net: convert print_mac to %pM
[safe/jmp/linux-2.6] / drivers / net / wireless / wavelan.c
1 /*
2  *      WaveLAN ISA driver
3  *
4  *              Jean II - HPLB '96
5  *
6  * Reorganisation and extension of the driver.
7  * Original copyright follows (also see the end of this file).
8  * See wavelan.p.h for details.
9  *
10  *
11  *
12  * AT&T GIS (nee NCR) WaveLAN card:
13  *      An Ethernet-like radio transceiver
14  *      controlled by an Intel 82586 coprocessor.
15  */
16
17 #include "wavelan.p.h"          /* Private header */
18
19 /************************* MISC SUBROUTINES **************************/
20 /*
21  * Subroutines which won't fit in one of the following category
22  * (WaveLAN modem or i82586)
23  */
24
25 /*------------------------------------------------------------------*/
26 /*
27  * Translate irq number to PSA irq parameter
28  */
29 static u8 wv_irq_to_psa(int irq)
30 {
31         if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
32                 return 0;
33
34         return irqvals[irq];
35 }
36
37 /*------------------------------------------------------------------*/
38 /*
39  * Translate PSA irq parameter to irq number 
40  */
41 static int __init wv_psa_to_irq(u8 irqval)
42 {
43         int irq;
44
45         for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++)
46                 if (irqvals[irq] == irqval)
47                         return irq;
48
49         return -1;
50 }
51
52 /********************* HOST ADAPTER SUBROUTINES *********************/
53 /*
54  * Useful subroutines to manage the WaveLAN ISA interface
55  *
56  * One major difference with the PCMCIA hardware (except the port mapping)
57  * is that we have to keep the state of the Host Control Register
58  * because of the interrupt enable & bus size flags.
59  */
60
61 /*------------------------------------------------------------------*/
62 /*
63  * Read from card's Host Adaptor Status Register.
64  */
65 static inline u16 hasr_read(unsigned long ioaddr)
66 {
67         return (inw(HASR(ioaddr)));
68 }                               /* hasr_read */
69
70 /*------------------------------------------------------------------*/
71 /*
72  * Write to card's Host Adapter Command Register.
73  */
74 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
75 {
76         outw(hacr, HACR(ioaddr));
77 }                               /* hacr_write */
78
79 /*------------------------------------------------------------------*/
80 /*
81  * Write to card's Host Adapter Command Register. Include a delay for
82  * those times when it is needed.
83  */
84 static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
85 {
86         hacr_write(ioaddr, hacr);
87         /* delay might only be needed sometimes */
88         mdelay(1);
89 }                               /* hacr_write_slow */
90
91 /*------------------------------------------------------------------*/
92 /*
93  * Set the channel attention bit.
94  */
95 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
96 {
97         hacr_write(ioaddr, hacr | HACR_CA);
98 }                               /* set_chan_attn */
99
100 /*------------------------------------------------------------------*/
101 /*
102  * Reset, and then set host adaptor into default mode.
103  */
104 static inline void wv_hacr_reset(unsigned long ioaddr)
105 {
106         hacr_write_slow(ioaddr, HACR_RESET);
107         hacr_write(ioaddr, HACR_DEFAULT);
108 }                               /* wv_hacr_reset */
109
110 /*------------------------------------------------------------------*/
111 /*
112  * Set the I/O transfer over the ISA bus to 8-bit mode
113  */
114 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
115 {
116         hacr &= ~HACR_16BITS;
117         hacr_write(ioaddr, hacr);
118 }                               /* wv_16_off */
119
120 /*------------------------------------------------------------------*/
121 /*
122  * Set the I/O transfer over the ISA bus to 8-bit mode
123  */
124 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
125 {
126         hacr |= HACR_16BITS;
127         hacr_write(ioaddr, hacr);
128 }                               /* wv_16_on */
129
130 /*------------------------------------------------------------------*/
131 /*
132  * Disable interrupts on the WaveLAN hardware.
133  * (called by wv_82586_stop())
134  */
135 static inline void wv_ints_off(struct net_device * dev)
136 {
137         net_local *lp = (net_local *) dev->priv;
138         unsigned long ioaddr = dev->base_addr;
139         
140         lp->hacr &= ~HACR_INTRON;
141         hacr_write(ioaddr, lp->hacr);
142 }                               /* wv_ints_off */
143
144 /*------------------------------------------------------------------*/
145 /*
146  * Enable interrupts on the WaveLAN hardware.
147  * (called by wv_hw_reset())
148  */
149 static inline void wv_ints_on(struct net_device * dev)
150 {
151         net_local *lp = (net_local *) dev->priv;
152         unsigned long ioaddr = dev->base_addr;
153
154         lp->hacr |= HACR_INTRON;
155         hacr_write(ioaddr, lp->hacr);
156 }                               /* wv_ints_on */
157
158 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
159 /*
160  * Useful subroutines to manage the modem of the WaveLAN
161  */
162
163 /*------------------------------------------------------------------*/
164 /*
165  * Read the Parameter Storage Area from the WaveLAN card's memory
166  */
167 /*
168  * Read bytes from the PSA.
169  */
170 static void psa_read(unsigned long ioaddr, u16 hacr, int o,     /* offset in PSA */
171                      u8 * b,    /* buffer to fill */
172                      int n)
173 {                               /* size to read */
174         wv_16_off(ioaddr, hacr);
175
176         while (n-- > 0) {
177                 outw(o, PIOR2(ioaddr));
178                 o++;
179                 *b++ = inb(PIOP2(ioaddr));
180         }
181
182         wv_16_on(ioaddr, hacr);
183 }                               /* psa_read */
184
185 /*------------------------------------------------------------------*/
186 /*
187  * Write the Parameter Storage Area to the WaveLAN card's memory.
188  */
189 static void psa_write(unsigned long ioaddr, u16 hacr, int o,    /* Offset in PSA */
190                       u8 * b,   /* Buffer in memory */
191                       int n)
192 {                               /* Length of buffer */
193         int count = 0;
194
195         wv_16_off(ioaddr, hacr);
196
197         while (n-- > 0) {
198                 outw(o, PIOR2(ioaddr));
199                 o++;
200
201                 outb(*b, PIOP2(ioaddr));
202                 b++;
203
204                 /* Wait for the memory to finish its write cycle */
205                 count = 0;
206                 while ((count++ < 100) &&
207                        (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
208         }
209
210         wv_16_on(ioaddr, hacr);
211 }                               /* psa_write */
212
213 #ifdef SET_PSA_CRC
214 /*------------------------------------------------------------------*/
215 /*
216  * Calculate the PSA CRC
217  * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
218  * NOTE: By specifying a length including the CRC position the
219  * returned value should be zero. (i.e. a correct checksum in the PSA)
220  *
221  * The Windows drivers don't use the CRC, but the AP and the PtP tool
222  * depend on it.
223  */
224 static u16 psa_crc(u8 * psa,    /* The PSA */
225                               int size)
226 {                               /* Number of short for CRC */
227         int byte_cnt;           /* Loop on the PSA */
228         u16 crc_bytes = 0;      /* Data in the PSA */
229         int bit_cnt;            /* Loop on the bits of the short */
230
231         for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
232                 crc_bytes ^= psa[byte_cnt];     /* Its an xor */
233
234                 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
235                         if (crc_bytes & 0x0001)
236                                 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
237                         else
238                                 crc_bytes >>= 1;
239                 }
240         }
241
242         return crc_bytes;
243 }                               /* psa_crc */
244 #endif                          /* SET_PSA_CRC */
245
246 /*------------------------------------------------------------------*/
247 /*
248  * update the checksum field in the Wavelan's PSA
249  */
250 static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
251 {
252 #ifdef SET_PSA_CRC
253         psa_t psa;
254         u16 crc;
255
256         /* read the parameter storage area */
257         psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
258
259         /* update the checksum */
260         crc = psa_crc((unsigned char *) &psa,
261                       sizeof(psa) - sizeof(psa.psa_crc[0]) -
262                       sizeof(psa.psa_crc[1])
263                       - sizeof(psa.psa_crc_status));
264
265         psa.psa_crc[0] = crc & 0xFF;
266         psa.psa_crc[1] = (crc & 0xFF00) >> 8;
267
268         /* Write it ! */
269         psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
270                   (unsigned char *) &psa.psa_crc, 2);
271
272 #ifdef DEBUG_IOCTL_INFO
273         printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
274                dev->name, psa.psa_crc[0], psa.psa_crc[1]);
275
276         /* Check again (luxury !) */
277         crc = psa_crc((unsigned char *) &psa,
278                       sizeof(psa) - sizeof(psa.psa_crc_status));
279
280         if (crc != 0)
281                 printk(KERN_WARNING
282                        "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
283                        dev->name);
284 #endif                          /* DEBUG_IOCTL_INFO */
285 #endif                          /* SET_PSA_CRC */
286 }                               /* update_psa_checksum */
287
288 /*------------------------------------------------------------------*/
289 /*
290  * Write 1 byte to the MMC.
291  */
292 static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
293 {
294         int count = 0;
295
296         /* Wait for MMC to go idle */
297         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
298                 udelay(10);
299
300         outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
301 }
302
303 /*------------------------------------------------------------------*/
304 /*
305  * Routine to write bytes to the Modem Management Controller.
306  * We start at the end because it is the way it should be!
307  */
308 static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
309 {
310         o += n;
311         b += n;
312
313         while (n-- > 0)
314                 mmc_out(ioaddr, --o, *(--b));
315 }                               /* mmc_write */
316
317 /*------------------------------------------------------------------*/
318 /*
319  * Read a byte from the MMC.
320  * Optimised version for 1 byte, avoid using memory.
321  */
322 static u8 mmc_in(unsigned long ioaddr, u16 o)
323 {
324         int count = 0;
325
326         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
327                 udelay(10);
328         outw(o << 1, MMCR(ioaddr));
329
330         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
331                 udelay(10);
332         return (u8) (inw(MMCR(ioaddr)) >> 8);
333 }
334
335 /*------------------------------------------------------------------*/
336 /*
337  * Routine to read bytes from the Modem Management Controller.
338  * The implementation is complicated by a lack of address lines,
339  * which prevents decoding of the low-order bit.
340  * (code has just been moved in the above function)
341  * We start at the end because it is the way it should be!
342  */
343 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
344 {
345         o += n;
346         b += n;
347
348         while (n-- > 0)
349                 *(--b) = mmc_in(ioaddr, --o);
350 }                               /* mmc_read */
351
352 /*------------------------------------------------------------------*/
353 /*
354  * Get the type of encryption available.
355  */
356 static inline int mmc_encr(unsigned long ioaddr)
357 {                               /* I/O port of the card */
358         int temp;
359
360         temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
361         if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
362                 return 0;
363         else
364                 return temp;
365 }
366
367 /*------------------------------------------------------------------*/
368 /*
369  * Wait for the frequency EEPROM to complete a command.
370  * I hope this one will be optimally inlined.
371  */
372 static inline void fee_wait(unsigned long ioaddr,       /* I/O port of the card */
373                             int delay,  /* Base delay to wait for */
374                             int number)
375 {                               /* Number of time to wait */
376         int count = 0;          /* Wait only a limited time */
377
378         while ((count++ < number) &&
379                (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
380                 MMR_FEE_STATUS_BUSY)) udelay(delay);
381 }
382
383 /*------------------------------------------------------------------*/
384 /*
385  * Read bytes from the Frequency EEPROM (frequency select cards).
386  */
387 static void fee_read(unsigned long ioaddr,      /* I/O port of the card */
388                      u16 o,     /* destination offset */
389                      u16 * b,   /* data buffer */
390                      int n)
391 {                               /* number of registers */
392         b += n;                 /* Position at the end of the area */
393
394         /* Write the address */
395         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
396
397         /* Loop on all buffer */
398         while (n-- > 0) {
399                 /* Write the read command */
400                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
401                         MMW_FEE_CTRL_READ);
402
403                 /* Wait until EEPROM is ready (should be quick). */
404                 fee_wait(ioaddr, 10, 100);
405
406                 /* Read the value. */
407                 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
408                         mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
409         }
410 }
411
412
413 /*------------------------------------------------------------------*/
414 /*
415  * Write bytes from the Frequency EEPROM (frequency select cards).
416  * This is a bit complicated, because the frequency EEPROM has to
417  * be unprotected and the write enabled.
418  * Jean II
419  */
420 static void fee_write(unsigned long ioaddr,     /* I/O port of the card */
421                       u16 o,    /* destination offset */
422                       u16 * b,  /* data buffer */
423                       int n)
424 {                               /* number of registers */
425         b += n;                 /* Position at the end of the area. */
426
427 #ifdef EEPROM_IS_PROTECTED      /* disabled */
428 #ifdef DOESNT_SEEM_TO_WORK      /* disabled */
429         /* Ask to read the protected register */
430         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
431
432         fee_wait(ioaddr, 10, 100);
433
434         /* Read the protected register. */
435         printk("Protected 2:  %02X-%02X\n",
436                mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
437                mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
438 #endif                          /* DOESNT_SEEM_TO_WORK */
439
440         /* Enable protected register. */
441         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
442         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
443
444         fee_wait(ioaddr, 10, 100);
445
446         /* Unprotect area. */
447         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
448         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
449 #ifdef DOESNT_SEEM_TO_WORK      /* disabled */
450         /* or use: */
451         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
452 #endif                          /* DOESNT_SEEM_TO_WORK */
453
454         fee_wait(ioaddr, 10, 100);
455 #endif                          /* EEPROM_IS_PROTECTED */
456
457         /* Write enable. */
458         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
459         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
460
461         fee_wait(ioaddr, 10, 100);
462
463         /* Write the EEPROM address. */
464         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
465
466         /* Loop on all buffer */
467         while (n-- > 0) {
468                 /* Write the value. */
469                 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
470                 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
471
472                 /* Write the write command. */
473                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
474                         MMW_FEE_CTRL_WRITE);
475
476                 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
477                 mdelay(10);
478                 fee_wait(ioaddr, 10, 100);
479         }
480
481         /* Write disable. */
482         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
483         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
484
485         fee_wait(ioaddr, 10, 100);
486
487 #ifdef EEPROM_IS_PROTECTED      /* disabled */
488         /* Reprotect EEPROM. */
489         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
490         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
491
492         fee_wait(ioaddr, 10, 100);
493 #endif                          /* EEPROM_IS_PROTECTED */
494 }
495
496 /************************ I82586 SUBROUTINES *************************/
497 /*
498  * Useful subroutines to manage the Ethernet controller
499  */
500
501 /*------------------------------------------------------------------*/
502 /*
503  * Read bytes from the on-board RAM.
504  * Why does inlining this function make it fail?
505  */
506 static /*inline */ void obram_read(unsigned long ioaddr,
507                                    u16 o, u8 * b, int n)
508 {
509         outw(o, PIOR1(ioaddr));
510         insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
511 }
512
513 /*------------------------------------------------------------------*/
514 /*
515  * Write bytes to the on-board RAM.
516  */
517 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
518 {
519         outw(o, PIOR1(ioaddr));
520         outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
521 }
522
523 /*------------------------------------------------------------------*/
524 /*
525  * Acknowledge the reading of the status issued by the i82586.
526  */
527 static void wv_ack(struct net_device * dev)
528 {
529         net_local *lp = (net_local *) dev->priv;
530         unsigned long ioaddr = dev->base_addr;
531         u16 scb_cs;
532         int i;
533
534         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
535                    (unsigned char *) &scb_cs, sizeof(scb_cs));
536         scb_cs &= SCB_ST_INT;
537
538         if (scb_cs == 0)
539                 return;
540
541         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
542                     (unsigned char *) &scb_cs, sizeof(scb_cs));
543
544         set_chan_attn(ioaddr, lp->hacr);
545
546         for (i = 1000; i > 0; i--) {
547                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
548                            (unsigned char *) &scb_cs, sizeof(scb_cs));
549                 if (scb_cs == 0)
550                         break;
551
552                 udelay(10);
553         }
554         udelay(100);
555
556 #ifdef DEBUG_CONFIG_ERROR
557         if (i <= 0)
558                 printk(KERN_INFO
559                        "%s: wv_ack(): board not accepting command.\n",
560                        dev->name);
561 #endif
562 }
563
564 /*------------------------------------------------------------------*/
565 /*
566  * Set channel attention bit and busy wait until command has
567  * completed, then acknowledge completion of the command.
568  */
569 static int wv_synchronous_cmd(struct net_device * dev, const char *str)
570 {
571         net_local *lp = (net_local *) dev->priv;
572         unsigned long ioaddr = dev->base_addr;
573         u16 scb_cmd;
574         ach_t cb;
575         int i;
576
577         scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
578         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
579                     (unsigned char *) &scb_cmd, sizeof(scb_cmd));
580
581         set_chan_attn(ioaddr, lp->hacr);
582
583         for (i = 1000; i > 0; i--) {
584                 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
585                            sizeof(cb));
586                 if (cb.ac_status & AC_SFLD_C)
587                         break;
588
589                 udelay(10);
590         }
591         udelay(100);
592
593         if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
594 #ifdef DEBUG_CONFIG_ERROR
595                 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
596                        dev->name, str, cb.ac_status);
597 #endif
598 #ifdef DEBUG_I82586_SHOW
599                 wv_scb_show(ioaddr);
600 #endif
601                 return -1;
602         }
603
604         /* Ack the status */
605         wv_ack(dev);
606
607         return 0;
608 }
609
610 /*------------------------------------------------------------------*/
611 /*
612  * Configuration commands completion interrupt.
613  * Check if done, and if OK.
614  */
615 static int
616 wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
617 {
618         unsigned short mcs_addr;
619         unsigned short status;
620         int ret;
621
622 #ifdef DEBUG_INTERRUPT_TRACE
623         printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
624 #endif
625
626         mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
627             + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
628
629         /* Read the status of the last command (set mc list). */
630         obram_read(ioaddr, acoff(mcs_addr, ac_status),
631                    (unsigned char *) &status, sizeof(status));
632
633         /* If not completed -> exit */
634         if ((status & AC_SFLD_C) == 0)
635                 ret = 0;        /* Not ready to be scrapped */
636         else {
637 #ifdef DEBUG_CONFIG_ERROR
638                 unsigned short cfg_addr;
639                 unsigned short ias_addr;
640
641                 /* Check mc_config command */
642                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
643                         printk(KERN_INFO
644                                "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
645                                dev->name, status);
646
647                 /* check ia-config command */
648                 ias_addr = mcs_addr - sizeof(ac_ias_t);
649                 obram_read(ioaddr, acoff(ias_addr, ac_status),
650                            (unsigned char *) &status, sizeof(status));
651                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
652                         printk(KERN_INFO
653                                "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
654                                dev->name, status);
655
656                 /* Check config command. */
657                 cfg_addr = ias_addr - sizeof(ac_cfg_t);
658                 obram_read(ioaddr, acoff(cfg_addr, ac_status),
659                            (unsigned char *) &status, sizeof(status));
660                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
661                         printk(KERN_INFO
662                                "%s: wv_config_complete(): configure failed; status = 0x%x\n",
663                                dev->name, status);
664 #endif  /* DEBUG_CONFIG_ERROR */
665
666                 ret = 1;        /* Ready to be scrapped */
667         }
668
669 #ifdef DEBUG_INTERRUPT_TRACE
670         printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
671                ret);
672 #endif
673         return ret;
674 }
675
676 /*------------------------------------------------------------------*/
677 /*
678  * Command completion interrupt.
679  * Reclaim as many freed tx buffers as we can.
680  * (called in wavelan_interrupt()).
681  * Note : the spinlock is already grabbed for us.
682  */
683 static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
684 {
685         int nreaped = 0;
686
687 #ifdef DEBUG_INTERRUPT_TRACE
688         printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
689 #endif
690
691         /* Loop on all the transmit buffers */
692         while (lp->tx_first_in_use != I82586NULL) {
693                 unsigned short tx_status;
694
695                 /* Read the first transmit buffer */
696                 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
697                            (unsigned char *) &tx_status,
698                            sizeof(tx_status));
699
700                 /* If not completed -> exit */
701                 if ((tx_status & AC_SFLD_C) == 0)
702                         break;
703
704                 /* Hack for reconfiguration */
705                 if (tx_status == 0xFFFF)
706                         if (!wv_config_complete(dev, ioaddr, lp))
707                                 break;  /* Not completed */
708
709                 /* We now remove this buffer */
710                 nreaped++;
711                 --lp->tx_n_in_use;
712
713 /*
714 if (lp->tx_n_in_use > 0)
715         printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
716 */
717
718                 /* Was it the last one? */
719                 if (lp->tx_n_in_use <= 0)
720                         lp->tx_first_in_use = I82586NULL;
721                 else {
722                         /* Next one in the chain */
723                         lp->tx_first_in_use += TXBLOCKZ;
724                         if (lp->tx_first_in_use >=
725                             OFFSET_CU +
726                             NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
727                                     NTXBLOCKS * TXBLOCKZ;
728                 }
729
730                 /* Hack for reconfiguration */
731                 if (tx_status == 0xFFFF)
732                         continue;
733
734                 /* Now, check status of the finished command */
735                 if (tx_status & AC_SFLD_OK) {
736                         int ncollisions;
737
738                         lp->stats.tx_packets++;
739                         ncollisions = tx_status & AC_SFLD_MAXCOL;
740                         lp->stats.collisions += ncollisions;
741 #ifdef DEBUG_TX_INFO
742                         if (ncollisions > 0)
743                                 printk(KERN_DEBUG
744                                        "%s: wv_complete(): tx completed after %d collisions.\n",
745                                        dev->name, ncollisions);
746 #endif
747                 } else {
748                         lp->stats.tx_errors++;
749                         if (tx_status & AC_SFLD_S10) {
750                                 lp->stats.tx_carrier_errors++;
751 #ifdef DEBUG_TX_FAIL
752                                 printk(KERN_DEBUG
753                                        "%s: wv_complete(): tx error: no CS.\n",
754                                        dev->name);
755 #endif
756                         }
757                         if (tx_status & AC_SFLD_S9) {
758                                 lp->stats.tx_carrier_errors++;
759 #ifdef DEBUG_TX_FAIL
760                                 printk(KERN_DEBUG
761                                        "%s: wv_complete(): tx error: lost CTS.\n",
762                                        dev->name);
763 #endif
764                         }
765                         if (tx_status & AC_SFLD_S8) {
766                                 lp->stats.tx_fifo_errors++;
767 #ifdef DEBUG_TX_FAIL
768                                 printk(KERN_DEBUG
769                                        "%s: wv_complete(): tx error: slow DMA.\n",
770                                        dev->name);
771 #endif
772                         }
773                         if (tx_status & AC_SFLD_S6) {
774                                 lp->stats.tx_heartbeat_errors++;
775 #ifdef DEBUG_TX_FAIL
776                                 printk(KERN_DEBUG
777                                        "%s: wv_complete(): tx error: heart beat.\n",
778                                        dev->name);
779 #endif
780                         }
781                         if (tx_status & AC_SFLD_S5) {
782                                 lp->stats.tx_aborted_errors++;
783 #ifdef DEBUG_TX_FAIL
784                                 printk(KERN_DEBUG
785                                        "%s: wv_complete(): tx error: too many collisions.\n",
786                                        dev->name);
787 #endif
788                         }
789                 }
790
791 #ifdef DEBUG_TX_INFO
792                 printk(KERN_DEBUG
793                        "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
794                        dev->name, tx_status);
795 #endif
796         }
797
798 #ifdef DEBUG_INTERRUPT_INFO
799         if (nreaped > 1)
800                 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
801                        dev->name, nreaped);
802 #endif
803
804         /*
805          * Inform upper layers.
806          */
807         if (lp->tx_n_in_use < NTXBLOCKS - 1) {
808                 netif_wake_queue(dev);
809         }
810 #ifdef DEBUG_INTERRUPT_TRACE
811         printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
812 #endif
813         return nreaped;
814 }
815
816 /*------------------------------------------------------------------*/
817 /*
818  * Reconfigure the i82586, or at least ask for it.
819  * Because wv_82586_config uses a transmission buffer, we must do it
820  * when we are sure that there is one left, so we do it now
821  * or in wavelan_packet_xmit() (I can't find any better place,
822  * wavelan_interrupt is not an option), so you may experience
823  * delays sometimes.
824  */
825 static void wv_82586_reconfig(struct net_device * dev)
826 {
827         net_local *lp = (net_local *) dev->priv;
828         unsigned long flags;
829
830         /* Arm the flag, will be cleard in wv_82586_config() */
831         lp->reconfig_82586 = 1;
832
833         /* Check if we can do it now ! */
834         if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
835                 spin_lock_irqsave(&lp->spinlock, flags);
836                 /* May fail */
837                 wv_82586_config(dev);
838                 spin_unlock_irqrestore(&lp->spinlock, flags);
839         }
840         else {
841 #ifdef DEBUG_CONFIG_INFO
842                 printk(KERN_DEBUG
843                        "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
844                                dev->name, dev->state);
845 #endif
846         }
847 }
848
849 /********************* DEBUG & INFO SUBROUTINES *********************/
850 /*
851  * This routine is used in the code to show information for debugging.
852  * Most of the time, it dumps the contents of hardware structures.
853  */
854
855 #ifdef DEBUG_PSA_SHOW
856 /*------------------------------------------------------------------*/
857 /*
858  * Print the formatted contents of the Parameter Storage Area.
859  */
860 static void wv_psa_show(psa_t * p)
861 {
862         printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
863         printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
864                p->psa_io_base_addr_1,
865                p->psa_io_base_addr_2,
866                p->psa_io_base_addr_3, p->psa_io_base_addr_4);
867         printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
868                p->psa_rem_boot_addr_1,
869                p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
870         printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
871         printk("psa_int_req_no: %d\n", p->psa_int_req_no);
872 #ifdef DEBUG_SHOW_UNUSED
873         printk(KERN_DEBUG "psa_unused0[]: %pM\n", p->psa_unused0);
874 #endif                          /* DEBUG_SHOW_UNUSED */
875         printk(KERN_DEBUG "psa_univ_mac_addr[]: %pM\n", p->psa_univ_mac_addr);
876         printk(KERN_DEBUG "psa_local_mac_addr[]: %pM\n", p->psa_local_mac_addr);
877         printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
878                p->psa_univ_local_sel);
879         printk("psa_comp_number: %d, ", p->psa_comp_number);
880         printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
881         printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
882                p->psa_feature_select);
883         printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
884         printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
885         printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
886         printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
887                p->psa_nwid[1]);
888         printk("psa_nwid_select: %d\n", p->psa_nwid_select);
889         printk(KERN_DEBUG "psa_encryption_select: %d, ",
890                p->psa_encryption_select);
891         printk
892             ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
893              p->psa_encryption_key[0], p->psa_encryption_key[1],
894              p->psa_encryption_key[2], p->psa_encryption_key[3],
895              p->psa_encryption_key[4], p->psa_encryption_key[5],
896              p->psa_encryption_key[6], p->psa_encryption_key[7]);
897         printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
898         printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
899                p->psa_call_code[0]);
900         printk
901             ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
902              p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
903              p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
904              p->psa_call_code[6], p->psa_call_code[7]);
905 #ifdef DEBUG_SHOW_UNUSED
906         printk(KERN_DEBUG "psa_reserved[]: %02X:%02X\n",
907                p->psa_reserved[0],
908                p->psa_reserved[1]);
909 #endif                          /* DEBUG_SHOW_UNUSED */
910         printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
911         printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
912         printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
913 }                               /* wv_psa_show */
914 #endif                          /* DEBUG_PSA_SHOW */
915
916 #ifdef DEBUG_MMC_SHOW
917 /*------------------------------------------------------------------*/
918 /*
919  * Print the formatted status of the Modem Management Controller.
920  * This function needs to be completed.
921  */
922 static void wv_mmc_show(struct net_device * dev)
923 {
924         unsigned long ioaddr = dev->base_addr;
925         net_local *lp = (net_local *) dev->priv;
926         mmr_t m;
927
928         /* Basic check */
929         if (hasr_read(ioaddr) & HASR_NO_CLK) {
930                 printk(KERN_WARNING
931                        "%s: wv_mmc_show: modem not connected\n",
932                        dev->name);
933                 return;
934         }
935
936         /* Read the mmc */
937         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
938         mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
939         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
940
941         /* Don't forget to update statistics */
942         lp->wstats.discard.nwid +=
943             (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
944
945         printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
946 #ifdef DEBUG_SHOW_UNUSED
947         printk(KERN_DEBUG
948                "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
949                m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
950                m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
951                m.mmr_unused0[6], m.mmr_unused0[7]);
952 #endif                          /* DEBUG_SHOW_UNUSED */
953         printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
954                m.mmr_des_avail, m.mmr_des_status);
955 #ifdef DEBUG_SHOW_UNUSED
956         printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
957                m.mmr_unused1[0],
958                m.mmr_unused1[1],
959                m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
960 #endif                          /* DEBUG_SHOW_UNUSED */
961         printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
962                m.mmr_dce_status,
963                (m.
964                 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
965                "energy detected," : "",
966                (m.
967                 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
968                "loop test indicated," : "",
969                (m.
970                 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
971                "transmitter on," : "",
972                (m.
973                 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
974                "jabber timer expired," : "");
975         printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
976 #ifdef DEBUG_SHOW_UNUSED
977         printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
978                m.mmr_unused2[0], m.mmr_unused2[1]);
979 #endif                          /* DEBUG_SHOW_UNUSED */
980         printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
981                (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
982                (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
983         printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
984                m.mmr_thr_pre_set & MMR_THR_PRE_SET,
985                (m.
986                 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
987                "below");
988         printk(KERN_DEBUG "signal_lvl: %d [%s], ",
989                m.mmr_signal_lvl & MMR_SIGNAL_LVL,
990                (m.
991                 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
992                "no new msg");
993         printk("silence_lvl: %d [%s], ",
994                m.mmr_silence_lvl & MMR_SILENCE_LVL,
995                (m.
996                 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
997                "no new update");
998         printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
999                (m.
1000                 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1001                "Antenna 0");
1002 #ifdef DEBUG_SHOW_UNUSED
1003         printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1004 #endif                          /* DEBUG_SHOW_UNUSED */
1005 }                               /* wv_mmc_show */
1006 #endif                          /* DEBUG_MMC_SHOW */
1007
1008 #ifdef DEBUG_I82586_SHOW
1009 /*------------------------------------------------------------------*/
1010 /*
1011  * Print the last block of the i82586 memory.
1012  */
1013 static void wv_scb_show(unsigned long ioaddr)
1014 {
1015         scb_t scb;
1016
1017         obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1018                    sizeof(scb));
1019
1020         printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1021
1022         printk(KERN_DEBUG "status: ");
1023         printk("stat 0x%x[%s%s%s%s] ",
1024                (scb.
1025                 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1026                               SCB_ST_RNR)) >> 12,
1027                (scb.
1028                 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1029                "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1030                (scb.
1031                 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1032                (scb.
1033                 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1034                "");
1035         printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1036                ((scb.scb_status & SCB_ST_CUS) ==
1037                 SCB_ST_CUS_IDLE) ? "idle" : "",
1038                ((scb.scb_status & SCB_ST_CUS) ==
1039                 SCB_ST_CUS_SUSP) ? "suspended" : "",
1040                ((scb.scb_status & SCB_ST_CUS) ==
1041                 SCB_ST_CUS_ACTV) ? "active" : "");
1042         printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1043                ((scb.scb_status & SCB_ST_RUS) ==
1044                 SCB_ST_RUS_IDLE) ? "idle" : "",
1045                ((scb.scb_status & SCB_ST_RUS) ==
1046                 SCB_ST_RUS_SUSP) ? "suspended" : "",
1047                ((scb.scb_status & SCB_ST_RUS) ==
1048                 SCB_ST_RUS_NRES) ? "no resources" : "",
1049                ((scb.scb_status & SCB_ST_RUS) ==
1050                 SCB_ST_RUS_RDY) ? "ready" : "");
1051
1052         printk(KERN_DEBUG "command: ");
1053         printk("ack 0x%x[%s%s%s%s] ",
1054                (scb.
1055                 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1056                                SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1057                (scb.
1058                 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1059                (scb.
1060                 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1061                (scb.
1062                 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1063                (scb.
1064                 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1065         printk("cuc 0x%x[%s%s%s%s%s] ",
1066                (scb.scb_command & SCB_CMD_CUC) >> 8,
1067                ((scb.scb_command & SCB_CMD_CUC) ==
1068                 SCB_CMD_CUC_NOP) ? "nop" : "",
1069                ((scb.scb_command & SCB_CMD_CUC) ==
1070                 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1071                ((scb.scb_command & SCB_CMD_CUC) ==
1072                 SCB_CMD_CUC_RES) ? "resume execution" : "",
1073                ((scb.scb_command & SCB_CMD_CUC) ==
1074                 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1075                ((scb.scb_command & SCB_CMD_CUC) ==
1076                 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1077         printk("ruc 0x%x[%s%s%s%s%s]\n",
1078                (scb.scb_command & SCB_CMD_RUC) >> 4,
1079                ((scb.scb_command & SCB_CMD_RUC) ==
1080                 SCB_CMD_RUC_NOP) ? "nop" : "",
1081                ((scb.scb_command & SCB_CMD_RUC) ==
1082                 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1083                ((scb.scb_command & SCB_CMD_RUC) ==
1084                 SCB_CMD_RUC_RES) ? "resume reception" : "",
1085                ((scb.scb_command & SCB_CMD_RUC) ==
1086                 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1087                ((scb.scb_command & SCB_CMD_RUC) ==
1088                 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1089
1090         printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1091         printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1092
1093         printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1094         printk("alnerrs %d ", scb.scb_alnerrs);
1095         printk("rscerrs %d ", scb.scb_rscerrs);
1096         printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1097 }
1098
1099 /*------------------------------------------------------------------*/
1100 /*
1101  * Print the formatted status of the i82586's receive unit.
1102  */
1103 static void wv_ru_show(struct net_device * dev)
1104 {
1105         /* net_local *lp = (net_local *) dev->priv; */
1106
1107         printk(KERN_DEBUG
1108                "##### WaveLAN i82586 receiver unit status: #####\n");
1109         printk(KERN_DEBUG "ru:");
1110         /*
1111          * Not implemented yet
1112          */
1113         printk("\n");
1114 }                               /* wv_ru_show */
1115
1116 /*------------------------------------------------------------------*/
1117 /*
1118  * Display info about one control block of the i82586 memory.
1119  */
1120 static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1121 {
1122         unsigned long ioaddr;
1123         ac_tx_t actx;
1124
1125         ioaddr = dev->base_addr;
1126
1127         printk("%d: 0x%x:", i, p);
1128
1129         obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1130         printk(" status=0x%x,", actx.tx_h.ac_status);
1131         printk(" command=0x%x,", actx.tx_h.ac_command);
1132
1133         /*
1134            {
1135            tbd_t      tbd;
1136
1137            obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1138            printk(" tbd_status=0x%x,", tbd.tbd_status);
1139            }
1140          */
1141
1142         printk("|");
1143 }
1144
1145 /*------------------------------------------------------------------*/
1146 /*
1147  * Print status of the command unit of the i82586.
1148  */
1149 static void wv_cu_show(struct net_device * dev)
1150 {
1151         net_local *lp = (net_local *) dev->priv;
1152         unsigned int i;
1153         u16 p;
1154
1155         printk(KERN_DEBUG
1156                "##### WaveLAN i82586 command unit status: #####\n");
1157
1158         printk(KERN_DEBUG);
1159         for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1160                 wv_cu_show_one(dev, lp, i, p);
1161
1162                 p += TXBLOCKZ;
1163                 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1164                         p -= NTXBLOCKS * TXBLOCKZ;
1165         }
1166         printk("\n");
1167 }
1168 #endif                          /* DEBUG_I82586_SHOW */
1169
1170 #ifdef DEBUG_DEVICE_SHOW
1171 /*------------------------------------------------------------------*/
1172 /*
1173  * Print the formatted status of the WaveLAN PCMCIA device driver.
1174  */
1175 static void wv_dev_show(struct net_device * dev)
1176 {
1177         printk(KERN_DEBUG "dev:");
1178         printk(" state=%lX,", dev->state);
1179         printk(" trans_start=%ld,", dev->trans_start);
1180         printk(" flags=0x%x,", dev->flags);
1181         printk("\n");
1182 }                               /* wv_dev_show */
1183
1184 /*------------------------------------------------------------------*/
1185 /*
1186  * Print the formatted status of the WaveLAN PCMCIA device driver's
1187  * private information.
1188  */
1189 static void wv_local_show(struct net_device * dev)
1190 {
1191         net_local *lp;
1192
1193         lp = (net_local *) dev->priv;
1194
1195         printk(KERN_DEBUG "local:");
1196         printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1197         printk(" hacr=0x%x,", lp->hacr);
1198         printk(" rx_head=0x%x,", lp->rx_head);
1199         printk(" rx_last=0x%x,", lp->rx_last);
1200         printk(" tx_first_free=0x%x,", lp->tx_first_free);
1201         printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1202         printk("\n");
1203 }                               /* wv_local_show */
1204 #endif                          /* DEBUG_DEVICE_SHOW */
1205
1206 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1207 /*------------------------------------------------------------------*/
1208 /*
1209  * Dump packet header (and content if necessary) on the screen
1210  */
1211 static inline void wv_packet_info(u8 * p,       /* Packet to dump */
1212                                   int length,   /* Length of the packet */
1213                                   char *msg1,   /* Name of the device */
1214                                   char *msg2)
1215 {                               /* Name of the function */
1216         int i;
1217         int maxi;
1218
1219         printk(KERN_DEBUG
1220                "%s: %s(): dest %pM, length %d\n",
1221                msg1, msg2, p, length);
1222         printk(KERN_DEBUG
1223                "%s: %s(): src %pM, type 0x%02X%02X\n",
1224                msg1, msg2, &p[6], p[12], p[13]);
1225
1226 #ifdef DEBUG_PACKET_DUMP
1227
1228         printk(KERN_DEBUG "data=\"");
1229
1230         if ((maxi = length) > DEBUG_PACKET_DUMP)
1231                 maxi = DEBUG_PACKET_DUMP;
1232         for (i = 14; i < maxi; i++)
1233                 if (p[i] >= ' ' && p[i] <= '~')
1234                         printk(" %c", p[i]);
1235                 else
1236                         printk("%02X", p[i]);
1237         if (maxi < length)
1238                 printk("..");
1239         printk("\"\n");
1240         printk(KERN_DEBUG "\n");
1241 #endif                          /* DEBUG_PACKET_DUMP */
1242 }
1243 #endif                          /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1244
1245 /*------------------------------------------------------------------*/
1246 /*
1247  * This is the information which is displayed by the driver at startup.
1248  * There are lots of flags for configuring it to your liking.
1249  */
1250 static void wv_init_info(struct net_device * dev)
1251 {
1252         short ioaddr = dev->base_addr;
1253         net_local *lp = (net_local *) dev->priv;
1254         psa_t psa;
1255
1256         /* Read the parameter storage area */
1257         psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1258
1259 #ifdef DEBUG_PSA_SHOW
1260         wv_psa_show(&psa);
1261 #endif
1262 #ifdef DEBUG_MMC_SHOW
1263         wv_mmc_show(dev);
1264 #endif
1265 #ifdef DEBUG_I82586_SHOW
1266         wv_cu_show(dev);
1267 #endif
1268
1269 #ifdef DEBUG_BASIC_SHOW
1270         /* Now, let's go for the basic stuff. */
1271         printk(KERN_NOTICE "%s: WaveLAN at %#x, %pM, IRQ %d",
1272                dev->name, ioaddr, dev->dev_addr, dev->irq);
1273
1274         /* Print current network ID. */
1275         if (psa.psa_nwid_select)
1276                 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1277                        psa.psa_nwid[1]);
1278         else
1279                 printk(", nwid off");
1280
1281         /* If 2.00 card */
1282         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1283               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1284                 unsigned short freq;
1285
1286                 /* Ask the EEPROM to read the frequency from the first area. */
1287                 fee_read(ioaddr, 0x00, &freq, 1);
1288
1289                 /* Print frequency */
1290                 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1291
1292                 /* Hack! */
1293                 if (freq & 0x20)
1294                         printk(".5");
1295         } else {
1296                 printk(", PC");
1297                 switch (psa.psa_comp_number) {
1298                 case PSA_COMP_PC_AT_915:
1299                 case PSA_COMP_PC_AT_2400:
1300                         printk("-AT");
1301                         break;
1302                 case PSA_COMP_PC_MC_915:
1303                 case PSA_COMP_PC_MC_2400:
1304                         printk("-MC");
1305                         break;
1306                 case PSA_COMP_PCMCIA_915:
1307                         printk("MCIA");
1308                         break;
1309                 default:
1310                         printk("?");
1311                 }
1312                 printk(", ");
1313                 switch (psa.psa_subband) {
1314                 case PSA_SUBBAND_915:
1315                         printk("915");
1316                         break;
1317                 case PSA_SUBBAND_2425:
1318                         printk("2425");
1319                         break;
1320                 case PSA_SUBBAND_2460:
1321                         printk("2460");
1322                         break;
1323                 case PSA_SUBBAND_2484:
1324                         printk("2484");
1325                         break;
1326                 case PSA_SUBBAND_2430_5:
1327                         printk("2430.5");
1328                         break;
1329                 default:
1330                         printk("?");
1331                 }
1332         }
1333
1334         printk(" MHz\n");
1335 #endif                          /* DEBUG_BASIC_SHOW */
1336
1337 #ifdef DEBUG_VERSION_SHOW
1338         /* Print version information */
1339         printk(KERN_NOTICE "%s", version);
1340 #endif
1341 }                               /* wv_init_info */
1342
1343 /********************* IOCTL, STATS & RECONFIG *********************/
1344 /*
1345  * We found here routines that are called by Linux on different
1346  * occasions after the configuration and not for transmitting data
1347  * These may be called when the user use ifconfig, /proc/net/dev
1348  * or wireless extensions
1349  */
1350
1351 /*------------------------------------------------------------------*/
1352 /*
1353  * Get the current Ethernet statistics. This may be called with the
1354  * card open or closed.
1355  * Used when the user read /proc/net/dev
1356  */
1357 static en_stats *wavelan_get_stats(struct net_device * dev)
1358 {
1359 #ifdef DEBUG_IOCTL_TRACE
1360         printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1361 #endif
1362
1363         return (&((net_local *) dev->priv)->stats);
1364 }
1365
1366 /*------------------------------------------------------------------*/
1367 /*
1368  * Set or clear the multicast filter for this adaptor.
1369  * num_addrs == -1      Promiscuous mode, receive all packets
1370  * num_addrs == 0       Normal mode, clear multicast list
1371  * num_addrs > 0        Multicast mode, receive normal and MC packets,
1372  *                      and do best-effort filtering.
1373  */
1374 static void wavelan_set_multicast_list(struct net_device * dev)
1375 {
1376         net_local *lp = (net_local *) dev->priv;
1377
1378 #ifdef DEBUG_IOCTL_TRACE
1379         printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1380                dev->name);
1381 #endif
1382
1383 #ifdef DEBUG_IOCTL_INFO
1384         printk(KERN_DEBUG
1385                "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1386                dev->name, dev->flags, dev->mc_count);
1387 #endif
1388
1389         /* Are we asking for promiscuous mode,
1390          * or all multicast addresses (we don't have that!)
1391          * or too many multicast addresses for the hardware filter? */
1392         if ((dev->flags & IFF_PROMISC) ||
1393             (dev->flags & IFF_ALLMULTI) ||
1394             (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1395                 /*
1396                  * Enable promiscuous mode: receive all packets.
1397                  */
1398                 if (!lp->promiscuous) {
1399                         lp->promiscuous = 1;
1400                         lp->mc_count = 0;
1401
1402                         wv_82586_reconfig(dev);
1403                 }
1404         } else
1405                 /* Are there multicast addresses to send? */
1406         if (dev->mc_list != (struct dev_mc_list *) NULL) {
1407                 /*
1408                  * Disable promiscuous mode, but receive all packets
1409                  * in multicast list
1410                  */
1411 #ifdef MULTICAST_AVOID
1412                 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1413 #endif
1414                 {
1415                         lp->promiscuous = 0;
1416                         lp->mc_count = dev->mc_count;
1417
1418                         wv_82586_reconfig(dev);
1419                 }
1420         } else {
1421                 /*
1422                  * Switch to normal mode: disable promiscuous mode and 
1423                  * clear the multicast list.
1424                  */
1425                 if (lp->promiscuous || lp->mc_count == 0) {
1426                         lp->promiscuous = 0;
1427                         lp->mc_count = 0;
1428
1429                         wv_82586_reconfig(dev);
1430                 }
1431         }
1432 #ifdef DEBUG_IOCTL_TRACE
1433         printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1434                dev->name);
1435 #endif
1436 }
1437
1438 /*------------------------------------------------------------------*/
1439 /*
1440  * This function doesn't exist.
1441  * (Note : it was a nice way to test the reconfigure stuff...)
1442  */
1443 #ifdef SET_MAC_ADDRESS
1444 static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1445 {
1446         struct sockaddr *mac = addr;
1447
1448         /* Copy the address. */
1449         memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1450
1451         /* Reconfigure the beast. */
1452         wv_82586_reconfig(dev);
1453
1454         return 0;
1455 }
1456 #endif                          /* SET_MAC_ADDRESS */
1457
1458
1459 /*------------------------------------------------------------------*/
1460 /*
1461  * Frequency setting (for hardware capable of it)
1462  * It's a bit complicated and you don't really want to look into it.
1463  * (called in wavelan_ioctl)
1464  */
1465 static int wv_set_frequency(unsigned long ioaddr,       /* I/O port of the card */
1466                                    iw_freq * frequency)
1467 {
1468         const int BAND_NUM = 10;        /* Number of bands */
1469         long freq = 0L;         /* offset to 2.4 GHz in .5 MHz */
1470 #ifdef DEBUG_IOCTL_INFO
1471         int i;
1472 #endif
1473
1474         /* Setting by frequency */
1475         /* Theoretically, you may set any frequency between
1476          * the two limits with a 0.5 MHz precision. In practice,
1477          * I don't want you to have trouble with local regulations.
1478          */
1479         if ((frequency->e == 1) &&
1480             (frequency->m >= (int) 2.412e8)
1481             && (frequency->m <= (int) 2.487e8)) {
1482                 freq = ((frequency->m / 10000) - 24000L) / 5;
1483         }
1484
1485         /* Setting by channel (same as wfreqsel) */
1486         /* Warning: each channel is 22 MHz wide, so some of the channels
1487          * will interfere. */
1488         if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1489                 /* Get frequency offset. */
1490                 freq = channel_bands[frequency->m] >> 1;
1491         }
1492
1493         /* Verify that the frequency is allowed. */
1494         if (freq != 0L) {
1495                 u16 table[10];  /* Authorized frequency table */
1496
1497                 /* Read the frequency table. */
1498                 fee_read(ioaddr, 0x71, table, 10);
1499
1500 #ifdef DEBUG_IOCTL_INFO
1501                 printk(KERN_DEBUG "Frequency table: ");
1502                 for (i = 0; i < 10; i++) {
1503                         printk(" %04X", table[i]);
1504                 }
1505                 printk("\n");
1506 #endif
1507
1508                 /* Look in the table to see whether the frequency is allowed. */
1509                 if (!(table[9 - ((freq - 24) / 16)] &
1510                       (1 << ((freq - 24) % 16)))) return -EINVAL;       /* not allowed */
1511         } else
1512                 return -EINVAL;
1513
1514         /* if we get a usable frequency */
1515         if (freq != 0L) {
1516                 unsigned short area[16];
1517                 unsigned short dac[2];
1518                 unsigned short area_verify[16];
1519                 unsigned short dac_verify[2];
1520                 /* Corresponding gain (in the power adjust value table)
1521                  * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1522                  * and WCIN062D.DOC, page 6.2.9. */
1523                 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1524                 int power_band = 0;     /* Selected band */
1525                 unsigned short power_adjust;    /* Correct value */
1526
1527                 /* Search for the gain. */
1528                 power_band = 0;
1529                 while ((freq > power_limit[power_band]) &&
1530                        (power_limit[++power_band] != 0));
1531
1532                 /* Read the first area. */
1533                 fee_read(ioaddr, 0x00, area, 16);
1534
1535                 /* Read the DAC. */
1536                 fee_read(ioaddr, 0x60, dac, 2);
1537
1538                 /* Read the new power adjust value. */
1539                 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1540                          1);
1541                 if (power_band & 0x1)
1542                         power_adjust >>= 8;
1543                 else
1544                         power_adjust &= 0xFF;
1545
1546 #ifdef DEBUG_IOCTL_INFO
1547                 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1548                 for (i = 0; i < 16; i++) {
1549                         printk(" %04X", area[i]);
1550                 }
1551                 printk("\n");
1552
1553                 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1554                        dac[0], dac[1]);
1555 #endif
1556
1557                 /* Frequency offset (for info only) */
1558                 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1559
1560                 /* Receiver Principle main divider coefficient */
1561                 area[3] = (freq >> 1) + 2400L - 352L;
1562                 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1563
1564                 /* Transmitter Main divider coefficient */
1565                 area[13] = (freq >> 1) + 2400L;
1566                 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1567
1568                 /* Other parts of the area are flags, bit streams or unused. */
1569
1570                 /* Set the value in the DAC. */
1571                 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1572                 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1573
1574                 /* Write the first area. */
1575                 fee_write(ioaddr, 0x00, area, 16);
1576
1577                 /* Write the DAC. */
1578                 fee_write(ioaddr, 0x60, dac, 2);
1579
1580                 /* We now should verify here that the writing of the EEPROM went OK. */
1581
1582                 /* Reread the first area. */
1583                 fee_read(ioaddr, 0x00, area_verify, 16);
1584
1585                 /* Reread the DAC. */
1586                 fee_read(ioaddr, 0x60, dac_verify, 2);
1587
1588                 /* Compare. */
1589                 if (memcmp(area, area_verify, 16 * 2) ||
1590                     memcmp(dac, dac_verify, 2 * 2)) {
1591 #ifdef DEBUG_IOCTL_ERROR
1592                         printk(KERN_INFO
1593                                "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1594 #endif
1595                         return -EOPNOTSUPP;
1596                 }
1597
1598                 /* We must download the frequency parameters to the
1599                  * synthesizers (from the EEPROM - area 1)
1600                  * Note: as the EEPROM is automatically decremented, we set the end
1601                  * if the area... */
1602                 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1603                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1604                         MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1605
1606                 /* Wait until the download is finished. */
1607                 fee_wait(ioaddr, 100, 100);
1608
1609                 /* We must now download the power adjust value (gain) to
1610                  * the synthesizers (from the EEPROM - area 7 - DAC). */
1611                 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1612                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1613                         MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1614
1615                 /* Wait for the download to finish. */
1616                 fee_wait(ioaddr, 100, 100);
1617
1618 #ifdef DEBUG_IOCTL_INFO
1619                 /* Verification of what we have done */
1620
1621                 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1622                 for (i = 0; i < 16; i++) {
1623                         printk(" %04X", area_verify[i]);
1624                 }
1625                 printk("\n");
1626
1627                 printk(KERN_DEBUG "WaveLAN EEPROM DAC:  %04X %04X\n",
1628                        dac_verify[0], dac_verify[1]);
1629 #endif
1630
1631                 return 0;
1632         } else
1633                 return -EINVAL; /* Bah, never get there... */
1634 }
1635
1636 /*------------------------------------------------------------------*/
1637 /*
1638  * Give the list of available frequencies.
1639  */
1640 static int wv_frequency_list(unsigned long ioaddr,      /* I/O port of the card */
1641                                     iw_freq * list,     /* List of frequencies to fill */
1642                                     int max)
1643 {                               /* Maximum number of frequencies */
1644         u16 table[10];  /* Authorized frequency table */
1645         long freq = 0L;         /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1646         int i;                  /* index in the table */
1647         int c = 0;              /* Channel number */
1648
1649         /* Read the frequency table. */
1650         fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1651
1652         /* Check all frequencies. */
1653         i = 0;
1654         for (freq = 0; freq < 150; freq++)
1655                 /* Look in the table if the frequency is allowed */
1656                 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1657                         /* Compute approximate channel number */
1658                         while ((c < ARRAY_SIZE(channel_bands)) &&
1659                                 (((channel_bands[c] >> 1) - 24) < freq)) 
1660                                 c++;
1661                         list[i].i = c;  /* Set the list index */
1662
1663                         /* put in the list */
1664                         list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1665                         list[i++].e = 1;
1666
1667                         /* Check number. */
1668                         if (i >= max)
1669                                 return (i);
1670                 }
1671
1672         return (i);
1673 }
1674
1675 #ifdef IW_WIRELESS_SPY
1676 /*------------------------------------------------------------------*/
1677 /*
1678  * Gather wireless spy statistics:  for each packet, compare the source
1679  * address with our list, and if they match, get the statistics.
1680  * Sorry, but this function really needs the wireless extensions.
1681  */
1682 static inline void wl_spy_gather(struct net_device * dev,
1683                                  u8 *   mac,    /* MAC address */
1684                                  u8 *   stats)  /* Statistics to gather */
1685 {
1686         struct iw_quality wstats;
1687
1688         wstats.qual = stats[2] & MMR_SGNL_QUAL;
1689         wstats.level = stats[0] & MMR_SIGNAL_LVL;
1690         wstats.noise = stats[1] & MMR_SILENCE_LVL;
1691         wstats.updated = 0x7;
1692
1693         /* Update spy records */
1694         wireless_spy_update(dev, mac, &wstats);
1695 }
1696 #endif /* IW_WIRELESS_SPY */
1697
1698 #ifdef HISTOGRAM
1699 /*------------------------------------------------------------------*/
1700 /*
1701  * This function calculates a histogram of the signal level.
1702  * As the noise is quite constant, it's like doing it on the SNR.
1703  * We have defined a set of interval (lp->his_range), and each time
1704  * the level goes in that interval, we increment the count (lp->his_sum).
1705  * With this histogram you may detect if one WaveLAN is really weak,
1706  * or you may also calculate the mean and standard deviation of the level.
1707  */
1708 static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1709 {                               /* Statistics to gather */
1710         net_local *lp = (net_local *) dev->priv;
1711         u8 level = stats[0] & MMR_SIGNAL_LVL;
1712         int i;
1713
1714         /* Find the correct interval. */
1715         i = 0;
1716         while ((i < (lp->his_number - 1))
1717                && (level >= lp->his_range[i++]));
1718
1719         /* Increment interval counter. */
1720         (lp->his_sum[i])++;
1721 }
1722 #endif /* HISTOGRAM */
1723
1724 /*------------------------------------------------------------------*/
1725 /*
1726  * Wireless Handler : get protocol name
1727  */
1728 static int wavelan_get_name(struct net_device *dev,
1729                             struct iw_request_info *info,
1730                             union iwreq_data *wrqu,
1731                             char *extra)
1732 {
1733         strcpy(wrqu->name, "WaveLAN");
1734         return 0;
1735 }
1736
1737 /*------------------------------------------------------------------*/
1738 /*
1739  * Wireless Handler : set NWID
1740  */
1741 static int wavelan_set_nwid(struct net_device *dev,
1742                             struct iw_request_info *info,
1743                             union iwreq_data *wrqu,
1744                             char *extra)
1745 {
1746         unsigned long ioaddr = dev->base_addr;
1747         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1748         psa_t psa;
1749         mm_t m;
1750         unsigned long flags;
1751         int ret = 0;
1752
1753         /* Disable interrupts and save flags. */
1754         spin_lock_irqsave(&lp->spinlock, flags);
1755         
1756         /* Set NWID in WaveLAN. */
1757         if (!wrqu->nwid.disabled) {
1758                 /* Set NWID in psa */
1759                 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1760                 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1761                 psa.psa_nwid_select = 0x01;
1762                 psa_write(ioaddr, lp->hacr,
1763                           (char *) psa.psa_nwid - (char *) &psa,
1764                           (unsigned char *) psa.psa_nwid, 3);
1765
1766                 /* Set NWID in mmc. */
1767                 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1768                 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1769                 mmc_write(ioaddr,
1770                           (char *) &m.w.mmw_netw_id_l -
1771                           (char *) &m,
1772                           (unsigned char *) &m.w.mmw_netw_id_l, 2);
1773                 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1774         } else {
1775                 /* Disable NWID in the psa. */
1776                 psa.psa_nwid_select = 0x00;
1777                 psa_write(ioaddr, lp->hacr,
1778                           (char *) &psa.psa_nwid_select -
1779                           (char *) &psa,
1780                           (unsigned char *) &psa.psa_nwid_select,
1781                           1);
1782
1783                 /* Disable NWID in the mmc (no filtering). */
1784                 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1785                         MMW_LOOPT_SEL_DIS_NWID);
1786         }
1787         /* update the Wavelan checksum */
1788         update_psa_checksum(dev, ioaddr, lp->hacr);
1789
1790         /* Enable interrupts and restore flags. */
1791         spin_unlock_irqrestore(&lp->spinlock, flags);
1792
1793         return ret;
1794 }
1795
1796 /*------------------------------------------------------------------*/
1797 /*
1798  * Wireless Handler : get NWID 
1799  */
1800 static int wavelan_get_nwid(struct net_device *dev,
1801                             struct iw_request_info *info,
1802                             union iwreq_data *wrqu,
1803                             char *extra)
1804 {
1805         unsigned long ioaddr = dev->base_addr;
1806         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1807         psa_t psa;
1808         unsigned long flags;
1809         int ret = 0;
1810
1811         /* Disable interrupts and save flags. */
1812         spin_lock_irqsave(&lp->spinlock, flags);
1813         
1814         /* Read the NWID. */
1815         psa_read(ioaddr, lp->hacr,
1816                  (char *) psa.psa_nwid - (char *) &psa,
1817                  (unsigned char *) psa.psa_nwid, 3);
1818         wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1819         wrqu->nwid.disabled = !(psa.psa_nwid_select);
1820         wrqu->nwid.fixed = 1;   /* Superfluous */
1821
1822         /* Enable interrupts and restore flags. */
1823         spin_unlock_irqrestore(&lp->spinlock, flags);
1824
1825         return ret;
1826 }
1827
1828 /*------------------------------------------------------------------*/
1829 /*
1830  * Wireless Handler : set frequency
1831  */
1832 static int wavelan_set_freq(struct net_device *dev,
1833                             struct iw_request_info *info,
1834                             union iwreq_data *wrqu,
1835                             char *extra)
1836 {
1837         unsigned long ioaddr = dev->base_addr;
1838         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1839         unsigned long flags;
1840         int ret;
1841
1842         /* Disable interrupts and save flags. */
1843         spin_lock_irqsave(&lp->spinlock, flags);
1844         
1845         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1846         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1847               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1848                 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1849         else
1850                 ret = -EOPNOTSUPP;
1851
1852         /* Enable interrupts and restore flags. */
1853         spin_unlock_irqrestore(&lp->spinlock, flags);
1854
1855         return ret;
1856 }
1857
1858 /*------------------------------------------------------------------*/
1859 /*
1860  * Wireless Handler : get frequency
1861  */
1862 static int wavelan_get_freq(struct net_device *dev,
1863                             struct iw_request_info *info,
1864                             union iwreq_data *wrqu,
1865                             char *extra)
1866 {
1867         unsigned long ioaddr = dev->base_addr;
1868         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1869         psa_t psa;
1870         unsigned long flags;
1871         int ret = 0;
1872
1873         /* Disable interrupts and save flags. */
1874         spin_lock_irqsave(&lp->spinlock, flags);
1875         
1876         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1877          * Does it work for everybody, especially old cards? */
1878         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1879               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1880                 unsigned short freq;
1881
1882                 /* Ask the EEPROM to read the frequency from the first area. */
1883                 fee_read(ioaddr, 0x00, &freq, 1);
1884                 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1885                 wrqu->freq.e = 1;
1886         } else {
1887                 psa_read(ioaddr, lp->hacr,
1888                          (char *) &psa.psa_subband - (char *) &psa,
1889                          (unsigned char *) &psa.psa_subband, 1);
1890
1891                 if (psa.psa_subband <= 4) {
1892                         wrqu->freq.m = fixed_bands[psa.psa_subband];
1893                         wrqu->freq.e = (psa.psa_subband != 0);
1894                 } else
1895                         ret = -EOPNOTSUPP;
1896         }
1897
1898         /* Enable interrupts and restore flags. */
1899         spin_unlock_irqrestore(&lp->spinlock, flags);
1900
1901         return ret;
1902 }
1903
1904 /*------------------------------------------------------------------*/
1905 /*
1906  * Wireless Handler : set level threshold
1907  */
1908 static int wavelan_set_sens(struct net_device *dev,
1909                             struct iw_request_info *info,
1910                             union iwreq_data *wrqu,
1911                             char *extra)
1912 {
1913         unsigned long ioaddr = dev->base_addr;
1914         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1915         psa_t psa;
1916         unsigned long flags;
1917         int ret = 0;
1918
1919         /* Disable interrupts and save flags. */
1920         spin_lock_irqsave(&lp->spinlock, flags);
1921         
1922         /* Set the level threshold. */
1923         /* We should complain loudly if wrqu->sens.fixed = 0, because we
1924          * can't set auto mode... */
1925         psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1926         psa_write(ioaddr, lp->hacr,
1927                   (char *) &psa.psa_thr_pre_set - (char *) &psa,
1928                   (unsigned char *) &psa.psa_thr_pre_set, 1);
1929         /* update the Wavelan checksum */
1930         update_psa_checksum(dev, ioaddr, lp->hacr);
1931         mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1932                 psa.psa_thr_pre_set);
1933
1934         /* Enable interrupts and restore flags. */
1935         spin_unlock_irqrestore(&lp->spinlock, flags);
1936
1937         return ret;
1938 }
1939
1940 /*------------------------------------------------------------------*/
1941 /*
1942  * Wireless Handler : get level threshold
1943  */
1944 static int wavelan_get_sens(struct net_device *dev,
1945                             struct iw_request_info *info,
1946                             union iwreq_data *wrqu,
1947                             char *extra)
1948 {
1949         unsigned long ioaddr = dev->base_addr;
1950         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1951         psa_t psa;
1952         unsigned long flags;
1953         int ret = 0;
1954
1955         /* Disable interrupts and save flags. */
1956         spin_lock_irqsave(&lp->spinlock, flags);
1957         
1958         /* Read the level threshold. */
1959         psa_read(ioaddr, lp->hacr,
1960                  (char *) &psa.psa_thr_pre_set - (char *) &psa,
1961                  (unsigned char *) &psa.psa_thr_pre_set, 1);
1962         wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
1963         wrqu->sens.fixed = 1;
1964
1965         /* Enable interrupts and restore flags. */
1966         spin_unlock_irqrestore(&lp->spinlock, flags);
1967
1968         return ret;
1969 }
1970
1971 /*------------------------------------------------------------------*/
1972 /*
1973  * Wireless Handler : set encryption key
1974  */
1975 static int wavelan_set_encode(struct net_device *dev,
1976                               struct iw_request_info *info,
1977                               union iwreq_data *wrqu,
1978                               char *extra)
1979 {
1980         unsigned long ioaddr = dev->base_addr;
1981         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
1982         unsigned long flags;
1983         psa_t psa;
1984         int ret = 0;
1985
1986         /* Disable interrupts and save flags. */
1987         spin_lock_irqsave(&lp->spinlock, flags);
1988
1989         /* Check if capable of encryption */
1990         if (!mmc_encr(ioaddr)) {
1991                 ret = -EOPNOTSUPP;
1992         }
1993
1994         /* Check the size of the key */
1995         if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
1996                 ret = -EINVAL;
1997         }
1998
1999         if(!ret) {
2000                 /* Basic checking... */
2001                 if (wrqu->encoding.length == 8) {
2002                         /* Copy the key in the driver */
2003                         memcpy(psa.psa_encryption_key, extra,
2004                                wrqu->encoding.length);
2005                         psa.psa_encryption_select = 1;
2006
2007                         psa_write(ioaddr, lp->hacr,
2008                                   (char *) &psa.psa_encryption_select -
2009                                   (char *) &psa,
2010                                   (unsigned char *) &psa.
2011                                   psa_encryption_select, 8 + 1);
2012
2013                         mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
2014                                 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2015                         mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2016                                   (unsigned char *) &psa.
2017                                   psa_encryption_key, 8);
2018                 }
2019
2020                 /* disable encryption */
2021                 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2022                         psa.psa_encryption_select = 0;
2023                         psa_write(ioaddr, lp->hacr,
2024                                   (char *) &psa.psa_encryption_select -
2025                                   (char *) &psa,
2026                                   (unsigned char *) &psa.
2027                                   psa_encryption_select, 1);
2028
2029                         mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2030                 }
2031                 /* update the Wavelan checksum */
2032                 update_psa_checksum(dev, ioaddr, lp->hacr);
2033         }
2034
2035         /* Enable interrupts and restore flags. */
2036         spin_unlock_irqrestore(&lp->spinlock, flags);
2037
2038         return ret;
2039 }
2040
2041 /*------------------------------------------------------------------*/
2042 /*
2043  * Wireless Handler : get encryption key
2044  */
2045 static int wavelan_get_encode(struct net_device *dev,
2046                               struct iw_request_info *info,
2047                               union iwreq_data *wrqu,
2048                               char *extra)
2049 {
2050         unsigned long ioaddr = dev->base_addr;
2051         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2052         psa_t psa;
2053         unsigned long flags;
2054         int ret = 0;
2055
2056         /* Disable interrupts and save flags. */
2057         spin_lock_irqsave(&lp->spinlock, flags);
2058         
2059         /* Check if encryption is available */
2060         if (!mmc_encr(ioaddr)) {
2061                 ret = -EOPNOTSUPP;
2062         } else {
2063                 /* Read the encryption key */
2064                 psa_read(ioaddr, lp->hacr,
2065                          (char *) &psa.psa_encryption_select -
2066                          (char *) &psa,
2067                          (unsigned char *) &psa.
2068                          psa_encryption_select, 1 + 8);
2069
2070                 /* encryption is enabled ? */
2071                 if (psa.psa_encryption_select)
2072                         wrqu->encoding.flags = IW_ENCODE_ENABLED;
2073                 else
2074                         wrqu->encoding.flags = IW_ENCODE_DISABLED;
2075                 wrqu->encoding.flags |= mmc_encr(ioaddr);
2076
2077                 /* Copy the key to the user buffer */
2078                 wrqu->encoding.length = 8;
2079                 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2080         }
2081
2082         /* Enable interrupts and restore flags. */
2083         spin_unlock_irqrestore(&lp->spinlock, flags);
2084
2085         return ret;
2086 }
2087
2088 /*------------------------------------------------------------------*/
2089 /*
2090  * Wireless Handler : get range info
2091  */
2092 static int wavelan_get_range(struct net_device *dev,
2093                              struct iw_request_info *info,
2094                              union iwreq_data *wrqu,
2095                              char *extra)
2096 {
2097         unsigned long ioaddr = dev->base_addr;
2098         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2099         struct iw_range *range = (struct iw_range *) extra;
2100         unsigned long flags;
2101         int ret = 0;
2102
2103         /* Set the length (very important for backward compatibility) */
2104         wrqu->data.length = sizeof(struct iw_range);
2105
2106         /* Set all the info we don't care or don't know about to zero */
2107         memset(range, 0, sizeof(struct iw_range));
2108
2109         /* Set the Wireless Extension versions */
2110         range->we_version_compiled = WIRELESS_EXT;
2111         range->we_version_source = 9;
2112
2113         /* Set information in the range struct.  */
2114         range->throughput = 1.6 * 1000 * 1000;  /* don't argue on this ! */
2115         range->min_nwid = 0x0000;
2116         range->max_nwid = 0xFFFF;
2117
2118         range->sensitivity = 0x3F;
2119         range->max_qual.qual = MMR_SGNL_QUAL;
2120         range->max_qual.level = MMR_SIGNAL_LVL;
2121         range->max_qual.noise = MMR_SILENCE_LVL;
2122         range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2123         /* Need to get better values for those two */
2124         range->avg_qual.level = 30;
2125         range->avg_qual.noise = 8;
2126
2127         range->num_bitrates = 1;
2128         range->bitrate[0] = 2000000;    /* 2 Mb/s */
2129
2130         /* Event capability (kernel + driver) */
2131         range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2132                                 IW_EVENT_CAPA_MASK(0x8B04));
2133         range->event_capa[1] = IW_EVENT_CAPA_K_1;
2134
2135         /* Disable interrupts and save flags. */
2136         spin_lock_irqsave(&lp->spinlock, flags);
2137         
2138         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2139         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2140               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2141                 range->num_channels = 10;
2142                 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2143                                                         IW_MAX_FREQUENCIES);
2144         } else
2145                 range->num_channels = range->num_frequency = 0;
2146
2147         /* Encryption supported ? */
2148         if (mmc_encr(ioaddr)) {
2149                 range->encoding_size[0] = 8;    /* DES = 64 bits key */
2150                 range->num_encoding_sizes = 1;
2151                 range->max_encoding_tokens = 1; /* Only one key possible */
2152         } else {
2153                 range->num_encoding_sizes = 0;
2154                 range->max_encoding_tokens = 0;
2155         }
2156
2157         /* Enable interrupts and restore flags. */
2158         spin_unlock_irqrestore(&lp->spinlock, flags);
2159
2160         return ret;
2161 }
2162
2163 /*------------------------------------------------------------------*/
2164 /*
2165  * Wireless Private Handler : set quality threshold
2166  */
2167 static int wavelan_set_qthr(struct net_device *dev,
2168                             struct iw_request_info *info,
2169                             union iwreq_data *wrqu,
2170                             char *extra)
2171 {
2172         unsigned long ioaddr = dev->base_addr;
2173         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2174         psa_t psa;
2175         unsigned long flags;
2176
2177         /* Disable interrupts and save flags. */
2178         spin_lock_irqsave(&lp->spinlock, flags);
2179         
2180         psa.psa_quality_thr = *(extra) & 0x0F;
2181         psa_write(ioaddr, lp->hacr,
2182                   (char *) &psa.psa_quality_thr - (char *) &psa,
2183                   (unsigned char *) &psa.psa_quality_thr, 1);
2184         /* update the Wavelan checksum */
2185         update_psa_checksum(dev, ioaddr, lp->hacr);
2186         mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2187                 psa.psa_quality_thr);
2188
2189         /* Enable interrupts and restore flags. */
2190         spin_unlock_irqrestore(&lp->spinlock, flags);
2191
2192         return 0;
2193 }
2194
2195 /*------------------------------------------------------------------*/
2196 /*
2197  * Wireless Private Handler : get quality threshold
2198  */
2199 static int wavelan_get_qthr(struct net_device *dev,
2200                             struct iw_request_info *info,
2201                             union iwreq_data *wrqu,
2202                             char *extra)
2203 {
2204         unsigned long ioaddr = dev->base_addr;
2205         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2206         psa_t psa;
2207         unsigned long flags;
2208
2209         /* Disable interrupts and save flags. */
2210         spin_lock_irqsave(&lp->spinlock, flags);
2211         
2212         psa_read(ioaddr, lp->hacr,
2213                  (char *) &psa.psa_quality_thr - (char *) &psa,
2214                  (unsigned char *) &psa.psa_quality_thr, 1);
2215         *(extra) = psa.psa_quality_thr & 0x0F;
2216
2217         /* Enable interrupts and restore flags. */
2218         spin_unlock_irqrestore(&lp->spinlock, flags);
2219
2220         return 0;
2221 }
2222
2223 #ifdef HISTOGRAM
2224 /*------------------------------------------------------------------*/
2225 /*
2226  * Wireless Private Handler : set histogram
2227  */
2228 static int wavelan_set_histo(struct net_device *dev,
2229                              struct iw_request_info *info,
2230                              union iwreq_data *wrqu,
2231                              char *extra)
2232 {
2233         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2234
2235         /* Check the number of intervals. */
2236         if (wrqu->data.length > 16) {
2237                 return(-E2BIG);
2238         }
2239
2240         /* Disable histo while we copy the addresses.
2241          * As we don't disable interrupts, we need to do this */
2242         lp->his_number = 0;
2243
2244         /* Are there ranges to copy? */
2245         if (wrqu->data.length > 0) {
2246                 /* Copy interval ranges to the driver */
2247                 memcpy(lp->his_range, extra, wrqu->data.length);
2248
2249                 {
2250                   int i;
2251                   printk(KERN_DEBUG "Histo :");
2252                   for(i = 0; i < wrqu->data.length; i++)
2253                     printk(" %d", lp->his_range[i]);
2254                   printk("\n");
2255                 }
2256
2257                 /* Reset result structure. */
2258                 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2259         }
2260
2261         /* Now we can set the number of ranges */
2262         lp->his_number = wrqu->data.length;
2263
2264         return(0);
2265 }
2266
2267 /*------------------------------------------------------------------*/
2268 /*
2269  * Wireless Private Handler : get histogram
2270  */
2271 static int wavelan_get_histo(struct net_device *dev,
2272                              struct iw_request_info *info,
2273                              union iwreq_data *wrqu,
2274                              char *extra)
2275 {
2276         net_local *lp = (net_local *) dev->priv;        /* lp is not unused */
2277
2278         /* Set the number of intervals. */
2279         wrqu->data.length = lp->his_number;
2280
2281         /* Give back the distribution statistics */
2282         if(lp->his_number > 0)
2283                 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2284
2285         return(0);
2286 }
2287 #endif                  /* HISTOGRAM */
2288
2289 /*------------------------------------------------------------------*/
2290 /*
2291  * Structures to export the Wireless Handlers
2292  */
2293
2294 static const iw_handler         wavelan_handler[] =
2295 {
2296         NULL,                           /* SIOCSIWNAME */
2297         wavelan_get_name,               /* SIOCGIWNAME */
2298         wavelan_set_nwid,               /* SIOCSIWNWID */
2299         wavelan_get_nwid,               /* SIOCGIWNWID */
2300         wavelan_set_freq,               /* SIOCSIWFREQ */
2301         wavelan_get_freq,               /* SIOCGIWFREQ */
2302         NULL,                           /* SIOCSIWMODE */
2303         NULL,                           /* SIOCGIWMODE */
2304         wavelan_set_sens,               /* SIOCSIWSENS */
2305         wavelan_get_sens,               /* SIOCGIWSENS */
2306         NULL,                           /* SIOCSIWRANGE */
2307         wavelan_get_range,              /* SIOCGIWRANGE */
2308         NULL,                           /* SIOCSIWPRIV */
2309         NULL,                           /* SIOCGIWPRIV */
2310         NULL,                           /* SIOCSIWSTATS */
2311         NULL,                           /* SIOCGIWSTATS */
2312         iw_handler_set_spy,             /* SIOCSIWSPY */
2313         iw_handler_get_spy,             /* SIOCGIWSPY */
2314         iw_handler_set_thrspy,          /* SIOCSIWTHRSPY */
2315         iw_handler_get_thrspy,          /* SIOCGIWTHRSPY */
2316         NULL,                           /* SIOCSIWAP */
2317         NULL,                           /* SIOCGIWAP */
2318         NULL,                           /* -- hole -- */
2319         NULL,                           /* SIOCGIWAPLIST */
2320         NULL,                           /* -- hole -- */
2321         NULL,                           /* -- hole -- */
2322         NULL,                           /* SIOCSIWESSID */
2323         NULL,                           /* SIOCGIWESSID */
2324         NULL,                           /* SIOCSIWNICKN */
2325         NULL,                           /* SIOCGIWNICKN */
2326         NULL,                           /* -- hole -- */
2327         NULL,                           /* -- hole -- */
2328         NULL,                           /* SIOCSIWRATE */
2329         NULL,                           /* SIOCGIWRATE */
2330         NULL,                           /* SIOCSIWRTS */
2331         NULL,                           /* SIOCGIWRTS */
2332         NULL,                           /* SIOCSIWFRAG */
2333         NULL,                           /* SIOCGIWFRAG */
2334         NULL,                           /* SIOCSIWTXPOW */
2335         NULL,                           /* SIOCGIWTXPOW */
2336         NULL,                           /* SIOCSIWRETRY */
2337         NULL,                           /* SIOCGIWRETRY */
2338         /* Bummer ! Why those are only at the end ??? */
2339         wavelan_set_encode,             /* SIOCSIWENCODE */
2340         wavelan_get_encode,             /* SIOCGIWENCODE */
2341 };
2342
2343 static const iw_handler         wavelan_private_handler[] =
2344 {
2345         wavelan_set_qthr,               /* SIOCIWFIRSTPRIV */
2346         wavelan_get_qthr,               /* SIOCIWFIRSTPRIV + 1 */
2347 #ifdef HISTOGRAM
2348         wavelan_set_histo,              /* SIOCIWFIRSTPRIV + 2 */
2349         wavelan_get_histo,              /* SIOCIWFIRSTPRIV + 3 */
2350 #endif  /* HISTOGRAM */
2351 };
2352
2353 static const struct iw_priv_args wavelan_private_args[] = {
2354 /*{ cmd,         set_args,                            get_args, name } */
2355   { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2356   { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2357   { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16,                    0, "sethisto" },
2358   { SIOCGIPHISTO, 0,                     IW_PRIV_TYPE_INT | 16, "gethisto" },
2359 };
2360
2361 static const struct iw_handler_def      wavelan_handler_def =
2362 {
2363         .num_standard   = ARRAY_SIZE(wavelan_handler),
2364         .num_private    = ARRAY_SIZE(wavelan_private_handler),
2365         .num_private_args = ARRAY_SIZE(wavelan_private_args),
2366         .standard       = wavelan_handler,
2367         .private        = wavelan_private_handler,
2368         .private_args   = wavelan_private_args,
2369         .get_wireless_stats = wavelan_get_wireless_stats,
2370 };
2371
2372 /*------------------------------------------------------------------*/
2373 /*
2374  * Get wireless statistics.
2375  * Called by /proc/net/wireless
2376  */
2377 static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2378 {
2379         unsigned long ioaddr = dev->base_addr;
2380         net_local *lp = (net_local *) dev->priv;
2381         mmr_t m;
2382         iw_stats *wstats;
2383         unsigned long flags;
2384
2385 #ifdef DEBUG_IOCTL_TRACE
2386         printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2387                dev->name);
2388 #endif
2389
2390         /* Check */
2391         if (lp == (net_local *) NULL)
2392                 return (iw_stats *) NULL;
2393         
2394         /* Disable interrupts and save flags. */
2395         spin_lock_irqsave(&lp->spinlock, flags);
2396         
2397         wstats = &lp->wstats;
2398
2399         /* Get data from the mmc. */
2400         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2401
2402         mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2403         mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2404                  2);
2405         mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2406                  4);
2407
2408         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2409
2410         /* Copy data to wireless stuff. */
2411         wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2412         wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2413         wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2414         wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2415         wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) 
2416                         | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) 
2417                         | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2418         wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2419         wstats->discard.code = 0L;
2420         wstats->discard.misc = 0L;
2421
2422         /* Enable interrupts and restore flags. */
2423         spin_unlock_irqrestore(&lp->spinlock, flags);
2424
2425 #ifdef DEBUG_IOCTL_TRACE
2426         printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2427                dev->name);
2428 #endif
2429         return &lp->wstats;
2430 }
2431
2432 /************************* PACKET RECEPTION *************************/
2433 /*
2434  * This part deals with receiving the packets.
2435  * The interrupt handler gets an interrupt when a packet has been
2436  * successfully received and calls this part.
2437  */
2438
2439 /*------------------------------------------------------------------*/
2440 /*
2441  * This routine does the actual copying of data (including the Ethernet
2442  * header structure) from the WaveLAN card to an sk_buff chain that
2443  * will be passed up to the network interface layer. NOTE: we
2444  * currently don't handle trailer protocols (neither does the rest of
2445  * the network interface), so if that is needed, it will (at least in
2446  * part) be added here.  The contents of the receive ring buffer are
2447  * copied to a message chain that is then passed to the kernel.
2448  *
2449  * Note: if any errors occur, the packet is "dropped on the floor".
2450  * (called by wv_packet_rcv())
2451  */
2452 static void
2453 wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2454 {
2455         net_local *lp = (net_local *) dev->priv;
2456         unsigned long ioaddr = dev->base_addr;
2457         struct sk_buff *skb;
2458
2459 #ifdef DEBUG_RX_TRACE
2460         printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2461                dev->name, buf_off, sksize);
2462 #endif
2463
2464         /* Allocate buffer for the data */
2465         if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2466 #ifdef DEBUG_RX_ERROR
2467                 printk(KERN_INFO
2468                        "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2469                        dev->name, sksize);
2470 #endif
2471                 lp->stats.rx_dropped++;
2472                 return;
2473         }
2474
2475         /* Copy the packet to the buffer. */
2476         obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2477         skb->protocol = eth_type_trans(skb, dev);
2478
2479 #ifdef DEBUG_RX_INFO
2480         wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2481                        "wv_packet_read");
2482 #endif                          /* DEBUG_RX_INFO */
2483
2484         /* Statistics-gathering and associated stuff.
2485          * It seem a bit messy with all the define, but it's really
2486          * simple... */
2487         if (
2488 #ifdef IW_WIRELESS_SPY          /* defined in iw_handler.h */
2489                    (lp->spy_data.spy_number > 0) ||
2490 #endif /* IW_WIRELESS_SPY */
2491 #ifdef HISTOGRAM
2492                    (lp->his_number > 0) ||
2493 #endif /* HISTOGRAM */
2494                    0) {
2495                 u8 stats[3];    /* signal level, noise level, signal quality */
2496
2497                 /* Read signal level, silence level and signal quality bytes */
2498                 /* Note: in the PCMCIA hardware, these are part of the frame.
2499                  * It seems that for the ISA hardware, it's nowhere to be
2500                  * found in the frame, so I'm obliged to do this (it has a
2501                  * side effect on /proc/net/wireless).
2502                  * Any ideas?
2503                  */
2504                 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2505                 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2506                 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2507
2508 #ifdef DEBUG_RX_INFO
2509                 printk(KERN_DEBUG
2510                        "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2511                        dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2512                        stats[2] & 0x0F);
2513 #endif
2514
2515                 /* Spying stuff */
2516 #ifdef IW_WIRELESS_SPY
2517                 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
2518                               stats);
2519 #endif /* IW_WIRELESS_SPY */
2520 #ifdef HISTOGRAM
2521                 wl_his_gather(dev, stats);
2522 #endif /* HISTOGRAM */
2523         }
2524
2525         /*
2526          * Hand the packet to the network module.
2527          */
2528         netif_rx(skb);
2529
2530         /* Keep statistics up to date */
2531         dev->last_rx = jiffies;
2532         lp->stats.rx_packets++;
2533         lp->stats.rx_bytes += sksize;
2534
2535 #ifdef DEBUG_RX_TRACE
2536         printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2537 #endif
2538 }
2539
2540 /*------------------------------------------------------------------*/
2541 /*
2542  * Transfer as many packets as we can
2543  * from the device RAM.
2544  * (called in wavelan_interrupt()).
2545  * Note : the spinlock is already grabbed for us.
2546  */
2547 static void wv_receive(struct net_device * dev)
2548 {
2549         unsigned long ioaddr = dev->base_addr;
2550         net_local *lp = (net_local *) dev->priv;
2551         fd_t fd;
2552         rbd_t rbd;
2553         int nreaped = 0;
2554
2555 #ifdef DEBUG_RX_TRACE
2556         printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2557 #endif
2558
2559         /* Loop on each received packet. */
2560         for (;;) {
2561                 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2562                            sizeof(fd));
2563
2564                 /* Note about the status :
2565                  * It start up to be 0 (the value we set). Then, when the RU
2566                  * grab the buffer to prepare for reception, it sets the
2567                  * FD_STATUS_B flag. When the RU has finished receiving the
2568                  * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2569                  * completion and set the other flags to indicate the eventual
2570                  * errors. FD_STATUS_OK indicates that the reception was OK.
2571                  */
2572
2573                 /* If the current frame is not complete, we have reached the end. */
2574                 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2575                         break;  /* This is how we exit the loop. */
2576
2577                 nreaped++;
2578
2579                 /* Check whether frame was correctly received. */
2580                 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2581                         /* Does the frame contain a pointer to the data?  Let's check. */
2582                         if (fd.fd_rbd_offset != I82586NULL) {
2583                                 /* Read the receive buffer descriptor */
2584                                 obram_read(ioaddr, fd.fd_rbd_offset,
2585                                            (unsigned char *) &rbd,
2586                                            sizeof(rbd));
2587
2588 #ifdef DEBUG_RX_ERROR
2589                                 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2590                                     RBD_STATUS_EOF) printk(KERN_INFO
2591                                                            "%s: wv_receive(): missing EOF flag.\n",
2592                                                            dev->name);
2593
2594                                 if ((rbd.rbd_status & RBD_STATUS_F) !=
2595                                     RBD_STATUS_F) printk(KERN_INFO
2596                                                          "%s: wv_receive(): missing F flag.\n",
2597                                                          dev->name);
2598 #endif                          /* DEBUG_RX_ERROR */
2599
2600                                 /* Read the packet and transmit to Linux */
2601                                 wv_packet_read(dev, rbd.rbd_bufl,
2602                                                rbd.
2603                                                rbd_status &
2604                                                RBD_STATUS_ACNT);
2605                         }
2606 #ifdef DEBUG_RX_ERROR
2607                         else    /* if frame has no data */
2608                                 printk(KERN_INFO
2609                                        "%s: wv_receive(): frame has no data.\n",
2610                                        dev->name);
2611 #endif
2612                 } else {        /* If reception was no successful */
2613
2614                         lp->stats.rx_errors++;
2615
2616 #ifdef DEBUG_RX_INFO
2617                         printk(KERN_DEBUG
2618                                "%s: wv_receive(): frame not received successfully (%X).\n",
2619                                dev->name, fd.fd_status);
2620 #endif
2621
2622 #ifdef DEBUG_RX_ERROR
2623                         if ((fd.fd_status & FD_STATUS_S6) != 0)
2624                                 printk(KERN_INFO
2625                                        "%s: wv_receive(): no EOF flag.\n",
2626                                        dev->name);
2627 #endif
2628
2629                         if ((fd.fd_status & FD_STATUS_S7) != 0) {
2630                                 lp->stats.rx_length_errors++;
2631 #ifdef DEBUG_RX_FAIL
2632                                 printk(KERN_DEBUG
2633                                        "%s: wv_receive(): frame too short.\n",
2634                                        dev->name);
2635 #endif
2636                         }
2637
2638                         if ((fd.fd_status & FD_STATUS_S8) != 0) {
2639                                 lp->stats.rx_over_errors++;
2640 #ifdef DEBUG_RX_FAIL
2641                                 printk(KERN_DEBUG
2642                                        "%s: wv_receive(): rx DMA overrun.\n",
2643                                        dev->name);
2644 #endif
2645                         }
2646
2647                         if ((fd.fd_status & FD_STATUS_S9) != 0) {
2648                                 lp->stats.rx_fifo_errors++;
2649 #ifdef DEBUG_RX_FAIL
2650                                 printk(KERN_DEBUG
2651                                        "%s: wv_receive(): ran out of resources.\n",
2652                                        dev->name);
2653 #endif
2654                         }
2655
2656                         if ((fd.fd_status & FD_STATUS_S10) != 0) {
2657                                 lp->stats.rx_frame_errors++;
2658 #ifdef DEBUG_RX_FAIL
2659                                 printk(KERN_DEBUG
2660                                        "%s: wv_receive(): alignment error.\n",
2661                                        dev->name);
2662 #endif
2663                         }
2664
2665                         if ((fd.fd_status & FD_STATUS_S11) != 0) {
2666                                 lp->stats.rx_crc_errors++;
2667 #ifdef DEBUG_RX_FAIL
2668                                 printk(KERN_DEBUG
2669                                        "%s: wv_receive(): CRC error.\n",
2670                                        dev->name);
2671 #endif
2672                         }
2673                 }
2674
2675                 fd.fd_status = 0;
2676                 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2677                             (unsigned char *) &fd.fd_status,
2678                             sizeof(fd.fd_status));
2679
2680                 fd.fd_command = FD_COMMAND_EL;
2681                 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2682                             (unsigned char *) &fd.fd_command,
2683                             sizeof(fd.fd_command));
2684
2685                 fd.fd_command = 0;
2686                 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2687                             (unsigned char *) &fd.fd_command,
2688                             sizeof(fd.fd_command));
2689
2690                 lp->rx_last = lp->rx_head;
2691                 lp->rx_head = fd.fd_link_offset;
2692         }                       /* for(;;) -> loop on all frames */
2693
2694 #ifdef DEBUG_RX_INFO
2695         if (nreaped > 1)
2696                 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2697                        dev->name, nreaped);
2698 #endif
2699 #ifdef DEBUG_RX_TRACE
2700         printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2701 #endif
2702 }
2703
2704 /*********************** PACKET TRANSMISSION ***********************/
2705 /*
2706  * This part deals with sending packets through the WaveLAN.
2707  *
2708  */
2709
2710 /*------------------------------------------------------------------*/
2711 /*
2712  * This routine fills in the appropriate registers and memory
2713  * locations on the WaveLAN card and starts the card off on
2714  * the transmit.
2715  *
2716  * The principle:
2717  * Each block contains a transmit command, a NOP command,
2718  * a transmit block descriptor and a buffer.
2719  * The CU read the transmit block which point to the tbd,
2720  * read the tbd and the content of the buffer.
2721  * When it has finish with it, it goes to the next command
2722  * which in our case is the NOP. The NOP points on itself,
2723  * so the CU stop here.
2724  * When we add the next block, we modify the previous nop
2725  * to make it point on the new tx command.
2726  * Simple, isn't it ?
2727  *
2728  * (called in wavelan_packet_xmit())
2729  */
2730 static int wv_packet_write(struct net_device * dev, void *buf, short length)
2731 {
2732         net_local *lp = (net_local *) dev->priv;
2733         unsigned long ioaddr = dev->base_addr;
2734         unsigned short txblock;
2735         unsigned short txpred;
2736         unsigned short tx_addr;
2737         unsigned short nop_addr;
2738         unsigned short tbd_addr;
2739         unsigned short buf_addr;
2740         ac_tx_t tx;
2741         ac_nop_t nop;
2742         tbd_t tbd;
2743         int clen = length;
2744         unsigned long flags;
2745
2746 #ifdef DEBUG_TX_TRACE
2747         printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2748                length);
2749 #endif
2750
2751         spin_lock_irqsave(&lp->spinlock, flags);
2752
2753         /* Check nothing bad has happened */
2754         if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2755 #ifdef DEBUG_TX_ERROR
2756                 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2757                        dev->name);
2758 #endif
2759                 spin_unlock_irqrestore(&lp->spinlock, flags);
2760                 return 1;
2761         }
2762
2763         /* Calculate addresses of next block and previous block. */
2764         txblock = lp->tx_first_free;
2765         txpred = txblock - TXBLOCKZ;
2766         if (txpred < OFFSET_CU)
2767                 txpred += NTXBLOCKS * TXBLOCKZ;
2768         lp->tx_first_free += TXBLOCKZ;
2769         if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2770                 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2771
2772         lp->tx_n_in_use++;
2773
2774         /* Calculate addresses of the different parts of the block. */
2775         tx_addr = txblock;
2776         nop_addr = tx_addr + sizeof(tx);
2777         tbd_addr = nop_addr + sizeof(nop);
2778         buf_addr = tbd_addr + sizeof(tbd);
2779
2780         /*
2781          * Transmit command
2782          */
2783         tx.tx_h.ac_status = 0;
2784         obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2785                     (unsigned char *) &tx.tx_h.ac_status,
2786                     sizeof(tx.tx_h.ac_status));
2787
2788         /*
2789          * NOP command
2790          */
2791         nop.nop_h.ac_status = 0;
2792         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2793                     (unsigned char *) &nop.nop_h.ac_status,
2794                     sizeof(nop.nop_h.ac_status));
2795         nop.nop_h.ac_link = nop_addr;
2796         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2797                     (unsigned char *) &nop.nop_h.ac_link,
2798                     sizeof(nop.nop_h.ac_link));
2799
2800         /*
2801          * Transmit buffer descriptor
2802          */
2803         tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2804         tbd.tbd_next_bd_offset = I82586NULL;
2805         tbd.tbd_bufl = buf_addr;
2806         tbd.tbd_bufh = 0;
2807         obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2808
2809         /*
2810          * Data
2811          */
2812         obram_write(ioaddr, buf_addr, buf, length);
2813
2814         /*
2815          * Overwrite the predecessor NOP link
2816          * so that it points to this txblock.
2817          */
2818         nop_addr = txpred + sizeof(tx);
2819         nop.nop_h.ac_status = 0;
2820         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2821                     (unsigned char *) &nop.nop_h.ac_status,
2822                     sizeof(nop.nop_h.ac_status));
2823         nop.nop_h.ac_link = txblock;
2824         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2825                     (unsigned char *) &nop.nop_h.ac_link,
2826                     sizeof(nop.nop_h.ac_link));
2827
2828         /* Make sure the watchdog will keep quiet for a while */
2829         dev->trans_start = jiffies;
2830
2831         /* Keep stats up to date. */
2832         lp->stats.tx_bytes += length;
2833
2834         if (lp->tx_first_in_use == I82586NULL)
2835                 lp->tx_first_in_use = txblock;
2836
2837         if (lp->tx_n_in_use < NTXBLOCKS - 1)
2838                 netif_wake_queue(dev);
2839
2840         spin_unlock_irqrestore(&lp->spinlock, flags);
2841         
2842 #ifdef DEBUG_TX_INFO
2843         wv_packet_info((u8 *) buf, length, dev->name,
2844                        "wv_packet_write");
2845 #endif                          /* DEBUG_TX_INFO */
2846
2847 #ifdef DEBUG_TX_TRACE
2848         printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2849 #endif
2850
2851         return 0;
2852 }
2853
2854 /*------------------------------------------------------------------*/
2855 /*
2856  * This routine is called when we want to send a packet (NET3 callback)
2857  * In this routine, we check if the harware is ready to accept
2858  * the packet.  We also prevent reentrance.  Then we call the function
2859  * to send the packet.
2860  */
2861 static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
2862 {
2863         net_local *lp = (net_local *) dev->priv;
2864         unsigned long flags;
2865         char data[ETH_ZLEN];
2866
2867 #ifdef DEBUG_TX_TRACE
2868         printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2869                (unsigned) skb);
2870 #endif
2871
2872         /*
2873          * Block a timer-based transmit from overlapping.
2874          * In other words, prevent reentering this routine.
2875          */
2876         netif_stop_queue(dev);
2877
2878         /* If somebody has asked to reconfigure the controller, 
2879          * we can do it now.
2880          */
2881         if (lp->reconfig_82586) {
2882                 spin_lock_irqsave(&lp->spinlock, flags);
2883                 wv_82586_config(dev);
2884                 spin_unlock_irqrestore(&lp->spinlock, flags);
2885                 /* Check that we can continue */
2886                 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2887                         return 1;
2888         }
2889 #ifdef DEBUG_TX_ERROR
2890         if (skb->next)
2891                 printk(KERN_INFO "skb has next\n");
2892 #endif
2893
2894         /* Do we need some padding? */
2895         /* Note : on wireless the propagation time is in the order of 1us,
2896          * and we don't have the Ethernet specific requirement of beeing
2897          * able to detect collisions, therefore in theory we don't really
2898          * need to pad. Jean II */
2899         if (skb->len < ETH_ZLEN) {
2900                 memset(data, 0, ETH_ZLEN);
2901                 skb_copy_from_linear_data(skb, data, skb->len);
2902                 /* Write packet on the card */
2903                 if(wv_packet_write(dev, data, ETH_ZLEN))
2904                         return 1;       /* We failed */
2905         }
2906         else if(wv_packet_write(dev, skb->data, skb->len))
2907                 return 1;       /* We failed */
2908
2909
2910         dev_kfree_skb(skb);
2911
2912 #ifdef DEBUG_TX_TRACE
2913         printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2914 #endif
2915         return 0;
2916 }
2917
2918 /*********************** HARDWARE CONFIGURATION ***********************/
2919 /*
2920  * This part does the real job of starting and configuring the hardware.
2921  */
2922
2923 /*--------------------------------------------------------------------*/
2924 /*
2925  * Routine to initialize the Modem Management Controller.
2926  * (called by wv_hw_reset())
2927  */
2928 static int wv_mmc_init(struct net_device * dev)
2929 {
2930         unsigned long ioaddr = dev->base_addr;
2931         net_local *lp = (net_local *) dev->priv;
2932         psa_t psa;
2933         mmw_t m;
2934         int configured;
2935
2936 #ifdef DEBUG_CONFIG_TRACE
2937         printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2938 #endif
2939
2940         /* Read the parameter storage area. */
2941         psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2942
2943 #ifdef USE_PSA_CONFIG
2944         configured = psa.psa_conf_status & 1;
2945 #else
2946         configured = 0;
2947 #endif
2948
2949         /* Is the PSA is not configured */
2950         if (!configured) {
2951                 /* User will be able to configure NWID later (with iwconfig). */
2952                 psa.psa_nwid[0] = 0;
2953                 psa.psa_nwid[1] = 0;
2954
2955                 /* no NWID checking since NWID is not set */
2956                 psa.psa_nwid_select = 0;
2957
2958                 /* Disable encryption */
2959                 psa.psa_encryption_select = 0;
2960
2961                 /* Set to standard values:
2962                  * 0x04 for AT,
2963                  * 0x01 for MCA,
2964                  * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2965                  */
2966                 if (psa.psa_comp_number & 1)
2967                         psa.psa_thr_pre_set = 0x01;
2968                 else
2969                         psa.psa_thr_pre_set = 0x04;
2970                 psa.psa_quality_thr = 0x03;
2971
2972                 /* It is configured */
2973                 psa.psa_conf_status |= 1;
2974
2975 #ifdef USE_PSA_CONFIG
2976                 /* Write the psa. */
2977                 psa_write(ioaddr, lp->hacr,
2978                           (char *) psa.psa_nwid - (char *) &psa,
2979                           (unsigned char *) psa.psa_nwid, 4);
2980                 psa_write(ioaddr, lp->hacr,
2981                           (char *) &psa.psa_thr_pre_set - (char *) &psa,
2982                           (unsigned char *) &psa.psa_thr_pre_set, 1);
2983                 psa_write(ioaddr, lp->hacr,
2984                           (char *) &psa.psa_quality_thr - (char *) &psa,
2985                           (unsigned char *) &psa.psa_quality_thr, 1);
2986                 psa_write(ioaddr, lp->hacr,
2987                           (char *) &psa.psa_conf_status - (char *) &psa,
2988                           (unsigned char *) &psa.psa_conf_status, 1);
2989                 /* update the Wavelan checksum */
2990                 update_psa_checksum(dev, ioaddr, lp->hacr);
2991 #endif
2992         }
2993
2994         /* Zero the mmc structure. */
2995         memset(&m, 0x00, sizeof(m));
2996
2997         /* Copy PSA info to the mmc. */
2998         m.mmw_netw_id_l = psa.psa_nwid[1];
2999         m.mmw_netw_id_h = psa.psa_nwid[0];
3000
3001         if (psa.psa_nwid_select & 1)
3002                 m.mmw_loopt_sel = 0x00;
3003         else
3004                 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3005
3006         memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3007                sizeof(m.mmw_encr_key));
3008
3009         if (psa.psa_encryption_select)
3010                 m.mmw_encr_enable =
3011                     MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3012         else
3013                 m.mmw_encr_enable = 0;
3014
3015         m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3016         m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3017
3018         /*
3019          * Set default modem control parameters.
3020          * See NCR document 407-0024326 Rev. A.
3021          */
3022         m.mmw_jabber_enable = 0x01;
3023         m.mmw_freeze = 0;
3024         m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3025         m.mmw_ifs = 0x20;
3026         m.mmw_mod_delay = 0x04;
3027         m.mmw_jam_time = 0x38;
3028
3029         m.mmw_des_io_invert = 0;
3030         m.mmw_decay_prm = 0;
3031         m.mmw_decay_updat_prm = 0;
3032
3033         /* Write all info to MMC. */
3034         mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3035
3036         /* The following code starts the modem of the 2.00 frequency
3037          * selectable cards at power on.  It's not strictly needed for the
3038          * following boots.
3039          * The original patch was by Joe Finney for the PCMCIA driver, but
3040          * I've cleaned it up a bit and added documentation.
3041          * Thanks to Loeke Brederveld from Lucent for the info.
3042          */
3043
3044         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3045          * Does it work for everybody, especially old cards? */
3046         /* Note: WFREQSEL verifies that it is able to read a sensible
3047          * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3048          * is 0xA (Xilinx version) or 0xB (Ariadne version).
3049          * My test is more crude but does work. */
3050         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3051               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3052                 /* We must download the frequency parameters to the
3053                  * synthesizers (from the EEPROM - area 1)
3054                  * Note: as the EEPROM is automatically decremented, we set the end
3055                  * if the area... */
3056                 m.mmw_fee_addr = 0x0F;
3057                 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3058                 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3059                           (unsigned char *) &m.mmw_fee_ctrl, 2);
3060
3061                 /* Wait until the download is finished. */
3062                 fee_wait(ioaddr, 100, 100);
3063
3064 #ifdef DEBUG_CONFIG_INFO
3065                 /* The frequency was in the last word downloaded. */
3066                 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3067                          (unsigned char *) &m.mmw_fee_data_l, 2);
3068
3069                 /* Print some info for the user. */
3070                 printk(KERN_DEBUG
3071                        "%s: WaveLAN 2.00 recognised (frequency select).  Current frequency = %ld\n",
3072                        dev->name,
3073                        ((m.
3074                          mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3075                        5 / 2 + 24000L);
3076 #endif
3077
3078                 /* We must now download the power adjust value (gain) to
3079                  * the synthesizers (from the EEPROM - area 7 - DAC). */
3080                 m.mmw_fee_addr = 0x61;
3081                 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3082                 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3083                           (unsigned char *) &m.mmw_fee_ctrl, 2);
3084
3085                 /* Wait until the download is finished. */
3086         }
3087         /* if 2.00 card */
3088 #ifdef DEBUG_CONFIG_TRACE
3089         printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3090 #endif
3091         return 0;
3092 }
3093
3094 /*------------------------------------------------------------------*/
3095 /*
3096  * Construct the fd and rbd structures.
3097  * Start the receive unit.
3098  * (called by wv_hw_reset())
3099  */
3100 static int wv_ru_start(struct net_device * dev)
3101 {
3102         net_local *lp = (net_local *) dev->priv;
3103         unsigned long ioaddr = dev->base_addr;
3104         u16 scb_cs;
3105         fd_t fd;
3106         rbd_t rbd;
3107         u16 rx;
3108         u16 rx_next;
3109         int i;
3110
3111 #ifdef DEBUG_CONFIG_TRACE
3112         printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3113 #endif
3114
3115         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3116                    (unsigned char *) &scb_cs, sizeof(scb_cs));
3117         if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3118                 return 0;
3119
3120         lp->rx_head = OFFSET_RU;
3121
3122         for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3123                 rx_next =
3124                     (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3125
3126                 fd.fd_status = 0;
3127                 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3128                 fd.fd_link_offset = rx_next;
3129                 fd.fd_rbd_offset = rx + sizeof(fd);
3130                 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3131
3132                 rbd.rbd_status = 0;
3133                 rbd.rbd_next_rbd_offset = I82586NULL;
3134                 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3135                 rbd.rbd_bufh = 0;
3136                 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3137                 obram_write(ioaddr, rx + sizeof(fd),
3138                             (unsigned char *) &rbd, sizeof(rbd));
3139
3140                 lp->rx_last = rx;
3141         }
3142
3143         obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3144                     (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3145
3146         scb_cs = SCB_CMD_RUC_GO;
3147         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3148                     (unsigned char *) &scb_cs, sizeof(scb_cs));
3149
3150         set_chan_attn(ioaddr, lp->hacr);
3151
3152         for (i = 1000; i > 0; i--) {
3153                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3154                            (unsigned char *) &scb_cs, sizeof(scb_cs));
3155                 if (scb_cs == 0)
3156                         break;
3157
3158                 udelay(10);
3159         }
3160
3161         if (i <= 0) {
3162 #ifdef DEBUG_CONFIG_ERROR
3163                 printk(KERN_INFO
3164                        "%s: wavelan_ru_start(): board not accepting command.\n",
3165                        dev->name);
3166 #endif
3167                 return -1;
3168         }
3169 #ifdef DEBUG_CONFIG_TRACE
3170         printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3171 #endif
3172         return 0;
3173 }
3174
3175 /*------------------------------------------------------------------*/
3176 /*
3177  * Initialise the transmit blocks.
3178  * Start the command unit executing the NOP
3179  * self-loop of the first transmit block.
3180  *
3181  * Here we create the list of send buffers used to transmit packets
3182  * between the PC and the command unit. For each buffer, we create a
3183  * buffer descriptor (pointing on the buffer), a transmit command
3184  * (pointing to the buffer descriptor) and a NOP command.
3185  * The transmit command is linked to the NOP, and the NOP to itself.
3186  * When we will have finished executing the transmit command, we will
3187  * then loop on the NOP. By releasing the NOP link to a new command,
3188  * we may send another buffer.
3189  *
3190  * (called by wv_hw_reset())
3191  */
3192 static int wv_cu_start(struct net_device * dev)
3193 {
3194         net_local *lp = (net_local *) dev->priv;
3195         unsigned long ioaddr = dev->base_addr;
3196         int i;
3197         u16 txblock;
3198         u16 first_nop;
3199         u16 scb_cs;
3200
3201 #ifdef DEBUG_CONFIG_TRACE
3202         printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3203 #endif
3204
3205         lp->tx_first_free = OFFSET_CU;
3206         lp->tx_first_in_use = I82586NULL;
3207
3208         for (i = 0, txblock = OFFSET_CU;
3209              i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3210                 ac_tx_t tx;
3211                 ac_nop_t nop;
3212                 tbd_t tbd;
3213                 unsigned short tx_addr;
3214                 unsigned short nop_addr;
3215                 unsigned short tbd_addr;
3216                 unsigned short buf_addr;
3217
3218                 tx_addr = txblock;
3219                 nop_addr = tx_addr + sizeof(tx);
3220                 tbd_addr = nop_addr + sizeof(nop);
3221                 buf_addr = tbd_addr + sizeof(tbd);
3222
3223                 tx.tx_h.ac_status = 0;
3224                 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3225                 tx.tx_h.ac_link = nop_addr;
3226                 tx.tx_tbd_offset = tbd_addr;
3227                 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3228                             sizeof(tx));
3229
3230                 nop.nop_h.ac_status = 0;
3231                 nop.nop_h.ac_command = acmd_nop;
3232                 nop.nop_h.ac_link = nop_addr;
3233                 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3234                             sizeof(nop));
3235
3236                 tbd.tbd_status = TBD_STATUS_EOF;
3237                 tbd.tbd_next_bd_offset = I82586NULL;
3238                 tbd.tbd_bufl = buf_addr;
3239                 tbd.tbd_bufh = 0;
3240                 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3241                             sizeof(tbd));
3242         }
3243
3244         first_nop =
3245             OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3246         obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3247                     (unsigned char *) &first_nop, sizeof(first_nop));
3248
3249         scb_cs = SCB_CMD_CUC_GO;
3250         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3251                     (unsigned char *) &scb_cs, sizeof(scb_cs));
3252
3253         set_chan_attn(ioaddr, lp->hacr);
3254
3255         for (i = 1000; i > 0; i--) {
3256                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3257                            (unsigned char *) &scb_cs, sizeof(scb_cs));
3258                 if (scb_cs == 0)
3259                         break;
3260
3261                 udelay(10);
3262         }
3263
3264         if (i <= 0) {
3265 #ifdef DEBUG_CONFIG_ERROR
3266                 printk(KERN_INFO
3267                        "%s: wavelan_cu_start(): board not accepting command.\n",
3268                        dev->name);
3269 #endif
3270                 return -1;
3271         }
3272
3273         lp->tx_n_in_use = 0;
3274         netif_start_queue(dev);
3275 #ifdef DEBUG_CONFIG_TRACE
3276         printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3277 #endif
3278         return 0;
3279 }
3280
3281 /*------------------------------------------------------------------*/
3282 /*
3283  * This routine does a standard configuration of the WaveLAN 
3284  * controller (i82586).
3285  *
3286  * It initialises the scp, iscp and scb structure
3287  * The first two are just pointers to the next.
3288  * The last one is used for basic configuration and for basic
3289  * communication (interrupt status).
3290  *
3291  * (called by wv_hw_reset())
3292  */
3293 static int wv_82586_start(struct net_device * dev)
3294 {
3295         net_local *lp = (net_local *) dev->priv;
3296         unsigned long ioaddr = dev->base_addr;
3297         scp_t scp;              /* system configuration pointer */
3298         iscp_t iscp;            /* intermediate scp */
3299         scb_t scb;              /* system control block */
3300         ach_t cb;               /* Action command header */
3301         u8 zeroes[512];
3302         int i;
3303
3304 #ifdef DEBUG_CONFIG_TRACE
3305         printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3306 #endif
3307
3308         /*
3309          * Clear the onboard RAM.
3310          */
3311         memset(&zeroes[0], 0x00, sizeof(zeroes));
3312         for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3313                 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3314
3315         /*
3316          * Construct the command unit structures:
3317          * scp, iscp, scb, cb.
3318          */
3319         memset(&scp, 0x00, sizeof(scp));
3320         scp.scp_sysbus = SCP_SY_16BBUS;
3321         scp.scp_iscpl = OFFSET_ISCP;
3322         obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3323                     sizeof(scp));
3324
3325         memset(&iscp, 0x00, sizeof(iscp));
3326         iscp.iscp_busy = 1;
3327         iscp.iscp_offset = OFFSET_SCB;
3328         obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3329                     sizeof(iscp));
3330
3331         /* Our first command is to reset the i82586. */
3332         memset(&scb, 0x00, sizeof(scb));
3333         scb.scb_command = SCB_CMD_RESET;
3334         scb.scb_cbl_offset = OFFSET_CU;
3335         scb.scb_rfa_offset = OFFSET_RU;
3336         obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3337                     sizeof(scb));
3338
3339         set_chan_attn(ioaddr, lp->hacr);
3340
3341         /* Wait for command to finish. */
3342         for (i = 1000; i > 0; i--) {
3343                 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3344                            sizeof(iscp));
3345
3346                 if (iscp.iscp_busy == (unsigned short) 0)
3347                         break;
3348
3349                 udelay(10);
3350         }
3351
3352         if (i <= 0) {
3353 #ifdef DEBUG_CONFIG_ERROR
3354                 printk(KERN_INFO
3355                        "%s: wv_82586_start(): iscp_busy timeout.\n",
3356                        dev->name);
3357 #endif
3358                 return -1;
3359         }
3360
3361         /* Check command completion. */
3362         for (i = 15; i > 0; i--) {
3363                 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3364                            sizeof(scb));
3365
3366                 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3367                         break;
3368
3369                 udelay(10);
3370         }
3371
3372         if (i <= 0) {
3373 #ifdef DEBUG_CONFIG_ERROR
3374                 printk(KERN_INFO
3375                        "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3376                        dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3377 #endif
3378                 return -1;
3379         }
3380
3381         wv_ack(dev);
3382
3383         /* Set the action command header. */
3384         memset(&cb, 0x00, sizeof(cb));
3385         cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3386         cb.ac_link = OFFSET_CU;
3387         obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3388
3389         if (wv_synchronous_cmd(dev, "diag()") == -1)
3390                 return -1;
3391
3392         obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3393         if (cb.ac_status & AC_SFLD_FAIL) {
3394 #ifdef DEBUG_CONFIG_ERROR
3395                 printk(KERN_INFO
3396                        "%s: wv_82586_start(): i82586 Self Test failed.\n",
3397                        dev->name);
3398 #endif
3399                 return -1;
3400         }
3401 #ifdef DEBUG_I82586_SHOW
3402         wv_scb_show(ioaddr);
3403 #endif
3404
3405 #ifdef DEBUG_CONFIG_TRACE
3406         printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3407 #endif
3408         return 0;
3409 }
3410
3411 /*------------------------------------------------------------------*/
3412 /*
3413  * This routine does a standard configuration of the WaveLAN
3414  * controller (i82586).
3415  *
3416  * This routine is a violent hack. We use the first free transmit block
3417  * to make our configuration. In the buffer area, we create the three
3418  * configuration commands (linked). We make the previous NOP point to
3419  * the beginning of the buffer instead of the tx command. After, we go
3420  * as usual to the NOP command.
3421  * Note that only the last command (mc_set) will generate an interrupt.
3422  *
3423  * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3424  */
3425 static void wv_82586_config(struct net_device * dev)
3426 {
3427         net_local *lp = (net_local *) dev->priv;
3428         unsigned long ioaddr = dev->base_addr;
3429         unsigned short txblock;
3430         unsigned short txpred;
3431         unsigned short tx_addr;
3432         unsigned short nop_addr;
3433         unsigned short tbd_addr;
3434         unsigned short cfg_addr;
3435         unsigned short ias_addr;
3436         unsigned short mcs_addr;
3437         ac_tx_t tx;
3438         ac_nop_t nop;
3439         ac_cfg_t cfg;           /* Configure action */
3440         ac_ias_t ias;           /* IA-setup action */
3441         ac_mcs_t mcs;           /* Multicast setup */
3442         struct dev_mc_list *dmi;
3443
3444 #ifdef DEBUG_CONFIG_TRACE
3445         printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3446 #endif
3447
3448         /* Check nothing bad has happened */
3449         if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3450 #ifdef DEBUG_CONFIG_ERROR
3451                 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3452                        dev->name);
3453 #endif
3454                 return;
3455         }
3456
3457         /* Calculate addresses of next block and previous block. */
3458         txblock = lp->tx_first_free;
3459         txpred = txblock - TXBLOCKZ;
3460         if (txpred < OFFSET_CU)
3461                 txpred += NTXBLOCKS * TXBLOCKZ;
3462         lp->tx_first_free += TXBLOCKZ;
3463         if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3464                 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3465
3466         lp->tx_n_in_use++;
3467
3468         /* Calculate addresses of the different parts of the block. */
3469         tx_addr = txblock;
3470         nop_addr = tx_addr + sizeof(tx);
3471         tbd_addr = nop_addr + sizeof(nop);
3472         cfg_addr = tbd_addr + sizeof(tbd_t);    /* beginning of the buffer */
3473         ias_addr = cfg_addr + sizeof(cfg);
3474         mcs_addr = ias_addr + sizeof(ias);
3475
3476         /*
3477          * Transmit command
3478          */
3479         tx.tx_h.ac_status = 0xFFFF;     /* Fake completion value */
3480         obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3481                     (unsigned char *) &tx.tx_h.ac_status,
3482                     sizeof(tx.tx_h.ac_status));
3483
3484         /*
3485          * NOP command
3486          */
3487         nop.nop_h.ac_status = 0;
3488         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3489                     (unsigned char *) &nop.nop_h.ac_status,
3490                     sizeof(nop.nop_h.ac_status));
3491         nop.nop_h.ac_link = nop_addr;
3492         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3493                     (unsigned char *) &nop.nop_h.ac_link,
3494                     sizeof(nop.nop_h.ac_link));
3495
3496         /* Create a configure action. */
3497         memset(&cfg, 0x00, sizeof(cfg));
3498
3499         /*
3500          * For Linux we invert AC_CFG_ALOC() so as to conform
3501          * to the way that net packets reach us from above.
3502          * (See also ac_tx_t.)
3503          *
3504          * Updated from Wavelan Manual WCIN085B
3505          */
3506         cfg.cfg_byte_cnt =
3507             AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3508         cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3509         cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3510         cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3511             AC_CFG_ILPBCK(0) |
3512             AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3513             AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3514         cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3515             AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3516         cfg.cfg_ifs = 0x20;
3517         cfg.cfg_slotl = 0x0C;
3518         cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3519         cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3520             AC_CFG_BTSTF(0) |
3521             AC_CFG_CRC16(0) |
3522             AC_CFG_NCRC(0) |
3523             AC_CFG_TNCRS(1) |
3524             AC_CFG_MANCH(0) |
3525             AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3526         cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3527             AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3528 /*
3529   cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3530 */
3531         cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3532
3533         cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3534         cfg.cfg_h.ac_link = ias_addr;
3535         obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3536
3537         /* Set up the MAC address */
3538         memset(&ias, 0x00, sizeof(ias));
3539         ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3540         ias.ias_h.ac_link = mcs_addr;
3541         memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3542                sizeof(ias.ias_addr));
3543         obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3544
3545         /* Initialize adapter's Ethernet multicast addresses */
3546         memset(&mcs, 0x00, sizeof(mcs));
3547         mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3548         mcs.mcs_h.ac_link = nop_addr;
3549         mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3550         obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3551
3552         /* Any address to set? */
3553         if (lp->mc_count) {
3554                 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3555                         outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3556                               WAVELAN_ADDR_SIZE >> 1);
3557
3558 #ifdef DEBUG_CONFIG_INFO
3559                 printk(KERN_DEBUG
3560                        "%s: wv_82586_config(): set %d multicast addresses:\n",
3561                        dev->name, lp->mc_count);
3562                 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3563                         printk(KERN_DEBUG " %pM\n", dmi->dmi_addr);
3564 #endif
3565         }
3566
3567         /*
3568          * Overwrite the predecessor NOP link
3569          * so that it points to the configure action.
3570          */
3571         nop_addr = txpred + sizeof(tx);
3572         nop.nop_h.ac_status = 0;
3573         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3574                     (unsigned char *) &nop.nop_h.ac_status,
3575                     sizeof(nop.nop_h.ac_status));
3576         nop.nop_h.ac_link = cfg_addr;
3577         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3578                     (unsigned char *) &nop.nop_h.ac_link,
3579                     sizeof(nop.nop_h.ac_link));
3580
3581         /* Job done, clear the flag */
3582         lp->reconfig_82586 = 0;
3583
3584         if (lp->tx_first_in_use == I82586NULL)
3585                 lp->tx_first_in_use = txblock;
3586
3587         if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3588                 netif_stop_queue(dev);
3589
3590 #ifdef DEBUG_CONFIG_TRACE
3591         printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3592 #endif
3593 }
3594
3595 /*------------------------------------------------------------------*/
3596 /*
3597  * This routine, called by wavelan_close(), gracefully stops the 
3598  * WaveLAN controller (i82586).
3599  * (called by wavelan_close())
3600  */
3601 static void wv_82586_stop(struct net_device * dev)
3602 {
3603         net_local *lp = (net_local *) dev->priv;
3604         unsigned long ioaddr = dev->base_addr;
3605         u16 scb_cmd;
3606
3607 #ifdef DEBUG_CONFIG_TRACE
3608         printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3609 #endif
3610
3611         /* Suspend both command unit and receive unit. */
3612         scb_cmd =
3613             (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3614                                                SCB_CMD_RUC_SUS);
3615         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3616                     (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3617         set_chan_attn(ioaddr, lp->hacr);
3618
3619         /* No more interrupts */
3620         wv_ints_off(dev);
3621
3622 #ifdef DEBUG_CONFIG_TRACE
3623         printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3624 #endif
3625 }
3626
3627 /*------------------------------------------------------------------*/
3628 /*
3629  * Totally reset the WaveLAN and restart it.
3630  * Performs the following actions:
3631  *      1. A power reset (reset DMA)
3632  *      2. Initialize the radio modem (using wv_mmc_init)
3633  *      3. Reset & Configure LAN controller (using wv_82586_start)
3634  *      4. Start the LAN controller's command unit
3635  *      5. Start the LAN controller's receive unit
3636  * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3637  */
3638 static int wv_hw_reset(struct net_device * dev)
3639 {
3640         net_local *lp = (net_local *) dev->priv;
3641         unsigned long ioaddr = dev->base_addr;
3642
3643 #ifdef DEBUG_CONFIG_TRACE
3644         printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3645                (unsigned int) dev);
3646 #endif
3647
3648         /* Increase the number of resets done. */
3649         lp->nresets++;
3650
3651         wv_hacr_reset(ioaddr);
3652         lp->hacr = HACR_DEFAULT;
3653
3654         if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3655                 return -1;
3656
3657         /* Enable the card to send interrupts. */
3658         wv_ints_on(dev);
3659
3660         /* Start card functions */
3661         if (wv_cu_start(dev) < 0)
3662                 return -1;
3663
3664         /* Setup the controller and parameters */
3665         wv_82586_config(dev);
3666
3667         /* Finish configuration with the receive unit */
3668         if (wv_ru_start(dev) < 0)
3669                 return -1;
3670
3671 #ifdef DEBUG_CONFIG_TRACE
3672         printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3673 #endif
3674         return 0;
3675 }
3676
3677 /*------------------------------------------------------------------*/
3678 /*
3679  * Check if there is a WaveLAN at the specific base address.
3680  * As a side effect, this reads the MAC address.
3681  * (called in wavelan_probe() and init_module())
3682  */
3683 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3684 {
3685         int i;                  /* Loop counter */
3686
3687         /* Check if the base address if available. */
3688         if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3689                 return -EBUSY;          /* ioaddr already used */
3690
3691         /* Reset host interface */
3692         wv_hacr_reset(ioaddr);
3693
3694         /* Read the MAC address from the parameter storage area. */
3695         psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3696                  mac, 6);
3697
3698         release_region(ioaddr, sizeof(ha_t));
3699
3700         /*
3701          * Check the first three octets of the address for the manufacturer's code.
3702          * Note: if this can't find your WaveLAN card, you've got a
3703          * non-NCR/AT&T/Lucent ISA card.  See wavelan.p.h for detail on
3704          * how to configure your card.
3705          */
3706         for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
3707                 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3708                     (mac[1] == MAC_ADDRESSES[i][1]) &&
3709                     (mac[2] == MAC_ADDRESSES[i][2]))
3710                         return 0;
3711
3712 #ifdef DEBUG_CONFIG_INFO
3713         printk(KERN_WARNING
3714                "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3715                ioaddr, mac[0], mac[1], mac[2]);
3716 #endif
3717         return -ENODEV;
3718 }
3719
3720 /************************ INTERRUPT HANDLING ************************/
3721
3722 /*
3723  * This function is the interrupt handler for the WaveLAN card. This
3724  * routine will be called whenever: 
3725  */
3726 static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
3727 {
3728         struct net_device *dev;
3729         unsigned long ioaddr;
3730         net_local *lp;
3731         u16 hasr;
3732         u16 status;
3733         u16 ack_cmd;
3734
3735         dev = dev_id;
3736
3737 #ifdef DEBUG_INTERRUPT_TRACE
3738         printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3739 #endif
3740
3741         lp = (net_local *) dev->priv;
3742         ioaddr = dev->base_addr;
3743
3744 #ifdef DEBUG_INTERRUPT_INFO
3745         /* Check state of our spinlock */
3746         if(spin_is_locked(&lp->spinlock))
3747                 printk(KERN_DEBUG
3748                        "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3749                        dev->name);
3750 #endif
3751
3752         /* Prevent reentrancy. We need to do that because we may have
3753          * multiple interrupt handler running concurrently.
3754          * It is safe because interrupts are disabled before acquiring
3755          * the spinlock. */
3756         spin_lock(&lp->spinlock);
3757
3758         /* We always had spurious interrupts at startup, but lately I
3759          * saw them comming *between* the request_irq() and the
3760          * spin_lock_irqsave() in wavelan_open(), so the spinlock
3761          * protection is no enough.
3762          * So, we also check lp->hacr that will tell us is we enabled
3763          * irqs or not (see wv_ints_on()).
3764          * We can't use netif_running(dev) because we depend on the
3765          * proper processing of the irq generated during the config. */
3766
3767         /* Which interrupt it is ? */
3768         hasr = hasr_read(ioaddr);
3769
3770 #ifdef DEBUG_INTERRUPT_INFO
3771         printk(KERN_INFO
3772                "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3773                dev->name, hasr, lp->hacr);
3774 #endif
3775
3776         /* Check modem interrupt */
3777         if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3778                 u8 dce_status;
3779
3780                 /*
3781                  * Interrupt from the modem management controller.
3782                  * This will clear it -- ignored for now.
3783                  */
3784                 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3785                          sizeof(dce_status));
3786
3787 #ifdef DEBUG_INTERRUPT_ERROR
3788                 printk(KERN_INFO
3789                        "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3790                        dev->name, dce_status);
3791 #endif
3792         }
3793
3794         /* Check if not controller interrupt */
3795         if (((hasr & HASR_82586_INTR) == 0) ||
3796             ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3797 #ifdef DEBUG_INTERRUPT_ERROR
3798                 printk(KERN_INFO
3799                        "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3800                        dev->name, hasr);
3801 #endif
3802                 spin_unlock (&lp->spinlock);
3803                 return IRQ_NONE;
3804         }
3805
3806         /* Read interrupt data. */
3807         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3808                    (unsigned char *) &status, sizeof(status));
3809
3810         /*
3811          * Acknowledge the interrupt(s).
3812          */
3813         ack_cmd = status & SCB_ST_INT;
3814         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3815                     (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3816         set_chan_attn(ioaddr, lp->hacr);
3817
3818 #ifdef DEBUG_INTERRUPT_INFO
3819         printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3820                dev->name, status);
3821 #endif
3822
3823         /* Command completed. */
3824         if ((status & SCB_ST_CX) == SCB_ST_CX) {
3825 #ifdef DEBUG_INTERRUPT_INFO
3826                 printk(KERN_DEBUG
3827                        "%s: wavelan_interrupt(): command completed.\n",
3828                        dev->name);
3829 #endif
3830                 wv_complete(dev, ioaddr, lp);
3831         }
3832
3833         /* Frame received. */
3834         if ((status & SCB_ST_FR) == SCB_ST_FR) {
3835 #ifdef DEBUG_INTERRUPT_INFO
3836                 printk(KERN_DEBUG
3837                        "%s: wavelan_interrupt(): received packet.\n",
3838                        dev->name);
3839 #endif
3840                 wv_receive(dev);
3841         }
3842
3843         /* Check the state of the command unit. */
3844         if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3845             (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3846              (netif_running(dev)))) {
3847 #ifdef DEBUG_INTERRUPT_ERROR
3848                 printk(KERN_INFO
3849                        "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3850                        dev->name);
3851 #endif
3852                 wv_hw_reset(dev);
3853         }
3854
3855         /* Check the state of the command unit. */
3856         if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3857             (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3858              (netif_running(dev)))) {
3859 #ifdef DEBUG_INTERRUPT_ERROR
3860                 printk(KERN_INFO
3861                        "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3862                        dev->name);
3863 #endif
3864                 wv_hw_reset(dev);
3865         }
3866
3867         /* Release spinlock */
3868         spin_unlock (&lp->spinlock);
3869
3870 #ifdef DEBUG_INTERRUPT_TRACE
3871         printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3872 #endif
3873         return IRQ_HANDLED;
3874 }
3875
3876 /*------------------------------------------------------------------*/
3877 /*
3878  * Watchdog: when we start a transmission, a timer is set for us in the
3879  * kernel.  If the transmission completes, this timer is disabled. If
3880  * the timer expires, we are called and we try to unlock the hardware.
3881  */
3882 static void wavelan_watchdog(struct net_device *        dev)
3883 {
3884         net_local *     lp = (net_local *)dev->priv;
3885         u_long          ioaddr = dev->base_addr;
3886         unsigned long   flags;
3887         unsigned int    nreaped;
3888
3889 #ifdef DEBUG_INTERRUPT_TRACE
3890         printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3891 #endif
3892
3893 #ifdef DEBUG_INTERRUPT_ERROR
3894         printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3895                dev->name);
3896 #endif
3897
3898         /* Check that we came here for something */
3899         if (lp->tx_n_in_use <= 0) {
3900                 return;
3901         }
3902
3903         spin_lock_irqsave(&lp->spinlock, flags);
3904
3905         /* Try to see if some buffers are not free (in case we missed
3906          * an interrupt */
3907         nreaped = wv_complete(dev, ioaddr, lp);
3908
3909 #ifdef DEBUG_INTERRUPT_INFO
3910         printk(KERN_DEBUG
3911                "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3912                dev->name, nreaped, lp->tx_n_in_use);
3913 #endif
3914
3915 #ifdef DEBUG_PSA_SHOW
3916         {
3917                 psa_t psa;
3918                 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3919                 wv_psa_show(&psa);
3920         }
3921 #endif
3922 #ifdef DEBUG_MMC_SHOW
3923         wv_mmc_show(dev);
3924 #endif
3925 #ifdef DEBUG_I82586_SHOW
3926         wv_cu_show(dev);
3927 #endif
3928
3929         /* If no buffer has been freed */
3930         if (nreaped == 0) {
3931 #ifdef DEBUG_INTERRUPT_ERROR
3932                 printk(KERN_INFO
3933                        "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3934                        dev->name);
3935 #endif
3936                 wv_hw_reset(dev);
3937         }
3938
3939         /* At this point, we should have some free Tx buffer ;-) */
3940         if (lp->tx_n_in_use < NTXBLOCKS - 1)
3941                 netif_wake_queue(dev);
3942
3943         spin_unlock_irqrestore(&lp->spinlock, flags);
3944         
3945 #ifdef DEBUG_INTERRUPT_TRACE
3946         printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3947 #endif
3948 }
3949
3950 /********************* CONFIGURATION CALLBACKS *********************/
3951 /*
3952  * Here are the functions called by the Linux networking code (NET3)
3953  * for initialization, configuration and deinstallations of the 
3954  * WaveLAN ISA hardware.
3955  */
3956
3957 /*------------------------------------------------------------------*/
3958 /*
3959  * Configure and start up the WaveLAN PCMCIA adaptor.
3960  * Called by NET3 when it "opens" the device.
3961  */
3962 static int wavelan_open(struct net_device * dev)
3963 {
3964         net_local *     lp = (net_local *)dev->priv;
3965         unsigned long   flags;
3966
3967 #ifdef DEBUG_CALLBACK_TRACE
3968         printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
3969                (unsigned int) dev);
3970 #endif
3971
3972         /* Check irq */
3973         if (dev->irq == 0) {
3974 #ifdef DEBUG_CONFIG_ERROR
3975                 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
3976                        dev->name);
3977 #endif
3978                 return -ENXIO;
3979         }
3980
3981         if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) 
3982         {
3983 #ifdef DEBUG_CONFIG_ERROR
3984                 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
3985                        dev->name);
3986 #endif
3987                 return -EAGAIN;
3988         }
3989
3990         spin_lock_irqsave(&lp->spinlock, flags);
3991         
3992         if (wv_hw_reset(dev) != -1) {
3993                 netif_start_queue(dev);
3994         } else {
3995                 free_irq(dev->irq, dev);
3996 #ifdef DEBUG_CONFIG_ERROR
3997                 printk(KERN_INFO
3998                        "%s: wavelan_open(): impossible to start the card\n",
3999                        dev->name);
4000 #endif
4001                 spin_unlock_irqrestore(&lp->spinlock, flags);
4002                 return -EAGAIN;
4003         }
4004         spin_unlock_irqrestore(&lp->spinlock, flags);
4005         
4006 #ifdef DEBUG_CALLBACK_TRACE
4007         printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4008 #endif
4009         return 0;
4010 }
4011
4012 /*------------------------------------------------------------------*/
4013 /*
4014  * Shut down the WaveLAN ISA card.
4015  * Called by NET3 when it "closes" the device.
4016  */
4017 static int wavelan_close(struct net_device * dev)
4018 {
4019         net_local *lp = (net_local *) dev->priv;
4020         unsigned long flags;
4021
4022 #ifdef DEBUG_CALLBACK_TRACE
4023         printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4024                (unsigned int) dev);
4025 #endif
4026
4027         netif_stop_queue(dev);
4028
4029         /*
4030          * Flush the Tx and disable Rx.
4031          */
4032         spin_lock_irqsave(&lp->spinlock, flags);
4033         wv_82586_stop(dev);
4034         spin_unlock_irqrestore(&lp->spinlock, flags);
4035
4036         free_irq(dev->irq, dev);
4037
4038 #ifdef DEBUG_CALLBACK_TRACE
4039         printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4040 #endif
4041         return 0;
4042 }
4043
4044 /*------------------------------------------------------------------*/
4045 /*
4046  * Probe an I/O address, and if the WaveLAN is there configure the
4047  * device structure
4048  * (called by wavelan_probe() and via init_module()).
4049  */
4050 static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4051 {
4052         u8 irq_mask;
4053         int irq;
4054         net_local *lp;
4055         mac_addr mac;
4056         int err;
4057
4058         if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4059                 return -EADDRINUSE;
4060
4061         err = wv_check_ioaddr(ioaddr, mac);
4062         if (err)
4063                 goto out;
4064
4065         memcpy(dev->dev_addr, mac, 6);
4066
4067         dev->base_addr = ioaddr;
4068
4069 #ifdef DEBUG_CALLBACK_TRACE
4070         printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4071                dev->name, (unsigned int) dev, ioaddr);
4072 #endif
4073
4074         /* Check IRQ argument on command line. */
4075         if (dev->irq != 0) {
4076                 irq_mask = wv_irq_to_psa(dev->irq);
4077
4078                 if (irq_mask == 0) {
4079 #ifdef DEBUG_CONFIG_ERROR
4080                         printk(KERN_WARNING
4081                                "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4082                                dev->name, dev->irq);
4083 #endif
4084                         dev->irq = 0;
4085                 } else {
4086 #ifdef DEBUG_CONFIG_INFO
4087                         printk(KERN_DEBUG
4088                                "%s: wavelan_config(): changing IRQ to %d\n",
4089                                dev->name, dev->irq);
4090 #endif
4091                         psa_write(ioaddr, HACR_DEFAULT,
4092                                   psaoff(0, psa_int_req_no), &irq_mask, 1);
4093                         /* update the Wavelan checksum */
4094                         update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4095                         wv_hacr_reset(ioaddr);
4096                 }
4097         }
4098
4099         psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4100                  &irq_mask, 1);
4101         if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4102 #ifdef DEBUG_CONFIG_ERROR
4103                 printk(KERN_INFO
4104                        "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4105                        dev->name, irq_mask);
4106 #endif
4107                 err = -EAGAIN;
4108                 goto out;
4109         }
4110
4111         dev->irq = irq;
4112
4113         dev->mem_start = 0x0000;
4114         dev->mem_end = 0x0000;
4115         dev->if_port = 0;
4116
4117         /* Initialize device structures */
4118         memset(dev->priv, 0, sizeof(net_local));
4119         lp = (net_local *) dev->priv;
4120
4121         /* Back link to the device structure. */
4122         lp->dev = dev;
4123         /* Add the device at the beginning of the linked list. */
4124         lp->next = wavelan_list;
4125         wavelan_list = lp;
4126
4127         lp->hacr = HACR_DEFAULT;
4128
4129         /* Multicast stuff */
4130         lp->promiscuous = 0;
4131         lp->mc_count = 0;
4132
4133         /* Init spinlock */
4134         spin_lock_init(&lp->spinlock);
4135
4136         dev->open = wavelan_open;
4137         dev->stop = wavelan_close;
4138         dev->hard_start_xmit = wavelan_packet_xmit;
4139         dev->get_stats = wavelan_get_stats;
4140         dev->set_multicast_list = &wavelan_set_multicast_list;
4141         dev->tx_timeout         = &wavelan_watchdog;
4142         dev->watchdog_timeo     = WATCHDOG_JIFFIES;
4143 #ifdef SET_MAC_ADDRESS
4144         dev->set_mac_address = &wavelan_set_mac_address;
4145 #endif                          /* SET_MAC_ADDRESS */
4146
4147         dev->wireless_handlers = &wavelan_handler_def;
4148         lp->wireless_data.spy_data = &lp->spy_data;
4149         dev->wireless_data = &lp->wireless_data;
4150
4151         dev->mtu = WAVELAN_MTU;
4152
4153         /* Display nice information. */
4154         wv_init_info(dev);
4155
4156 #ifdef DEBUG_CALLBACK_TRACE
4157         printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4158 #endif
4159         return 0;
4160 out:
4161         release_region(ioaddr, sizeof(ha_t));
4162         return err;
4163 }
4164
4165 /*------------------------------------------------------------------*/
4166 /*
4167  * Check for a network adaptor of this type.  Return '0' iff one 
4168  * exists.  There seem to be different interpretations of
4169  * the initial value of dev->base_addr.
4170  * We follow the example in drivers/net/ne.c.
4171  * (called in "Space.c")
4172  */
4173 struct net_device * __init wavelan_probe(int unit)
4174 {
4175         struct net_device *dev;
4176         short base_addr;
4177         int def_irq;
4178         int i;
4179         int r = 0;
4180
4181         /* compile-time check the sizes of structures */
4182         BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
4183         BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
4184         BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
4185         BUILD_BUG_ON(sizeof(ha_t) != HA_SIZE);
4186
4187         dev = alloc_etherdev(sizeof(net_local));
4188         if (!dev)
4189                 return ERR_PTR(-ENOMEM);
4190
4191         sprintf(dev->name, "eth%d", unit);
4192         netdev_boot_setup_check(dev);
4193         base_addr = dev->base_addr;
4194         def_irq = dev->irq;
4195
4196 #ifdef DEBUG_CALLBACK_TRACE
4197         printk(KERN_DEBUG
4198                "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4199                dev->name, dev, (unsigned int) dev->base_addr);
4200 #endif
4201
4202         /* Don't probe at all. */
4203         if (base_addr < 0) {
4204 #ifdef DEBUG_CONFIG_ERROR
4205                 printk(KERN_WARNING
4206                        "%s: wavelan_probe(): invalid base address\n",
4207                        dev->name);
4208 #endif
4209                 r = -ENXIO;
4210         } else if (base_addr > 0x100) { /* Check a single specified location. */
4211                 r = wavelan_config(dev, base_addr);
4212 #ifdef DEBUG_CONFIG_INFO
4213                 if (r != 0)
4214                         printk(KERN_DEBUG
4215                                "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4216                                dev->name, base_addr);
4217 #endif
4218
4219 #ifdef DEBUG_CALLBACK_TRACE
4220                 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4221 #endif
4222         } else { /* Scan all possible addresses of the WaveLAN hardware. */
4223                 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
4224                         dev->irq = def_irq;
4225                         if (wavelan_config(dev, iobase[i]) == 0) {
4226 #ifdef DEBUG_CALLBACK_TRACE
4227                                 printk(KERN_DEBUG
4228                                        "%s: <-wavelan_probe()\n",
4229                                        dev->name);
4230 #endif
4231                                 break;
4232                         }
4233                 }
4234                 if (i == ARRAY_SIZE(iobase))
4235                         r = -ENODEV;
4236         }
4237         if (r) 
4238                 goto out;
4239         r = register_netdev(dev);
4240         if (r)
4241                 goto out1;
4242         return dev;
4243 out1:
4244         release_region(dev->base_addr, sizeof(ha_t));
4245         wavelan_list = wavelan_list->next;
4246 out:
4247         free_netdev(dev);
4248         return ERR_PTR(r);
4249 }
4250
4251 /****************************** MODULE ******************************/
4252 /*
4253  * Module entry point: insertion and removal
4254  */
4255
4256 #ifdef  MODULE
4257 /*------------------------------------------------------------------*/
4258 /*
4259  * Insertion of the module
4260  * I'm now quite proud of the multi-device support.
4261  */
4262 int __init init_module(void)
4263 {
4264         int ret = -EIO;         /* Return error if no cards found */
4265         int i;
4266
4267 #ifdef DEBUG_MODULE_TRACE
4268         printk(KERN_DEBUG "-> init_module()\n");
4269 #endif
4270
4271         /* If probing is asked */
4272         if (io[0] == 0) {
4273 #ifdef DEBUG_CONFIG_ERROR
4274                 printk(KERN_WARNING
4275                        "WaveLAN init_module(): doing device probing (bad !)\n");
4276                 printk(KERN_WARNING
4277                        "Specify base addresses while loading module to correct the problem\n");
4278 #endif
4279
4280                 /* Copy the basic set of address to be probed. */
4281                 for (i = 0; i < ARRAY_SIZE(iobase); i++)
4282                         io[i] = iobase[i];
4283         }
4284
4285
4286         /* Loop on all possible base addresses. */
4287         i = -1;
4288         while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) {
4289                 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4290                 if (!dev)
4291                         break;
4292                 if (name[i])
4293                         strcpy(dev->name, name[i]);     /* Copy name */
4294                 dev->base_addr = io[i];
4295                 dev->irq = irq[i];
4296
4297                 /* Check if there is something at this base address. */
4298                 if (wavelan_config(dev, io[i]) == 0) {
4299                         if (register_netdev(dev) != 0) {
4300                                 release_region(dev->base_addr, sizeof(ha_t));
4301                                 wavelan_list = wavelan_list->next;
4302                         } else {
4303                                 ret = 0;
4304                                 continue;
4305                         }
4306                 }
4307                 free_netdev(dev);
4308         }
4309
4310 #ifdef DEBUG_CONFIG_ERROR
4311         if (!wavelan_list)
4312                 printk(KERN_WARNING
4313                        "WaveLAN init_module(): no device found\n");
4314 #endif
4315
4316 #ifdef DEBUG_MODULE_TRACE
4317         printk(KERN_DEBUG "<- init_module()\n");
4318 #endif
4319         return ret;
4320 }
4321
4322 /*------------------------------------------------------------------*/
4323 /*
4324  * Removal of the module
4325  */
4326 void cleanup_module(void)
4327 {
4328 #ifdef DEBUG_MODULE_TRACE
4329         printk(KERN_DEBUG "-> cleanup_module()\n");
4330 #endif
4331
4332         /* Loop on all devices and release them. */
4333         while (wavelan_list) {
4334                 struct net_device *dev = wavelan_list->dev;
4335
4336 #ifdef DEBUG_CONFIG_INFO
4337                 printk(KERN_DEBUG
4338                        "%s: cleanup_module(): removing device at 0x%x\n",
4339                        dev->name, (unsigned int) dev);
4340 #endif
4341                 unregister_netdev(dev);
4342
4343                 release_region(dev->base_addr, sizeof(ha_t));
4344                 wavelan_list = wavelan_list->next;
4345
4346                 free_netdev(dev);
4347         }
4348
4349 #ifdef DEBUG_MODULE_TRACE
4350         printk(KERN_DEBUG "<- cleanup_module()\n");
4351 #endif
4352 }
4353 #endif                          /* MODULE */
4354 MODULE_LICENSE("GPL");
4355
4356 /*
4357  * This software may only be used and distributed
4358  * according to the terms of the GNU General Public License.
4359  *
4360  * This software was developed as a component of the
4361  * Linux operating system.
4362  * It is based on other device drivers and information
4363  * either written or supplied by:
4364  *      Ajay Bakre (bakre@paul.rutgers.edu),
4365  *      Donald Becker (becker@scyld.com),
4366  *      Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4367  *      Anders Klemets (klemets@it.kth.se),
4368  *      Vladimir V. Kolpakov (w@stier.koenig.ru),
4369  *      Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4370  *      Pauline Middelink (middelin@polyware.iaf.nl),
4371  *      Robert Morris (rtm@das.harvard.edu),
4372  *      Jean Tourrilhes (jt@hplb.hpl.hp.com),
4373  *      Girish Welling (welling@paul.rutgers.edu),
4374  *
4375  * Thanks go also to:
4376  *      James Ashton (jaa101@syseng.anu.edu.au),
4377  *      Alan Cox (alan@lxorguk.ukuu.org.uk),
4378  *      Allan Creighton (allanc@cs.usyd.edu.au),
4379  *      Matthew Geier (matthew@cs.usyd.edu.au),
4380  *      Remo di Giovanni (remo@cs.usyd.edu.au),
4381  *      Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4382  *      Vipul Gupta (vgupta@cs.binghamton.edu),
4383  *      Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4384  *      Tim Nicholson (tim@cs.usyd.edu.au),
4385  *      Ian Parkin (ian@cs.usyd.edu.au),
4386  *      John Rosenberg (johnr@cs.usyd.edu.au),
4387  *      George Rossi (george@phm.gov.au),
4388  *      Arthur Scott (arthur@cs.usyd.edu.au),
4389  *      Peter Storey,
4390  * for their assistance and advice.
4391  *
4392  * Please send bug reports, updates, comments to:
4393  *
4394  * Bruce Janson                                    Email:  bruce@cs.usyd.edu.au
4395  * Basser Department of Computer Science           Phone:  +61-2-9351-3423
4396  * University of Sydney, N.S.W., 2006, AUSTRALIA   Fax:    +61-2-9351-3838
4397  */