d4217f7371594afb1609cb35a0e0b3b25fc18b1a
[safe/jmp/linux-2.6] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE               VTD_PAGE_SIZE
45 #define CONTEXT_SIZE            VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START      (0xfee00000)
51 #define IOAPIC_RANGE_END        (0xfeefffff)
52 #define IOVA_START_ADDR         (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59
60 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
61 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
62 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
63
64 #ifndef PHYSICAL_PAGE_MASK
65 #define PHYSICAL_PAGE_MASK PAGE_MASK
66 #endif
67
68 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
69    are never going to work. */
70 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
71 {
72         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
73 }
74
75 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
76 {
77         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
78 }
79 static inline unsigned long page_to_dma_pfn(struct page *pg)
80 {
81         return mm_to_dma_pfn(page_to_pfn(pg));
82 }
83 static inline unsigned long virt_to_dma_pfn(void *p)
84 {
85         return page_to_dma_pfn(virt_to_page(p));
86 }
87
88 /* global iommu list, set NULL for ignored DMAR units */
89 static struct intel_iommu **g_iommus;
90
91 static int rwbf_quirk;
92
93 /*
94  * 0: Present
95  * 1-11: Reserved
96  * 12-63: Context Ptr (12 - (haw-1))
97  * 64-127: Reserved
98  */
99 struct root_entry {
100         u64     val;
101         u64     rsvd1;
102 };
103 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
104 static inline bool root_present(struct root_entry *root)
105 {
106         return (root->val & 1);
107 }
108 static inline void set_root_present(struct root_entry *root)
109 {
110         root->val |= 1;
111 }
112 static inline void set_root_value(struct root_entry *root, unsigned long value)
113 {
114         root->val |= value & VTD_PAGE_MASK;
115 }
116
117 static inline struct context_entry *
118 get_context_addr_from_root(struct root_entry *root)
119 {
120         return (struct context_entry *)
121                 (root_present(root)?phys_to_virt(
122                 root->val & VTD_PAGE_MASK) :
123                 NULL);
124 }
125
126 /*
127  * low 64 bits:
128  * 0: present
129  * 1: fault processing disable
130  * 2-3: translation type
131  * 12-63: address space root
132  * high 64 bits:
133  * 0-2: address width
134  * 3-6: aval
135  * 8-23: domain id
136  */
137 struct context_entry {
138         u64 lo;
139         u64 hi;
140 };
141
142 static inline bool context_present(struct context_entry *context)
143 {
144         return (context->lo & 1);
145 }
146 static inline void context_set_present(struct context_entry *context)
147 {
148         context->lo |= 1;
149 }
150
151 static inline void context_set_fault_enable(struct context_entry *context)
152 {
153         context->lo &= (((u64)-1) << 2) | 1;
154 }
155
156 static inline void context_set_translation_type(struct context_entry *context,
157                                                 unsigned long value)
158 {
159         context->lo &= (((u64)-1) << 4) | 3;
160         context->lo |= (value & 3) << 2;
161 }
162
163 static inline void context_set_address_root(struct context_entry *context,
164                                             unsigned long value)
165 {
166         context->lo |= value & VTD_PAGE_MASK;
167 }
168
169 static inline void context_set_address_width(struct context_entry *context,
170                                              unsigned long value)
171 {
172         context->hi |= value & 7;
173 }
174
175 static inline void context_set_domain_id(struct context_entry *context,
176                                          unsigned long value)
177 {
178         context->hi |= (value & ((1 << 16) - 1)) << 8;
179 }
180
181 static inline void context_clear_entry(struct context_entry *context)
182 {
183         context->lo = 0;
184         context->hi = 0;
185 }
186
187 /*
188  * 0: readable
189  * 1: writable
190  * 2-6: reserved
191  * 7: super page
192  * 8-10: available
193  * 11: snoop behavior
194  * 12-63: Host physcial address
195  */
196 struct dma_pte {
197         u64 val;
198 };
199
200 static inline void dma_clear_pte(struct dma_pte *pte)
201 {
202         pte->val = 0;
203 }
204
205 static inline void dma_set_pte_readable(struct dma_pte *pte)
206 {
207         pte->val |= DMA_PTE_READ;
208 }
209
210 static inline void dma_set_pte_writable(struct dma_pte *pte)
211 {
212         pte->val |= DMA_PTE_WRITE;
213 }
214
215 static inline void dma_set_pte_snp(struct dma_pte *pte)
216 {
217         pte->val |= DMA_PTE_SNP;
218 }
219
220 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
221 {
222         pte->val = (pte->val & ~3) | (prot & 3);
223 }
224
225 static inline u64 dma_pte_addr(struct dma_pte *pte)
226 {
227         return (pte->val & VTD_PAGE_MASK);
228 }
229
230 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
231 {
232         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
233 }
234
235 static inline bool dma_pte_present(struct dma_pte *pte)
236 {
237         return (pte->val & 3) != 0;
238 }
239
240 /*
241  * This domain is a statically identity mapping domain.
242  *      1. This domain creats a static 1:1 mapping to all usable memory.
243  *      2. It maps to each iommu if successful.
244  *      3. Each iommu mapps to this domain if successful.
245  */
246 struct dmar_domain *si_domain;
247
248 /* devices under the same p2p bridge are owned in one domain */
249 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
250
251 /* domain represents a virtual machine, more than one devices
252  * across iommus may be owned in one domain, e.g. kvm guest.
253  */
254 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
255
256 /* si_domain contains mulitple devices */
257 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
258
259 struct dmar_domain {
260         int     id;                     /* domain id */
261         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
262
263         struct list_head devices;       /* all devices' list */
264         struct iova_domain iovad;       /* iova's that belong to this domain */
265
266         struct dma_pte  *pgd;           /* virtual address */
267         spinlock_t      mapping_lock;   /* page table lock */
268         int             gaw;            /* max guest address width */
269
270         /* adjusted guest address width, 0 is level 2 30-bit */
271         int             agaw;
272
273         int             flags;          /* flags to find out type of domain */
274
275         int             iommu_coherency;/* indicate coherency of iommu access */
276         int             iommu_snooping; /* indicate snooping control feature*/
277         int             iommu_count;    /* reference count of iommu */
278         spinlock_t      iommu_lock;     /* protect iommu set in domain */
279         u64             max_addr;       /* maximum mapped address */
280 };
281
282 /* PCI domain-device relationship */
283 struct device_domain_info {
284         struct list_head link;  /* link to domain siblings */
285         struct list_head global; /* link to global list */
286         int segment;            /* PCI domain */
287         u8 bus;                 /* PCI bus number */
288         u8 devfn;               /* PCI devfn number */
289         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
290         struct intel_iommu *iommu; /* IOMMU used by this device */
291         struct dmar_domain *domain; /* pointer to domain */
292 };
293
294 static void flush_unmaps_timeout(unsigned long data);
295
296 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
297
298 #define HIGH_WATER_MARK 250
299 struct deferred_flush_tables {
300         int next;
301         struct iova *iova[HIGH_WATER_MARK];
302         struct dmar_domain *domain[HIGH_WATER_MARK];
303 };
304
305 static struct deferred_flush_tables *deferred_flush;
306
307 /* bitmap for indexing intel_iommus */
308 static int g_num_of_iommus;
309
310 static DEFINE_SPINLOCK(async_umap_flush_lock);
311 static LIST_HEAD(unmaps_to_do);
312
313 static int timer_on;
314 static long list_size;
315
316 static void domain_remove_dev_info(struct dmar_domain *domain);
317
318 #ifdef CONFIG_DMAR_DEFAULT_ON
319 int dmar_disabled = 0;
320 #else
321 int dmar_disabled = 1;
322 #endif /*CONFIG_DMAR_DEFAULT_ON*/
323
324 static int __initdata dmar_map_gfx = 1;
325 static int dmar_forcedac;
326 static int intel_iommu_strict;
327
328 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
329 static DEFINE_SPINLOCK(device_domain_lock);
330 static LIST_HEAD(device_domain_list);
331
332 static struct iommu_ops intel_iommu_ops;
333
334 static int __init intel_iommu_setup(char *str)
335 {
336         if (!str)
337                 return -EINVAL;
338         while (*str) {
339                 if (!strncmp(str, "on", 2)) {
340                         dmar_disabled = 0;
341                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
342                 } else if (!strncmp(str, "off", 3)) {
343                         dmar_disabled = 1;
344                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
345                 } else if (!strncmp(str, "igfx_off", 8)) {
346                         dmar_map_gfx = 0;
347                         printk(KERN_INFO
348                                 "Intel-IOMMU: disable GFX device mapping\n");
349                 } else if (!strncmp(str, "forcedac", 8)) {
350                         printk(KERN_INFO
351                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
352                         dmar_forcedac = 1;
353                 } else if (!strncmp(str, "strict", 6)) {
354                         printk(KERN_INFO
355                                 "Intel-IOMMU: disable batched IOTLB flush\n");
356                         intel_iommu_strict = 1;
357                 }
358
359                 str += strcspn(str, ",");
360                 while (*str == ',')
361                         str++;
362         }
363         return 0;
364 }
365 __setup("intel_iommu=", intel_iommu_setup);
366
367 static struct kmem_cache *iommu_domain_cache;
368 static struct kmem_cache *iommu_devinfo_cache;
369 static struct kmem_cache *iommu_iova_cache;
370
371 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
372 {
373         unsigned int flags;
374         void *vaddr;
375
376         /* trying to avoid low memory issues */
377         flags = current->flags & PF_MEMALLOC;
378         current->flags |= PF_MEMALLOC;
379         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
380         current->flags &= (~PF_MEMALLOC | flags);
381         return vaddr;
382 }
383
384
385 static inline void *alloc_pgtable_page(void)
386 {
387         unsigned int flags;
388         void *vaddr;
389
390         /* trying to avoid low memory issues */
391         flags = current->flags & PF_MEMALLOC;
392         current->flags |= PF_MEMALLOC;
393         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
394         current->flags &= (~PF_MEMALLOC | flags);
395         return vaddr;
396 }
397
398 static inline void free_pgtable_page(void *vaddr)
399 {
400         free_page((unsigned long)vaddr);
401 }
402
403 static inline void *alloc_domain_mem(void)
404 {
405         return iommu_kmem_cache_alloc(iommu_domain_cache);
406 }
407
408 static void free_domain_mem(void *vaddr)
409 {
410         kmem_cache_free(iommu_domain_cache, vaddr);
411 }
412
413 static inline void * alloc_devinfo_mem(void)
414 {
415         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
416 }
417
418 static inline void free_devinfo_mem(void *vaddr)
419 {
420         kmem_cache_free(iommu_devinfo_cache, vaddr);
421 }
422
423 struct iova *alloc_iova_mem(void)
424 {
425         return iommu_kmem_cache_alloc(iommu_iova_cache);
426 }
427
428 void free_iova_mem(struct iova *iova)
429 {
430         kmem_cache_free(iommu_iova_cache, iova);
431 }
432
433
434 static inline int width_to_agaw(int width);
435
436 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
437 {
438         unsigned long sagaw;
439         int agaw = -1;
440
441         sagaw = cap_sagaw(iommu->cap);
442         for (agaw = width_to_agaw(max_gaw);
443              agaw >= 0; agaw--) {
444                 if (test_bit(agaw, &sagaw))
445                         break;
446         }
447
448         return agaw;
449 }
450
451 /*
452  * Calculate max SAGAW for each iommu.
453  */
454 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
455 {
456         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
457 }
458
459 /*
460  * calculate agaw for each iommu.
461  * "SAGAW" may be different across iommus, use a default agaw, and
462  * get a supported less agaw for iommus that don't support the default agaw.
463  */
464 int iommu_calculate_agaw(struct intel_iommu *iommu)
465 {
466         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
467 }
468
469 /* This functionin only returns single iommu in a domain */
470 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
471 {
472         int iommu_id;
473
474         /* si_domain and vm domain should not get here. */
475         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
476         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
477
478         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
479         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
480                 return NULL;
481
482         return g_iommus[iommu_id];
483 }
484
485 static void domain_update_iommu_coherency(struct dmar_domain *domain)
486 {
487         int i;
488
489         domain->iommu_coherency = 1;
490
491         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
492         for (; i < g_num_of_iommus; ) {
493                 if (!ecap_coherent(g_iommus[i]->ecap)) {
494                         domain->iommu_coherency = 0;
495                         break;
496                 }
497                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
498         }
499 }
500
501 static void domain_update_iommu_snooping(struct dmar_domain *domain)
502 {
503         int i;
504
505         domain->iommu_snooping = 1;
506
507         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
508         for (; i < g_num_of_iommus; ) {
509                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
510                         domain->iommu_snooping = 0;
511                         break;
512                 }
513                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
514         }
515 }
516
517 /* Some capabilities may be different across iommus */
518 static void domain_update_iommu_cap(struct dmar_domain *domain)
519 {
520         domain_update_iommu_coherency(domain);
521         domain_update_iommu_snooping(domain);
522 }
523
524 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
525 {
526         struct dmar_drhd_unit *drhd = NULL;
527         int i;
528
529         for_each_drhd_unit(drhd) {
530                 if (drhd->ignored)
531                         continue;
532                 if (segment != drhd->segment)
533                         continue;
534
535                 for (i = 0; i < drhd->devices_cnt; i++) {
536                         if (drhd->devices[i] &&
537                             drhd->devices[i]->bus->number == bus &&
538                             drhd->devices[i]->devfn == devfn)
539                                 return drhd->iommu;
540                         if (drhd->devices[i] &&
541                             drhd->devices[i]->subordinate &&
542                             drhd->devices[i]->subordinate->number <= bus &&
543                             drhd->devices[i]->subordinate->subordinate >= bus)
544                                 return drhd->iommu;
545                 }
546
547                 if (drhd->include_all)
548                         return drhd->iommu;
549         }
550
551         return NULL;
552 }
553
554 static void domain_flush_cache(struct dmar_domain *domain,
555                                void *addr, int size)
556 {
557         if (!domain->iommu_coherency)
558                 clflush_cache_range(addr, size);
559 }
560
561 /* Gets context entry for a given bus and devfn */
562 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
563                 u8 bus, u8 devfn)
564 {
565         struct root_entry *root;
566         struct context_entry *context;
567         unsigned long phy_addr;
568         unsigned long flags;
569
570         spin_lock_irqsave(&iommu->lock, flags);
571         root = &iommu->root_entry[bus];
572         context = get_context_addr_from_root(root);
573         if (!context) {
574                 context = (struct context_entry *)alloc_pgtable_page();
575                 if (!context) {
576                         spin_unlock_irqrestore(&iommu->lock, flags);
577                         return NULL;
578                 }
579                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
580                 phy_addr = virt_to_phys((void *)context);
581                 set_root_value(root, phy_addr);
582                 set_root_present(root);
583                 __iommu_flush_cache(iommu, root, sizeof(*root));
584         }
585         spin_unlock_irqrestore(&iommu->lock, flags);
586         return &context[devfn];
587 }
588
589 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
590 {
591         struct root_entry *root;
592         struct context_entry *context;
593         int ret;
594         unsigned long flags;
595
596         spin_lock_irqsave(&iommu->lock, flags);
597         root = &iommu->root_entry[bus];
598         context = get_context_addr_from_root(root);
599         if (!context) {
600                 ret = 0;
601                 goto out;
602         }
603         ret = context_present(&context[devfn]);
604 out:
605         spin_unlock_irqrestore(&iommu->lock, flags);
606         return ret;
607 }
608
609 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
610 {
611         struct root_entry *root;
612         struct context_entry *context;
613         unsigned long flags;
614
615         spin_lock_irqsave(&iommu->lock, flags);
616         root = &iommu->root_entry[bus];
617         context = get_context_addr_from_root(root);
618         if (context) {
619                 context_clear_entry(&context[devfn]);
620                 __iommu_flush_cache(iommu, &context[devfn], \
621                         sizeof(*context));
622         }
623         spin_unlock_irqrestore(&iommu->lock, flags);
624 }
625
626 static void free_context_table(struct intel_iommu *iommu)
627 {
628         struct root_entry *root;
629         int i;
630         unsigned long flags;
631         struct context_entry *context;
632
633         spin_lock_irqsave(&iommu->lock, flags);
634         if (!iommu->root_entry) {
635                 goto out;
636         }
637         for (i = 0; i < ROOT_ENTRY_NR; i++) {
638                 root = &iommu->root_entry[i];
639                 context = get_context_addr_from_root(root);
640                 if (context)
641                         free_pgtable_page(context);
642         }
643         free_pgtable_page(iommu->root_entry);
644         iommu->root_entry = NULL;
645 out:
646         spin_unlock_irqrestore(&iommu->lock, flags);
647 }
648
649 /* page table handling */
650 #define LEVEL_STRIDE            (9)
651 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
652
653 static inline int agaw_to_level(int agaw)
654 {
655         return agaw + 2;
656 }
657
658 static inline int agaw_to_width(int agaw)
659 {
660         return 30 + agaw * LEVEL_STRIDE;
661
662 }
663
664 static inline int width_to_agaw(int width)
665 {
666         return (width - 30) / LEVEL_STRIDE;
667 }
668
669 static inline unsigned int level_to_offset_bits(int level)
670 {
671         return (12 + (level - 1) * LEVEL_STRIDE);
672 }
673
674 static inline int pfn_level_offset(unsigned long pfn, int level)
675 {
676         return (pfn >> (level_to_offset_bits(level) - 12)) & LEVEL_MASK;
677 }
678
679 static inline u64 level_mask(int level)
680 {
681         return ((u64)-1 << level_to_offset_bits(level));
682 }
683
684 static inline u64 level_size(int level)
685 {
686         return ((u64)1 << level_to_offset_bits(level));
687 }
688
689 static inline u64 align_to_level(u64 addr, int level)
690 {
691         return ((addr + level_size(level) - 1) & level_mask(level));
692 }
693
694 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
695 {
696         int addr_width = agaw_to_width(domain->agaw);
697         struct dma_pte *parent, *pte = NULL;
698         int level = agaw_to_level(domain->agaw);
699         int offset;
700         unsigned long flags;
701
702         BUG_ON(!domain->pgd);
703         BUG_ON(addr >> addr_width);
704         parent = domain->pgd;
705
706         spin_lock_irqsave(&domain->mapping_lock, flags);
707         while (level > 0) {
708                 void *tmp_page;
709
710                 offset = pfn_level_offset(addr >> VTD_PAGE_SHIFT, level);
711                 pte = &parent[offset];
712                 if (level == 1)
713                         break;
714
715                 if (!dma_pte_present(pte)) {
716                         tmp_page = alloc_pgtable_page();
717
718                         if (!tmp_page) {
719                                 spin_unlock_irqrestore(&domain->mapping_lock,
720                                         flags);
721                                 return NULL;
722                         }
723                         domain_flush_cache(domain, tmp_page, PAGE_SIZE);
724                         dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
725                         /*
726                          * high level table always sets r/w, last level page
727                          * table control read/write
728                          */
729                         dma_set_pte_readable(pte);
730                         dma_set_pte_writable(pte);
731                         domain_flush_cache(domain, pte, sizeof(*pte));
732                 }
733                 parent = phys_to_virt(dma_pte_addr(pte));
734                 level--;
735         }
736
737         spin_unlock_irqrestore(&domain->mapping_lock, flags);
738         return pte;
739 }
740
741 /* return address's pte at specific level */
742 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
743                                          unsigned long pfn,
744                                          int level)
745 {
746         struct dma_pte *parent, *pte = NULL;
747         int total = agaw_to_level(domain->agaw);
748         int offset;
749
750         parent = domain->pgd;
751         while (level <= total) {
752                 offset = pfn_level_offset(pfn, total);
753                 pte = &parent[offset];
754                 if (level == total)
755                         return pte;
756
757                 if (!dma_pte_present(pte))
758                         break;
759                 parent = phys_to_virt(dma_pte_addr(pte));
760                 total--;
761         }
762         return NULL;
763 }
764
765 /* clear one page's page table */
766 static void dma_pte_clear_one(struct dmar_domain *domain, unsigned long pfn)
767 {
768         struct dma_pte *pte = NULL;
769
770         /* get last level pte */
771         pte = dma_pfn_level_pte(domain, pfn, 1);
772
773         if (pte) {
774                 dma_clear_pte(pte);
775                 domain_flush_cache(domain, pte, sizeof(*pte));
776         }
777 }
778
779 /* clear last level pte, a tlb flush should be followed */
780 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
781 {
782         unsigned long start_pfn = IOVA_PFN(start);
783         unsigned long end_pfn = IOVA_PFN(end-1);
784         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
785
786         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
787         BUG_ON(addr_width < BITS_PER_LONG && end_pfn >> addr_width);
788
789         /* we don't need lock here; nobody else touches the iova range */
790         while (start_pfn <= end_pfn) {
791                 dma_pte_clear_one(domain, start_pfn);
792                 start_pfn++;
793         }
794 }
795
796 /* free page table pages. last level pte should already be cleared */
797 static void dma_pte_free_pagetable(struct dmar_domain *domain,
798         u64 start, u64 end)
799 {
800         int addr_width = agaw_to_width(domain->agaw);
801         struct dma_pte *pte;
802         int total = agaw_to_level(domain->agaw);
803         int level;
804         u64 tmp;
805
806         BUG_ON(start >> addr_width);
807         BUG_ON(end >> addr_width);
808
809         /* we don't need lock here, nobody else touches the iova range */
810         level = 2;
811         while (level <= total) {
812                 tmp = align_to_level(start, level);
813                 if (tmp >= end || (tmp + level_size(level) > end))
814                         return;
815
816                 while (tmp < end) {
817                         pte = dma_pfn_level_pte(domain, tmp >> VTD_PAGE_SHIFT,
818                                                 level);
819                         if (pte) {
820                                 free_pgtable_page(
821                                         phys_to_virt(dma_pte_addr(pte)));
822                                 dma_clear_pte(pte);
823                                 domain_flush_cache(domain, pte, sizeof(*pte));
824                         }
825                         tmp += level_size(level);
826                 }
827                 level++;
828         }
829         /* free pgd */
830         if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
831                 free_pgtable_page(domain->pgd);
832                 domain->pgd = NULL;
833         }
834 }
835
836 /* iommu handling */
837 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
838 {
839         struct root_entry *root;
840         unsigned long flags;
841
842         root = (struct root_entry *)alloc_pgtable_page();
843         if (!root)
844                 return -ENOMEM;
845
846         __iommu_flush_cache(iommu, root, ROOT_SIZE);
847
848         spin_lock_irqsave(&iommu->lock, flags);
849         iommu->root_entry = root;
850         spin_unlock_irqrestore(&iommu->lock, flags);
851
852         return 0;
853 }
854
855 static void iommu_set_root_entry(struct intel_iommu *iommu)
856 {
857         void *addr;
858         u32 sts;
859         unsigned long flag;
860
861         addr = iommu->root_entry;
862
863         spin_lock_irqsave(&iommu->register_lock, flag);
864         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
865
866         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
867
868         /* Make sure hardware complete it */
869         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
870                       readl, (sts & DMA_GSTS_RTPS), sts);
871
872         spin_unlock_irqrestore(&iommu->register_lock, flag);
873 }
874
875 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
876 {
877         u32 val;
878         unsigned long flag;
879
880         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
881                 return;
882
883         spin_lock_irqsave(&iommu->register_lock, flag);
884         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
885
886         /* Make sure hardware complete it */
887         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
888                       readl, (!(val & DMA_GSTS_WBFS)), val);
889
890         spin_unlock_irqrestore(&iommu->register_lock, flag);
891 }
892
893 /* return value determine if we need a write buffer flush */
894 static void __iommu_flush_context(struct intel_iommu *iommu,
895                                   u16 did, u16 source_id, u8 function_mask,
896                                   u64 type)
897 {
898         u64 val = 0;
899         unsigned long flag;
900
901         switch (type) {
902         case DMA_CCMD_GLOBAL_INVL:
903                 val = DMA_CCMD_GLOBAL_INVL;
904                 break;
905         case DMA_CCMD_DOMAIN_INVL:
906                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
907                 break;
908         case DMA_CCMD_DEVICE_INVL:
909                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
910                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
911                 break;
912         default:
913                 BUG();
914         }
915         val |= DMA_CCMD_ICC;
916
917         spin_lock_irqsave(&iommu->register_lock, flag);
918         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
919
920         /* Make sure hardware complete it */
921         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
922                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
923
924         spin_unlock_irqrestore(&iommu->register_lock, flag);
925 }
926
927 /* return value determine if we need a write buffer flush */
928 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
929                                 u64 addr, unsigned int size_order, u64 type)
930 {
931         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
932         u64 val = 0, val_iva = 0;
933         unsigned long flag;
934
935         switch (type) {
936         case DMA_TLB_GLOBAL_FLUSH:
937                 /* global flush doesn't need set IVA_REG */
938                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
939                 break;
940         case DMA_TLB_DSI_FLUSH:
941                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
942                 break;
943         case DMA_TLB_PSI_FLUSH:
944                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
945                 /* Note: always flush non-leaf currently */
946                 val_iva = size_order | addr;
947                 break;
948         default:
949                 BUG();
950         }
951         /* Note: set drain read/write */
952 #if 0
953         /*
954          * This is probably to be super secure.. Looks like we can
955          * ignore it without any impact.
956          */
957         if (cap_read_drain(iommu->cap))
958                 val |= DMA_TLB_READ_DRAIN;
959 #endif
960         if (cap_write_drain(iommu->cap))
961                 val |= DMA_TLB_WRITE_DRAIN;
962
963         spin_lock_irqsave(&iommu->register_lock, flag);
964         /* Note: Only uses first TLB reg currently */
965         if (val_iva)
966                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
967         dmar_writeq(iommu->reg + tlb_offset + 8, val);
968
969         /* Make sure hardware complete it */
970         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
971                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
972
973         spin_unlock_irqrestore(&iommu->register_lock, flag);
974
975         /* check IOTLB invalidation granularity */
976         if (DMA_TLB_IAIG(val) == 0)
977                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
978         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
979                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
980                         (unsigned long long)DMA_TLB_IIRG(type),
981                         (unsigned long long)DMA_TLB_IAIG(val));
982 }
983
984 static struct device_domain_info *iommu_support_dev_iotlb(
985         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
986 {
987         int found = 0;
988         unsigned long flags;
989         struct device_domain_info *info;
990         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
991
992         if (!ecap_dev_iotlb_support(iommu->ecap))
993                 return NULL;
994
995         if (!iommu->qi)
996                 return NULL;
997
998         spin_lock_irqsave(&device_domain_lock, flags);
999         list_for_each_entry(info, &domain->devices, link)
1000                 if (info->bus == bus && info->devfn == devfn) {
1001                         found = 1;
1002                         break;
1003                 }
1004         spin_unlock_irqrestore(&device_domain_lock, flags);
1005
1006         if (!found || !info->dev)
1007                 return NULL;
1008
1009         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1010                 return NULL;
1011
1012         if (!dmar_find_matched_atsr_unit(info->dev))
1013                 return NULL;
1014
1015         info->iommu = iommu;
1016
1017         return info;
1018 }
1019
1020 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1021 {
1022         if (!info)
1023                 return;
1024
1025         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1026 }
1027
1028 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1029 {
1030         if (!info->dev || !pci_ats_enabled(info->dev))
1031                 return;
1032
1033         pci_disable_ats(info->dev);
1034 }
1035
1036 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1037                                   u64 addr, unsigned mask)
1038 {
1039         u16 sid, qdep;
1040         unsigned long flags;
1041         struct device_domain_info *info;
1042
1043         spin_lock_irqsave(&device_domain_lock, flags);
1044         list_for_each_entry(info, &domain->devices, link) {
1045                 if (!info->dev || !pci_ats_enabled(info->dev))
1046                         continue;
1047
1048                 sid = info->bus << 8 | info->devfn;
1049                 qdep = pci_ats_queue_depth(info->dev);
1050                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1051         }
1052         spin_unlock_irqrestore(&device_domain_lock, flags);
1053 }
1054
1055 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1056                                   u64 addr, unsigned int pages)
1057 {
1058         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1059
1060         BUG_ON(addr & (~VTD_PAGE_MASK));
1061         BUG_ON(pages == 0);
1062
1063         /*
1064          * Fallback to domain selective flush if no PSI support or the size is
1065          * too big.
1066          * PSI requires page size to be 2 ^ x, and the base address is naturally
1067          * aligned to the size
1068          */
1069         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1070                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1071                                                 DMA_TLB_DSI_FLUSH);
1072         else
1073                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1074                                                 DMA_TLB_PSI_FLUSH);
1075
1076         /*
1077          * In caching mode, domain ID 0 is reserved for non-present to present
1078          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1079          */
1080         if (!cap_caching_mode(iommu->cap) || did)
1081                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1082 }
1083
1084 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1085 {
1086         u32 pmen;
1087         unsigned long flags;
1088
1089         spin_lock_irqsave(&iommu->register_lock, flags);
1090         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1091         pmen &= ~DMA_PMEN_EPM;
1092         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1093
1094         /* wait for the protected region status bit to clear */
1095         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1096                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1097
1098         spin_unlock_irqrestore(&iommu->register_lock, flags);
1099 }
1100
1101 static int iommu_enable_translation(struct intel_iommu *iommu)
1102 {
1103         u32 sts;
1104         unsigned long flags;
1105
1106         spin_lock_irqsave(&iommu->register_lock, flags);
1107         iommu->gcmd |= DMA_GCMD_TE;
1108         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1109
1110         /* Make sure hardware complete it */
1111         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1112                       readl, (sts & DMA_GSTS_TES), sts);
1113
1114         spin_unlock_irqrestore(&iommu->register_lock, flags);
1115         return 0;
1116 }
1117
1118 static int iommu_disable_translation(struct intel_iommu *iommu)
1119 {
1120         u32 sts;
1121         unsigned long flag;
1122
1123         spin_lock_irqsave(&iommu->register_lock, flag);
1124         iommu->gcmd &= ~DMA_GCMD_TE;
1125         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1126
1127         /* Make sure hardware complete it */
1128         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1129                       readl, (!(sts & DMA_GSTS_TES)), sts);
1130
1131         spin_unlock_irqrestore(&iommu->register_lock, flag);
1132         return 0;
1133 }
1134
1135
1136 static int iommu_init_domains(struct intel_iommu *iommu)
1137 {
1138         unsigned long ndomains;
1139         unsigned long nlongs;
1140
1141         ndomains = cap_ndoms(iommu->cap);
1142         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1143         nlongs = BITS_TO_LONGS(ndomains);
1144
1145         /* TBD: there might be 64K domains,
1146          * consider other allocation for future chip
1147          */
1148         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1149         if (!iommu->domain_ids) {
1150                 printk(KERN_ERR "Allocating domain id array failed\n");
1151                 return -ENOMEM;
1152         }
1153         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1154                         GFP_KERNEL);
1155         if (!iommu->domains) {
1156                 printk(KERN_ERR "Allocating domain array failed\n");
1157                 kfree(iommu->domain_ids);
1158                 return -ENOMEM;
1159         }
1160
1161         spin_lock_init(&iommu->lock);
1162
1163         /*
1164          * if Caching mode is set, then invalid translations are tagged
1165          * with domainid 0. Hence we need to pre-allocate it.
1166          */
1167         if (cap_caching_mode(iommu->cap))
1168                 set_bit(0, iommu->domain_ids);
1169         return 0;
1170 }
1171
1172
1173 static void domain_exit(struct dmar_domain *domain);
1174 static void vm_domain_exit(struct dmar_domain *domain);
1175
1176 void free_dmar_iommu(struct intel_iommu *iommu)
1177 {
1178         struct dmar_domain *domain;
1179         int i;
1180         unsigned long flags;
1181
1182         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1183         for (; i < cap_ndoms(iommu->cap); ) {
1184                 domain = iommu->domains[i];
1185                 clear_bit(i, iommu->domain_ids);
1186
1187                 spin_lock_irqsave(&domain->iommu_lock, flags);
1188                 if (--domain->iommu_count == 0) {
1189                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1190                                 vm_domain_exit(domain);
1191                         else
1192                                 domain_exit(domain);
1193                 }
1194                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1195
1196                 i = find_next_bit(iommu->domain_ids,
1197                         cap_ndoms(iommu->cap), i+1);
1198         }
1199
1200         if (iommu->gcmd & DMA_GCMD_TE)
1201                 iommu_disable_translation(iommu);
1202
1203         if (iommu->irq) {
1204                 set_irq_data(iommu->irq, NULL);
1205                 /* This will mask the irq */
1206                 free_irq(iommu->irq, iommu);
1207                 destroy_irq(iommu->irq);
1208         }
1209
1210         kfree(iommu->domains);
1211         kfree(iommu->domain_ids);
1212
1213         g_iommus[iommu->seq_id] = NULL;
1214
1215         /* if all iommus are freed, free g_iommus */
1216         for (i = 0; i < g_num_of_iommus; i++) {
1217                 if (g_iommus[i])
1218                         break;
1219         }
1220
1221         if (i == g_num_of_iommus)
1222                 kfree(g_iommus);
1223
1224         /* free context mapping */
1225         free_context_table(iommu);
1226 }
1227
1228 static struct dmar_domain *alloc_domain(void)
1229 {
1230         struct dmar_domain *domain;
1231
1232         domain = alloc_domain_mem();
1233         if (!domain)
1234                 return NULL;
1235
1236         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1237         domain->flags = 0;
1238
1239         return domain;
1240 }
1241
1242 static int iommu_attach_domain(struct dmar_domain *domain,
1243                                struct intel_iommu *iommu)
1244 {
1245         int num;
1246         unsigned long ndomains;
1247         unsigned long flags;
1248
1249         ndomains = cap_ndoms(iommu->cap);
1250
1251         spin_lock_irqsave(&iommu->lock, flags);
1252
1253         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1254         if (num >= ndomains) {
1255                 spin_unlock_irqrestore(&iommu->lock, flags);
1256                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1257                 return -ENOMEM;
1258         }
1259
1260         domain->id = num;
1261         set_bit(num, iommu->domain_ids);
1262         set_bit(iommu->seq_id, &domain->iommu_bmp);
1263         iommu->domains[num] = domain;
1264         spin_unlock_irqrestore(&iommu->lock, flags);
1265
1266         return 0;
1267 }
1268
1269 static void iommu_detach_domain(struct dmar_domain *domain,
1270                                 struct intel_iommu *iommu)
1271 {
1272         unsigned long flags;
1273         int num, ndomains;
1274         int found = 0;
1275
1276         spin_lock_irqsave(&iommu->lock, flags);
1277         ndomains = cap_ndoms(iommu->cap);
1278         num = find_first_bit(iommu->domain_ids, ndomains);
1279         for (; num < ndomains; ) {
1280                 if (iommu->domains[num] == domain) {
1281                         found = 1;
1282                         break;
1283                 }
1284                 num = find_next_bit(iommu->domain_ids,
1285                                     cap_ndoms(iommu->cap), num+1);
1286         }
1287
1288         if (found) {
1289                 clear_bit(num, iommu->domain_ids);
1290                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1291                 iommu->domains[num] = NULL;
1292         }
1293         spin_unlock_irqrestore(&iommu->lock, flags);
1294 }
1295
1296 static struct iova_domain reserved_iova_list;
1297 static struct lock_class_key reserved_alloc_key;
1298 static struct lock_class_key reserved_rbtree_key;
1299
1300 static void dmar_init_reserved_ranges(void)
1301 {
1302         struct pci_dev *pdev = NULL;
1303         struct iova *iova;
1304         int i;
1305         u64 addr, size;
1306
1307         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1308
1309         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1310                 &reserved_alloc_key);
1311         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1312                 &reserved_rbtree_key);
1313
1314         /* IOAPIC ranges shouldn't be accessed by DMA */
1315         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1316                 IOVA_PFN(IOAPIC_RANGE_END));
1317         if (!iova)
1318                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1319
1320         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1321         for_each_pci_dev(pdev) {
1322                 struct resource *r;
1323
1324                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1325                         r = &pdev->resource[i];
1326                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1327                                 continue;
1328                         addr = r->start;
1329                         addr &= PHYSICAL_PAGE_MASK;
1330                         size = r->end - addr;
1331                         size = PAGE_ALIGN(size);
1332                         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1333                                 IOVA_PFN(size + addr) - 1);
1334                         if (!iova)
1335                                 printk(KERN_ERR "Reserve iova failed\n");
1336                 }
1337         }
1338
1339 }
1340
1341 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1342 {
1343         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1344 }
1345
1346 static inline int guestwidth_to_adjustwidth(int gaw)
1347 {
1348         int agaw;
1349         int r = (gaw - 12) % 9;
1350
1351         if (r == 0)
1352                 agaw = gaw;
1353         else
1354                 agaw = gaw + 9 - r;
1355         if (agaw > 64)
1356                 agaw = 64;
1357         return agaw;
1358 }
1359
1360 static int domain_init(struct dmar_domain *domain, int guest_width)
1361 {
1362         struct intel_iommu *iommu;
1363         int adjust_width, agaw;
1364         unsigned long sagaw;
1365
1366         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1367         spin_lock_init(&domain->mapping_lock);
1368         spin_lock_init(&domain->iommu_lock);
1369
1370         domain_reserve_special_ranges(domain);
1371
1372         /* calculate AGAW */
1373         iommu = domain_get_iommu(domain);
1374         if (guest_width > cap_mgaw(iommu->cap))
1375                 guest_width = cap_mgaw(iommu->cap);
1376         domain->gaw = guest_width;
1377         adjust_width = guestwidth_to_adjustwidth(guest_width);
1378         agaw = width_to_agaw(adjust_width);
1379         sagaw = cap_sagaw(iommu->cap);
1380         if (!test_bit(agaw, &sagaw)) {
1381                 /* hardware doesn't support it, choose a bigger one */
1382                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1383                 agaw = find_next_bit(&sagaw, 5, agaw);
1384                 if (agaw >= 5)
1385                         return -ENODEV;
1386         }
1387         domain->agaw = agaw;
1388         INIT_LIST_HEAD(&domain->devices);
1389
1390         if (ecap_coherent(iommu->ecap))
1391                 domain->iommu_coherency = 1;
1392         else
1393                 domain->iommu_coherency = 0;
1394
1395         if (ecap_sc_support(iommu->ecap))
1396                 domain->iommu_snooping = 1;
1397         else
1398                 domain->iommu_snooping = 0;
1399
1400         domain->iommu_count = 1;
1401
1402         /* always allocate the top pgd */
1403         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1404         if (!domain->pgd)
1405                 return -ENOMEM;
1406         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1407         return 0;
1408 }
1409
1410 static void domain_exit(struct dmar_domain *domain)
1411 {
1412         struct dmar_drhd_unit *drhd;
1413         struct intel_iommu *iommu;
1414         u64 end;
1415
1416         /* Domain 0 is reserved, so dont process it */
1417         if (!domain)
1418                 return;
1419
1420         domain_remove_dev_info(domain);
1421         /* destroy iovas */
1422         put_iova_domain(&domain->iovad);
1423         end = DOMAIN_MAX_ADDR(domain->gaw);
1424         end = end & (~PAGE_MASK);
1425
1426         /* clear ptes */
1427         dma_pte_clear_range(domain, 0, end);
1428
1429         /* free page tables */
1430         dma_pte_free_pagetable(domain, 0, end);
1431
1432         for_each_active_iommu(iommu, drhd)
1433                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1434                         iommu_detach_domain(domain, iommu);
1435
1436         free_domain_mem(domain);
1437 }
1438
1439 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1440                                  u8 bus, u8 devfn, int translation)
1441 {
1442         struct context_entry *context;
1443         unsigned long flags;
1444         struct intel_iommu *iommu;
1445         struct dma_pte *pgd;
1446         unsigned long num;
1447         unsigned long ndomains;
1448         int id;
1449         int agaw;
1450         struct device_domain_info *info = NULL;
1451
1452         pr_debug("Set context mapping for %02x:%02x.%d\n",
1453                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1454
1455         BUG_ON(!domain->pgd);
1456         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1457                translation != CONTEXT_TT_MULTI_LEVEL);
1458
1459         iommu = device_to_iommu(segment, bus, devfn);
1460         if (!iommu)
1461                 return -ENODEV;
1462
1463         context = device_to_context_entry(iommu, bus, devfn);
1464         if (!context)
1465                 return -ENOMEM;
1466         spin_lock_irqsave(&iommu->lock, flags);
1467         if (context_present(context)) {
1468                 spin_unlock_irqrestore(&iommu->lock, flags);
1469                 return 0;
1470         }
1471
1472         id = domain->id;
1473         pgd = domain->pgd;
1474
1475         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1476             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1477                 int found = 0;
1478
1479                 /* find an available domain id for this device in iommu */
1480                 ndomains = cap_ndoms(iommu->cap);
1481                 num = find_first_bit(iommu->domain_ids, ndomains);
1482                 for (; num < ndomains; ) {
1483                         if (iommu->domains[num] == domain) {
1484                                 id = num;
1485                                 found = 1;
1486                                 break;
1487                         }
1488                         num = find_next_bit(iommu->domain_ids,
1489                                             cap_ndoms(iommu->cap), num+1);
1490                 }
1491
1492                 if (found == 0) {
1493                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1494                         if (num >= ndomains) {
1495                                 spin_unlock_irqrestore(&iommu->lock, flags);
1496                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1497                                 return -EFAULT;
1498                         }
1499
1500                         set_bit(num, iommu->domain_ids);
1501                         set_bit(iommu->seq_id, &domain->iommu_bmp);
1502                         iommu->domains[num] = domain;
1503                         id = num;
1504                 }
1505
1506                 /* Skip top levels of page tables for
1507                  * iommu which has less agaw than default.
1508                  */
1509                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1510                         pgd = phys_to_virt(dma_pte_addr(pgd));
1511                         if (!dma_pte_present(pgd)) {
1512                                 spin_unlock_irqrestore(&iommu->lock, flags);
1513                                 return -ENOMEM;
1514                         }
1515                 }
1516         }
1517
1518         context_set_domain_id(context, id);
1519
1520         if (translation != CONTEXT_TT_PASS_THROUGH) {
1521                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1522                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1523                                      CONTEXT_TT_MULTI_LEVEL;
1524         }
1525         /*
1526          * In pass through mode, AW must be programmed to indicate the largest
1527          * AGAW value supported by hardware. And ASR is ignored by hardware.
1528          */
1529         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1530                 context_set_address_width(context, iommu->msagaw);
1531         else {
1532                 context_set_address_root(context, virt_to_phys(pgd));
1533                 context_set_address_width(context, iommu->agaw);
1534         }
1535
1536         context_set_translation_type(context, translation);
1537         context_set_fault_enable(context);
1538         context_set_present(context);
1539         domain_flush_cache(domain, context, sizeof(*context));
1540
1541         /*
1542          * It's a non-present to present mapping. If hardware doesn't cache
1543          * non-present entry we only need to flush the write-buffer. If the
1544          * _does_ cache non-present entries, then it does so in the special
1545          * domain #0, which we have to flush:
1546          */
1547         if (cap_caching_mode(iommu->cap)) {
1548                 iommu->flush.flush_context(iommu, 0,
1549                                            (((u16)bus) << 8) | devfn,
1550                                            DMA_CCMD_MASK_NOBIT,
1551                                            DMA_CCMD_DEVICE_INVL);
1552                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1553         } else {
1554                 iommu_flush_write_buffer(iommu);
1555         }
1556         iommu_enable_dev_iotlb(info);
1557         spin_unlock_irqrestore(&iommu->lock, flags);
1558
1559         spin_lock_irqsave(&domain->iommu_lock, flags);
1560         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1561                 domain->iommu_count++;
1562                 domain_update_iommu_cap(domain);
1563         }
1564         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1565         return 0;
1566 }
1567
1568 static int
1569 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1570                         int translation)
1571 {
1572         int ret;
1573         struct pci_dev *tmp, *parent;
1574
1575         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1576                                          pdev->bus->number, pdev->devfn,
1577                                          translation);
1578         if (ret)
1579                 return ret;
1580
1581         /* dependent device mapping */
1582         tmp = pci_find_upstream_pcie_bridge(pdev);
1583         if (!tmp)
1584                 return 0;
1585         /* Secondary interface's bus number and devfn 0 */
1586         parent = pdev->bus->self;
1587         while (parent != tmp) {
1588                 ret = domain_context_mapping_one(domain,
1589                                                  pci_domain_nr(parent->bus),
1590                                                  parent->bus->number,
1591                                                  parent->devfn, translation);
1592                 if (ret)
1593                         return ret;
1594                 parent = parent->bus->self;
1595         }
1596         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1597                 return domain_context_mapping_one(domain,
1598                                         pci_domain_nr(tmp->subordinate),
1599                                         tmp->subordinate->number, 0,
1600                                         translation);
1601         else /* this is a legacy PCI bridge */
1602                 return domain_context_mapping_one(domain,
1603                                                   pci_domain_nr(tmp->bus),
1604                                                   tmp->bus->number,
1605                                                   tmp->devfn,
1606                                                   translation);
1607 }
1608
1609 static int domain_context_mapped(struct pci_dev *pdev)
1610 {
1611         int ret;
1612         struct pci_dev *tmp, *parent;
1613         struct intel_iommu *iommu;
1614
1615         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1616                                 pdev->devfn);
1617         if (!iommu)
1618                 return -ENODEV;
1619
1620         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1621         if (!ret)
1622                 return ret;
1623         /* dependent device mapping */
1624         tmp = pci_find_upstream_pcie_bridge(pdev);
1625         if (!tmp)
1626                 return ret;
1627         /* Secondary interface's bus number and devfn 0 */
1628         parent = pdev->bus->self;
1629         while (parent != tmp) {
1630                 ret = device_context_mapped(iommu, parent->bus->number,
1631                                             parent->devfn);
1632                 if (!ret)
1633                         return ret;
1634                 parent = parent->bus->self;
1635         }
1636         if (tmp->is_pcie)
1637                 return device_context_mapped(iommu, tmp->subordinate->number,
1638                                              0);
1639         else
1640                 return device_context_mapped(iommu, tmp->bus->number,
1641                                              tmp->devfn);
1642 }
1643
1644 static int
1645 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1646                         u64 hpa, size_t size, int prot)
1647 {
1648         u64 start_pfn, end_pfn;
1649         struct dma_pte *pte;
1650         int index;
1651         int addr_width = agaw_to_width(domain->agaw);
1652
1653         BUG_ON(hpa >> addr_width);
1654
1655         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1656                 return -EINVAL;
1657         iova &= PAGE_MASK;
1658         start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1659         end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1660         index = 0;
1661         while (start_pfn < end_pfn) {
1662                 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1663                 if (!pte)
1664                         return -ENOMEM;
1665                 /* We don't need lock here, nobody else
1666                  * touches the iova range
1667                  */
1668                 BUG_ON(dma_pte_addr(pte));
1669                 dma_set_pte_pfn(pte, start_pfn);
1670                 dma_set_pte_prot(pte, prot);
1671                 if (prot & DMA_PTE_SNP)
1672                         dma_set_pte_snp(pte);
1673                 domain_flush_cache(domain, pte, sizeof(*pte));
1674                 start_pfn++;
1675                 index++;
1676         }
1677         return 0;
1678 }
1679
1680 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1681 {
1682         if (!iommu)
1683                 return;
1684
1685         clear_context_table(iommu, bus, devfn);
1686         iommu->flush.flush_context(iommu, 0, 0, 0,
1687                                            DMA_CCMD_GLOBAL_INVL);
1688         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1689 }
1690
1691 static void domain_remove_dev_info(struct dmar_domain *domain)
1692 {
1693         struct device_domain_info *info;
1694         unsigned long flags;
1695         struct intel_iommu *iommu;
1696
1697         spin_lock_irqsave(&device_domain_lock, flags);
1698         while (!list_empty(&domain->devices)) {
1699                 info = list_entry(domain->devices.next,
1700                         struct device_domain_info, link);
1701                 list_del(&info->link);
1702                 list_del(&info->global);
1703                 if (info->dev)
1704                         info->dev->dev.archdata.iommu = NULL;
1705                 spin_unlock_irqrestore(&device_domain_lock, flags);
1706
1707                 iommu_disable_dev_iotlb(info);
1708                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1709                 iommu_detach_dev(iommu, info->bus, info->devfn);
1710                 free_devinfo_mem(info);
1711
1712                 spin_lock_irqsave(&device_domain_lock, flags);
1713         }
1714         spin_unlock_irqrestore(&device_domain_lock, flags);
1715 }
1716
1717 /*
1718  * find_domain
1719  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1720  */
1721 static struct dmar_domain *
1722 find_domain(struct pci_dev *pdev)
1723 {
1724         struct device_domain_info *info;
1725
1726         /* No lock here, assumes no domain exit in normal case */
1727         info = pdev->dev.archdata.iommu;
1728         if (info)
1729                 return info->domain;
1730         return NULL;
1731 }
1732
1733 /* domain is initialized */
1734 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1735 {
1736         struct dmar_domain *domain, *found = NULL;
1737         struct intel_iommu *iommu;
1738         struct dmar_drhd_unit *drhd;
1739         struct device_domain_info *info, *tmp;
1740         struct pci_dev *dev_tmp;
1741         unsigned long flags;
1742         int bus = 0, devfn = 0;
1743         int segment;
1744         int ret;
1745
1746         domain = find_domain(pdev);
1747         if (domain)
1748                 return domain;
1749
1750         segment = pci_domain_nr(pdev->bus);
1751
1752         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1753         if (dev_tmp) {
1754                 if (dev_tmp->is_pcie) {
1755                         bus = dev_tmp->subordinate->number;
1756                         devfn = 0;
1757                 } else {
1758                         bus = dev_tmp->bus->number;
1759                         devfn = dev_tmp->devfn;
1760                 }
1761                 spin_lock_irqsave(&device_domain_lock, flags);
1762                 list_for_each_entry(info, &device_domain_list, global) {
1763                         if (info->segment == segment &&
1764                             info->bus == bus && info->devfn == devfn) {
1765                                 found = info->domain;
1766                                 break;
1767                         }
1768                 }
1769                 spin_unlock_irqrestore(&device_domain_lock, flags);
1770                 /* pcie-pci bridge already has a domain, uses it */
1771                 if (found) {
1772                         domain = found;
1773                         goto found_domain;
1774                 }
1775         }
1776
1777         domain = alloc_domain();
1778         if (!domain)
1779                 goto error;
1780
1781         /* Allocate new domain for the device */
1782         drhd = dmar_find_matched_drhd_unit(pdev);
1783         if (!drhd) {
1784                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1785                         pci_name(pdev));
1786                 return NULL;
1787         }
1788         iommu = drhd->iommu;
1789
1790         ret = iommu_attach_domain(domain, iommu);
1791         if (ret) {
1792                 domain_exit(domain);
1793                 goto error;
1794         }
1795
1796         if (domain_init(domain, gaw)) {
1797                 domain_exit(domain);
1798                 goto error;
1799         }
1800
1801         /* register pcie-to-pci device */
1802         if (dev_tmp) {
1803                 info = alloc_devinfo_mem();
1804                 if (!info) {
1805                         domain_exit(domain);
1806                         goto error;
1807                 }
1808                 info->segment = segment;
1809                 info->bus = bus;
1810                 info->devfn = devfn;
1811                 info->dev = NULL;
1812                 info->domain = domain;
1813                 /* This domain is shared by devices under p2p bridge */
1814                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1815
1816                 /* pcie-to-pci bridge already has a domain, uses it */
1817                 found = NULL;
1818                 spin_lock_irqsave(&device_domain_lock, flags);
1819                 list_for_each_entry(tmp, &device_domain_list, global) {
1820                         if (tmp->segment == segment &&
1821                             tmp->bus == bus && tmp->devfn == devfn) {
1822                                 found = tmp->domain;
1823                                 break;
1824                         }
1825                 }
1826                 if (found) {
1827                         free_devinfo_mem(info);
1828                         domain_exit(domain);
1829                         domain = found;
1830                 } else {
1831                         list_add(&info->link, &domain->devices);
1832                         list_add(&info->global, &device_domain_list);
1833                 }
1834                 spin_unlock_irqrestore(&device_domain_lock, flags);
1835         }
1836
1837 found_domain:
1838         info = alloc_devinfo_mem();
1839         if (!info)
1840                 goto error;
1841         info->segment = segment;
1842         info->bus = pdev->bus->number;
1843         info->devfn = pdev->devfn;
1844         info->dev = pdev;
1845         info->domain = domain;
1846         spin_lock_irqsave(&device_domain_lock, flags);
1847         /* somebody is fast */
1848         found = find_domain(pdev);
1849         if (found != NULL) {
1850                 spin_unlock_irqrestore(&device_domain_lock, flags);
1851                 if (found != domain) {
1852                         domain_exit(domain);
1853                         domain = found;
1854                 }
1855                 free_devinfo_mem(info);
1856                 return domain;
1857         }
1858         list_add(&info->link, &domain->devices);
1859         list_add(&info->global, &device_domain_list);
1860         pdev->dev.archdata.iommu = info;
1861         spin_unlock_irqrestore(&device_domain_lock, flags);
1862         return domain;
1863 error:
1864         /* recheck it here, maybe others set it */
1865         return find_domain(pdev);
1866 }
1867
1868 static int iommu_identity_mapping;
1869
1870 static int iommu_domain_identity_map(struct dmar_domain *domain,
1871                                      unsigned long long start,
1872                                      unsigned long long end)
1873 {
1874         unsigned long size;
1875         unsigned long long base;
1876
1877         /* The address might not be aligned */
1878         base = start & PAGE_MASK;
1879         size = end - base;
1880         size = PAGE_ALIGN(size);
1881         if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1882                         IOVA_PFN(base + size) - 1)) {
1883                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1884                 return -ENOMEM;
1885         }
1886
1887         pr_debug("Mapping reserved region %lx@%llx for domain %d\n",
1888                  size, base, domain->id);
1889         /*
1890          * RMRR range might have overlap with physical memory range,
1891          * clear it first
1892          */
1893         dma_pte_clear_range(domain, base, base + size);
1894
1895         return domain_page_mapping(domain, base, base, size,
1896                                    DMA_PTE_READ|DMA_PTE_WRITE);
1897 }
1898
1899 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1900                                       unsigned long long start,
1901                                       unsigned long long end)
1902 {
1903         struct dmar_domain *domain;
1904         int ret;
1905
1906         printk(KERN_INFO
1907                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1908                pci_name(pdev), start, end);
1909
1910         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1911         if (!domain)
1912                 return -ENOMEM;
1913
1914         ret = iommu_domain_identity_map(domain, start, end);
1915         if (ret)
1916                 goto error;
1917
1918         /* context entry init */
1919         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1920         if (ret)
1921                 goto error;
1922
1923         return 0;
1924
1925  error:
1926         domain_exit(domain);
1927         return ret;
1928 }
1929
1930 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1931         struct pci_dev *pdev)
1932 {
1933         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1934                 return 0;
1935         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1936                 rmrr->end_address + 1);
1937 }
1938
1939 #ifdef CONFIG_DMAR_FLOPPY_WA
1940 static inline void iommu_prepare_isa(void)
1941 {
1942         struct pci_dev *pdev;
1943         int ret;
1944
1945         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1946         if (!pdev)
1947                 return;
1948
1949         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1950         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1951
1952         if (ret)
1953                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1954                        "floppy might not work\n");
1955
1956 }
1957 #else
1958 static inline void iommu_prepare_isa(void)
1959 {
1960         return;
1961 }
1962 #endif /* !CONFIG_DMAR_FLPY_WA */
1963
1964 /* Initialize each context entry as pass through.*/
1965 static int __init init_context_pass_through(void)
1966 {
1967         struct pci_dev *pdev = NULL;
1968         struct dmar_domain *domain;
1969         int ret;
1970
1971         for_each_pci_dev(pdev) {
1972                 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1973                 ret = domain_context_mapping(domain, pdev,
1974                                              CONTEXT_TT_PASS_THROUGH);
1975                 if (ret)
1976                         return ret;
1977         }
1978         return 0;
1979 }
1980
1981 static int md_domain_init(struct dmar_domain *domain, int guest_width);
1982
1983 static int __init si_domain_work_fn(unsigned long start_pfn,
1984                                     unsigned long end_pfn, void *datax)
1985 {
1986         int *ret = datax;
1987
1988         *ret = iommu_domain_identity_map(si_domain,
1989                                          (uint64_t)start_pfn << PAGE_SHIFT,
1990                                          (uint64_t)end_pfn << PAGE_SHIFT);
1991         return *ret;
1992
1993 }
1994
1995 static int si_domain_init(void)
1996 {
1997         struct dmar_drhd_unit *drhd;
1998         struct intel_iommu *iommu;
1999         int nid, ret = 0;
2000
2001         si_domain = alloc_domain();
2002         if (!si_domain)
2003                 return -EFAULT;
2004
2005         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2006
2007         for_each_active_iommu(iommu, drhd) {
2008                 ret = iommu_attach_domain(si_domain, iommu);
2009                 if (ret) {
2010                         domain_exit(si_domain);
2011                         return -EFAULT;
2012                 }
2013         }
2014
2015         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2016                 domain_exit(si_domain);
2017                 return -EFAULT;
2018         }
2019
2020         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2021
2022         for_each_online_node(nid) {
2023                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2024                 if (ret)
2025                         return ret;
2026         }
2027
2028         return 0;
2029 }
2030
2031 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2032                                           struct pci_dev *pdev);
2033 static int identity_mapping(struct pci_dev *pdev)
2034 {
2035         struct device_domain_info *info;
2036
2037         if (likely(!iommu_identity_mapping))
2038                 return 0;
2039
2040
2041         list_for_each_entry(info, &si_domain->devices, link)
2042                 if (info->dev == pdev)
2043                         return 1;
2044         return 0;
2045 }
2046
2047 static int domain_add_dev_info(struct dmar_domain *domain,
2048                                   struct pci_dev *pdev)
2049 {
2050         struct device_domain_info *info;
2051         unsigned long flags;
2052
2053         info = alloc_devinfo_mem();
2054         if (!info)
2055                 return -ENOMEM;
2056
2057         info->segment = pci_domain_nr(pdev->bus);
2058         info->bus = pdev->bus->number;
2059         info->devfn = pdev->devfn;
2060         info->dev = pdev;
2061         info->domain = domain;
2062
2063         spin_lock_irqsave(&device_domain_lock, flags);
2064         list_add(&info->link, &domain->devices);
2065         list_add(&info->global, &device_domain_list);
2066         pdev->dev.archdata.iommu = info;
2067         spin_unlock_irqrestore(&device_domain_lock, flags);
2068
2069         return 0;
2070 }
2071
2072 static int iommu_prepare_static_identity_mapping(void)
2073 {
2074         struct pci_dev *pdev = NULL;
2075         int ret;
2076
2077         ret = si_domain_init();
2078         if (ret)
2079                 return -EFAULT;
2080
2081         for_each_pci_dev(pdev) {
2082                 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2083                        pci_name(pdev));
2084
2085                 ret = domain_context_mapping(si_domain, pdev,
2086                                              CONTEXT_TT_MULTI_LEVEL);
2087                 if (ret)
2088                         return ret;
2089                 ret = domain_add_dev_info(si_domain, pdev);
2090                 if (ret)
2091                         return ret;
2092         }
2093
2094         return 0;
2095 }
2096
2097 int __init init_dmars(void)
2098 {
2099         struct dmar_drhd_unit *drhd;
2100         struct dmar_rmrr_unit *rmrr;
2101         struct pci_dev *pdev;
2102         struct intel_iommu *iommu;
2103         int i, ret;
2104         int pass_through = 1;
2105
2106         /*
2107          * In case pass through can not be enabled, iommu tries to use identity
2108          * mapping.
2109          */
2110         if (iommu_pass_through)
2111                 iommu_identity_mapping = 1;
2112
2113         /*
2114          * for each drhd
2115          *    allocate root
2116          *    initialize and program root entry to not present
2117          * endfor
2118          */
2119         for_each_drhd_unit(drhd) {
2120                 g_num_of_iommus++;
2121                 /*
2122                  * lock not needed as this is only incremented in the single
2123                  * threaded kernel __init code path all other access are read
2124                  * only
2125                  */
2126         }
2127
2128         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2129                         GFP_KERNEL);
2130         if (!g_iommus) {
2131                 printk(KERN_ERR "Allocating global iommu array failed\n");
2132                 ret = -ENOMEM;
2133                 goto error;
2134         }
2135
2136         deferred_flush = kzalloc(g_num_of_iommus *
2137                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2138         if (!deferred_flush) {
2139                 kfree(g_iommus);
2140                 ret = -ENOMEM;
2141                 goto error;
2142         }
2143
2144         for_each_drhd_unit(drhd) {
2145                 if (drhd->ignored)
2146                         continue;
2147
2148                 iommu = drhd->iommu;
2149                 g_iommus[iommu->seq_id] = iommu;
2150
2151                 ret = iommu_init_domains(iommu);
2152                 if (ret)
2153                         goto error;
2154
2155                 /*
2156                  * TBD:
2157                  * we could share the same root & context tables
2158                  * amoung all IOMMU's. Need to Split it later.
2159                  */
2160                 ret = iommu_alloc_root_entry(iommu);
2161                 if (ret) {
2162                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2163                         goto error;
2164                 }
2165                 if (!ecap_pass_through(iommu->ecap))
2166                         pass_through = 0;
2167         }
2168         if (iommu_pass_through)
2169                 if (!pass_through) {
2170                         printk(KERN_INFO
2171                                "Pass Through is not supported by hardware.\n");
2172                         iommu_pass_through = 0;
2173                 }
2174
2175         /*
2176          * Start from the sane iommu hardware state.
2177          */
2178         for_each_drhd_unit(drhd) {
2179                 if (drhd->ignored)
2180                         continue;
2181
2182                 iommu = drhd->iommu;
2183
2184                 /*
2185                  * If the queued invalidation is already initialized by us
2186                  * (for example, while enabling interrupt-remapping) then
2187                  * we got the things already rolling from a sane state.
2188                  */
2189                 if (iommu->qi)
2190                         continue;
2191
2192                 /*
2193                  * Clear any previous faults.
2194                  */
2195                 dmar_fault(-1, iommu);
2196                 /*
2197                  * Disable queued invalidation if supported and already enabled
2198                  * before OS handover.
2199                  */
2200                 dmar_disable_qi(iommu);
2201         }
2202
2203         for_each_drhd_unit(drhd) {
2204                 if (drhd->ignored)
2205                         continue;
2206
2207                 iommu = drhd->iommu;
2208
2209                 if (dmar_enable_qi(iommu)) {
2210                         /*
2211                          * Queued Invalidate not enabled, use Register Based
2212                          * Invalidate
2213                          */
2214                         iommu->flush.flush_context = __iommu_flush_context;
2215                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2216                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2217                                "invalidation\n",
2218                                (unsigned long long)drhd->reg_base_addr);
2219                 } else {
2220                         iommu->flush.flush_context = qi_flush_context;
2221                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2222                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2223                                "invalidation\n",
2224                                (unsigned long long)drhd->reg_base_addr);
2225                 }
2226         }
2227
2228         /*
2229          * If pass through is set and enabled, context entries of all pci
2230          * devices are intialized by pass through translation type.
2231          */
2232         if (iommu_pass_through) {
2233                 ret = init_context_pass_through();
2234                 if (ret) {
2235                         printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2236                         iommu_pass_through = 0;
2237                 }
2238         }
2239
2240         /*
2241          * If pass through is not set or not enabled, setup context entries for
2242          * identity mappings for rmrr, gfx, and isa and may fall back to static
2243          * identity mapping if iommu_identity_mapping is set.
2244          */
2245         if (!iommu_pass_through) {
2246                 if (iommu_identity_mapping)
2247                         iommu_prepare_static_identity_mapping();
2248                 /*
2249                  * For each rmrr
2250                  *   for each dev attached to rmrr
2251                  *   do
2252                  *     locate drhd for dev, alloc domain for dev
2253                  *     allocate free domain
2254                  *     allocate page table entries for rmrr
2255                  *     if context not allocated for bus
2256                  *           allocate and init context
2257                  *           set present in root table for this bus
2258                  *     init context with domain, translation etc
2259                  *    endfor
2260                  * endfor
2261                  */
2262                 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2263                 for_each_rmrr_units(rmrr) {
2264                         for (i = 0; i < rmrr->devices_cnt; i++) {
2265                                 pdev = rmrr->devices[i];
2266                                 /*
2267                                  * some BIOS lists non-exist devices in DMAR
2268                                  * table.
2269                                  */
2270                                 if (!pdev)
2271                                         continue;
2272                                 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2273                                 if (ret)
2274                                         printk(KERN_ERR
2275                                  "IOMMU: mapping reserved region failed\n");
2276                         }
2277                 }
2278
2279                 iommu_prepare_isa();
2280         }
2281
2282         /*
2283          * for each drhd
2284          *   enable fault log
2285          *   global invalidate context cache
2286          *   global invalidate iotlb
2287          *   enable translation
2288          */
2289         for_each_drhd_unit(drhd) {
2290                 if (drhd->ignored)
2291                         continue;
2292                 iommu = drhd->iommu;
2293
2294                 iommu_flush_write_buffer(iommu);
2295
2296                 ret = dmar_set_interrupt(iommu);
2297                 if (ret)
2298                         goto error;
2299
2300                 iommu_set_root_entry(iommu);
2301
2302                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2303                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2304                 iommu_disable_protect_mem_regions(iommu);
2305
2306                 ret = iommu_enable_translation(iommu);
2307                 if (ret)
2308                         goto error;
2309         }
2310
2311         return 0;
2312 error:
2313         for_each_drhd_unit(drhd) {
2314                 if (drhd->ignored)
2315                         continue;
2316                 iommu = drhd->iommu;
2317                 free_iommu(iommu);
2318         }
2319         kfree(g_iommus);
2320         return ret;
2321 }
2322
2323 static inline u64 aligned_size(u64 host_addr, size_t size)
2324 {
2325         u64 addr;
2326         addr = (host_addr & (~PAGE_MASK)) + size;
2327         return PAGE_ALIGN(addr);
2328 }
2329
2330 struct iova *
2331 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2332 {
2333         struct iova *piova;
2334
2335         /* Make sure it's in range */
2336         end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2337         if (!size || (IOVA_START_ADDR + size > end))
2338                 return NULL;
2339
2340         piova = alloc_iova(&domain->iovad,
2341                         size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2342         return piova;
2343 }
2344
2345 static struct iova *
2346 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2347                    size_t size, u64 dma_mask)
2348 {
2349         struct pci_dev *pdev = to_pci_dev(dev);
2350         struct iova *iova = NULL;
2351
2352         if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2353                 iova = iommu_alloc_iova(domain, size, dma_mask);
2354         else {
2355                 /*
2356                  * First try to allocate an io virtual address in
2357                  * DMA_BIT_MASK(32) and if that fails then try allocating
2358                  * from higher range
2359                  */
2360                 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2361                 if (!iova)
2362                         iova = iommu_alloc_iova(domain, size, dma_mask);
2363         }
2364
2365         if (!iova) {
2366                 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2367                 return NULL;
2368         }
2369
2370         return iova;
2371 }
2372
2373 static struct dmar_domain *
2374 get_valid_domain_for_dev(struct pci_dev *pdev)
2375 {
2376         struct dmar_domain *domain;
2377         int ret;
2378
2379         domain = get_domain_for_dev(pdev,
2380                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2381         if (!domain) {
2382                 printk(KERN_ERR
2383                         "Allocating domain for %s failed", pci_name(pdev));
2384                 return NULL;
2385         }
2386
2387         /* make sure context mapping is ok */
2388         if (unlikely(!domain_context_mapped(pdev))) {
2389                 ret = domain_context_mapping(domain, pdev,
2390                                              CONTEXT_TT_MULTI_LEVEL);
2391                 if (ret) {
2392                         printk(KERN_ERR
2393                                 "Domain context map for %s failed",
2394                                 pci_name(pdev));
2395                         return NULL;
2396                 }
2397         }
2398
2399         return domain;
2400 }
2401
2402 static int iommu_dummy(struct pci_dev *pdev)
2403 {
2404         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2405 }
2406
2407 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2408 static int iommu_no_mapping(struct pci_dev *pdev)
2409 {
2410         int found;
2411
2412         if (!iommu_identity_mapping)
2413                 return iommu_dummy(pdev);
2414
2415         found = identity_mapping(pdev);
2416         if (found) {
2417                 if (pdev->dma_mask > DMA_BIT_MASK(32))
2418                         return 1;
2419                 else {
2420                         /*
2421                          * 32 bit DMA is removed from si_domain and fall back
2422                          * to non-identity mapping.
2423                          */
2424                         domain_remove_one_dev_info(si_domain, pdev);
2425                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2426                                pci_name(pdev));
2427                         return 0;
2428                 }
2429         } else {
2430                 /*
2431                  * In case of a detached 64 bit DMA device from vm, the device
2432                  * is put into si_domain for identity mapping.
2433                  */
2434                 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2435                         int ret;
2436                         ret = domain_add_dev_info(si_domain, pdev);
2437                         if (!ret) {
2438                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2439                                        pci_name(pdev));
2440                                 return 1;
2441                         }
2442                 }
2443         }
2444
2445         return iommu_dummy(pdev);
2446 }
2447
2448 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2449                                      size_t size, int dir, u64 dma_mask)
2450 {
2451         struct pci_dev *pdev = to_pci_dev(hwdev);
2452         struct dmar_domain *domain;
2453         phys_addr_t start_paddr;
2454         struct iova *iova;
2455         int prot = 0;
2456         int ret;
2457         struct intel_iommu *iommu;
2458
2459         BUG_ON(dir == DMA_NONE);
2460
2461         if (iommu_no_mapping(pdev))
2462                 return paddr;
2463
2464         domain = get_valid_domain_for_dev(pdev);
2465         if (!domain)
2466                 return 0;
2467
2468         iommu = domain_get_iommu(domain);
2469         size = aligned_size((u64)paddr, size);
2470
2471         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2472         if (!iova)
2473                 goto error;
2474
2475         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2476
2477         /*
2478          * Check if DMAR supports zero-length reads on write only
2479          * mappings..
2480          */
2481         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2482                         !cap_zlr(iommu->cap))
2483                 prot |= DMA_PTE_READ;
2484         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2485                 prot |= DMA_PTE_WRITE;
2486         /*
2487          * paddr - (paddr + size) might be partial page, we should map the whole
2488          * page.  Note: if two part of one page are separately mapped, we
2489          * might have two guest_addr mapping to the same host paddr, but this
2490          * is not a big problem
2491          */
2492         ret = domain_page_mapping(domain, start_paddr,
2493                                   ((u64)paddr) & PHYSICAL_PAGE_MASK,
2494                                   size, prot);
2495         if (ret)
2496                 goto error;
2497
2498         /* it's a non-present to present mapping. Only flush if caching mode */
2499         if (cap_caching_mode(iommu->cap))
2500                 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2501                                       size >> VTD_PAGE_SHIFT);
2502         else
2503                 iommu_flush_write_buffer(iommu);
2504
2505         return start_paddr + ((u64)paddr & (~PAGE_MASK));
2506
2507 error:
2508         if (iova)
2509                 __free_iova(&domain->iovad, iova);
2510         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2511                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2512         return 0;
2513 }
2514
2515 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2516                                  unsigned long offset, size_t size,
2517                                  enum dma_data_direction dir,
2518                                  struct dma_attrs *attrs)
2519 {
2520         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2521                                   dir, to_pci_dev(dev)->dma_mask);
2522 }
2523
2524 static void flush_unmaps(void)
2525 {
2526         int i, j;
2527
2528         timer_on = 0;
2529
2530         /* just flush them all */
2531         for (i = 0; i < g_num_of_iommus; i++) {
2532                 struct intel_iommu *iommu = g_iommus[i];
2533                 if (!iommu)
2534                         continue;
2535
2536                 if (!deferred_flush[i].next)
2537                         continue;
2538
2539                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2540                                          DMA_TLB_GLOBAL_FLUSH);
2541                 for (j = 0; j < deferred_flush[i].next; j++) {
2542                         unsigned long mask;
2543                         struct iova *iova = deferred_flush[i].iova[j];
2544
2545                         mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2546                         mask = ilog2(mask >> VTD_PAGE_SHIFT);
2547                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2548                                         iova->pfn_lo << PAGE_SHIFT, mask);
2549                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2550                 }
2551                 deferred_flush[i].next = 0;
2552         }
2553
2554         list_size = 0;
2555 }
2556
2557 static void flush_unmaps_timeout(unsigned long data)
2558 {
2559         unsigned long flags;
2560
2561         spin_lock_irqsave(&async_umap_flush_lock, flags);
2562         flush_unmaps();
2563         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2564 }
2565
2566 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2567 {
2568         unsigned long flags;
2569         int next, iommu_id;
2570         struct intel_iommu *iommu;
2571
2572         spin_lock_irqsave(&async_umap_flush_lock, flags);
2573         if (list_size == HIGH_WATER_MARK)
2574                 flush_unmaps();
2575
2576         iommu = domain_get_iommu(dom);
2577         iommu_id = iommu->seq_id;
2578
2579         next = deferred_flush[iommu_id].next;
2580         deferred_flush[iommu_id].domain[next] = dom;
2581         deferred_flush[iommu_id].iova[next] = iova;
2582         deferred_flush[iommu_id].next++;
2583
2584         if (!timer_on) {
2585                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2586                 timer_on = 1;
2587         }
2588         list_size++;
2589         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2590 }
2591
2592 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2593                              size_t size, enum dma_data_direction dir,
2594                              struct dma_attrs *attrs)
2595 {
2596         struct pci_dev *pdev = to_pci_dev(dev);
2597         struct dmar_domain *domain;
2598         unsigned long start_addr;
2599         struct iova *iova;
2600         struct intel_iommu *iommu;
2601
2602         if (iommu_no_mapping(pdev))
2603                 return;
2604
2605         domain = find_domain(pdev);
2606         BUG_ON(!domain);
2607
2608         iommu = domain_get_iommu(domain);
2609
2610         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2611         if (!iova)
2612                 return;
2613
2614         start_addr = iova->pfn_lo << PAGE_SHIFT;
2615         size = aligned_size((u64)dev_addr, size);
2616
2617         pr_debug("Device %s unmapping: %zx@%llx\n",
2618                 pci_name(pdev), size, (unsigned long long)start_addr);
2619
2620         /*  clear the whole page */
2621         dma_pte_clear_range(domain, start_addr, start_addr + size);
2622         /* free page tables */
2623         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2624         if (intel_iommu_strict) {
2625                 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2626                                       size >> VTD_PAGE_SHIFT);
2627                 /* free iova */
2628                 __free_iova(&domain->iovad, iova);
2629         } else {
2630                 add_unmap(domain, iova);
2631                 /*
2632                  * queue up the release of the unmap to save the 1/6th of the
2633                  * cpu used up by the iotlb flush operation...
2634                  */
2635         }
2636 }
2637
2638 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2639                                int dir)
2640 {
2641         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2642 }
2643
2644 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2645                                   dma_addr_t *dma_handle, gfp_t flags)
2646 {
2647         void *vaddr;
2648         int order;
2649
2650         size = PAGE_ALIGN(size);
2651         order = get_order(size);
2652         flags &= ~(GFP_DMA | GFP_DMA32);
2653
2654         vaddr = (void *)__get_free_pages(flags, order);
2655         if (!vaddr)
2656                 return NULL;
2657         memset(vaddr, 0, size);
2658
2659         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2660                                          DMA_BIDIRECTIONAL,
2661                                          hwdev->coherent_dma_mask);
2662         if (*dma_handle)
2663                 return vaddr;
2664         free_pages((unsigned long)vaddr, order);
2665         return NULL;
2666 }
2667
2668 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2669                                 dma_addr_t dma_handle)
2670 {
2671         int order;
2672
2673         size = PAGE_ALIGN(size);
2674         order = get_order(size);
2675
2676         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2677         free_pages((unsigned long)vaddr, order);
2678 }
2679
2680 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2681                            int nelems, enum dma_data_direction dir,
2682                            struct dma_attrs *attrs)
2683 {
2684         int i;
2685         struct pci_dev *pdev = to_pci_dev(hwdev);
2686         struct dmar_domain *domain;
2687         unsigned long start_addr;
2688         struct iova *iova;
2689         size_t size = 0;
2690         phys_addr_t addr;
2691         struct scatterlist *sg;
2692         struct intel_iommu *iommu;
2693
2694         if (iommu_no_mapping(pdev))
2695                 return;
2696
2697         domain = find_domain(pdev);
2698         BUG_ON(!domain);
2699
2700         iommu = domain_get_iommu(domain);
2701
2702         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2703         if (!iova)
2704                 return;
2705         for_each_sg(sglist, sg, nelems, i) {
2706                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2707                 size += aligned_size((u64)addr, sg->length);
2708         }
2709
2710         start_addr = iova->pfn_lo << PAGE_SHIFT;
2711
2712         /*  clear the whole page */
2713         dma_pte_clear_range(domain, start_addr, start_addr + size);
2714         /* free page tables */
2715         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2716
2717         iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2718                               size >> VTD_PAGE_SHIFT);
2719
2720         /* free iova */
2721         __free_iova(&domain->iovad, iova);
2722 }
2723
2724 static int intel_nontranslate_map_sg(struct device *hddev,
2725         struct scatterlist *sglist, int nelems, int dir)
2726 {
2727         int i;
2728         struct scatterlist *sg;
2729
2730         for_each_sg(sglist, sg, nelems, i) {
2731                 BUG_ON(!sg_page(sg));
2732                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2733                 sg->dma_length = sg->length;
2734         }
2735         return nelems;
2736 }
2737
2738 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2739                         enum dma_data_direction dir, struct dma_attrs *attrs)
2740 {
2741         phys_addr_t addr;
2742         int i;
2743         struct pci_dev *pdev = to_pci_dev(hwdev);
2744         struct dmar_domain *domain;
2745         size_t size = 0;
2746         int prot = 0;
2747         size_t offset = 0;
2748         struct iova *iova = NULL;
2749         int ret;
2750         struct scatterlist *sg;
2751         unsigned long start_addr;
2752         struct intel_iommu *iommu;
2753
2754         BUG_ON(dir == DMA_NONE);
2755         if (iommu_no_mapping(pdev))
2756                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2757
2758         domain = get_valid_domain_for_dev(pdev);
2759         if (!domain)
2760                 return 0;
2761
2762         iommu = domain_get_iommu(domain);
2763
2764         for_each_sg(sglist, sg, nelems, i) {
2765                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2766                 size += aligned_size((u64)addr, sg->length);
2767         }
2768
2769         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2770         if (!iova) {
2771                 sglist->dma_length = 0;
2772                 return 0;
2773         }
2774
2775         /*
2776          * Check if DMAR supports zero-length reads on write only
2777          * mappings..
2778          */
2779         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2780                         !cap_zlr(iommu->cap))
2781                 prot |= DMA_PTE_READ;
2782         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2783                 prot |= DMA_PTE_WRITE;
2784
2785         start_addr = iova->pfn_lo << PAGE_SHIFT;
2786         offset = 0;
2787         for_each_sg(sglist, sg, nelems, i) {
2788                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2789                 size = aligned_size((u64)addr, sg->length);
2790                 ret = domain_page_mapping(domain, start_addr + offset,
2791                                           ((u64)addr) & PHYSICAL_PAGE_MASK,
2792                                           size, prot);
2793                 if (ret) {
2794                         /*  clear the page */
2795                         dma_pte_clear_range(domain, start_addr,
2796                                   start_addr + offset);
2797                         /* free page tables */
2798                         dma_pte_free_pagetable(domain, start_addr,
2799                                   start_addr + offset);
2800                         /* free iova */
2801                         __free_iova(&domain->iovad, iova);
2802                         return 0;
2803                 }
2804                 sg->dma_address = start_addr + offset +
2805                                 ((u64)addr & (~PAGE_MASK));
2806                 sg->dma_length = sg->length;
2807                 offset += size;
2808         }
2809
2810         /* it's a non-present to present mapping. Only flush if caching mode */
2811         if (cap_caching_mode(iommu->cap))
2812                 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2813                                       offset >> VTD_PAGE_SHIFT);
2814         else
2815                 iommu_flush_write_buffer(iommu);
2816
2817         return nelems;
2818 }
2819
2820 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2821 {
2822         return !dma_addr;
2823 }
2824
2825 struct dma_map_ops intel_dma_ops = {
2826         .alloc_coherent = intel_alloc_coherent,
2827         .free_coherent = intel_free_coherent,
2828         .map_sg = intel_map_sg,
2829         .unmap_sg = intel_unmap_sg,
2830         .map_page = intel_map_page,
2831         .unmap_page = intel_unmap_page,
2832         .mapping_error = intel_mapping_error,
2833 };
2834
2835 static inline int iommu_domain_cache_init(void)
2836 {
2837         int ret = 0;
2838
2839         iommu_domain_cache = kmem_cache_create("iommu_domain",
2840                                          sizeof(struct dmar_domain),
2841                                          0,
2842                                          SLAB_HWCACHE_ALIGN,
2843
2844                                          NULL);
2845         if (!iommu_domain_cache) {
2846                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2847                 ret = -ENOMEM;
2848         }
2849
2850         return ret;
2851 }
2852
2853 static inline int iommu_devinfo_cache_init(void)
2854 {
2855         int ret = 0;
2856
2857         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2858                                          sizeof(struct device_domain_info),
2859                                          0,
2860                                          SLAB_HWCACHE_ALIGN,
2861                                          NULL);
2862         if (!iommu_devinfo_cache) {
2863                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2864                 ret = -ENOMEM;
2865         }
2866
2867         return ret;
2868 }
2869
2870 static inline int iommu_iova_cache_init(void)
2871 {
2872         int ret = 0;
2873
2874         iommu_iova_cache = kmem_cache_create("iommu_iova",
2875                                          sizeof(struct iova),
2876                                          0,
2877                                          SLAB_HWCACHE_ALIGN,
2878                                          NULL);
2879         if (!iommu_iova_cache) {
2880                 printk(KERN_ERR "Couldn't create iova cache\n");
2881                 ret = -ENOMEM;
2882         }
2883
2884         return ret;
2885 }
2886
2887 static int __init iommu_init_mempool(void)
2888 {
2889         int ret;
2890         ret = iommu_iova_cache_init();
2891         if (ret)
2892                 return ret;
2893
2894         ret = iommu_domain_cache_init();
2895         if (ret)
2896                 goto domain_error;
2897
2898         ret = iommu_devinfo_cache_init();
2899         if (!ret)
2900                 return ret;
2901
2902         kmem_cache_destroy(iommu_domain_cache);
2903 domain_error:
2904         kmem_cache_destroy(iommu_iova_cache);
2905
2906         return -ENOMEM;
2907 }
2908
2909 static void __init iommu_exit_mempool(void)
2910 {
2911         kmem_cache_destroy(iommu_devinfo_cache);
2912         kmem_cache_destroy(iommu_domain_cache);
2913         kmem_cache_destroy(iommu_iova_cache);
2914
2915 }
2916
2917 static void __init init_no_remapping_devices(void)
2918 {
2919         struct dmar_drhd_unit *drhd;
2920
2921         for_each_drhd_unit(drhd) {
2922                 if (!drhd->include_all) {
2923                         int i;
2924                         for (i = 0; i < drhd->devices_cnt; i++)
2925                                 if (drhd->devices[i] != NULL)
2926                                         break;
2927                         /* ignore DMAR unit if no pci devices exist */
2928                         if (i == drhd->devices_cnt)
2929                                 drhd->ignored = 1;
2930                 }
2931         }
2932
2933         if (dmar_map_gfx)
2934                 return;
2935
2936         for_each_drhd_unit(drhd) {
2937                 int i;
2938                 if (drhd->ignored || drhd->include_all)
2939                         continue;
2940
2941                 for (i = 0; i < drhd->devices_cnt; i++)
2942                         if (drhd->devices[i] &&
2943                                 !IS_GFX_DEVICE(drhd->devices[i]))
2944                                 break;
2945
2946                 if (i < drhd->devices_cnt)
2947                         continue;
2948
2949                 /* bypass IOMMU if it is just for gfx devices */
2950                 drhd->ignored = 1;
2951                 for (i = 0; i < drhd->devices_cnt; i++) {
2952                         if (!drhd->devices[i])
2953                                 continue;
2954                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2955                 }
2956         }
2957 }
2958
2959 #ifdef CONFIG_SUSPEND
2960 static int init_iommu_hw(void)
2961 {
2962         struct dmar_drhd_unit *drhd;
2963         struct intel_iommu *iommu = NULL;
2964
2965         for_each_active_iommu(iommu, drhd)
2966                 if (iommu->qi)
2967                         dmar_reenable_qi(iommu);
2968
2969         for_each_active_iommu(iommu, drhd) {
2970                 iommu_flush_write_buffer(iommu);
2971
2972                 iommu_set_root_entry(iommu);
2973
2974                 iommu->flush.flush_context(iommu, 0, 0, 0,
2975                                            DMA_CCMD_GLOBAL_INVL);
2976                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2977                                          DMA_TLB_GLOBAL_FLUSH);
2978                 iommu_disable_protect_mem_regions(iommu);
2979                 iommu_enable_translation(iommu);
2980         }
2981
2982         return 0;
2983 }
2984
2985 static void iommu_flush_all(void)
2986 {
2987         struct dmar_drhd_unit *drhd;
2988         struct intel_iommu *iommu;
2989
2990         for_each_active_iommu(iommu, drhd) {
2991                 iommu->flush.flush_context(iommu, 0, 0, 0,
2992                                            DMA_CCMD_GLOBAL_INVL);
2993                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2994                                          DMA_TLB_GLOBAL_FLUSH);
2995         }
2996 }
2997
2998 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2999 {
3000         struct dmar_drhd_unit *drhd;
3001         struct intel_iommu *iommu = NULL;
3002         unsigned long flag;
3003
3004         for_each_active_iommu(iommu, drhd) {
3005                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3006                                                  GFP_ATOMIC);
3007                 if (!iommu->iommu_state)
3008                         goto nomem;
3009         }
3010
3011         iommu_flush_all();
3012
3013         for_each_active_iommu(iommu, drhd) {
3014                 iommu_disable_translation(iommu);
3015
3016                 spin_lock_irqsave(&iommu->register_lock, flag);
3017
3018                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3019                         readl(iommu->reg + DMAR_FECTL_REG);
3020                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3021                         readl(iommu->reg + DMAR_FEDATA_REG);
3022                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3023                         readl(iommu->reg + DMAR_FEADDR_REG);
3024                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3025                         readl(iommu->reg + DMAR_FEUADDR_REG);
3026
3027                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3028         }
3029         return 0;
3030
3031 nomem:
3032         for_each_active_iommu(iommu, drhd)
3033                 kfree(iommu->iommu_state);
3034
3035         return -ENOMEM;
3036 }
3037
3038 static int iommu_resume(struct sys_device *dev)
3039 {
3040         struct dmar_drhd_unit *drhd;
3041         struct intel_iommu *iommu = NULL;
3042         unsigned long flag;
3043
3044         if (init_iommu_hw()) {
3045                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3046                 return -EIO;
3047         }
3048
3049         for_each_active_iommu(iommu, drhd) {
3050
3051                 spin_lock_irqsave(&iommu->register_lock, flag);
3052
3053                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3054                         iommu->reg + DMAR_FECTL_REG);
3055                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3056                         iommu->reg + DMAR_FEDATA_REG);
3057                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3058                         iommu->reg + DMAR_FEADDR_REG);
3059                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3060                         iommu->reg + DMAR_FEUADDR_REG);
3061
3062                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3063         }
3064
3065         for_each_active_iommu(iommu, drhd)
3066                 kfree(iommu->iommu_state);
3067
3068         return 0;
3069 }
3070
3071 static struct sysdev_class iommu_sysclass = {
3072         .name           = "iommu",
3073         .resume         = iommu_resume,
3074         .suspend        = iommu_suspend,
3075 };
3076
3077 static struct sys_device device_iommu = {
3078         .cls    = &iommu_sysclass,
3079 };
3080
3081 static int __init init_iommu_sysfs(void)
3082 {
3083         int error;
3084
3085         error = sysdev_class_register(&iommu_sysclass);
3086         if (error)
3087                 return error;
3088
3089         error = sysdev_register(&device_iommu);
3090         if (error)
3091                 sysdev_class_unregister(&iommu_sysclass);
3092
3093         return error;
3094 }
3095
3096 #else
3097 static int __init init_iommu_sysfs(void)
3098 {
3099         return 0;
3100 }
3101 #endif  /* CONFIG_PM */
3102
3103 int __init intel_iommu_init(void)
3104 {
3105         int ret = 0;
3106
3107         if (dmar_table_init())
3108                 return  -ENODEV;
3109
3110         if (dmar_dev_scope_init())
3111                 return  -ENODEV;
3112
3113         /*
3114          * Check the need for DMA-remapping initialization now.
3115          * Above initialization will also be used by Interrupt-remapping.
3116          */
3117         if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3118                 return -ENODEV;
3119
3120         iommu_init_mempool();
3121         dmar_init_reserved_ranges();
3122
3123         init_no_remapping_devices();
3124
3125         ret = init_dmars();
3126         if (ret) {
3127                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3128                 put_iova_domain(&reserved_iova_list);
3129                 iommu_exit_mempool();
3130                 return ret;
3131         }
3132         printk(KERN_INFO
3133         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3134
3135         init_timer(&unmap_timer);
3136         force_iommu = 1;
3137
3138         if (!iommu_pass_through) {
3139                 printk(KERN_INFO
3140                        "Multi-level page-table translation for DMAR.\n");
3141                 dma_ops = &intel_dma_ops;
3142         } else
3143                 printk(KERN_INFO
3144                        "DMAR: Pass through translation for DMAR.\n");
3145
3146         init_iommu_sysfs();
3147
3148         register_iommu(&intel_iommu_ops);
3149
3150         return 0;
3151 }
3152
3153 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3154                                            struct pci_dev *pdev)
3155 {
3156         struct pci_dev *tmp, *parent;
3157
3158         if (!iommu || !pdev)
3159                 return;
3160
3161         /* dependent device detach */
3162         tmp = pci_find_upstream_pcie_bridge(pdev);
3163         /* Secondary interface's bus number and devfn 0 */
3164         if (tmp) {
3165                 parent = pdev->bus->self;
3166                 while (parent != tmp) {
3167                         iommu_detach_dev(iommu, parent->bus->number,
3168                                          parent->devfn);
3169                         parent = parent->bus->self;
3170                 }
3171                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3172                         iommu_detach_dev(iommu,
3173                                 tmp->subordinate->number, 0);
3174                 else /* this is a legacy PCI bridge */
3175                         iommu_detach_dev(iommu, tmp->bus->number,
3176                                          tmp->devfn);
3177         }
3178 }
3179
3180 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3181                                           struct pci_dev *pdev)
3182 {
3183         struct device_domain_info *info;
3184         struct intel_iommu *iommu;
3185         unsigned long flags;
3186         int found = 0;
3187         struct list_head *entry, *tmp;
3188
3189         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3190                                 pdev->devfn);
3191         if (!iommu)
3192                 return;
3193
3194         spin_lock_irqsave(&device_domain_lock, flags);
3195         list_for_each_safe(entry, tmp, &domain->devices) {
3196                 info = list_entry(entry, struct device_domain_info, link);
3197                 /* No need to compare PCI domain; it has to be the same */
3198                 if (info->bus == pdev->bus->number &&
3199                     info->devfn == pdev->devfn) {
3200                         list_del(&info->link);
3201                         list_del(&info->global);
3202                         if (info->dev)
3203                                 info->dev->dev.archdata.iommu = NULL;
3204                         spin_unlock_irqrestore(&device_domain_lock, flags);
3205
3206                         iommu_disable_dev_iotlb(info);
3207                         iommu_detach_dev(iommu, info->bus, info->devfn);
3208                         iommu_detach_dependent_devices(iommu, pdev);
3209                         free_devinfo_mem(info);
3210
3211                         spin_lock_irqsave(&device_domain_lock, flags);
3212
3213                         if (found)
3214                                 break;
3215                         else
3216                                 continue;
3217                 }
3218
3219                 /* if there is no other devices under the same iommu
3220                  * owned by this domain, clear this iommu in iommu_bmp
3221                  * update iommu count and coherency
3222                  */
3223                 if (iommu == device_to_iommu(info->segment, info->bus,
3224                                             info->devfn))
3225                         found = 1;
3226         }
3227
3228         if (found == 0) {
3229                 unsigned long tmp_flags;
3230                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3231                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3232                 domain->iommu_count--;
3233                 domain_update_iommu_cap(domain);
3234                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3235         }
3236
3237         spin_unlock_irqrestore(&device_domain_lock, flags);
3238 }
3239
3240 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3241 {
3242         struct device_domain_info *info;
3243         struct intel_iommu *iommu;
3244         unsigned long flags1, flags2;
3245
3246         spin_lock_irqsave(&device_domain_lock, flags1);
3247         while (!list_empty(&domain->devices)) {
3248                 info = list_entry(domain->devices.next,
3249                         struct device_domain_info, link);
3250                 list_del(&info->link);
3251                 list_del(&info->global);
3252                 if (info->dev)
3253                         info->dev->dev.archdata.iommu = NULL;
3254
3255                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3256
3257                 iommu_disable_dev_iotlb(info);
3258                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3259                 iommu_detach_dev(iommu, info->bus, info->devfn);
3260                 iommu_detach_dependent_devices(iommu, info->dev);
3261
3262                 /* clear this iommu in iommu_bmp, update iommu count
3263                  * and capabilities
3264                  */
3265                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3266                 if (test_and_clear_bit(iommu->seq_id,
3267                                        &domain->iommu_bmp)) {
3268                         domain->iommu_count--;
3269                         domain_update_iommu_cap(domain);
3270                 }
3271                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3272
3273                 free_devinfo_mem(info);
3274                 spin_lock_irqsave(&device_domain_lock, flags1);
3275         }
3276         spin_unlock_irqrestore(&device_domain_lock, flags1);
3277 }
3278
3279 /* domain id for virtual machine, it won't be set in context */
3280 static unsigned long vm_domid;
3281
3282 static int vm_domain_min_agaw(struct dmar_domain *domain)
3283 {
3284         int i;
3285         int min_agaw = domain->agaw;
3286
3287         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3288         for (; i < g_num_of_iommus; ) {
3289                 if (min_agaw > g_iommus[i]->agaw)
3290                         min_agaw = g_iommus[i]->agaw;
3291
3292                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3293         }
3294
3295         return min_agaw;
3296 }
3297
3298 static struct dmar_domain *iommu_alloc_vm_domain(void)
3299 {
3300         struct dmar_domain *domain;
3301
3302         domain = alloc_domain_mem();
3303         if (!domain)
3304                 return NULL;
3305
3306         domain->id = vm_domid++;
3307         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3308         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3309
3310         return domain;
3311 }
3312
3313 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3314 {
3315         int adjust_width;
3316
3317         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3318         spin_lock_init(&domain->mapping_lock);
3319         spin_lock_init(&domain->iommu_lock);
3320
3321         domain_reserve_special_ranges(domain);
3322
3323         /* calculate AGAW */
3324         domain->gaw = guest_width;
3325         adjust_width = guestwidth_to_adjustwidth(guest_width);
3326         domain->agaw = width_to_agaw(adjust_width);
3327
3328         INIT_LIST_HEAD(&domain->devices);
3329
3330         domain->iommu_count = 0;
3331         domain->iommu_coherency = 0;
3332         domain->max_addr = 0;
3333
3334         /* always allocate the top pgd */
3335         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3336         if (!domain->pgd)
3337                 return -ENOMEM;
3338         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3339         return 0;
3340 }
3341
3342 static void iommu_free_vm_domain(struct dmar_domain *domain)
3343 {
3344         unsigned long flags;
3345         struct dmar_drhd_unit *drhd;
3346         struct intel_iommu *iommu;
3347         unsigned long i;
3348         unsigned long ndomains;
3349
3350         for_each_drhd_unit(drhd) {
3351                 if (drhd->ignored)
3352                         continue;
3353                 iommu = drhd->iommu;
3354
3355                 ndomains = cap_ndoms(iommu->cap);
3356                 i = find_first_bit(iommu->domain_ids, ndomains);
3357                 for (; i < ndomains; ) {
3358                         if (iommu->domains[i] == domain) {
3359                                 spin_lock_irqsave(&iommu->lock, flags);
3360                                 clear_bit(i, iommu->domain_ids);
3361                                 iommu->domains[i] = NULL;
3362                                 spin_unlock_irqrestore(&iommu->lock, flags);
3363                                 break;
3364                         }
3365                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3366                 }
3367         }
3368 }
3369
3370 static void vm_domain_exit(struct dmar_domain *domain)
3371 {
3372         u64 end;
3373
3374         /* Domain 0 is reserved, so dont process it */
3375         if (!domain)
3376                 return;
3377
3378         vm_domain_remove_all_dev_info(domain);
3379         /* destroy iovas */
3380         put_iova_domain(&domain->iovad);
3381         end = DOMAIN_MAX_ADDR(domain->gaw);
3382         end = end & (~VTD_PAGE_MASK);
3383
3384         /* clear ptes */
3385         dma_pte_clear_range(domain, 0, end);
3386
3387         /* free page tables */
3388         dma_pte_free_pagetable(domain, 0, end);
3389
3390         iommu_free_vm_domain(domain);
3391         free_domain_mem(domain);
3392 }
3393
3394 static int intel_iommu_domain_init(struct iommu_domain *domain)
3395 {
3396         struct dmar_domain *dmar_domain;
3397
3398         dmar_domain = iommu_alloc_vm_domain();
3399         if (!dmar_domain) {
3400                 printk(KERN_ERR
3401                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3402                 return -ENOMEM;
3403         }
3404         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3405                 printk(KERN_ERR
3406                         "intel_iommu_domain_init() failed\n");
3407                 vm_domain_exit(dmar_domain);
3408                 return -ENOMEM;
3409         }
3410         domain->priv = dmar_domain;
3411
3412         return 0;
3413 }
3414
3415 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3416 {
3417         struct dmar_domain *dmar_domain = domain->priv;
3418
3419         domain->priv = NULL;
3420         vm_domain_exit(dmar_domain);
3421 }
3422
3423 static int intel_iommu_attach_device(struct iommu_domain *domain,
3424                                      struct device *dev)
3425 {
3426         struct dmar_domain *dmar_domain = domain->priv;
3427         struct pci_dev *pdev = to_pci_dev(dev);
3428         struct intel_iommu *iommu;
3429         int addr_width;
3430         u64 end;
3431         int ret;
3432
3433         /* normally pdev is not mapped */
3434         if (unlikely(domain_context_mapped(pdev))) {
3435                 struct dmar_domain *old_domain;
3436
3437                 old_domain = find_domain(pdev);
3438                 if (old_domain) {
3439                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3440                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3441                                 domain_remove_one_dev_info(old_domain, pdev);
3442                         else
3443                                 domain_remove_dev_info(old_domain);
3444                 }
3445         }
3446
3447         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3448                                 pdev->devfn);
3449         if (!iommu)
3450                 return -ENODEV;
3451
3452         /* check if this iommu agaw is sufficient for max mapped address */
3453         addr_width = agaw_to_width(iommu->agaw);
3454         end = DOMAIN_MAX_ADDR(addr_width);
3455         end = end & VTD_PAGE_MASK;
3456         if (end < dmar_domain->max_addr) {
3457                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3458                        "sufficient for the mapped address (%llx)\n",
3459                        __func__, iommu->agaw, dmar_domain->max_addr);
3460                 return -EFAULT;
3461         }
3462
3463         ret = domain_add_dev_info(dmar_domain, pdev);
3464         if (ret)
3465                 return ret;
3466
3467         ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3468         return ret;
3469 }
3470
3471 static void intel_iommu_detach_device(struct iommu_domain *domain,
3472                                       struct device *dev)
3473 {
3474         struct dmar_domain *dmar_domain = domain->priv;
3475         struct pci_dev *pdev = to_pci_dev(dev);
3476
3477         domain_remove_one_dev_info(dmar_domain, pdev);
3478 }
3479
3480 static int intel_iommu_map_range(struct iommu_domain *domain,
3481                                  unsigned long iova, phys_addr_t hpa,
3482                                  size_t size, int iommu_prot)
3483 {
3484         struct dmar_domain *dmar_domain = domain->priv;
3485         u64 max_addr;
3486         int addr_width;
3487         int prot = 0;
3488         int ret;
3489
3490         if (iommu_prot & IOMMU_READ)
3491                 prot |= DMA_PTE_READ;
3492         if (iommu_prot & IOMMU_WRITE)
3493                 prot |= DMA_PTE_WRITE;
3494         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3495                 prot |= DMA_PTE_SNP;
3496
3497         max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3498         if (dmar_domain->max_addr < max_addr) {
3499                 int min_agaw;
3500                 u64 end;
3501
3502                 /* check if minimum agaw is sufficient for mapped address */
3503                 min_agaw = vm_domain_min_agaw(dmar_domain);
3504                 addr_width = agaw_to_width(min_agaw);
3505                 end = DOMAIN_MAX_ADDR(addr_width);
3506                 end = end & VTD_PAGE_MASK;
3507                 if (end < max_addr) {
3508                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3509                                "sufficient for the mapped address (%llx)\n",
3510                                __func__, min_agaw, max_addr);
3511                         return -EFAULT;
3512                 }
3513                 dmar_domain->max_addr = max_addr;
3514         }
3515
3516         ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3517         return ret;
3518 }
3519
3520 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3521                                     unsigned long iova, size_t size)
3522 {
3523         struct dmar_domain *dmar_domain = domain->priv;
3524         dma_addr_t base;
3525
3526         /* The address might not be aligned */
3527         base = iova & VTD_PAGE_MASK;
3528         size = VTD_PAGE_ALIGN(size);
3529         dma_pte_clear_range(dmar_domain, base, base + size);
3530
3531         if (dmar_domain->max_addr == base + size)
3532                 dmar_domain->max_addr = base;
3533 }
3534
3535 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3536                                             unsigned long iova)
3537 {
3538         struct dmar_domain *dmar_domain = domain->priv;
3539         struct dma_pte *pte;
3540         u64 phys = 0;
3541
3542         pte = addr_to_dma_pte(dmar_domain, iova);
3543         if (pte)
3544                 phys = dma_pte_addr(pte);
3545
3546         return phys;
3547 }
3548
3549 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3550                                       unsigned long cap)
3551 {
3552         struct dmar_domain *dmar_domain = domain->priv;
3553
3554         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3555                 return dmar_domain->iommu_snooping;
3556
3557         return 0;
3558 }
3559
3560 static struct iommu_ops intel_iommu_ops = {
3561         .domain_init    = intel_iommu_domain_init,
3562         .domain_destroy = intel_iommu_domain_destroy,
3563         .attach_dev     = intel_iommu_attach_device,
3564         .detach_dev     = intel_iommu_detach_device,
3565         .map            = intel_iommu_map_range,
3566         .unmap          = intel_iommu_unmap_range,
3567         .iova_to_phys   = intel_iommu_iova_to_phys,
3568         .domain_has_cap = intel_iommu_domain_has_cap,
3569 };
3570
3571 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3572 {
3573         /*
3574          * Mobile 4 Series Chipset neglects to set RWBF capability,
3575          * but needs it:
3576          */
3577         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3578         rwbf_quirk = 1;
3579 }
3580
3581 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);