3519                 end = end & VTD_PAGE_MASK;
3520                 if (end < max_addr) {
3521                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3522                                "sufficient for the mapped address (%llx)\n",
3523                                __func__, min_agaw, max_addr);
3524                         return -EFAULT;
3525                 }
3526                 dmar_domain->max_addr = max_addr;
3527         }
3528         /* Round up size to next multiple of PAGE_SIZE, if it and
3529            the low bits of hpa would take us onto the next page */
3530         size = aligned_nrpages(hpa, size);
3531         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3532                                  hpa >> VTD_PAGE_SHIFT, size, prot);
3533         return ret;
3534 }
3535
3536 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3537                                     unsigned long iova, size_t size)
3538 {
3539         struct dmar_domain *dmar_domain = domain->priv;
3540
3541         dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3542                             (iova + size - 1) >> VTD_PAGE_SHIFT);
3543
3544         if (dmar_domain->max_addr == iova + size)
3545                 dmar_domain->max_addr = iova;
3546 }
3547
3548 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3549                                             unsigned long iova)
3550 {
3551         struct dmar_domain *dmar_domain = domain->priv;
3552         struct dma_pte *pte;
3553         u64 phys = 0;
3554
3555         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3556         if (pte)
3557                 phys = dma_pte_addr(pte);
3558
3559         return phys;
3560 }
3561
3562 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3563                                       unsigned long cap)
3564 {
3565         struct dmar_domain *dmar_domain = domain->priv;
3566
3567         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3568                 return dmar_domain->iommu_snooping;
3569
3570         return 0;
3571 }
3572
3573 static struct iommu_ops intel_iommu_ops = {
3574         .domain_init    = intel_iommu_domain_init,
3575         .domain_destroy = intel_iommu_domain_destroy,
3576         .attach_dev     = intel_iommu_attach_device,
3577         .detach_dev     = intel_iommu_detach_device,
3578         .map            = intel_iommu_map_range,
3579         .unmap          = intel_iommu_unmap_range,
3580         .iova_to_phys   = intel_iommu_iova_to_phys,
3581         .domain_has_cap = intel_iommu_domain_has_cap,
3582 };
3583
3584 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3585 {
3586         /*
3587          * Mobile 4 Series Chipset neglects to set RWBF capability,
3588          * but needs it:
3589          */
3590         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3591         rwbf_quirk = 1;
3592 }
3593
3594 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);