sysfs: use sysfs_attr_init in ASUS atk0110 driver
[safe/jmp/linux-2.6] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/pci.h>
38 #include <linux/pci_hotplug.h>
39 #include <linux/kthread.h>
40 #include "cpqphp.h"
41
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43                         u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45                         u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
47
48
49 static struct task_struct *cpqhp_event_thread;
50 static unsigned long pushbutton_pending;        /* = 0 */
51
52 /* delay is in jiffies to wait for */
53 static void long_delay(int delay)
54 {
55         /*
56          * XXX(hch): if someone is bored please convert all callers
57          * to call msleep_interruptible directly.  They really want
58          * to specify timeouts in natural units and spend a lot of
59          * effort converting them to jiffies..
60          */
61         msleep_interruptible(jiffies_to_msecs(delay));
62 }
63
64
65 /* FIXME: The following line needs to be somewhere else... */
66 #define WRONG_BUS_FREQUENCY 0x07
67 static u8 handle_switch_change(u8 change, struct controller * ctrl)
68 {
69         int hp_slot;
70         u8 rc = 0;
71         u16 temp_word;
72         struct pci_func *func;
73         struct event_info *taskInfo;
74
75         if (!change)
76                 return 0;
77
78         /* Switch Change */
79         dbg("cpqsbd:  Switch interrupt received.\n");
80
81         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82                 if (change & (0x1L << hp_slot)) {
83                         /*
84                          * this one changed.
85                          */
86                         func = cpqhp_slot_find(ctrl->bus,
87                                 (hp_slot + ctrl->slot_device_offset), 0);
88
89                         /* this is the structure that tells the worker thread
90                          * what to do
91                          */
92                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93                         ctrl->next_event = (ctrl->next_event + 1) % 10;
94                         taskInfo->hp_slot = hp_slot;
95
96                         rc++;
97
98                         temp_word = ctrl->ctrl_int_comp >> 16;
99                         func->presence_save = (temp_word >> hp_slot) & 0x01;
100                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103                                 /*
104                                  * Switch opened
105                                  */
106
107                                 func->switch_save = 0;
108
109                                 taskInfo->event_type = INT_SWITCH_OPEN;
110                         } else {
111                                 /*
112                                  * Switch closed
113                                  */
114
115                                 func->switch_save = 0x10;
116
117                                 taskInfo->event_type = INT_SWITCH_CLOSE;
118                         }
119                 }
120         }
121
122         return rc;
123 }
124
125 /**
126  * cpqhp_find_slot - find the struct slot of given device
127  * @ctrl: scan lots of this controller
128  * @device: the device id to find
129  */
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131 {
132         struct slot *slot = ctrl->slot;
133
134         while (slot && (slot->device != device))
135                 slot = slot->next;
136
137         return slot;
138 }
139
140
141 static u8 handle_presence_change(u16 change, struct controller * ctrl)
142 {
143         int hp_slot;
144         u8 rc = 0;
145         u8 temp_byte;
146         u16 temp_word;
147         struct pci_func *func;
148         struct event_info *taskInfo;
149         struct slot *p_slot;
150
151         if (!change)
152                 return 0;
153
154         /*
155          * Presence Change
156          */
157         dbg("cpqsbd:  Presence/Notify input change.\n");
158         dbg("         Changed bits are 0x%4.4x\n", change );
159
160         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161                 if (change & (0x0101 << hp_slot)) {
162                         /*
163                          * this one changed.
164                          */
165                         func = cpqhp_slot_find(ctrl->bus,
166                                 (hp_slot + ctrl->slot_device_offset), 0);
167
168                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169                         ctrl->next_event = (ctrl->next_event + 1) % 10;
170                         taskInfo->hp_slot = hp_slot;
171
172                         rc++;
173
174                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175                         if (!p_slot)
176                                 return 0;
177
178                         /* If the switch closed, must be a button
179                          * If not in button mode, nevermind
180                          */
181                         if (func->switch_save && (ctrl->push_button == 1)) {
182                                 temp_word = ctrl->ctrl_int_comp >> 16;
183                                 temp_byte = (temp_word >> hp_slot) & 0x01;
184                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186                                 if (temp_byte != func->presence_save) {
187                                         /*
188                                          * button Pressed (doesn't do anything)
189                                          */
190                                         dbg("hp_slot %d button pressed\n", hp_slot);
191                                         taskInfo->event_type = INT_BUTTON_PRESS;
192                                 } else {
193                                         /*
194                                          * button Released - TAKE ACTION!!!!
195                                          */
196                                         dbg("hp_slot %d button released\n", hp_slot);
197                                         taskInfo->event_type = INT_BUTTON_RELEASE;
198
199                                         /* Cancel if we are still blinking */
200                                         if ((p_slot->state == BLINKINGON_STATE)
201                                             || (p_slot->state == BLINKINGOFF_STATE)) {
202                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
203                                                 dbg("hp_slot %d button cancel\n", hp_slot);
204                                         } else if ((p_slot->state == POWERON_STATE)
205                                                    || (p_slot->state == POWEROFF_STATE)) {
206                                                 /* info(msg_button_ignore, p_slot->number); */
207                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
208                                                 dbg("hp_slot %d button ignore\n", hp_slot);
209                                         }
210                                 }
211                         } else {
212                                 /* Switch is open, assume a presence change
213                                  * Save the presence state
214                                  */
215                                 temp_word = ctrl->ctrl_int_comp >> 16;
216                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
217                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
218
219                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221                                         /* Present */
222                                         taskInfo->event_type = INT_PRESENCE_ON;
223                                 } else {
224                                         /* Not Present */
225                                         taskInfo->event_type = INT_PRESENCE_OFF;
226                                 }
227                         }
228                 }
229         }
230
231         return rc;
232 }
233
234
235 static u8 handle_power_fault(u8 change, struct controller * ctrl)
236 {
237         int hp_slot;
238         u8 rc = 0;
239         struct pci_func *func;
240         struct event_info *taskInfo;
241
242         if (!change)
243                 return 0;
244
245         /*
246          * power fault
247          */
248
249         info("power fault interrupt\n");
250
251         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252                 if (change & (0x01 << hp_slot)) {
253                         /*
254                          * this one changed.
255                          */
256                         func = cpqhp_slot_find(ctrl->bus,
257                                 (hp_slot + ctrl->slot_device_offset), 0);
258
259                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260                         ctrl->next_event = (ctrl->next_event + 1) % 10;
261                         taskInfo->hp_slot = hp_slot;
262
263                         rc++;
264
265                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
266                                 /*
267                                  * power fault Cleared
268                                  */
269                                 func->status = 0x00;
270
271                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272                         } else {
273                                 /*
274                                  * power fault
275                                  */
276                                 taskInfo->event_type = INT_POWER_FAULT;
277
278                                 if (ctrl->rev < 4) {
279                                         amber_LED_on (ctrl, hp_slot);
280                                         green_LED_off (ctrl, hp_slot);
281                                         set_SOGO (ctrl);
282
283                                         /* this is a fatal condition, we want
284                                          * to crash the machine to protect from
285                                          * data corruption. simulated_NMI
286                                          * shouldn't ever return */
287                                         /* FIXME
288                                         simulated_NMI(hp_slot, ctrl); */
289
290                                         /* The following code causes a software
291                                          * crash just in case simulated_NMI did
292                                          * return */
293                                         /*FIXME
294                                         panic(msg_power_fault); */
295                                 } else {
296                                         /* set power fault status for this board */
297                                         func->status = 0xFF;
298                                         info("power fault bit %x set\n", hp_slot);
299                                 }
300                         }
301                 }
302         }
303
304         return rc;
305 }
306
307
308 /**
309  * sort_by_size - sort nodes on the list by their length, smallest first.
310  * @head: list to sort
311  */
312 static int sort_by_size(struct pci_resource **head)
313 {
314         struct pci_resource *current_res;
315         struct pci_resource *next_res;
316         int out_of_order = 1;
317
318         if (!(*head))
319                 return 1;
320
321         if (!((*head)->next))
322                 return 0;
323
324         while (out_of_order) {
325                 out_of_order = 0;
326
327                 /* Special case for swapping list head */
328                 if (((*head)->next) &&
329                     ((*head)->length > (*head)->next->length)) {
330                         out_of_order++;
331                         current_res = *head;
332                         *head = (*head)->next;
333                         current_res->next = (*head)->next;
334                         (*head)->next = current_res;
335                 }
336
337                 current_res = *head;
338
339                 while (current_res->next && current_res->next->next) {
340                         if (current_res->next->length > current_res->next->next->length) {
341                                 out_of_order++;
342                                 next_res = current_res->next;
343                                 current_res->next = current_res->next->next;
344                                 current_res = current_res->next;
345                                 next_res->next = current_res->next;
346                                 current_res->next = next_res;
347                         } else
348                                 current_res = current_res->next;
349                 }
350         }  /* End of out_of_order loop */
351
352         return 0;
353 }
354
355
356 /**
357  * sort_by_max_size - sort nodes on the list by their length, largest first.
358  * @head: list to sort
359  */
360 static int sort_by_max_size(struct pci_resource **head)
361 {
362         struct pci_resource *current_res;
363         struct pci_resource *next_res;
364         int out_of_order = 1;
365
366         if (!(*head))
367                 return 1;
368
369         if (!((*head)->next))
370                 return 0;
371
372         while (out_of_order) {
373                 out_of_order = 0;
374
375                 /* Special case for swapping list head */
376                 if (((*head)->next) &&
377                     ((*head)->length < (*head)->next->length)) {
378                         out_of_order++;
379                         current_res = *head;
380                         *head = (*head)->next;
381                         current_res->next = (*head)->next;
382                         (*head)->next = current_res;
383                 }
384
385                 current_res = *head;
386
387                 while (current_res->next && current_res->next->next) {
388                         if (current_res->next->length < current_res->next->next->length) {
389                                 out_of_order++;
390                                 next_res = current_res->next;
391                                 current_res->next = current_res->next->next;
392                                 current_res = current_res->next;
393                                 next_res->next = current_res->next;
394                                 current_res->next = next_res;
395                         } else
396                                 current_res = current_res->next;
397                 }
398         }  /* End of out_of_order loop */
399
400         return 0;
401 }
402
403
404 /**
405  * do_pre_bridge_resource_split - find node of resources that are unused
406  * @head: new list head
407  * @orig_head: original list head
408  * @alignment: max node size (?)
409  */
410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411                                 struct pci_resource **orig_head, u32 alignment)
412 {
413         struct pci_resource *prevnode = NULL;
414         struct pci_resource *node;
415         struct pci_resource *split_node;
416         u32 rc;
417         u32 temp_dword;
418         dbg("do_pre_bridge_resource_split\n");
419
420         if (!(*head) || !(*orig_head))
421                 return NULL;
422
423         rc = cpqhp_resource_sort_and_combine(head);
424
425         if (rc)
426                 return NULL;
427
428         if ((*head)->base != (*orig_head)->base)
429                 return NULL;
430
431         if ((*head)->length == (*orig_head)->length)
432                 return NULL;
433
434
435         /* If we got here, there the bridge requires some of the resource, but
436          * we may be able to split some off of the front
437          */
438
439         node = *head;
440
441         if (node->length & (alignment -1)) {
442                 /* this one isn't an aligned length, so we'll make a new entry
443                  * and split it up.
444                  */
445                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
446
447                 if (!split_node)
448                         return NULL;
449
450                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
451
452                 split_node->base = node->base;
453                 split_node->length = temp_dword;
454
455                 node->length -= temp_dword;
456                 node->base += split_node->length;
457
458                 /* Put it in the list */
459                 *head = split_node;
460                 split_node->next = node;
461         }
462
463         if (node->length < alignment)
464                 return NULL;
465
466         /* Now unlink it */
467         if (*head == node) {
468                 *head = node->next;
469         } else {
470                 prevnode = *head;
471                 while (prevnode->next != node)
472                         prevnode = prevnode->next;
473
474                 prevnode->next = node->next;
475         }
476         node->next = NULL;
477
478         return node;
479 }
480
481
482 /**
483  * do_bridge_resource_split - find one node of resources that aren't in use
484  * @head: list head
485  * @alignment: max node size (?)
486  */
487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
488 {
489         struct pci_resource *prevnode = NULL;
490         struct pci_resource *node;
491         u32 rc;
492         u32 temp_dword;
493
494         rc = cpqhp_resource_sort_and_combine(head);
495
496         if (rc)
497                 return NULL;
498
499         node = *head;
500
501         while (node->next) {
502                 prevnode = node;
503                 node = node->next;
504                 kfree(prevnode);
505         }
506
507         if (node->length < alignment)
508                 goto error;
509
510         if (node->base & (alignment - 1)) {
511                 /* Short circuit if adjusted size is too small */
512                 temp_dword = (node->base | (alignment-1)) + 1;
513                 if ((node->length - (temp_dword - node->base)) < alignment)
514                         goto error;
515
516                 node->length -= (temp_dword - node->base);
517                 node->base = temp_dword;
518         }
519
520         if (node->length & (alignment - 1))
521                 /* There's stuff in use after this node */
522                 goto error;
523
524         return node;
525 error:
526         kfree(node);
527         return NULL;
528 }
529
530
531 /**
532  * get_io_resource - find first node of given size not in ISA aliasing window.
533  * @head: list to search
534  * @size: size of node to find, must be a power of two.
535  *
536  * Description: This function sorts the resource list by size and then returns
537  * returns the first node of "size" length that is not in the ISA aliasing
538  * window.  If it finds a node larger than "size" it will split it up.
539  */
540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
541 {
542         struct pci_resource *prevnode;
543         struct pci_resource *node;
544         struct pci_resource *split_node;
545         u32 temp_dword;
546
547         if (!(*head))
548                 return NULL;
549
550         if (cpqhp_resource_sort_and_combine(head))
551                 return NULL;
552
553         if (sort_by_size(head))
554                 return NULL;
555
556         for (node = *head; node; node = node->next) {
557                 if (node->length < size)
558                         continue;
559
560                 if (node->base & (size - 1)) {
561                         /* this one isn't base aligned properly
562                          * so we'll make a new entry and split it up
563                          */
564                         temp_dword = (node->base | (size-1)) + 1;
565
566                         /* Short circuit if adjusted size is too small */
567                         if ((node->length - (temp_dword - node->base)) < size)
568                                 continue;
569
570                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
571
572                         if (!split_node)
573                                 return NULL;
574
575                         split_node->base = node->base;
576                         split_node->length = temp_dword - node->base;
577                         node->base = temp_dword;
578                         node->length -= split_node->length;
579
580                         /* Put it in the list */
581                         split_node->next = node->next;
582                         node->next = split_node;
583                 } /* End of non-aligned base */
584
585                 /* Don't need to check if too small since we already did */
586                 if (node->length > size) {
587                         /* this one is longer than we need
588                          * so we'll make a new entry and split it up
589                          */
590                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
591
592                         if (!split_node)
593                                 return NULL;
594
595                         split_node->base = node->base + size;
596                         split_node->length = node->length - size;
597                         node->length = size;
598
599                         /* Put it in the list */
600                         split_node->next = node->next;
601                         node->next = split_node;
602                 }  /* End of too big on top end */
603
604                 /* For IO make sure it's not in the ISA aliasing space */
605                 if (node->base & 0x300L)
606                         continue;
607
608                 /* If we got here, then it is the right size
609                  * Now take it out of the list and break
610                  */
611                 if (*head == node) {
612                         *head = node->next;
613                 } else {
614                         prevnode = *head;
615                         while (prevnode->next != node)
616                                 prevnode = prevnode->next;
617
618                         prevnode->next = node->next;
619                 }
620                 node->next = NULL;
621                 break;
622         }
623
624         return node;
625 }
626
627
628 /**
629  * get_max_resource - get largest node which has at least the given size.
630  * @head: the list to search the node in
631  * @size: the minimum size of the node to find
632  *
633  * Description: Gets the largest node that is at least "size" big from the
634  * list pointed to by head.  It aligns the node on top and bottom
635  * to "size" alignment before returning it.
636  */
637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
638 {
639         struct pci_resource *max;
640         struct pci_resource *temp;
641         struct pci_resource *split_node;
642         u32 temp_dword;
643
644         if (cpqhp_resource_sort_and_combine(head))
645                 return NULL;
646
647         if (sort_by_max_size(head))
648                 return NULL;
649
650         for (max = *head; max; max = max->next) {
651                 /* If not big enough we could probably just bail,
652                  * instead we'll continue to the next.
653                  */
654                 if (max->length < size)
655                         continue;
656
657                 if (max->base & (size - 1)) {
658                         /* this one isn't base aligned properly
659                          * so we'll make a new entry and split it up
660                          */
661                         temp_dword = (max->base | (size-1)) + 1;
662
663                         /* Short circuit if adjusted size is too small */
664                         if ((max->length - (temp_dword - max->base)) < size)
665                                 continue;
666
667                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
668
669                         if (!split_node)
670                                 return NULL;
671
672                         split_node->base = max->base;
673                         split_node->length = temp_dword - max->base;
674                         max->base = temp_dword;
675                         max->length -= split_node->length;
676
677                         split_node->next = max->next;
678                         max->next = split_node;
679                 }
680
681                 if ((max->base + max->length) & (size - 1)) {
682                         /* this one isn't end aligned properly at the top
683                          * so we'll make a new entry and split it up
684                          */
685                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
686
687                         if (!split_node)
688                                 return NULL;
689                         temp_dword = ((max->base + max->length) & ~(size - 1));
690                         split_node->base = temp_dword;
691                         split_node->length = max->length + max->base
692                                              - split_node->base;
693                         max->length -= split_node->length;
694
695                         split_node->next = max->next;
696                         max->next = split_node;
697                 }
698
699                 /* Make sure it didn't shrink too much when we aligned it */
700                 if (max->length < size)
701                         continue;
702
703                 /* Now take it out of the list */
704                 temp = *head;
705                 if (temp == max) {
706                         *head = max->next;
707                 } else {
708                         while (temp && temp->next != max) {
709                                 temp = temp->next;
710                         }
711
712                         temp->next = max->next;
713                 }
714
715                 max->next = NULL;
716                 break;
717         }
718
719         return max;
720 }
721
722
723 /**
724  * get_resource - find resource of given size and split up larger ones.
725  * @head: the list to search for resources
726  * @size: the size limit to use
727  *
728  * Description: This function sorts the resource list by size and then
729  * returns the first node of "size" length.  If it finds a node
730  * larger than "size" it will split it up.
731  *
732  * size must be a power of two.
733  */
734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
735 {
736         struct pci_resource *prevnode;
737         struct pci_resource *node;
738         struct pci_resource *split_node;
739         u32 temp_dword;
740
741         if (cpqhp_resource_sort_and_combine(head))
742                 return NULL;
743
744         if (sort_by_size(head))
745                 return NULL;
746
747         for (node = *head; node; node = node->next) {
748                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749                     __func__, size, node, node->base, node->length);
750                 if (node->length < size)
751                         continue;
752
753                 if (node->base & (size - 1)) {
754                         dbg("%s: not aligned\n", __func__);
755                         /* this one isn't base aligned properly
756                          * so we'll make a new entry and split it up
757                          */
758                         temp_dword = (node->base | (size-1)) + 1;
759
760                         /* Short circuit if adjusted size is too small */
761                         if ((node->length - (temp_dword - node->base)) < size)
762                                 continue;
763
764                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
765
766                         if (!split_node)
767                                 return NULL;
768
769                         split_node->base = node->base;
770                         split_node->length = temp_dword - node->base;
771                         node->base = temp_dword;
772                         node->length -= split_node->length;
773
774                         split_node->next = node->next;
775                         node->next = split_node;
776                 } /* End of non-aligned base */
777
778                 /* Don't need to check if too small since we already did */
779                 if (node->length > size) {
780                         dbg("%s: too big\n", __func__);
781                         /* this one is longer than we need
782                          * so we'll make a new entry and split it up
783                          */
784                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
785
786                         if (!split_node)
787                                 return NULL;
788
789                         split_node->base = node->base + size;
790                         split_node->length = node->length - size;
791                         node->length = size;
792
793                         /* Put it in the list */
794                         split_node->next = node->next;
795                         node->next = split_node;
796                 }  /* End of too big on top end */
797
798                 dbg("%s: got one!!!\n", __func__);
799                 /* If we got here, then it is the right size
800                  * Now take it out of the list */
801                 if (*head == node) {
802                         *head = node->next;
803                 } else {
804                         prevnode = *head;
805                         while (prevnode->next != node)
806                                 prevnode = prevnode->next;
807
808                         prevnode->next = node->next;
809                 }
810                 node->next = NULL;
811                 break;
812         }
813         return node;
814 }
815
816
817 /**
818  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819  * @head: the list to sort and clean up
820  *
821  * Description: Sorts all of the nodes in the list in ascending order by
822  * their base addresses.  Also does garbage collection by
823  * combining adjacent nodes.
824  *
825  * Returns %0 if success.
826  */
827 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
828 {
829         struct pci_resource *node1;
830         struct pci_resource *node2;
831         int out_of_order = 1;
832
833         dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
834
835         if (!(*head))
836                 return 1;
837
838         dbg("*head->next = %p\n",(*head)->next);
839
840         if (!(*head)->next)
841                 return 0;       /* only one item on the list, already sorted! */
842
843         dbg("*head->base = 0x%x\n",(*head)->base);
844         dbg("*head->next->base = 0x%x\n",(*head)->next->base);
845         while (out_of_order) {
846                 out_of_order = 0;
847
848                 /* Special case for swapping list head */
849                 if (((*head)->next) &&
850                     ((*head)->base > (*head)->next->base)) {
851                         node1 = *head;
852                         (*head) = (*head)->next;
853                         node1->next = (*head)->next;
854                         (*head)->next = node1;
855                         out_of_order++;
856                 }
857
858                 node1 = (*head);
859
860                 while (node1->next && node1->next->next) {
861                         if (node1->next->base > node1->next->next->base) {
862                                 out_of_order++;
863                                 node2 = node1->next;
864                                 node1->next = node1->next->next;
865                                 node1 = node1->next;
866                                 node2->next = node1->next;
867                                 node1->next = node2;
868                         } else
869                                 node1 = node1->next;
870                 }
871         }  /* End of out_of_order loop */
872
873         node1 = *head;
874
875         while (node1 && node1->next) {
876                 if ((node1->base + node1->length) == node1->next->base) {
877                         /* Combine */
878                         dbg("8..\n");
879                         node1->length += node1->next->length;
880                         node2 = node1->next;
881                         node1->next = node1->next->next;
882                         kfree(node2);
883                 } else
884                         node1 = node1->next;
885         }
886
887         return 0;
888 }
889
890
891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
892 {
893         struct controller *ctrl = data;
894         u8 schedule_flag = 0;
895         u8 reset;
896         u16 misc;
897         u32 Diff;
898         u32 temp_dword;
899
900
901         misc = readw(ctrl->hpc_reg + MISC);
902         /*
903          * Check to see if it was our interrupt
904          */
905         if (!(misc & 0x000C)) {
906                 return IRQ_NONE;
907         }
908
909         if (misc & 0x0004) {
910                 /*
911                  * Serial Output interrupt Pending
912                  */
913
914                 /* Clear the interrupt */
915                 misc |= 0x0004;
916                 writew(misc, ctrl->hpc_reg + MISC);
917
918                 /* Read to clear posted writes */
919                 misc = readw(ctrl->hpc_reg + MISC);
920
921                 dbg ("%s - waking up\n", __func__);
922                 wake_up_interruptible(&ctrl->queue);
923         }
924
925         if (misc & 0x0008) {
926                 /* General-interrupt-input interrupt Pending */
927                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
928
929                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
930
931                 /* Clear the interrupt */
932                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
933
934                 /* Read it back to clear any posted writes */
935                 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
936
937                 if (!Diff)
938                         /* Clear all interrupts */
939                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
940
941                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
942                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
943                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
944         }
945
946         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
947         if (reset & 0x40) {
948                 /* Bus reset has completed */
949                 reset &= 0xCF;
950                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
951                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
952                 wake_up_interruptible(&ctrl->queue);
953         }
954
955         if (schedule_flag) {
956                 wake_up_process(cpqhp_event_thread);
957                 dbg("Waking even thread");
958         }
959         return IRQ_HANDLED;
960 }
961
962
963 /**
964  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
965  * @busnumber: bus where new node is to be located
966  *
967  * Returns pointer to the new node or %NULL if unsuccessful.
968  */
969 struct pci_func *cpqhp_slot_create(u8 busnumber)
970 {
971         struct pci_func *new_slot;
972         struct pci_func *next;
973
974         new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
975         if (new_slot == NULL)
976                 return new_slot;
977
978         new_slot->next = NULL;
979         new_slot->configured = 1;
980
981         if (cpqhp_slot_list[busnumber] == NULL) {
982                 cpqhp_slot_list[busnumber] = new_slot;
983         } else {
984                 next = cpqhp_slot_list[busnumber];
985                 while (next->next != NULL)
986                         next = next->next;
987                 next->next = new_slot;
988         }
989         return new_slot;
990 }
991
992
993 /**
994  * slot_remove - Removes a node from the linked list of slots.
995  * @old_slot: slot to remove
996  *
997  * Returns %0 if successful, !0 otherwise.
998  */
999 static int slot_remove(struct pci_func * old_slot)
1000 {
1001         struct pci_func *next;
1002
1003         if (old_slot == NULL)
1004                 return 1;
1005
1006         next = cpqhp_slot_list[old_slot->bus];
1007         if (next == NULL)
1008                 return 1;
1009
1010         if (next == old_slot) {
1011                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012                 cpqhp_destroy_board_resources(old_slot);
1013                 kfree(old_slot);
1014                 return 0;
1015         }
1016
1017         while ((next->next != old_slot) && (next->next != NULL))
1018                 next = next->next;
1019
1020         if (next->next == old_slot) {
1021                 next->next = old_slot->next;
1022                 cpqhp_destroy_board_resources(old_slot);
1023                 kfree(old_slot);
1024                 return 0;
1025         } else
1026                 return 2;
1027 }
1028
1029
1030 /**
1031  * bridge_slot_remove - Removes a node from the linked list of slots.
1032  * @bridge: bridge to remove
1033  *
1034  * Returns %0 if successful, !0 otherwise.
1035  */
1036 static int bridge_slot_remove(struct pci_func *bridge)
1037 {
1038         u8 subordinateBus, secondaryBus;
1039         u8 tempBus;
1040         struct pci_func *next;
1041
1042         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044
1045         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046                 next = cpqhp_slot_list[tempBus];
1047
1048                 while (!slot_remove(next))
1049                         next = cpqhp_slot_list[tempBus];
1050         }
1051
1052         next = cpqhp_slot_list[bridge->bus];
1053
1054         if (next == NULL)
1055                 return 1;
1056
1057         if (next == bridge) {
1058                 cpqhp_slot_list[bridge->bus] = bridge->next;
1059                 goto out;
1060         }
1061
1062         while ((next->next != bridge) && (next->next != NULL))
1063                 next = next->next;
1064
1065         if (next->next != bridge)
1066                 return 2;
1067         next->next = bridge->next;
1068 out:
1069         kfree(bridge);
1070         return 0;
1071 }
1072
1073
1074 /**
1075  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076  * @bus: bus to find
1077  * @device: device to find
1078  * @index: is %0 for first function found, %1 for the second...
1079  *
1080  * Returns pointer to the node if successful, %NULL otherwise.
1081  */
1082 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083 {
1084         int found = -1;
1085         struct pci_func *func;
1086
1087         func = cpqhp_slot_list[bus];
1088
1089         if ((func == NULL) || ((func->device == device) && (index == 0)))
1090                 return func;
1091
1092         if (func->device == device)
1093                 found++;
1094
1095         while (func->next != NULL) {
1096                 func = func->next;
1097
1098                 if (func->device == device)
1099                         found++;
1100
1101                 if (found == index)
1102                         return func;
1103         }
1104
1105         return NULL;
1106 }
1107
1108
1109 /* DJZ: I don't think is_bridge will work as is.
1110  * FIXME */
1111 static int is_bridge(struct pci_func * func)
1112 {
1113         /* Check the header type */
1114         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115                 return 1;
1116         else
1117                 return 0;
1118 }
1119
1120
1121 /**
1122  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123  * @ctrl: controller to change frequency/mode for.
1124  * @adapter_speed: the speed of the adapter we want to match.
1125  * @hp_slot: the slot number where the adapter is installed.
1126  *
1127  * Returns %0 if we successfully change frequency and/or mode to match the
1128  * adapter speed.
1129  */
1130 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131 {
1132         struct slot *slot;
1133         struct pci_bus *bus = ctrl->pci_bus;
1134         u8 reg;
1135         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136         u16 reg16;
1137         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138
1139         if (bus->cur_bus_speed == adapter_speed)
1140                 return 0;
1141
1142         /* We don't allow freq/mode changes if we find another adapter running
1143          * in another slot on this controller
1144          */
1145         for(slot = ctrl->slot; slot; slot = slot->next) {
1146                 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147                         continue;
1148                 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149                         continue;
1150                 if (slot->hotplug_slot->info->adapter_status == 0)
1151                         continue;
1152                 /* If another adapter is running on the same segment but at a
1153                  * lower speed/mode, we allow the new adapter to function at
1154                  * this rate if supported
1155                  */
1156                 if (bus->cur_bus_speed < adapter_speed)
1157                         return 0;
1158
1159                 return 1;
1160         }
1161
1162         /* If the controller doesn't support freq/mode changes and the
1163          * controller is running at a higher mode, we bail
1164          */
1165         if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166                 return 1;
1167
1168         /* But we allow the adapter to run at a lower rate if possible */
1169         if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170                 return 0;
1171
1172         /* We try to set the max speed supported by both the adapter and
1173          * controller
1174          */
1175         if (bus->max_bus_speed < adapter_speed) {
1176                 if (bus->cur_bus_speed == bus->max_bus_speed)
1177                         return 0;
1178                 adapter_speed = bus->max_bus_speed;
1179         }
1180
1181         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183
1184         set_SOGO(ctrl);
1185         wait_for_ctrl_irq(ctrl);
1186
1187         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188                 reg = 0xF5;
1189         else
1190                 reg = 0xF4;
1191         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192
1193         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194         reg16 &= ~0x000F;
1195         switch(adapter_speed) {
1196                 case(PCI_SPEED_133MHz_PCIX):
1197                         reg = 0x75;
1198                         reg16 |= 0xB;
1199                         break;
1200                 case(PCI_SPEED_100MHz_PCIX):
1201                         reg = 0x74;
1202                         reg16 |= 0xA;
1203                         break;
1204                 case(PCI_SPEED_66MHz_PCIX):
1205                         reg = 0x73;
1206                         reg16 |= 0x9;
1207                         break;
1208                 case(PCI_SPEED_66MHz):
1209                         reg = 0x73;
1210                         reg16 |= 0x1;
1211                         break;
1212                 default: /* 33MHz PCI 2.2 */
1213                         reg = 0x71;
1214                         break;
1215
1216         }
1217         reg16 |= 0xB << 12;
1218         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219
1220         mdelay(5);
1221
1222         /* Reenable interrupts */
1223         writel(0, ctrl->hpc_reg + INT_MASK);
1224
1225         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226
1227         /* Restart state machine */
1228         reg = ~0xF;
1229         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1230         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231
1232         /* Only if mode change...*/
1233         if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234                 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
1235                         set_SOGO(ctrl);
1236
1237         wait_for_ctrl_irq(ctrl);
1238         mdelay(1100);
1239
1240         /* Restore LED/Slot state */
1241         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243
1244         set_SOGO(ctrl);
1245         wait_for_ctrl_irq(ctrl);
1246
1247         bus->cur_bus_speed = adapter_speed;
1248         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249
1250         info("Successfully changed frequency/mode for adapter in slot %d\n",
1251                         slot->number);
1252         return 0;
1253 }
1254
1255 /* the following routines constitute the bulk of the
1256  * hotplug controller logic
1257  */
1258
1259
1260 /**
1261  * board_replaced - Called after a board has been replaced in the system.
1262  * @func: PCI device/function information
1263  * @ctrl: hotplug controller
1264  *
1265  * This is only used if we don't have resources for hot add.
1266  * Turns power on for the board.
1267  * Checks to see if board is the same.
1268  * If board is same, reconfigures it.
1269  * If board isn't same, turns it back off.
1270  */
1271 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272 {
1273         struct pci_bus *bus = ctrl->pci_bus;
1274         u8 hp_slot;
1275         u8 temp_byte;
1276         u8 adapter_speed;
1277         u32 rc = 0;
1278
1279         hp_slot = func->device - ctrl->slot_device_offset;
1280
1281         /*
1282          * The switch is open.
1283          */
1284         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1285                 rc = INTERLOCK_OPEN;
1286         /*
1287          * The board is already on
1288          */
1289         else if (is_slot_enabled (ctrl, hp_slot))
1290                 rc = CARD_FUNCTIONING;
1291         else {
1292                 mutex_lock(&ctrl->crit_sect);
1293
1294                 /* turn on board without attaching to the bus */
1295                 enable_slot_power (ctrl, hp_slot);
1296
1297                 set_SOGO(ctrl);
1298
1299                 /* Wait for SOBS to be unset */
1300                 wait_for_ctrl_irq (ctrl);
1301
1302                 /* Change bits in slot power register to force another shift out
1303                  * NOTE: this is to work around the timer bug */
1304                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1305                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1306                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1307
1308                 set_SOGO(ctrl);
1309
1310                 /* Wait for SOBS to be unset */
1311                 wait_for_ctrl_irq (ctrl);
1312
1313                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1314                 if (bus->cur_bus_speed != adapter_speed)
1315                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1316                                 rc = WRONG_BUS_FREQUENCY;
1317
1318                 /* turn off board without attaching to the bus */
1319                 disable_slot_power (ctrl, hp_slot);
1320
1321                 set_SOGO(ctrl);
1322
1323                 /* Wait for SOBS to be unset */
1324                 wait_for_ctrl_irq (ctrl);
1325
1326                 mutex_unlock(&ctrl->crit_sect);
1327
1328                 if (rc)
1329                         return rc;
1330
1331                 mutex_lock(&ctrl->crit_sect);
1332
1333                 slot_enable (ctrl, hp_slot);
1334                 green_LED_blink (ctrl, hp_slot);
1335
1336                 amber_LED_off (ctrl, hp_slot);
1337
1338                 set_SOGO(ctrl);
1339
1340                 /* Wait for SOBS to be unset */
1341                 wait_for_ctrl_irq (ctrl);
1342
1343                 mutex_unlock(&ctrl->crit_sect);
1344
1345                 /* Wait for ~1 second because of hot plug spec */
1346                 long_delay(1*HZ);
1347
1348                 /* Check for a power fault */
1349                 if (func->status == 0xFF) {
1350                         /* power fault occurred, but it was benign */
1351                         rc = POWER_FAILURE;
1352                         func->status = 0;
1353                 } else
1354                         rc = cpqhp_valid_replace(ctrl, func);
1355
1356                 if (!rc) {
1357                         /* It must be the same board */
1358
1359                         rc = cpqhp_configure_board(ctrl, func);
1360
1361                         /* If configuration fails, turn it off
1362                          * Get slot won't work for devices behind
1363                          * bridges, but in this case it will always be
1364                          * called for the "base" bus/dev/func of an
1365                          * adapter.
1366                          */
1367
1368                         mutex_lock(&ctrl->crit_sect);
1369
1370                         amber_LED_on (ctrl, hp_slot);
1371                         green_LED_off (ctrl, hp_slot);
1372                         slot_disable (ctrl, hp_slot);
1373
1374                         set_SOGO(ctrl);
1375
1376                         /* Wait for SOBS to be unset */
1377                         wait_for_ctrl_irq (ctrl);
1378
1379                         mutex_unlock(&ctrl->crit_sect);
1380
1381                         if (rc)
1382                                 return rc;
1383                         else
1384                                 return 1;
1385
1386                 } else {
1387                         /* Something is wrong
1388
1389                          * Get slot won't work for devices behind bridges, but
1390                          * in this case it will always be called for the "base"
1391                          * bus/dev/func of an adapter.
1392                          */
1393
1394                         mutex_lock(&ctrl->crit_sect);
1395
1396                         amber_LED_on (ctrl, hp_slot);
1397                         green_LED_off (ctrl, hp_slot);
1398                         slot_disable (ctrl, hp_slot);
1399
1400                         set_SOGO(ctrl);
1401
1402                         /* Wait for SOBS to be unset */
1403                         wait_for_ctrl_irq (ctrl);
1404
1405                         mutex_unlock(&ctrl->crit_sect);
1406                 }
1407
1408         }
1409         return rc;
1410
1411 }
1412
1413
1414 /**
1415  * board_added - Called after a board has been added to the system.
1416  * @func: PCI device/function info
1417  * @ctrl: hotplug controller
1418  *
1419  * Turns power on for the board.
1420  * Configures board.
1421  */
1422 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1423 {
1424         u8 hp_slot;
1425         u8 temp_byte;
1426         u8 adapter_speed;
1427         int index;
1428         u32 temp_register = 0xFFFFFFFF;
1429         u32 rc = 0;
1430         struct pci_func *new_slot = NULL;
1431         struct pci_bus *bus = ctrl->pci_bus;
1432         struct slot *p_slot;
1433         struct resource_lists res_lists;
1434
1435         hp_slot = func->device - ctrl->slot_device_offset;
1436         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1437             __func__, func->device, ctrl->slot_device_offset, hp_slot);
1438
1439         mutex_lock(&ctrl->crit_sect);
1440
1441         /* turn on board without attaching to the bus */
1442         enable_slot_power(ctrl, hp_slot);
1443
1444         set_SOGO(ctrl);
1445
1446         /* Wait for SOBS to be unset */
1447         wait_for_ctrl_irq (ctrl);
1448
1449         /* Change bits in slot power register to force another shift out
1450          * NOTE: this is to work around the timer bug
1451          */
1452         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1453         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1454         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1455
1456         set_SOGO(ctrl);
1457
1458         /* Wait for SOBS to be unset */
1459         wait_for_ctrl_irq (ctrl);
1460
1461         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1462         if (bus->cur_bus_speed != adapter_speed)
1463                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1464                         rc = WRONG_BUS_FREQUENCY;
1465
1466         /* turn off board without attaching to the bus */
1467         disable_slot_power (ctrl, hp_slot);
1468
1469         set_SOGO(ctrl);
1470
1471         /* Wait for SOBS to be unset */
1472         wait_for_ctrl_irq(ctrl);
1473
1474         mutex_unlock(&ctrl->crit_sect);
1475
1476         if (rc)
1477                 return rc;
1478
1479         p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1480
1481         /* turn on board and blink green LED */
1482
1483         dbg("%s: before down\n", __func__);
1484         mutex_lock(&ctrl->crit_sect);
1485         dbg("%s: after down\n", __func__);
1486
1487         dbg("%s: before slot_enable\n", __func__);
1488         slot_enable (ctrl, hp_slot);
1489
1490         dbg("%s: before green_LED_blink\n", __func__);
1491         green_LED_blink (ctrl, hp_slot);
1492
1493         dbg("%s: before amber_LED_blink\n", __func__);
1494         amber_LED_off (ctrl, hp_slot);
1495
1496         dbg("%s: before set_SOGO\n", __func__);
1497         set_SOGO(ctrl);
1498
1499         /* Wait for SOBS to be unset */
1500         dbg("%s: before wait_for_ctrl_irq\n", __func__);
1501         wait_for_ctrl_irq (ctrl);
1502         dbg("%s: after wait_for_ctrl_irq\n", __func__);
1503
1504         dbg("%s: before up\n", __func__);
1505         mutex_unlock(&ctrl->crit_sect);
1506         dbg("%s: after up\n", __func__);
1507
1508         /* Wait for ~1 second because of hot plug spec */
1509         dbg("%s: before long_delay\n", __func__);
1510         long_delay(1*HZ);
1511         dbg("%s: after long_delay\n", __func__);
1512
1513         dbg("%s: func status = %x\n", __func__, func->status);
1514         /* Check for a power fault */
1515         if (func->status == 0xFF) {
1516                 /* power fault occurred, but it was benign */
1517                 temp_register = 0xFFFFFFFF;
1518                 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1519                 rc = POWER_FAILURE;
1520                 func->status = 0;
1521         } else {
1522                 /* Get vendor/device ID u32 */
1523                 ctrl->pci_bus->number = func->bus;
1524                 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1525                 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1526                 dbg("%s: temp_register is %x\n", __func__, temp_register);
1527
1528                 if (rc != 0) {
1529                         /* Something's wrong here */
1530                         temp_register = 0xFFFFFFFF;
1531                         dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1532                 }
1533                 /* Preset return code.  It will be changed later if things go okay. */
1534                 rc = NO_ADAPTER_PRESENT;
1535         }
1536
1537         /* All F's is an empty slot or an invalid board */
1538         if (temp_register != 0xFFFFFFFF) {
1539                 res_lists.io_head = ctrl->io_head;
1540                 res_lists.mem_head = ctrl->mem_head;
1541                 res_lists.p_mem_head = ctrl->p_mem_head;
1542                 res_lists.bus_head = ctrl->bus_head;
1543                 res_lists.irqs = NULL;
1544
1545                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1546
1547                 dbg("%s: back from configure_new_device\n", __func__);
1548                 ctrl->io_head = res_lists.io_head;
1549                 ctrl->mem_head = res_lists.mem_head;
1550                 ctrl->p_mem_head = res_lists.p_mem_head;
1551                 ctrl->bus_head = res_lists.bus_head;
1552
1553                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1554                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1555                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1556                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1557
1558                 if (rc) {
1559                         mutex_lock(&ctrl->crit_sect);
1560
1561                         amber_LED_on (ctrl, hp_slot);
1562                         green_LED_off (ctrl, hp_slot);
1563                         slot_disable (ctrl, hp_slot);
1564
1565                         set_SOGO(ctrl);
1566
1567                         /* Wait for SOBS to be unset */
1568                         wait_for_ctrl_irq (ctrl);
1569
1570                         mutex_unlock(&ctrl->crit_sect);
1571                         return rc;
1572                 } else {
1573                         cpqhp_save_slot_config(ctrl, func);
1574                 }
1575
1576
1577                 func->status = 0;
1578                 func->switch_save = 0x10;
1579                 func->is_a_board = 0x01;
1580
1581                 /* next, we will instantiate the linux pci_dev structures (with
1582                  * appropriate driver notification, if already present) */
1583                 dbg("%s: configure linux pci_dev structure\n", __func__);
1584                 index = 0;
1585                 do {
1586                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1587                         if (new_slot && !new_slot->pci_dev)
1588                                 cpqhp_configure_device(ctrl, new_slot);
1589                 } while (new_slot);
1590
1591                 mutex_lock(&ctrl->crit_sect);
1592
1593                 green_LED_on (ctrl, hp_slot);
1594
1595                 set_SOGO(ctrl);
1596
1597                 /* Wait for SOBS to be unset */
1598                 wait_for_ctrl_irq (ctrl);
1599
1600                 mutex_unlock(&ctrl->crit_sect);
1601         } else {
1602                 mutex_lock(&ctrl->crit_sect);
1603
1604                 amber_LED_on (ctrl, hp_slot);
1605                 green_LED_off (ctrl, hp_slot);
1606                 slot_disable (ctrl, hp_slot);
1607
1608                 set_SOGO(ctrl);
1609
1610                 /* Wait for SOBS to be unset */
1611                 wait_for_ctrl_irq (ctrl);
1612
1613                 mutex_unlock(&ctrl->crit_sect);
1614
1615                 return rc;
1616         }
1617         return 0;
1618 }
1619
1620
1621 /**
1622  * remove_board - Turns off slot and LEDs
1623  * @func: PCI device/function info
1624  * @replace_flag: whether replacing or adding a new device
1625  * @ctrl: target controller
1626  */
1627 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1628 {
1629         int index;
1630         u8 skip = 0;
1631         u8 device;
1632         u8 hp_slot;
1633         u8 temp_byte;
1634         u32 rc;
1635         struct resource_lists res_lists;
1636         struct pci_func *temp_func;
1637
1638         if (cpqhp_unconfigure_device(func))
1639                 return 1;
1640
1641         device = func->device;
1642
1643         hp_slot = func->device - ctrl->slot_device_offset;
1644         dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1645
1646         /* When we get here, it is safe to change base address registers.
1647          * We will attempt to save the base address register lengths */
1648         if (replace_flag || !ctrl->add_support)
1649                 rc = cpqhp_save_base_addr_length(ctrl, func);
1650         else if (!func->bus_head && !func->mem_head &&
1651                  !func->p_mem_head && !func->io_head) {
1652                 /* Here we check to see if we've saved any of the board's
1653                  * resources already.  If so, we'll skip the attempt to
1654                  * determine what's being used. */
1655                 index = 0;
1656                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1657                 while (temp_func) {
1658                         if (temp_func->bus_head || temp_func->mem_head
1659                             || temp_func->p_mem_head || temp_func->io_head) {
1660                                 skip = 1;
1661                                 break;
1662                         }
1663                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1664                 }
1665
1666                 if (!skip)
1667                         rc = cpqhp_save_used_resources(ctrl, func);
1668         }
1669         /* Change status to shutdown */
1670         if (func->is_a_board)
1671                 func->status = 0x01;
1672         func->configured = 0;
1673
1674         mutex_lock(&ctrl->crit_sect);
1675
1676         green_LED_off (ctrl, hp_slot);
1677         slot_disable (ctrl, hp_slot);
1678
1679         set_SOGO(ctrl);
1680
1681         /* turn off SERR for slot */
1682         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1683         temp_byte &= ~(0x01 << hp_slot);
1684         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1685
1686         /* Wait for SOBS to be unset */
1687         wait_for_ctrl_irq (ctrl);
1688
1689         mutex_unlock(&ctrl->crit_sect);
1690
1691         if (!replace_flag && ctrl->add_support) {
1692                 while (func) {
1693                         res_lists.io_head = ctrl->io_head;
1694                         res_lists.mem_head = ctrl->mem_head;
1695                         res_lists.p_mem_head = ctrl->p_mem_head;
1696                         res_lists.bus_head = ctrl->bus_head;
1697
1698                         cpqhp_return_board_resources(func, &res_lists);
1699
1700                         ctrl->io_head = res_lists.io_head;
1701                         ctrl->mem_head = res_lists.mem_head;
1702                         ctrl->p_mem_head = res_lists.p_mem_head;
1703                         ctrl->bus_head = res_lists.bus_head;
1704
1705                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1706                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1707                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1708                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1709
1710                         if (is_bridge(func)) {
1711                                 bridge_slot_remove(func);
1712                         } else
1713                                 slot_remove(func);
1714
1715                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1716                 }
1717
1718                 /* Setup slot structure with entry for empty slot */
1719                 func = cpqhp_slot_create(ctrl->bus);
1720
1721                 if (func == NULL)
1722                         return 1;
1723
1724                 func->bus = ctrl->bus;
1725                 func->device = device;
1726                 func->function = 0;
1727                 func->configured = 0;
1728                 func->switch_save = 0x10;
1729                 func->is_a_board = 0;
1730                 func->p_task_event = NULL;
1731         }
1732
1733         return 0;
1734 }
1735
1736 static void pushbutton_helper_thread(unsigned long data)
1737 {
1738         pushbutton_pending = data;
1739         wake_up_process(cpqhp_event_thread);
1740 }
1741
1742
1743 /* this is the main worker thread */
1744 static int event_thread(void* data)
1745 {
1746         struct controller *ctrl;
1747
1748         while (1) {
1749                 dbg("!!!!event_thread sleeping\n");
1750                 set_current_state(TASK_INTERRUPTIBLE);
1751                 schedule();
1752
1753                 if (kthread_should_stop())
1754                         break;
1755                 /* Do stuff here */
1756                 if (pushbutton_pending)
1757                         cpqhp_pushbutton_thread(pushbutton_pending);
1758                 else
1759                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1760                                 interrupt_event_handler(ctrl);
1761         }
1762         dbg("event_thread signals exit\n");
1763         return 0;
1764 }
1765
1766 int cpqhp_event_start_thread(void)
1767 {
1768         cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1769         if (IS_ERR(cpqhp_event_thread)) {
1770                 err ("Can't start up our event thread\n");
1771                 return PTR_ERR(cpqhp_event_thread);
1772         }
1773
1774         return 0;
1775 }
1776
1777
1778 void cpqhp_event_stop_thread(void)
1779 {
1780         kthread_stop(cpqhp_event_thread);
1781 }
1782
1783
1784 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1785 {
1786         struct hotplug_slot_info *info;
1787         int result;
1788
1789         info = kmalloc(sizeof(*info), GFP_KERNEL);
1790         if (!info)
1791                 return -ENOMEM;
1792
1793         info->power_status = get_slot_enabled(ctrl, slot);
1794         info->attention_status = cpq_get_attention_status(ctrl, slot);
1795         info->latch_status = cpq_get_latch_status(ctrl, slot);
1796         info->adapter_status = get_presence_status(ctrl, slot);
1797         result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1798         kfree (info);
1799         return result;
1800 }
1801
1802 static void interrupt_event_handler(struct controller *ctrl)
1803 {
1804         int loop = 0;
1805         int change = 1;
1806         struct pci_func *func;
1807         u8 hp_slot;
1808         struct slot *p_slot;
1809
1810         while (change) {
1811                 change = 0;
1812
1813                 for (loop = 0; loop < 10; loop++) {
1814                         /* dbg("loop %d\n", loop); */
1815                         if (ctrl->event_queue[loop].event_type != 0) {
1816                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1817
1818                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1819                                 if (!func)
1820                                         return;
1821
1822                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1823                                 if (!p_slot)
1824                                         return;
1825
1826                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1827                                     hp_slot, func, p_slot);
1828
1829                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1830                                         dbg("button pressed\n");
1831                                 } else if (ctrl->event_queue[loop].event_type == 
1832                                            INT_BUTTON_CANCEL) {
1833                                         dbg("button cancel\n");
1834                                         del_timer(&p_slot->task_event);
1835
1836                                         mutex_lock(&ctrl->crit_sect);
1837
1838                                         if (p_slot->state == BLINKINGOFF_STATE) {
1839                                                 /* slot is on */
1840                                                 dbg("turn on green LED\n");
1841                                                 green_LED_on (ctrl, hp_slot);
1842                                         } else if (p_slot->state == BLINKINGON_STATE) {
1843                                                 /* slot is off */
1844                                                 dbg("turn off green LED\n");
1845                                                 green_LED_off (ctrl, hp_slot);
1846                                         }
1847
1848                                         info(msg_button_cancel, p_slot->number);
1849
1850                                         p_slot->state = STATIC_STATE;
1851
1852                                         amber_LED_off (ctrl, hp_slot);
1853
1854                                         set_SOGO(ctrl);
1855
1856                                         /* Wait for SOBS to be unset */
1857                                         wait_for_ctrl_irq (ctrl);
1858
1859                                         mutex_unlock(&ctrl->crit_sect);
1860                                 }
1861                                 /*** button Released (No action on press...) */
1862                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1863                                         dbg("button release\n");
1864
1865                                         if (is_slot_enabled (ctrl, hp_slot)) {
1866                                                 dbg("slot is on\n");
1867                                                 p_slot->state = BLINKINGOFF_STATE;
1868                                                 info(msg_button_off, p_slot->number);
1869                                         } else {
1870                                                 dbg("slot is off\n");
1871                                                 p_slot->state = BLINKINGON_STATE;
1872                                                 info(msg_button_on, p_slot->number);
1873                                         }
1874                                         mutex_lock(&ctrl->crit_sect);
1875
1876                                         dbg("blink green LED and turn off amber\n");
1877
1878                                         amber_LED_off (ctrl, hp_slot);
1879                                         green_LED_blink (ctrl, hp_slot);
1880
1881                                         set_SOGO(ctrl);
1882
1883                                         /* Wait for SOBS to be unset */
1884                                         wait_for_ctrl_irq (ctrl);
1885
1886                                         mutex_unlock(&ctrl->crit_sect);
1887                                         init_timer(&p_slot->task_event);
1888                                         p_slot->hp_slot = hp_slot;
1889                                         p_slot->ctrl = ctrl;
1890 /*                                      p_slot->physical_slot = physical_slot; */
1891                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1892                                         p_slot->task_event.function = pushbutton_helper_thread;
1893                                         p_slot->task_event.data = (u32) p_slot;
1894
1895                                         dbg("add_timer p_slot = %p\n", p_slot);
1896                                         add_timer(&p_slot->task_event);
1897                                 }
1898                                 /***********POWER FAULT */
1899                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1900                                         dbg("power fault\n");
1901                                 } else {
1902                                         /* refresh notification */
1903                                         if (p_slot)
1904                                                 update_slot_info(ctrl, p_slot);
1905                                 }
1906
1907                                 ctrl->event_queue[loop].event_type = 0;
1908
1909                                 change = 1;
1910                         }
1911                 }               /* End of FOR loop */
1912         }
1913
1914         return;
1915 }
1916
1917
1918 /**
1919  * cpqhp_pushbutton_thread - handle pushbutton events
1920  * @slot: target slot (struct)
1921  *
1922  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1923  * Handles all pending events and exits.
1924  */
1925 void cpqhp_pushbutton_thread(unsigned long slot)
1926 {
1927         u8 hp_slot;
1928         u8 device;
1929         struct pci_func *func;
1930         struct slot *p_slot = (struct slot *) slot;
1931         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1932
1933         pushbutton_pending = 0;
1934         hp_slot = p_slot->hp_slot;
1935
1936         device = p_slot->device;
1937
1938         if (is_slot_enabled(ctrl, hp_slot)) {
1939                 p_slot->state = POWEROFF_STATE;
1940                 /* power Down board */
1941                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1942                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1943                 if (!func) {
1944                         dbg("Error! func NULL in %s\n", __func__);
1945                         return ;
1946                 }
1947
1948                 if (cpqhp_process_SS(ctrl, func) != 0) {
1949                         amber_LED_on(ctrl, hp_slot);
1950                         green_LED_on(ctrl, hp_slot);
1951
1952                         set_SOGO(ctrl);
1953
1954                         /* Wait for SOBS to be unset */
1955                         wait_for_ctrl_irq(ctrl);
1956                 }
1957
1958                 p_slot->state = STATIC_STATE;
1959         } else {
1960                 p_slot->state = POWERON_STATE;
1961                 /* slot is off */
1962
1963                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1964                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1965                 if (!func) {
1966                         dbg("Error! func NULL in %s\n", __func__);
1967                         return ;
1968                 }
1969
1970                 if (ctrl != NULL) {
1971                         if (cpqhp_process_SI(ctrl, func) != 0) {
1972                                 amber_LED_on(ctrl, hp_slot);
1973                                 green_LED_off(ctrl, hp_slot);
1974
1975                                 set_SOGO(ctrl);
1976
1977                                 /* Wait for SOBS to be unset */
1978                                 wait_for_ctrl_irq (ctrl);
1979                         }
1980                 }
1981
1982                 p_slot->state = STATIC_STATE;
1983         }
1984
1985         return;
1986 }
1987
1988
1989 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1990 {
1991         u8 device, hp_slot;
1992         u16 temp_word;
1993         u32 tempdword;
1994         int rc;
1995         struct slot* p_slot;
1996         int physical_slot = 0;
1997
1998         tempdword = 0;
1999
2000         device = func->device;
2001         hp_slot = device - ctrl->slot_device_offset;
2002         p_slot = cpqhp_find_slot(ctrl, device);
2003         if (p_slot)
2004                 physical_slot = p_slot->number;
2005
2006         /* Check to see if the interlock is closed */
2007         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2008
2009         if (tempdword & (0x01 << hp_slot)) {
2010                 return 1;
2011         }
2012
2013         if (func->is_a_board) {
2014                 rc = board_replaced(func, ctrl);
2015         } else {
2016                 /* add board */
2017                 slot_remove(func);
2018
2019                 func = cpqhp_slot_create(ctrl->bus);
2020                 if (func == NULL)
2021                         return 1;
2022
2023                 func->bus = ctrl->bus;
2024                 func->device = device;
2025                 func->function = 0;
2026                 func->configured = 0;
2027                 func->is_a_board = 1;
2028
2029                 /* We have to save the presence info for these slots */
2030                 temp_word = ctrl->ctrl_int_comp >> 16;
2031                 func->presence_save = (temp_word >> hp_slot) & 0x01;
2032                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2033
2034                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2035                         func->switch_save = 0;
2036                 } else {
2037                         func->switch_save = 0x10;
2038                 }
2039
2040                 rc = board_added(func, ctrl);
2041                 if (rc) {
2042                         if (is_bridge(func)) {
2043                                 bridge_slot_remove(func);
2044                         } else
2045                                 slot_remove(func);
2046
2047                         /* Setup slot structure with entry for empty slot */
2048                         func = cpqhp_slot_create(ctrl->bus);
2049
2050                         if (func == NULL)
2051                                 return 1;
2052
2053                         func->bus = ctrl->bus;
2054                         func->device = device;
2055                         func->function = 0;
2056                         func->configured = 0;
2057                         func->is_a_board = 0;
2058
2059                         /* We have to save the presence info for these slots */
2060                         temp_word = ctrl->ctrl_int_comp >> 16;
2061                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2062                         func->presence_save |=
2063                         (temp_word >> (hp_slot + 7)) & 0x02;
2064
2065                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2066                                 func->switch_save = 0;
2067                         } else {
2068                                 func->switch_save = 0x10;
2069                         }
2070                 }
2071         }
2072
2073         if (rc) {
2074                 dbg("%s: rc = %d\n", __func__, rc);
2075         }
2076
2077         if (p_slot)
2078                 update_slot_info(ctrl, p_slot);
2079
2080         return rc;
2081 }
2082
2083
2084 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2085 {
2086         u8 device, class_code, header_type, BCR;
2087         u8 index = 0;
2088         u8 replace_flag;
2089         u32 rc = 0;
2090         unsigned int devfn;
2091         struct slot* p_slot;
2092         struct pci_bus *pci_bus = ctrl->pci_bus;
2093         int physical_slot=0;
2094
2095         device = func->device;
2096         func = cpqhp_slot_find(ctrl->bus, device, index++);
2097         p_slot = cpqhp_find_slot(ctrl, device);
2098         if (p_slot) {
2099                 physical_slot = p_slot->number;
2100         }
2101
2102         /* Make sure there are no video controllers here */
2103         while (func && !rc) {
2104                 pci_bus->number = func->bus;
2105                 devfn = PCI_DEVFN(func->device, func->function);
2106
2107                 /* Check the Class Code */
2108                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2109                 if (rc)
2110                         return rc;
2111
2112                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2113                         /* Display/Video adapter (not supported) */
2114                         rc = REMOVE_NOT_SUPPORTED;
2115                 } else {
2116                         /* See if it's a bridge */
2117                         rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2118                         if (rc)
2119                                 return rc;
2120
2121                         /* If it's a bridge, check the VGA Enable bit */
2122                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2123                                 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2124                                 if (rc)
2125                                         return rc;
2126
2127                                 /* If the VGA Enable bit is set, remove isn't
2128                                  * supported */
2129                                 if (BCR & PCI_BRIDGE_CTL_VGA)
2130                                         rc = REMOVE_NOT_SUPPORTED;
2131                         }
2132                 }
2133
2134                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2135         }
2136
2137         func = cpqhp_slot_find(ctrl->bus, device, 0);
2138         if ((func != NULL) && !rc) {
2139                 /* FIXME: Replace flag should be passed into process_SS */
2140                 replace_flag = !(ctrl->add_support);
2141                 rc = remove_board(func, replace_flag, ctrl);
2142         } else if (!rc) {
2143                 rc = 1;
2144         }
2145
2146         if (p_slot)
2147                 update_slot_info(ctrl, p_slot);
2148
2149         return rc;
2150 }
2151
2152 /**
2153  * switch_leds - switch the leds, go from one site to the other.
2154  * @ctrl: controller to use
2155  * @num_of_slots: number of slots to use
2156  * @work_LED: LED control value
2157  * @direction: 1 to start from the left side, 0 to start right.
2158  */
2159 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2160                         u32 *work_LED, const int direction)
2161 {
2162         int loop;
2163
2164         for (loop = 0; loop < num_of_slots; loop++) {
2165                 if (direction)
2166                         *work_LED = *work_LED >> 1;
2167                 else
2168                         *work_LED = *work_LED << 1;
2169                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2170
2171                 set_SOGO(ctrl);
2172
2173                 /* Wait for SOGO interrupt */
2174                 wait_for_ctrl_irq(ctrl);
2175
2176                 /* Get ready for next iteration */
2177                 long_delay((2*HZ)/10);
2178         }
2179 }
2180
2181 /**
2182  * cpqhp_hardware_test - runs hardware tests
2183  * @ctrl: target controller
2184  * @test_num: the number written to the "test" file in sysfs.
2185  *
2186  * For hot plug ctrl folks to play with.
2187  */
2188 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2189 {
2190         u32 save_LED;
2191         u32 work_LED;
2192         int loop;
2193         int num_of_slots;
2194
2195         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2196
2197         switch (test_num) {
2198         case 1:
2199                 /* Do stuff here! */
2200
2201                 /* Do that funky LED thing */
2202                 /* so we can restore them later */
2203                 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2204                 work_LED = 0x01010101;
2205                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2206                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2207                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209
2210                 work_LED = 0x01010000;
2211                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2212                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2213                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2214                 work_LED = 0x00000101;
2215                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2217                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2218
2219                 work_LED = 0x01010000;
2220                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2221                 for (loop = 0; loop < num_of_slots; loop++) {
2222                         set_SOGO(ctrl);
2223
2224                         /* Wait for SOGO interrupt */
2225                         wait_for_ctrl_irq (ctrl);
2226
2227                         /* Get ready for next iteration */
2228                         long_delay((3*HZ)/10);
2229                         work_LED = work_LED >> 16;
2230                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231
2232                         set_SOGO(ctrl);
2233
2234                         /* Wait for SOGO interrupt */
2235                         wait_for_ctrl_irq (ctrl);
2236
2237                         /* Get ready for next iteration */
2238                         long_delay((3*HZ)/10);
2239                         work_LED = work_LED << 16;
2240                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241                         work_LED = work_LED << 1;
2242                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2243                 }
2244
2245                 /* put it back the way it was */
2246                 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2247
2248                 set_SOGO(ctrl);
2249
2250                 /* Wait for SOBS to be unset */
2251                 wait_for_ctrl_irq (ctrl);
2252                 break;
2253         case 2:
2254                 /* Do other stuff here! */
2255                 break;
2256         case 3:
2257                 /* and more... */
2258                 break;
2259         }
2260         return 0;
2261 }
2262
2263
2264 /**
2265  * configure_new_device - Configures the PCI header information of one board.
2266  * @ctrl: pointer to controller structure
2267  * @func: pointer to function structure
2268  * @behind_bridge: 1 if this is a recursive call, 0 if not
2269  * @resources: pointer to set of resource lists
2270  *
2271  * Returns 0 if success.
2272  */
2273 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2274                                  u8 behind_bridge, struct resource_lists * resources)
2275 {
2276         u8 temp_byte, function, max_functions, stop_it;
2277         int rc;
2278         u32 ID;
2279         struct pci_func *new_slot;
2280         int index;
2281
2282         new_slot = func;
2283
2284         dbg("%s\n", __func__);
2285         /* Check for Multi-function device */
2286         ctrl->pci_bus->number = func->bus;
2287         rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2288         if (rc) {
2289                 dbg("%s: rc = %d\n", __func__, rc);
2290                 return rc;
2291         }
2292
2293         if (temp_byte & 0x80)   /* Multi-function device */
2294                 max_functions = 8;
2295         else
2296                 max_functions = 1;
2297
2298         function = 0;
2299
2300         do {
2301                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2302
2303                 if (rc) {
2304                         dbg("configure_new_function failed %d\n",rc);
2305                         index = 0;
2306
2307                         while (new_slot) {
2308                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2309
2310                                 if (new_slot)
2311                                         cpqhp_return_board_resources(new_slot, resources);
2312                         }
2313
2314                         return rc;
2315                 }
2316
2317                 function++;
2318
2319                 stop_it = 0;
2320
2321                 /* The following loop skips to the next present function
2322                  * and creates a board structure */
2323
2324                 while ((function < max_functions) && (!stop_it)) {
2325                         pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2326
2327                         if (ID == 0xFFFFFFFF) {
2328                                 function++;
2329                         } else {
2330                                 /* Setup slot structure. */
2331                                 new_slot = cpqhp_slot_create(func->bus);
2332
2333                                 if (new_slot == NULL)
2334                                         return 1;
2335
2336                                 new_slot->bus = func->bus;
2337                                 new_slot->device = func->device;
2338                                 new_slot->function = function;
2339                                 new_slot->is_a_board = 1;
2340                                 new_slot->status = 0;
2341
2342                                 stop_it++;
2343                         }
2344                 }
2345
2346         } while (function < max_functions);
2347         dbg("returning from configure_new_device\n");
2348
2349         return 0;
2350 }
2351
2352
2353 /*
2354  * Configuration logic that involves the hotplug data structures and
2355  * their bookkeeping
2356  */
2357
2358
2359 /**
2360  * configure_new_function - Configures the PCI header information of one device
2361  * @ctrl: pointer to controller structure
2362  * @func: pointer to function structure
2363  * @behind_bridge: 1 if this is a recursive call, 0 if not
2364  * @resources: pointer to set of resource lists
2365  *
2366  * Calls itself recursively for bridged devices.
2367  * Returns 0 if success.
2368  */
2369 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2370                                    u8 behind_bridge,
2371                                    struct resource_lists *resources)
2372 {
2373         int cloop;
2374         u8 IRQ = 0;
2375         u8 temp_byte;
2376         u8 device;
2377         u8 class_code;
2378         u16 command;
2379         u16 temp_word;
2380         u32 temp_dword;
2381         u32 rc;
2382         u32 temp_register;
2383         u32 base;
2384         u32 ID;
2385         unsigned int devfn;
2386         struct pci_resource *mem_node;
2387         struct pci_resource *p_mem_node;
2388         struct pci_resource *io_node;
2389         struct pci_resource *bus_node;
2390         struct pci_resource *hold_mem_node;
2391         struct pci_resource *hold_p_mem_node;
2392         struct pci_resource *hold_IO_node;
2393         struct pci_resource *hold_bus_node;
2394         struct irq_mapping irqs;
2395         struct pci_func *new_slot;
2396         struct pci_bus *pci_bus;
2397         struct resource_lists temp_resources;
2398
2399         pci_bus = ctrl->pci_bus;
2400         pci_bus->number = func->bus;
2401         devfn = PCI_DEVFN(func->device, func->function);
2402
2403         /* Check for Bridge */
2404         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2405         if (rc)
2406                 return rc;
2407
2408         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2409                 /* set Primary bus */
2410                 dbg("set Primary bus = %d\n", func->bus);
2411                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2412                 if (rc)
2413                         return rc;
2414
2415                 /* find range of busses to use */
2416                 dbg("find ranges of buses to use\n");
2417                 bus_node = get_max_resource(&(resources->bus_head), 1);
2418
2419                 /* If we don't have any busses to allocate, we can't continue */
2420                 if (!bus_node)
2421                         return -ENOMEM;
2422
2423                 /* set Secondary bus */
2424                 temp_byte = bus_node->base;
2425                 dbg("set Secondary bus = %d\n", bus_node->base);
2426                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2427                 if (rc)
2428                         return rc;
2429
2430                 /* set subordinate bus */
2431                 temp_byte = bus_node->base + bus_node->length - 1;
2432                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2433                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2434                 if (rc)
2435                         return rc;
2436
2437                 /* set subordinate Latency Timer and base Latency Timer */
2438                 temp_byte = 0x40;
2439                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2440                 if (rc)
2441                         return rc;
2442                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2443                 if (rc)
2444                         return rc;
2445
2446                 /* set Cache Line size */
2447                 temp_byte = 0x08;
2448                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2449                 if (rc)
2450                         return rc;
2451
2452                 /* Setup the IO, memory, and prefetchable windows */
2453                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2454                 if (!io_node)
2455                         return -ENOMEM;
2456                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2457                 if (!mem_node)
2458                         return -ENOMEM;
2459                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2460                 if (!p_mem_node)
2461                         return -ENOMEM;
2462                 dbg("Setup the IO, memory, and prefetchable windows\n");
2463                 dbg("io_node\n");
2464                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2465                                         io_node->length, io_node->next);
2466                 dbg("mem_node\n");
2467                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2468                                         mem_node->length, mem_node->next);
2469                 dbg("p_mem_node\n");
2470                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2471                                         p_mem_node->length, p_mem_node->next);
2472
2473                 /* set up the IRQ info */
2474                 if (!resources->irqs) {
2475                         irqs.barber_pole = 0;
2476                         irqs.interrupt[0] = 0;
2477                         irqs.interrupt[1] = 0;
2478                         irqs.interrupt[2] = 0;
2479                         irqs.interrupt[3] = 0;
2480                         irqs.valid_INT = 0;
2481                 } else {
2482                         irqs.barber_pole = resources->irqs->barber_pole;
2483                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2484                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2485                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2486                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2487                         irqs.valid_INT = resources->irqs->valid_INT;
2488                 }
2489
2490                 /* set up resource lists that are now aligned on top and bottom
2491                  * for anything behind the bridge. */
2492                 temp_resources.bus_head = bus_node;
2493                 temp_resources.io_head = io_node;
2494                 temp_resources.mem_head = mem_node;
2495                 temp_resources.p_mem_head = p_mem_node;
2496                 temp_resources.irqs = &irqs;
2497
2498                 /* Make copies of the nodes we are going to pass down so that
2499                  * if there is a problem,we can just use these to free resources
2500                  */
2501                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2502                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2503                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2504                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2505
2506                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2507                         kfree(hold_bus_node);
2508                         kfree(hold_IO_node);
2509                         kfree(hold_mem_node);
2510                         kfree(hold_p_mem_node);
2511
2512                         return 1;
2513                 }
2514
2515                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2516
2517                 bus_node->base += 1;
2518                 bus_node->length -= 1;
2519                 bus_node->next = NULL;
2520
2521                 /* If we have IO resources copy them and fill in the bridge's
2522                  * IO range registers */
2523                 if (io_node) {
2524                         memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2525                         io_node->next = NULL;
2526
2527                         /* set IO base and Limit registers */
2528                         temp_byte = io_node->base >> 8;
2529                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2530
2531                         temp_byte = (io_node->base + io_node->length - 1) >> 8;
2532                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2533                 } else {
2534                         kfree(hold_IO_node);
2535                         hold_IO_node = NULL;
2536                 }
2537
2538                 /* If we have memory resources copy them and fill in the
2539                  * bridge's memory range registers.  Otherwise, fill in the
2540                  * range registers with values that disable them. */
2541                 if (mem_node) {
2542                         memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2543                         mem_node->next = NULL;
2544
2545                         /* set Mem base and Limit registers */
2546                         temp_word = mem_node->base >> 16;
2547                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2548
2549                         temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2550                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2551                 } else {
2552                         temp_word = 0xFFFF;
2553                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2554
2555                         temp_word = 0x0000;
2556                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2557
2558                         kfree(hold_mem_node);
2559                         hold_mem_node = NULL;
2560                 }
2561
2562                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2563                 p_mem_node->next = NULL;
2564
2565                 /* set Pre Mem base and Limit registers */
2566                 temp_word = p_mem_node->base >> 16;
2567                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2568
2569                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2570                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2571
2572                 /* Adjust this to compensate for extra adjustment in first loop
2573                  */
2574                 irqs.barber_pole--;
2575
2576                 rc = 0;
2577
2578                 /* Here we actually find the devices and configure them */
2579                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2580                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2581
2582                         ID = 0xFFFFFFFF;
2583                         pci_bus->number = hold_bus_node->base;
2584                         pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2585                         pci_bus->number = func->bus;
2586
2587                         if (ID != 0xFFFFFFFF) {   /*  device present */
2588                                 /* Setup slot structure. */
2589                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2590
2591                                 if (new_slot == NULL) {
2592                                         rc = -ENOMEM;
2593                                         continue;
2594                                 }
2595
2596                                 new_slot->bus = hold_bus_node->base;
2597                                 new_slot->device = device;
2598                                 new_slot->function = 0;
2599                                 new_slot->is_a_board = 1;
2600                                 new_slot->status = 0;
2601
2602                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2603                                 dbg("configure_new_device rc=0x%x\n",rc);
2604                         }       /* End of IF (device in slot?) */
2605                 }               /* End of FOR loop */
2606
2607                 if (rc)
2608                         goto free_and_out;
2609                 /* save the interrupt routing information */
2610                 if (resources->irqs) {
2611                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2612                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2613                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2614                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2615                         resources->irqs->valid_INT = irqs.valid_INT;
2616                 } else if (!behind_bridge) {
2617                         /* We need to hook up the interrupts here */
2618                         for (cloop = 0; cloop < 4; cloop++) {
2619                                 if (irqs.valid_INT & (0x01 << cloop)) {
2620                                         rc = cpqhp_set_irq(func->bus, func->device,
2621                                                            cloop + 1, irqs.interrupt[cloop]);
2622                                         if (rc)
2623                                                 goto free_and_out;
2624                                 }
2625                         }       /* end of for loop */
2626                 }
2627                 /* Return unused bus resources
2628                  * First use the temporary node to store information for
2629                  * the board */
2630                 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2631                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2632
2633                         hold_bus_node->next = func->bus_head;
2634                         func->bus_head = hold_bus_node;
2635
2636                         temp_byte = temp_resources.bus_head->base - 1;
2637
2638                         /* set subordinate bus */
2639                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2640
2641                         if (temp_resources.bus_head->length == 0) {
2642                                 kfree(temp_resources.bus_head);
2643                                 temp_resources.bus_head = NULL;
2644                         } else {
2645                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2646                         }
2647                 }
2648
2649                 /* If we have IO space available and there is some left,
2650                  * return the unused portion */
2651                 if (hold_IO_node && temp_resources.io_head) {
2652                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2653                                                                &hold_IO_node, 0x1000);
2654
2655                         /* Check if we were able to split something off */
2656                         if (io_node) {
2657                                 hold_IO_node->base = io_node->base + io_node->length;
2658
2659                                 temp_byte = (hold_IO_node->base) >> 8;
2660                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2661
2662                                 return_resource(&(resources->io_head), io_node);
2663                         }
2664
2665                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2666
2667                         /* Check if we were able to split something off */
2668                         if (io_node) {
2669                                 /* First use the temporary node to store
2670                                  * information for the board */
2671                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2672
2673                                 /* If we used any, add it to the board's list */
2674                                 if (hold_IO_node->length) {
2675                                         hold_IO_node->next = func->io_head;
2676                                         func->io_head = hold_IO_node;
2677
2678                                         temp_byte = (io_node->base - 1) >> 8;
2679                                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2680
2681                                         return_resource(&(resources->io_head), io_node);
2682                                 } else {
2683                                         /* it doesn't need any IO */
2684                                         temp_word = 0x0000;
2685                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2686
2687                                         return_resource(&(resources->io_head), io_node);
2688                                         kfree(hold_IO_node);
2689                                 }
2690                         } else {
2691                                 /* it used most of the range */
2692                                 hold_IO_node->next = func->io_head;
2693                                 func->io_head = hold_IO_node;
2694                         }
2695                 } else if (hold_IO_node) {
2696                         /* it used the whole range */
2697                         hold_IO_node->next = func->io_head;
2698                         func->io_head = hold_IO_node;
2699                 }
2700                 /* If we have memory space available and there is some left,
2701                  * return the unused portion */
2702                 if (hold_mem_node && temp_resources.mem_head) {
2703                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2704                                                                 &hold_mem_node, 0x100000);
2705
2706                         /* Check if we were able to split something off */
2707                         if (mem_node) {
2708                                 hold_mem_node->base = mem_node->base + mem_node->length;
2709
2710                                 temp_word = (hold_mem_node->base) >> 16;
2711                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2712
2713                                 return_resource(&(resources->mem_head), mem_node);
2714                         }
2715
2716                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2717
2718                         /* Check if we were able to split something off */
2719                         if (mem_node) {
2720                                 /* First use the temporary node to store
2721                                  * information for the board */
2722                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2723
2724                                 if (hold_mem_node->length) {
2725                                         hold_mem_node->next = func->mem_head;
2726                                         func->mem_head = hold_mem_node;
2727
2728                                         /* configure end address */
2729                                         temp_word = (mem_node->base - 1) >> 16;
2730                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2731
2732                                         /* Return unused resources to the pool */
2733                                         return_resource(&(resources->mem_head), mem_node);
2734                                 } else {
2735                                         /* it doesn't need any Mem */
2736                                         temp_word = 0x0000;
2737                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2738
2739                                         return_resource(&(resources->mem_head), mem_node);
2740                                         kfree(hold_mem_node);
2741                                 }
2742                         } else {
2743                                 /* it used most of the range */
2744                                 hold_mem_node->next = func->mem_head;
2745                                 func->mem_head = hold_mem_node;
2746                         }
2747                 } else if (hold_mem_node) {
2748                         /* it used the whole range */
2749                         hold_mem_node->next = func->mem_head;
2750                         func->mem_head = hold_mem_node;
2751                 }
2752                 /* If we have prefetchable memory space available and there
2753                  * is some left at the end, return the unused portion */
2754                 if (hold_p_mem_node && temp_resources.p_mem_head) {
2755                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2756                                                                   &hold_p_mem_node, 0x100000);
2757
2758                         /* Check if we were able to split something off */
2759                         if (p_mem_node) {
2760                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2761
2762                                 temp_word = (hold_p_mem_node->base) >> 16;
2763                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2764
2765                                 return_resource(&(resources->p_mem_head), p_mem_node);
2766                         }
2767
2768                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2769
2770                         /* Check if we were able to split something off */
2771                         if (p_mem_node) {
2772                                 /* First use the temporary node to store
2773                                  * information for the board */
2774                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2775
2776                                 /* If we used any, add it to the board's list */
2777                                 if (hold_p_mem_node->length) {
2778                                         hold_p_mem_node->next = func->p_mem_head;
2779                                         func->p_mem_head = hold_p_mem_node;
2780
2781                                         temp_word = (p_mem_node->base - 1) >> 16;
2782                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2783
2784                                         return_resource(&(resources->p_mem_head), p_mem_node);
2785                                 } else {
2786                                         /* it doesn't need any PMem */
2787                                         temp_word = 0x0000;
2788                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2789
2790                                         return_resource(&(resources->p_mem_head), p_mem_node);
2791                                         kfree(hold_p_mem_node);
2792                                 }
2793                         } else {
2794                                 /* it used the most of the range */
2795                                 hold_p_mem_node->next = func->p_mem_head;
2796                                 func->p_mem_head = hold_p_mem_node;
2797                         }
2798                 } else if (hold_p_mem_node) {
2799                         /* it used the whole range */
2800                         hold_p_mem_node->next = func->p_mem_head;
2801                         func->p_mem_head = hold_p_mem_node;
2802                 }
2803                 /* We should be configuring an IRQ and the bridge's base address
2804                  * registers if it needs them.  Although we have never seen such
2805                  * a device */
2806
2807                 /* enable card */
2808                 command = 0x0157;       /* = PCI_COMMAND_IO |
2809                                          *   PCI_COMMAND_MEMORY |
2810                                          *   PCI_COMMAND_MASTER |
2811                                          *   PCI_COMMAND_INVALIDATE |
2812                                          *   PCI_COMMAND_PARITY |
2813                                          *   PCI_COMMAND_SERR */
2814                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2815
2816                 /* set Bridge Control Register */
2817                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2818                                          *   PCI_BRIDGE_CTL_SERR |
2819                                          *   PCI_BRIDGE_CTL_NO_ISA */
2820                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2821         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2822                 /* Standard device */
2823                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2824
2825                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2826                         /* Display (video) adapter (not supported) */
2827                         return DEVICE_TYPE_NOT_SUPPORTED;
2828                 }
2829                 /* Figure out IO and memory needs */
2830                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2831                         temp_register = 0xFFFFFFFF;
2832
2833                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2834                         rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2835
2836                         rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2837                         dbg("CND: base = 0x%x\n", temp_register);
2838
2839                         if (temp_register) {      /* If this register is implemented */
2840                                 if ((temp_register & 0x03L) == 0x01) {
2841                                         /* Map IO */
2842
2843                                         /* set base = amount of IO space */
2844                                         base = temp_register & 0xFFFFFFFC;
2845                                         base = ~base + 1;
2846
2847                                         dbg("CND:      length = 0x%x\n", base);
2848                                         io_node = get_io_resource(&(resources->io_head), base);
2849                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2850                                             io_node->base, io_node->length, io_node->next);
2851                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2852
2853                                         /* allocate the resource to the board */
2854                                         if (io_node) {
2855                                                 base = io_node->base;
2856
2857                                                 io_node->next = func->io_head;
2858                                                 func->io_head = io_node;
2859                                         } else
2860                                                 return -ENOMEM;
2861                                 } else if ((temp_register & 0x0BL) == 0x08) {
2862                                         /* Map prefetchable memory */
2863                                         base = temp_register & 0xFFFFFFF0;
2864                                         base = ~base + 1;
2865
2866                                         dbg("CND:      length = 0x%x\n", base);
2867                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2868
2869                                         /* allocate the resource to the board */
2870                                         if (p_mem_node) {
2871                                                 base = p_mem_node->base;
2872
2873                                                 p_mem_node->next = func->p_mem_head;
2874                                                 func->p_mem_head = p_mem_node;
2875                                         } else
2876                                                 return -ENOMEM;
2877                                 } else if ((temp_register & 0x0BL) == 0x00) {
2878                                         /* Map memory */
2879                                         base = temp_register & 0xFFFFFFF0;
2880                                         base = ~base + 1;
2881
2882                                         dbg("CND:      length = 0x%x\n", base);
2883                                         mem_node = get_resource(&(resources->mem_head), base);
2884
2885                                         /* allocate the resource to the board */
2886                                         if (mem_node) {
2887                                                 base = mem_node->base;
2888
2889                                                 mem_node->next = func->mem_head;
2890                                                 func->mem_head = mem_node;
2891                                         } else
2892                                                 return -ENOMEM;
2893                                 } else if ((temp_register & 0x0BL) == 0x04) {
2894                                         /* Map memory */
2895                                         base = temp_register & 0xFFFFFFF0;
2896                                         base = ~base + 1;
2897
2898                                         dbg("CND:      length = 0x%x\n", base);
2899                                         mem_node = get_resource(&(resources->mem_head), base);
2900
2901                                         /* allocate the resource to the board */
2902                                         if (mem_node) {
2903                                                 base = mem_node->base;
2904
2905                                                 mem_node->next = func->mem_head;
2906                                                 func->mem_head = mem_node;
2907                                         } else
2908                                                 return -ENOMEM;
2909                                 } else if ((temp_register & 0x0BL) == 0x06) {
2910                                         /* Those bits are reserved, we can't handle this */
2911                                         return 1;
2912                                 } else {
2913                                         /* Requesting space below 1M */
2914                                         return NOT_ENOUGH_RESOURCES;
2915                                 }
2916
2917                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2918
2919                                 /* Check for 64-bit base */
2920                                 if ((temp_register & 0x07L) == 0x04) {
2921                                         cloop += 4;
2922
2923                                         /* Upper 32 bits of address always zero
2924                                          * on today's systems */
2925                                         /* FIXME this is probably not true on
2926                                          * Alpha and ia64??? */
2927                                         base = 0;
2928                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2929                                 }
2930                         }
2931                 }               /* End of base register loop */
2932                 if (cpqhp_legacy_mode) {
2933                         /* Figure out which interrupt pin this function uses */
2934                         rc = pci_bus_read_config_byte (pci_bus, devfn,
2935                                 PCI_INTERRUPT_PIN, &temp_byte);
2936
2937                         /* If this function needs an interrupt and we are behind
2938                          * a bridge and the pin is tied to something that's
2939                          * alread mapped, set this one the same */
2940                         if (temp_byte && resources->irqs &&
2941                             (resources->irqs->valid_INT &
2942                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2943                                 /* We have to share with something already set up */
2944                                 IRQ = resources->irqs->interrupt[(temp_byte +
2945                                         resources->irqs->barber_pole - 1) & 0x03];
2946                         } else {
2947                                 /* Program IRQ based on card type */
2948                                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2949
2950                                 if (class_code == PCI_BASE_CLASS_STORAGE)
2951                                         IRQ = cpqhp_disk_irq;
2952                                 else
2953                                         IRQ = cpqhp_nic_irq;
2954                         }
2955
2956                         /* IRQ Line */
2957                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2958                 }
2959
2960                 if (!behind_bridge) {
2961                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2962                         if (rc)
2963                                 return 1;
2964                 } else {
2965                         /* TBD - this code may also belong in the other clause
2966                          * of this If statement */
2967                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2968                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2969                 }
2970
2971                 /* Latency Timer */
2972                 temp_byte = 0x40;
2973                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2974                                         PCI_LATENCY_TIMER, temp_byte);
2975
2976                 /* Cache Line size */
2977                 temp_byte = 0x08;
2978                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2979                                         PCI_CACHE_LINE_SIZE, temp_byte);
2980
2981                 /* disable ROM base Address */
2982                 temp_dword = 0x00L;
2983                 rc = pci_bus_write_config_word(pci_bus, devfn,
2984                                         PCI_ROM_ADDRESS, temp_dword);
2985
2986                 /* enable card */
2987                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2988                                          *   PCI_COMMAND_MEMORY |
2989                                          *   PCI_COMMAND_MASTER |
2990                                          *   PCI_COMMAND_INVALIDATE |
2991                                          *   PCI_COMMAND_PARITY |
2992                                          *   PCI_COMMAND_SERR */
2993                 rc = pci_bus_write_config_word (pci_bus, devfn,
2994                                         PCI_COMMAND, temp_word);
2995         } else {                /* End of Not-A-Bridge else */
2996                 /* It's some strange type of PCI adapter (Cardbus?) */
2997                 return DEVICE_TYPE_NOT_SUPPORTED;
2998         }
2999
3000         func->configured = 1;
3001
3002         return 0;
3003 free_and_out:
3004         cpqhp_destroy_resource_list (&temp_resources);
3005
3006         return_resource(&(resources-> bus_head), hold_bus_node);
3007         return_resource(&(resources-> io_head), hold_IO_node);
3008         return_resource(&(resources-> mem_head), hold_mem_node);
3009         return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3010         return rc;
3011 }