rt2x00: Fix race conditions in flag handling
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
59 {
60         u32 reg;
61         unsigned int i;
62
63         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
64                 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
65                 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
66                         break;
67                 udelay(REGISTER_BUSY_DELAY);
68         }
69
70         return reg;
71 }
72
73 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
74                               const unsigned int word, const u8 value)
75 {
76         u32 reg;
77
78         /*
79          * Wait until the BBP becomes ready.
80          */
81         reg = rt61pci_bbp_check(rt2x00dev);
82         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
83                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
84                 return;
85         }
86
87         /*
88          * Write the data into the BBP.
89          */
90         reg = 0;
91         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
92         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
93         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
94         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
95
96         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
97 }
98
99 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
100                              const unsigned int word, u8 *value)
101 {
102         u32 reg;
103
104         /*
105          * Wait until the BBP becomes ready.
106          */
107         reg = rt61pci_bbp_check(rt2x00dev);
108         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
109                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
110                 return;
111         }
112
113         /*
114          * Write the request into the BBP.
115          */
116         reg = 0;
117         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
118         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
119         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
120
121         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
122
123         /*
124          * Wait until the BBP becomes ready.
125          */
126         reg = rt61pci_bbp_check(rt2x00dev);
127         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
128                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
129                 *value = 0xff;
130                 return;
131         }
132
133         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
134 }
135
136 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
137                              const unsigned int word, const u32 value)
138 {
139         u32 reg;
140         unsigned int i;
141
142         if (!word)
143                 return;
144
145         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
146                 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
147                 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
148                         goto rf_write;
149                 udelay(REGISTER_BUSY_DELAY);
150         }
151
152         ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
153         return;
154
155 rf_write:
156         reg = 0;
157         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
158         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
159         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
160         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
161
162         rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
163         rt2x00_rf_write(rt2x00dev, word, value);
164 }
165
166 #ifdef CONFIG_RT61PCI_LEDS
167 /*
168  * This function is only called from rt61pci_led_brightness()
169  * make gcc happy by placing this function inside the
170  * same ifdef statement as the caller.
171  */
172 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
173                                 const u8 command, const u8 token,
174                                 const u8 arg0, const u8 arg1)
175 {
176         u32 reg;
177
178         rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
179
180         if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
181                 ERROR(rt2x00dev, "mcu request error. "
182                       "Request 0x%02x failed for token 0x%02x.\n",
183                       command, token);
184                 return;
185         }
186
187         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
188         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
189         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
190         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
191         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
192
193         rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
194         rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
195         rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
196         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
197 }
198 #endif /* CONFIG_RT61PCI_LEDS */
199
200 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
201 {
202         struct rt2x00_dev *rt2x00dev = eeprom->data;
203         u32 reg;
204
205         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
206
207         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
208         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
209         eeprom->reg_data_clock =
210             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
211         eeprom->reg_chip_select =
212             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
213 }
214
215 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
216 {
217         struct rt2x00_dev *rt2x00dev = eeprom->data;
218         u32 reg = 0;
219
220         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
221         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
222         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
223                            !!eeprom->reg_data_clock);
224         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
225                            !!eeprom->reg_chip_select);
226
227         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
228 }
229
230 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
231 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
232
233 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
234                              const unsigned int word, u32 *data)
235 {
236         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
237 }
238
239 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
240                               const unsigned int word, u32 data)
241 {
242         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
243 }
244
245 static const struct rt2x00debug rt61pci_rt2x00debug = {
246         .owner  = THIS_MODULE,
247         .csr    = {
248                 .read           = rt61pci_read_csr,
249                 .write          = rt61pci_write_csr,
250                 .word_size      = sizeof(u32),
251                 .word_count     = CSR_REG_SIZE / sizeof(u32),
252         },
253         .eeprom = {
254                 .read           = rt2x00_eeprom_read,
255                 .write          = rt2x00_eeprom_write,
256                 .word_size      = sizeof(u16),
257                 .word_count     = EEPROM_SIZE / sizeof(u16),
258         },
259         .bbp    = {
260                 .read           = rt61pci_bbp_read,
261                 .write          = rt61pci_bbp_write,
262                 .word_size      = sizeof(u8),
263                 .word_count     = BBP_SIZE / sizeof(u8),
264         },
265         .rf     = {
266                 .read           = rt2x00_rf_read,
267                 .write          = rt61pci_rf_write,
268                 .word_size      = sizeof(u32),
269                 .word_count     = RF_SIZE / sizeof(u32),
270         },
271 };
272 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
273
274 #ifdef CONFIG_RT61PCI_RFKILL
275 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
276 {
277         u32 reg;
278
279         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
280         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
281 }
282 #else
283 #define rt61pci_rfkill_poll     NULL
284 #endif /* CONFIG_RT61PCI_RFKILL */
285
286 #ifdef CONFIG_RT61PCI_LEDS
287 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
288                                    enum led_brightness brightness)
289 {
290         struct rt2x00_led *led =
291             container_of(led_cdev, struct rt2x00_led, led_dev);
292         unsigned int enabled = brightness != LED_OFF;
293         unsigned int a_mode =
294             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
295         unsigned int bg_mode =
296             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
297
298         if (led->type == LED_TYPE_RADIO) {
299                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300                                    MCU_LEDCS_RADIO_STATUS, enabled);
301
302                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
303                                     (led->rt2x00dev->led_mcu_reg & 0xff),
304                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
305         } else if (led->type == LED_TYPE_ASSOC) {
306                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
307                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
308                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
309                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
310
311                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
312                                     (led->rt2x00dev->led_mcu_reg & 0xff),
313                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
314         } else if (led->type == LED_TYPE_QUALITY) {
315                 /*
316                  * The brightness is divided into 6 levels (0 - 5),
317                  * this means we need to convert the brightness
318                  * argument into the matching level within that range.
319                  */
320                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
321                                     brightness / (LED_FULL / 6), 0);
322         }
323 }
324
325 static int rt61pci_blink_set(struct led_classdev *led_cdev,
326                              unsigned long *delay_on,
327                              unsigned long *delay_off)
328 {
329         struct rt2x00_led *led =
330             container_of(led_cdev, struct rt2x00_led, led_dev);
331         u32 reg;
332
333         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
334         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
335         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
336         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
337
338         return 0;
339 }
340
341 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
342                              struct rt2x00_led *led,
343                              enum led_type type)
344 {
345         led->rt2x00dev = rt2x00dev;
346         led->type = type;
347         led->led_dev.brightness_set = rt61pci_brightness_set;
348         led->led_dev.blink_set = rt61pci_blink_set;
349         led->flags = LED_INITIALIZED;
350 }
351 #endif /* CONFIG_RT61PCI_LEDS */
352
353 /*
354  * Configuration handlers.
355  */
356 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
357                                      struct rt2x00lib_crypto *crypto,
358                                      struct ieee80211_key_conf *key)
359 {
360         struct hw_key_entry key_entry;
361         struct rt2x00_field32 field;
362         u32 mask;
363         u32 reg;
364
365         if (crypto->cmd == SET_KEY) {
366                 /*
367                  * rt2x00lib can't determine the correct free
368                  * key_idx for shared keys. We have 1 register
369                  * with key valid bits. The goal is simple, read
370                  * the register, if that is full we have no slots
371                  * left.
372                  * Note that each BSS is allowed to have up to 4
373                  * shared keys, so put a mask over the allowed
374                  * entries.
375                  */
376                 mask = (0xf << crypto->bssidx);
377
378                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
379                 reg &= mask;
380
381                 if (reg && reg == mask)
382                         return -ENOSPC;
383
384                 key->hw_key_idx += reg ? (ffz(reg) - 1) : 0;
385
386                 /*
387                  * Upload key to hardware
388                  */
389                 memcpy(key_entry.key, crypto->key,
390                        sizeof(key_entry.key));
391                 memcpy(key_entry.tx_mic, crypto->tx_mic,
392                        sizeof(key_entry.tx_mic));
393                 memcpy(key_entry.rx_mic, crypto->rx_mic,
394                        sizeof(key_entry.rx_mic));
395
396                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
397                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
398                                               &key_entry, sizeof(key_entry));
399
400                 /*
401                  * The cipher types are stored over 2 registers.
402                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
403                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
404                  * Using the correct defines correctly will cause overhead,
405                  * so just calculate the correct offset.
406                  */
407                 if (key->hw_key_idx < 8) {
408                         field.bit_offset = (3 * key->hw_key_idx);
409                         field.bit_mask = 0x7 << field.bit_offset;
410
411                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
412                         rt2x00_set_field32(&reg, field, crypto->cipher);
413                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
414                 } else {
415                         field.bit_offset = (3 * (key->hw_key_idx - 8));
416                         field.bit_mask = 0x7 << field.bit_offset;
417
418                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
419                         rt2x00_set_field32(&reg, field, crypto->cipher);
420                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
421                 }
422
423                 /*
424                  * The driver does not support the IV/EIV generation
425                  * in hardware. However it doesn't support the IV/EIV
426                  * inside the ieee80211 frame either, but requires it
427                  * to be provided seperately for the descriptor.
428                  * rt2x00lib will cut the IV/EIV data out of all frames
429                  * given to us by mac80211, but we must tell mac80211
430                  * to generate the IV/EIV data.
431                  */
432                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
433         }
434
435         /*
436          * SEC_CSR0 contains only single-bit fields to indicate
437          * a particular key is valid. Because using the FIELD32()
438          * defines directly will cause a lot of overhead we use
439          * a calculation to determine the correct bit directly.
440          */
441         mask = 1 << key->hw_key_idx;
442
443         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
444         if (crypto->cmd == SET_KEY)
445                 reg |= mask;
446         else if (crypto->cmd == DISABLE_KEY)
447                 reg &= ~mask;
448         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
449
450         return 0;
451 }
452
453 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
454                                        struct rt2x00lib_crypto *crypto,
455                                        struct ieee80211_key_conf *key)
456 {
457         struct hw_pairwise_ta_entry addr_entry;
458         struct hw_key_entry key_entry;
459         u32 mask;
460         u32 reg;
461
462         if (crypto->cmd == SET_KEY) {
463                 /*
464                  * rt2x00lib can't determine the correct free
465                  * key_idx for pairwise keys. We have 2 registers
466                  * with key valid bits. The goal is simple, read
467                  * the first register, if that is full move to
468                  * the next register.
469                  * When both registers are full, we drop the key,
470                  * otherwise we use the first invalid entry.
471                  */
472                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
473                 if (reg && reg == ~0) {
474                         key->hw_key_idx = 32;
475                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
476                         if (reg && reg == ~0)
477                                 return -ENOSPC;
478                 }
479
480                 key->hw_key_idx += reg ? (ffz(reg) - 1) : 0;
481
482                 /*
483                  * Upload key to hardware
484                  */
485                 memcpy(key_entry.key, crypto->key,
486                        sizeof(key_entry.key));
487                 memcpy(key_entry.tx_mic, crypto->tx_mic,
488                        sizeof(key_entry.tx_mic));
489                 memcpy(key_entry.rx_mic, crypto->rx_mic,
490                        sizeof(key_entry.rx_mic));
491
492                 memset(&addr_entry, 0, sizeof(addr_entry));
493                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
494                 addr_entry.cipher = crypto->cipher;
495
496                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
497                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
498                                               &key_entry, sizeof(key_entry));
499
500                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
501                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
502                                               &addr_entry, sizeof(addr_entry));
503
504                 /*
505                  * Enable pairwise lookup table for given BSS idx,
506                  * without this received frames will not be decrypted
507                  * by the hardware.
508                  */
509                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
510                 reg |= (1 << crypto->bssidx);
511                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
512
513                 /*
514                  * The driver does not support the IV/EIV generation
515                  * in hardware. However it doesn't support the IV/EIV
516                  * inside the ieee80211 frame either, but requires it
517                  * to be provided seperately for the descriptor.
518                  * rt2x00lib will cut the IV/EIV data out of all frames
519                  * given to us by mac80211, but we must tell mac80211
520                  * to generate the IV/EIV data.
521                  */
522                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
523         }
524
525         /*
526          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
527          * a particular key is valid. Because using the FIELD32()
528          * defines directly will cause a lot of overhead we use
529          * a calculation to determine the correct bit directly.
530          */
531         if (key->hw_key_idx < 32) {
532                 mask = 1 << key->hw_key_idx;
533
534                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
535                 if (crypto->cmd == SET_KEY)
536                         reg |= mask;
537                 else if (crypto->cmd == DISABLE_KEY)
538                         reg &= ~mask;
539                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
540         } else {
541                 mask = 1 << (key->hw_key_idx - 32);
542
543                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
544                 if (crypto->cmd == SET_KEY)
545                         reg |= mask;
546                 else if (crypto->cmd == DISABLE_KEY)
547                         reg &= ~mask;
548                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
549         }
550
551         return 0;
552 }
553
554 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
555                                   const unsigned int filter_flags)
556 {
557         u32 reg;
558
559         /*
560          * Start configuration steps.
561          * Note that the version error will always be dropped
562          * and broadcast frames will always be accepted since
563          * there is no filter for it at this time.
564          */
565         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
566         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
567                            !(filter_flags & FIF_FCSFAIL));
568         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
569                            !(filter_flags & FIF_PLCPFAIL));
570         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
571                            !(filter_flags & FIF_CONTROL));
572         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
573                            !(filter_flags & FIF_PROMISC_IN_BSS));
574         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
575                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
576                            !rt2x00dev->intf_ap_count);
577         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
578         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
579                            !(filter_flags & FIF_ALLMULTI));
580         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
581         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
582                            !(filter_flags & FIF_CONTROL));
583         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
584 }
585
586 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
587                                 struct rt2x00_intf *intf,
588                                 struct rt2x00intf_conf *conf,
589                                 const unsigned int flags)
590 {
591         unsigned int beacon_base;
592         u32 reg;
593
594         if (flags & CONFIG_UPDATE_TYPE) {
595                 /*
596                  * Clear current synchronisation setup.
597                  * For the Beacon base registers we only need to clear
598                  * the first byte since that byte contains the VALID and OWNER
599                  * bits which (when set to 0) will invalidate the entire beacon.
600                  */
601                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
602                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
603
604                 /*
605                  * Enable synchronisation.
606                  */
607                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
608                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
609                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
610                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
611                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
612         }
613
614         if (flags & CONFIG_UPDATE_MAC) {
615                 reg = le32_to_cpu(conf->mac[1]);
616                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
617                 conf->mac[1] = cpu_to_le32(reg);
618
619                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
620                                               conf->mac, sizeof(conf->mac));
621         }
622
623         if (flags & CONFIG_UPDATE_BSSID) {
624                 reg = le32_to_cpu(conf->bssid[1]);
625                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
626                 conf->bssid[1] = cpu_to_le32(reg);
627
628                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
629                                               conf->bssid, sizeof(conf->bssid));
630         }
631 }
632
633 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
634                                struct rt2x00lib_erp *erp)
635 {
636         u32 reg;
637
638         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
639         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
640         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
641
642         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
643         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
644                            !!erp->short_preamble);
645         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
646 }
647
648
649 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
650                                     struct rt2x00lib_conf *libconf)
651 {
652         u16 eeprom;
653         short lna_gain = 0;
654
655         if (libconf->band == IEEE80211_BAND_2GHZ) {
656                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
657                         lna_gain += 14;
658
659                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
660                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
661         } else {
662                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
663                         lna_gain += 14;
664
665                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
666                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
667         }
668
669         rt2x00dev->lna_gain = lna_gain;
670 }
671
672 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
673                                    const int basic_rate_mask)
674 {
675         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
676 }
677
678 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
679                                    struct rf_channel *rf, const int txpower)
680 {
681         u8 r3;
682         u8 r94;
683         u8 smart;
684
685         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
686         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
687
688         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
689                   rt2x00_rf(&rt2x00dev->chip, RF2527));
690
691         rt61pci_bbp_read(rt2x00dev, 3, &r3);
692         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
693         rt61pci_bbp_write(rt2x00dev, 3, r3);
694
695         r94 = 6;
696         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
697                 r94 += txpower - MAX_TXPOWER;
698         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
699                 r94 += txpower;
700         rt61pci_bbp_write(rt2x00dev, 94, r94);
701
702         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
703         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
704         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
705         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
706
707         udelay(200);
708
709         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
710         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
711         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
712         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
713
714         udelay(200);
715
716         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
717         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
718         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
719         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
720
721         msleep(1);
722 }
723
724 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
725                                    const int txpower)
726 {
727         struct rf_channel rf;
728
729         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
730         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
731         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
732         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
733
734         rt61pci_config_channel(rt2x00dev, &rf, txpower);
735 }
736
737 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
738                                       struct antenna_setup *ant)
739 {
740         u8 r3;
741         u8 r4;
742         u8 r77;
743
744         rt61pci_bbp_read(rt2x00dev, 3, &r3);
745         rt61pci_bbp_read(rt2x00dev, 4, &r4);
746         rt61pci_bbp_read(rt2x00dev, 77, &r77);
747
748         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
749                           rt2x00_rf(&rt2x00dev->chip, RF5325));
750
751         /*
752          * Configure the RX antenna.
753          */
754         switch (ant->rx) {
755         case ANTENNA_HW_DIVERSITY:
756                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
757                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
758                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
759                 break;
760         case ANTENNA_A:
761                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
762                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
763                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
764                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
765                 else
766                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
767                 break;
768         case ANTENNA_B:
769         default:
770                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
771                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
772                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
773                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
774                 else
775                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
776                 break;
777         }
778
779         rt61pci_bbp_write(rt2x00dev, 77, r77);
780         rt61pci_bbp_write(rt2x00dev, 3, r3);
781         rt61pci_bbp_write(rt2x00dev, 4, r4);
782 }
783
784 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
785                                       struct antenna_setup *ant)
786 {
787         u8 r3;
788         u8 r4;
789         u8 r77;
790
791         rt61pci_bbp_read(rt2x00dev, 3, &r3);
792         rt61pci_bbp_read(rt2x00dev, 4, &r4);
793         rt61pci_bbp_read(rt2x00dev, 77, &r77);
794
795         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
796                           rt2x00_rf(&rt2x00dev->chip, RF2529));
797         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
798                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
799
800         /*
801          * Configure the RX antenna.
802          */
803         switch (ant->rx) {
804         case ANTENNA_HW_DIVERSITY:
805                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
806                 break;
807         case ANTENNA_A:
808                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
809                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
810                 break;
811         case ANTENNA_B:
812         default:
813                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
814                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
815                 break;
816         }
817
818         rt61pci_bbp_write(rt2x00dev, 77, r77);
819         rt61pci_bbp_write(rt2x00dev, 3, r3);
820         rt61pci_bbp_write(rt2x00dev, 4, r4);
821 }
822
823 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
824                                            const int p1, const int p2)
825 {
826         u32 reg;
827
828         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
829
830         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
831         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
832
833         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
834         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
835
836         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
837 }
838
839 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
840                                         struct antenna_setup *ant)
841 {
842         u8 r3;
843         u8 r4;
844         u8 r77;
845
846         rt61pci_bbp_read(rt2x00dev, 3, &r3);
847         rt61pci_bbp_read(rt2x00dev, 4, &r4);
848         rt61pci_bbp_read(rt2x00dev, 77, &r77);
849
850         /*
851          * Configure the RX antenna.
852          */
853         switch (ant->rx) {
854         case ANTENNA_A:
855                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
856                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
857                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
858                 break;
859         case ANTENNA_HW_DIVERSITY:
860                 /*
861                  * FIXME: Antenna selection for the rf 2529 is very confusing
862                  * in the legacy driver. Just default to antenna B until the
863                  * legacy code can be properly translated into rt2x00 code.
864                  */
865         case ANTENNA_B:
866         default:
867                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
868                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
869                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
870                 break;
871         }
872
873         rt61pci_bbp_write(rt2x00dev, 77, r77);
874         rt61pci_bbp_write(rt2x00dev, 3, r3);
875         rt61pci_bbp_write(rt2x00dev, 4, r4);
876 }
877
878 struct antenna_sel {
879         u8 word;
880         /*
881          * value[0] -> non-LNA
882          * value[1] -> LNA
883          */
884         u8 value[2];
885 };
886
887 static const struct antenna_sel antenna_sel_a[] = {
888         { 96,  { 0x58, 0x78 } },
889         { 104, { 0x38, 0x48 } },
890         { 75,  { 0xfe, 0x80 } },
891         { 86,  { 0xfe, 0x80 } },
892         { 88,  { 0xfe, 0x80 } },
893         { 35,  { 0x60, 0x60 } },
894         { 97,  { 0x58, 0x58 } },
895         { 98,  { 0x58, 0x58 } },
896 };
897
898 static const struct antenna_sel antenna_sel_bg[] = {
899         { 96,  { 0x48, 0x68 } },
900         { 104, { 0x2c, 0x3c } },
901         { 75,  { 0xfe, 0x80 } },
902         { 86,  { 0xfe, 0x80 } },
903         { 88,  { 0xfe, 0x80 } },
904         { 35,  { 0x50, 0x50 } },
905         { 97,  { 0x48, 0x48 } },
906         { 98,  { 0x48, 0x48 } },
907 };
908
909 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
910                                    struct antenna_setup *ant)
911 {
912         const struct antenna_sel *sel;
913         unsigned int lna;
914         unsigned int i;
915         u32 reg;
916
917         /*
918          * We should never come here because rt2x00lib is supposed
919          * to catch this and send us the correct antenna explicitely.
920          */
921         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
922                ant->tx == ANTENNA_SW_DIVERSITY);
923
924         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
925                 sel = antenna_sel_a;
926                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
927         } else {
928                 sel = antenna_sel_bg;
929                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
930         }
931
932         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
933                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
934
935         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
936
937         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
938                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
939         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
940                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
941
942         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
943
944         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
945             rt2x00_rf(&rt2x00dev->chip, RF5325))
946                 rt61pci_config_antenna_5x(rt2x00dev, ant);
947         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
948                 rt61pci_config_antenna_2x(rt2x00dev, ant);
949         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
950                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
951                         rt61pci_config_antenna_2x(rt2x00dev, ant);
952                 else
953                         rt61pci_config_antenna_2529(rt2x00dev, ant);
954         }
955 }
956
957 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
958                                     struct rt2x00lib_conf *libconf)
959 {
960         u32 reg;
961
962         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
963         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
964         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
965
966         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
967         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
968         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
969         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
970         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
971
972         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
973         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
974         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
975
976         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
977         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
978         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
979
980         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
981         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
982                            libconf->conf->beacon_int * 16);
983         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
984 }
985
986 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
987                            struct rt2x00lib_conf *libconf,
988                            const unsigned int flags)
989 {
990         /* Always recalculate LNA gain before changing configuration */
991         rt61pci_config_lna_gain(rt2x00dev, libconf);
992
993         if (flags & CONFIG_UPDATE_PHYMODE)
994                 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
995         if (flags & CONFIG_UPDATE_CHANNEL)
996                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
997                                        libconf->conf->power_level);
998         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
999                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1000         if (flags & CONFIG_UPDATE_ANTENNA)
1001                 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
1002         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
1003                 rt61pci_config_duration(rt2x00dev, libconf);
1004 }
1005
1006 /*
1007  * Link tuning
1008  */
1009 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1010                                struct link_qual *qual)
1011 {
1012         u32 reg;
1013
1014         /*
1015          * Update FCS error count from register.
1016          */
1017         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1018         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1019
1020         /*
1021          * Update False CCA count from register.
1022          */
1023         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1024         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1025 }
1026
1027 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1028 {
1029         rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1030         rt2x00dev->link.vgc_level = 0x20;
1031 }
1032
1033 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1034 {
1035         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1036         u8 r17;
1037         u8 up_bound;
1038         u8 low_bound;
1039
1040         rt61pci_bbp_read(rt2x00dev, 17, &r17);
1041
1042         /*
1043          * Determine r17 bounds.
1044          */
1045         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1046                 low_bound = 0x28;
1047                 up_bound = 0x48;
1048                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1049                         low_bound += 0x10;
1050                         up_bound += 0x10;
1051                 }
1052         } else {
1053                 low_bound = 0x20;
1054                 up_bound = 0x40;
1055                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1056                         low_bound += 0x10;
1057                         up_bound += 0x10;
1058                 }
1059         }
1060
1061         /*
1062          * If we are not associated, we should go straight to the
1063          * dynamic CCA tuning.
1064          */
1065         if (!rt2x00dev->intf_associated)
1066                 goto dynamic_cca_tune;
1067
1068         /*
1069          * Special big-R17 for very short distance
1070          */
1071         if (rssi >= -35) {
1072                 if (r17 != 0x60)
1073                         rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1074                 return;
1075         }
1076
1077         /*
1078          * Special big-R17 for short distance
1079          */
1080         if (rssi >= -58) {
1081                 if (r17 != up_bound)
1082                         rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1083                 return;
1084         }
1085
1086         /*
1087          * Special big-R17 for middle-short distance
1088          */
1089         if (rssi >= -66) {
1090                 low_bound += 0x10;
1091                 if (r17 != low_bound)
1092                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1093                 return;
1094         }
1095
1096         /*
1097          * Special mid-R17 for middle distance
1098          */
1099         if (rssi >= -74) {
1100                 low_bound += 0x08;
1101                 if (r17 != low_bound)
1102                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1103                 return;
1104         }
1105
1106         /*
1107          * Special case: Change up_bound based on the rssi.
1108          * Lower up_bound when rssi is weaker then -74 dBm.
1109          */
1110         up_bound -= 2 * (-74 - rssi);
1111         if (low_bound > up_bound)
1112                 up_bound = low_bound;
1113
1114         if (r17 > up_bound) {
1115                 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1116                 return;
1117         }
1118
1119 dynamic_cca_tune:
1120
1121         /*
1122          * r17 does not yet exceed upper limit, continue and base
1123          * the r17 tuning on the false CCA count.
1124          */
1125         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1126                 if (++r17 > up_bound)
1127                         r17 = up_bound;
1128                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1129         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1130                 if (--r17 < low_bound)
1131                         r17 = low_bound;
1132                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1133         }
1134 }
1135
1136 /*
1137  * Firmware functions
1138  */
1139 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1140 {
1141         char *fw_name;
1142
1143         switch (rt2x00dev->chip.rt) {
1144         case RT2561:
1145                 fw_name = FIRMWARE_RT2561;
1146                 break;
1147         case RT2561s:
1148                 fw_name = FIRMWARE_RT2561s;
1149                 break;
1150         case RT2661:
1151                 fw_name = FIRMWARE_RT2661;
1152                 break;
1153         default:
1154                 fw_name = NULL;
1155                 break;
1156         }
1157
1158         return fw_name;
1159 }
1160
1161 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1162 {
1163         u16 crc;
1164
1165         /*
1166          * Use the crc itu-t algorithm.
1167          * The last 2 bytes in the firmware array are the crc checksum itself,
1168          * this means that we should never pass those 2 bytes to the crc
1169          * algorithm.
1170          */
1171         crc = crc_itu_t(0, data, len - 2);
1172         crc = crc_itu_t_byte(crc, 0);
1173         crc = crc_itu_t_byte(crc, 0);
1174
1175         return crc;
1176 }
1177
1178 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1179                                  const size_t len)
1180 {
1181         int i;
1182         u32 reg;
1183
1184         /*
1185          * Wait for stable hardware.
1186          */
1187         for (i = 0; i < 100; i++) {
1188                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1189                 if (reg)
1190                         break;
1191                 msleep(1);
1192         }
1193
1194         if (!reg) {
1195                 ERROR(rt2x00dev, "Unstable hardware.\n");
1196                 return -EBUSY;
1197         }
1198
1199         /*
1200          * Prepare MCU and mailbox for firmware loading.
1201          */
1202         reg = 0;
1203         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1204         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1205         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1206         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1207         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1208
1209         /*
1210          * Write firmware to device.
1211          */
1212         reg = 0;
1213         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1214         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1215         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1216
1217         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1218                                       data, len);
1219
1220         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1221         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1222
1223         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1224         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1225
1226         for (i = 0; i < 100; i++) {
1227                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1228                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1229                         break;
1230                 msleep(1);
1231         }
1232
1233         if (i == 100) {
1234                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1235                 return -EBUSY;
1236         }
1237
1238         /*
1239          * Hardware needs another millisecond before it is ready.
1240          */
1241         msleep(1);
1242
1243         /*
1244          * Reset MAC and BBP registers.
1245          */
1246         reg = 0;
1247         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1248         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1249         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1250
1251         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1252         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1253         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1254         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1255
1256         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1257         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1258         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1259
1260         return 0;
1261 }
1262
1263 /*
1264  * Initialization functions.
1265  */
1266 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1267                                  struct queue_entry *entry)
1268 {
1269         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1270         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1271         u32 word;
1272
1273         rt2x00_desc_read(entry_priv->desc, 5, &word);
1274         rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1275                            skbdesc->skb_dma);
1276         rt2x00_desc_write(entry_priv->desc, 5, word);
1277
1278         rt2x00_desc_read(entry_priv->desc, 0, &word);
1279         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1280         rt2x00_desc_write(entry_priv->desc, 0, word);
1281 }
1282
1283 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1284                                  struct queue_entry *entry)
1285 {
1286         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1287         u32 word;
1288
1289         rt2x00_desc_read(entry_priv->desc, 0, &word);
1290         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1291         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1292         rt2x00_desc_write(entry_priv->desc, 0, word);
1293 }
1294
1295 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1296 {
1297         struct queue_entry_priv_pci *entry_priv;
1298         u32 reg;
1299
1300         /*
1301          * Initialize registers.
1302          */
1303         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1304         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1305                            rt2x00dev->tx[0].limit);
1306         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1307                            rt2x00dev->tx[1].limit);
1308         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1309                            rt2x00dev->tx[2].limit);
1310         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1311                            rt2x00dev->tx[3].limit);
1312         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1313
1314         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1315         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1316                            rt2x00dev->tx[0].desc_size / 4);
1317         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1318
1319         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1320         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1321         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1322                            entry_priv->desc_dma);
1323         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1324
1325         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1326         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1327         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1328                            entry_priv->desc_dma);
1329         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1330
1331         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1332         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1333         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1334                            entry_priv->desc_dma);
1335         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1336
1337         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1338         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1339         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1340                            entry_priv->desc_dma);
1341         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1342
1343         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1344         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1345         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1346                            rt2x00dev->rx->desc_size / 4);
1347         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1348         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1349
1350         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1351         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1352         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1353                            entry_priv->desc_dma);
1354         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1355
1356         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1357         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1358         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1359         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1360         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1361         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1362
1363         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1364         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1365         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1366         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1367         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1368         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1369
1370         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1371         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1372         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1373
1374         return 0;
1375 }
1376
1377 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1378 {
1379         u32 reg;
1380
1381         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1382         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1383         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1384         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1385         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1386
1387         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1388         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1389         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1390         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1391         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1392         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1393         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1394         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1395         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1396         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1397
1398         /*
1399          * CCK TXD BBP registers
1400          */
1401         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1402         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1403         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1404         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1405         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1406         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1407         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1408         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1409         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1410         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1411
1412         /*
1413          * OFDM TXD BBP registers
1414          */
1415         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1416         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1417         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1418         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1419         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1420         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1421         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1422         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1423
1424         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1425         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1426         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1427         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1428         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1429         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1430
1431         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1432         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1433         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1434         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1435         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1436         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1437
1438         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1439         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1440         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1441         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1442         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1443         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1444         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1445         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1446
1447         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1448
1449         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1450
1451         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1452         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1453         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1454
1455         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1456
1457         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1458                 return -EBUSY;
1459
1460         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1461
1462         /*
1463          * Invalidate all Shared Keys (SEC_CSR0),
1464          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1465          */
1466         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1467         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1468         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1469
1470         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1471         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1472         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1473         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1474
1475         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1476
1477         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1478
1479         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1480
1481         rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1482         rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1483         rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1484         rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1485
1486         rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1487         rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1488         rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1489         rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1490
1491         /*
1492          * Clear all beacons
1493          * For the Beacon base registers we only need to clear
1494          * the first byte since that byte contains the VALID and OWNER
1495          * bits which (when set to 0) will invalidate the entire beacon.
1496          */
1497         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1498         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1499         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1500         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1501
1502         /*
1503          * We must clear the error counters.
1504          * These registers are cleared on read,
1505          * so we may pass a useless variable to store the value.
1506          */
1507         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1508         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1509         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1510
1511         /*
1512          * Reset MAC and BBP registers.
1513          */
1514         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1515         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1516         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1517         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1518
1519         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1520         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1521         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1522         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1523
1524         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1525         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1526         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1527
1528         return 0;
1529 }
1530
1531 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1532 {
1533         unsigned int i;
1534         u8 value;
1535
1536         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1537                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1538                 if ((value != 0xff) && (value != 0x00))
1539                         return 0;
1540                 udelay(REGISTER_BUSY_DELAY);
1541         }
1542
1543         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1544         return -EACCES;
1545 }
1546
1547 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1548 {
1549         unsigned int i;
1550         u16 eeprom;
1551         u8 reg_id;
1552         u8 value;
1553
1554         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1555                 return -EACCES;
1556
1557         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1558         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1559         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1560         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1561         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1562         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1563         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1564         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1565         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1566         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1567         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1568         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1569         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1570         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1571         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1572         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1573         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1574         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1575         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1576         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1577         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1578         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1579         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1580         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1581
1582         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1583                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1584
1585                 if (eeprom != 0xffff && eeprom != 0x0000) {
1586                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1587                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1588                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1589                 }
1590         }
1591
1592         return 0;
1593 }
1594
1595 /*
1596  * Device state switch handlers.
1597  */
1598 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1599                               enum dev_state state)
1600 {
1601         u32 reg;
1602
1603         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1604         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1605                            (state == STATE_RADIO_RX_OFF) ||
1606                            (state == STATE_RADIO_RX_OFF_LINK));
1607         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1608 }
1609
1610 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1611                                enum dev_state state)
1612 {
1613         int mask = (state == STATE_RADIO_IRQ_OFF);
1614         u32 reg;
1615
1616         /*
1617          * When interrupts are being enabled, the interrupt registers
1618          * should clear the register to assure a clean state.
1619          */
1620         if (state == STATE_RADIO_IRQ_ON) {
1621                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1622                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1623
1624                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1625                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1626         }
1627
1628         /*
1629          * Only toggle the interrupts bits we are going to use.
1630          * Non-checked interrupt bits are disabled by default.
1631          */
1632         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1633         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1634         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1635         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1636         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1637         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1638
1639         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1640         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1641         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1642         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1643         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1644         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1645         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1646         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1647         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1648         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1649 }
1650
1651 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1652 {
1653         u32 reg;
1654
1655         /*
1656          * Initialize all registers.
1657          */
1658         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1659                      rt61pci_init_registers(rt2x00dev) ||
1660                      rt61pci_init_bbp(rt2x00dev)))
1661                 return -EIO;
1662
1663         /*
1664          * Enable RX.
1665          */
1666         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1667         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1668         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1669
1670         return 0;
1671 }
1672
1673 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1674 {
1675         u32 reg;
1676
1677         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1678
1679         /*
1680          * Disable synchronisation.
1681          */
1682         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1683
1684         /*
1685          * Cancel RX and TX.
1686          */
1687         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1688         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1689         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1690         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1691         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1692         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1693 }
1694
1695 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1696 {
1697         u32 reg;
1698         unsigned int i;
1699         char put_to_sleep;
1700
1701         put_to_sleep = (state != STATE_AWAKE);
1702
1703         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1704         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1705         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1706         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1707
1708         /*
1709          * Device is not guaranteed to be in the requested state yet.
1710          * We must wait until the register indicates that the
1711          * device has entered the correct state.
1712          */
1713         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1714                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1715                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1716                 if (state == !put_to_sleep)
1717                         return 0;
1718                 msleep(10);
1719         }
1720
1721         return -EBUSY;
1722 }
1723
1724 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1725                                     enum dev_state state)
1726 {
1727         int retval = 0;
1728
1729         switch (state) {
1730         case STATE_RADIO_ON:
1731                 retval = rt61pci_enable_radio(rt2x00dev);
1732                 break;
1733         case STATE_RADIO_OFF:
1734                 rt61pci_disable_radio(rt2x00dev);
1735                 break;
1736         case STATE_RADIO_RX_ON:
1737         case STATE_RADIO_RX_ON_LINK:
1738         case STATE_RADIO_RX_OFF:
1739         case STATE_RADIO_RX_OFF_LINK:
1740                 rt61pci_toggle_rx(rt2x00dev, state);
1741                 break;
1742         case STATE_RADIO_IRQ_ON:
1743         case STATE_RADIO_IRQ_OFF:
1744                 rt61pci_toggle_irq(rt2x00dev, state);
1745                 break;
1746         case STATE_DEEP_SLEEP:
1747         case STATE_SLEEP:
1748         case STATE_STANDBY:
1749         case STATE_AWAKE:
1750                 retval = rt61pci_set_state(rt2x00dev, state);
1751                 break;
1752         default:
1753                 retval = -ENOTSUPP;
1754                 break;
1755         }
1756
1757         if (unlikely(retval))
1758                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1759                       state, retval);
1760
1761         return retval;
1762 }
1763
1764 /*
1765  * TX descriptor initialization
1766  */
1767 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1768                                   struct sk_buff *skb,
1769                                   struct txentry_desc *txdesc)
1770 {
1771         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1772         __le32 *txd = skbdesc->desc;
1773         u32 word;
1774
1775         /*
1776          * Start writing the descriptor words.
1777          */
1778         rt2x00_desc_read(txd, 1, &word);
1779         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1780         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1781         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1782         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1783         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1784         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1785                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1786         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1787         rt2x00_desc_write(txd, 1, word);
1788
1789         rt2x00_desc_read(txd, 2, &word);
1790         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1791         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1792         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1793         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1794         rt2x00_desc_write(txd, 2, word);
1795
1796         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1797                 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1798                 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1799         }
1800
1801         rt2x00_desc_read(txd, 5, &word);
1802         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1803         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1804                            skbdesc->entry->entry_idx);
1805         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1806                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1807         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1808         rt2x00_desc_write(txd, 5, word);
1809
1810         rt2x00_desc_read(txd, 6, &word);
1811         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1812                            skbdesc->skb_dma);
1813         rt2x00_desc_write(txd, 6, word);
1814
1815         if (skbdesc->desc_len > TXINFO_SIZE) {
1816                 rt2x00_desc_read(txd, 11, &word);
1817                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1818                 rt2x00_desc_write(txd, 11, word);
1819         }
1820
1821         rt2x00_desc_read(txd, 0, &word);
1822         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1823         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1824         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1825                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1826         rt2x00_set_field32(&word, TXD_W0_ACK,
1827                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1828         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1829                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1830         rt2x00_set_field32(&word, TXD_W0_OFDM,
1831                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1832         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1833         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1834                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1835         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1836                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1837         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1838                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1839         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1840         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1841         rt2x00_set_field32(&word, TXD_W0_BURST,
1842                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1843         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1844         rt2x00_desc_write(txd, 0, word);
1845 }
1846
1847 /*
1848  * TX data initialization
1849  */
1850 static void rt61pci_write_beacon(struct queue_entry *entry)
1851 {
1852         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1853         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1854         unsigned int beacon_base;
1855         u32 reg;
1856
1857         /*
1858          * Disable beaconing while we are reloading the beacon data,
1859          * otherwise we might be sending out invalid data.
1860          */
1861         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1862         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1863         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1864         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1865         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1866
1867         /*
1868          * Write entire beacon with descriptor to register.
1869          */
1870         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1871         rt2x00pci_register_multiwrite(rt2x00dev,
1872                                       beacon_base,
1873                                       skbdesc->desc, skbdesc->desc_len);
1874         rt2x00pci_register_multiwrite(rt2x00dev,
1875                                       beacon_base + skbdesc->desc_len,
1876                                       entry->skb->data, entry->skb->len);
1877
1878         /*
1879          * Clean up beacon skb.
1880          */
1881         dev_kfree_skb_any(entry->skb);
1882         entry->skb = NULL;
1883 }
1884
1885 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1886                                   const enum data_queue_qid queue)
1887 {
1888         u32 reg;
1889
1890         if (queue == QID_BEACON) {
1891                 /*
1892                  * For Wi-Fi faily generated beacons between participating
1893                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1894                  */
1895                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1896
1897                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1898                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1899                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1900                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1901                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1902                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1903                 }
1904                 return;
1905         }
1906
1907         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1908         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1909         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1910         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1911         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1912         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1913 }
1914
1915 /*
1916  * RX control handlers
1917  */
1918 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1919 {
1920         u8 offset = rt2x00dev->lna_gain;
1921         u8 lna;
1922
1923         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1924         switch (lna) {
1925         case 3:
1926                 offset += 90;
1927                 break;
1928         case 2:
1929                 offset += 74;
1930                 break;
1931         case 1:
1932                 offset += 64;
1933                 break;
1934         default:
1935                 return 0;
1936         }
1937
1938         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1939                 if (lna == 3 || lna == 2)
1940                         offset += 10;
1941         }
1942
1943         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1944 }
1945
1946 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1947                                 struct rxdone_entry_desc *rxdesc)
1948 {
1949         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1950         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1951         u32 word0;
1952         u32 word1;
1953
1954         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1955         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1956
1957         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1958                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1959
1960         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1961                 rxdesc->cipher =
1962                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1963                 rxdesc->cipher_status =
1964                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1965         }
1966
1967         if (rxdesc->cipher != CIPHER_NONE) {
1968                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv);
1969                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->eiv);
1970                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1971
1972                 /*
1973                  * Hardware has stripped IV/EIV data from 802.11 frame during
1974                  * decryption. It has provided the data seperately but rt2x00lib
1975                  * should decide if it should be reinserted.
1976                  */
1977                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1978
1979                 /*
1980                  * FIXME: Legacy driver indicates that the frame does
1981                  * contain the Michael Mic. Unfortunately, in rt2x00
1982                  * the MIC seems to be missing completely...
1983                  */
1984                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1985
1986                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1987                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1988                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1989                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1990         }
1991
1992         /*
1993          * Obtain the status about this packet.
1994          * When frame was received with an OFDM bitrate,
1995          * the signal is the PLCP value. If it was received with
1996          * a CCK bitrate the signal is the rate in 100kbit/s.
1997          */
1998         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1999         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2000         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2001
2002         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2003                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2004         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2005                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2006 }
2007
2008 /*
2009  * Interrupt functions.
2010  */
2011 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2012 {
2013         struct data_queue *queue;
2014         struct queue_entry *entry;
2015         struct queue_entry *entry_done;
2016         struct queue_entry_priv_pci *entry_priv;
2017         struct txdone_entry_desc txdesc;
2018         u32 word;
2019         u32 reg;
2020         u32 old_reg;
2021         int type;
2022         int index;
2023
2024         /*
2025          * During each loop we will compare the freshly read
2026          * STA_CSR4 register value with the value read from
2027          * the previous loop. If the 2 values are equal then
2028          * we should stop processing because the chance it
2029          * quite big that the device has been unplugged and
2030          * we risk going into an endless loop.
2031          */
2032         old_reg = 0;
2033
2034         while (1) {
2035                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2036                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2037                         break;
2038
2039                 if (old_reg == reg)
2040                         break;
2041                 old_reg = reg;
2042
2043                 /*
2044                  * Skip this entry when it contains an invalid
2045                  * queue identication number.
2046                  */
2047                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2048                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2049                 if (unlikely(!queue))
2050                         continue;
2051
2052                 /*
2053                  * Skip this entry when it contains an invalid
2054                  * index number.
2055                  */
2056                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2057                 if (unlikely(index >= queue->limit))
2058                         continue;
2059
2060                 entry = &queue->entries[index];
2061                 entry_priv = entry->priv_data;
2062                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2063
2064                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2065                     !rt2x00_get_field32(word, TXD_W0_VALID))
2066                         return;
2067
2068                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2069                 while (entry != entry_done) {
2070                         /* Catch up.
2071                          * Just report any entries we missed as failed.
2072                          */
2073                         WARNING(rt2x00dev,
2074                                 "TX status report missed for entry %d\n",
2075                                 entry_done->entry_idx);
2076
2077                         txdesc.flags = 0;
2078                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2079                         txdesc.retry = 0;
2080
2081                         rt2x00lib_txdone(entry_done, &txdesc);
2082                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2083                 }
2084
2085                 /*
2086                  * Obtain the status about this packet.
2087                  */
2088                 txdesc.flags = 0;
2089                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2090                 case 0: /* Success, maybe with retry */
2091                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2092                         break;
2093                 case 6: /* Failure, excessive retries */
2094                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2095                         /* Don't break, this is a failed frame! */
2096                 default: /* Failure */
2097                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2098                 }
2099                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2100
2101                 rt2x00lib_txdone(entry, &txdesc);
2102         }
2103 }
2104
2105 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2106 {
2107         struct rt2x00_dev *rt2x00dev = dev_instance;
2108         u32 reg_mcu;
2109         u32 reg;
2110
2111         /*
2112          * Get the interrupt sources & saved to local variable.
2113          * Write register value back to clear pending interrupts.
2114          */
2115         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2116         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2117
2118         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2119         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2120
2121         if (!reg && !reg_mcu)
2122                 return IRQ_NONE;
2123
2124         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2125                 return IRQ_HANDLED;
2126
2127         /*
2128          * Handle interrupts, walk through all bits
2129          * and run the tasks, the bits are checked in order of
2130          * priority.
2131          */
2132
2133         /*
2134          * 1 - Rx ring done interrupt.
2135          */
2136         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2137                 rt2x00pci_rxdone(rt2x00dev);
2138
2139         /*
2140          * 2 - Tx ring done interrupt.
2141          */
2142         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2143                 rt61pci_txdone(rt2x00dev);
2144
2145         /*
2146          * 3 - Handle MCU command done.
2147          */
2148         if (reg_mcu)
2149                 rt2x00pci_register_write(rt2x00dev,
2150                                          M2H_CMD_DONE_CSR, 0xffffffff);
2151
2152         return IRQ_HANDLED;
2153 }
2154
2155 /*
2156  * Device probe functions.
2157  */
2158 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2159 {
2160         struct eeprom_93cx6 eeprom;
2161         u32 reg;
2162         u16 word;
2163         u8 *mac;
2164         s8 value;
2165
2166         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2167
2168         eeprom.data = rt2x00dev;
2169         eeprom.register_read = rt61pci_eepromregister_read;
2170         eeprom.register_write = rt61pci_eepromregister_write;
2171         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2172             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2173         eeprom.reg_data_in = 0;
2174         eeprom.reg_data_out = 0;
2175         eeprom.reg_data_clock = 0;
2176         eeprom.reg_chip_select = 0;
2177
2178         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2179                                EEPROM_SIZE / sizeof(u16));
2180
2181         /*
2182          * Start validation of the data that has been read.
2183          */
2184         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2185         if (!is_valid_ether_addr(mac)) {
2186                 DECLARE_MAC_BUF(macbuf);
2187
2188                 random_ether_addr(mac);
2189                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
2190         }
2191
2192         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2193         if (word == 0xffff) {
2194                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2195                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2196                                    ANTENNA_B);
2197                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2198                                    ANTENNA_B);
2199                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2200                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2201                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2202                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2203                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2204                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2205         }
2206
2207         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2208         if (word == 0xffff) {
2209                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2210                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2211                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2212                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2213                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2214                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2215                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2216                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2217         }
2218
2219         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2220         if (word == 0xffff) {
2221                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2222                                    LED_MODE_DEFAULT);
2223                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2224                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2225         }
2226
2227         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2228         if (word == 0xffff) {
2229                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2230                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2231                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2232                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2233         }
2234
2235         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2236         if (word == 0xffff) {
2237                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2238                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2239                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2240                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2241         } else {
2242                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2243                 if (value < -10 || value > 10)
2244                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2245                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2246                 if (value < -10 || value > 10)
2247                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2248                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2249         }
2250
2251         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2252         if (word == 0xffff) {
2253                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2254                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2255                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2256                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2257         } else {
2258                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2259                 if (value < -10 || value > 10)
2260                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2261                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2262                 if (value < -10 || value > 10)
2263                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2264                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2265         }
2266
2267         return 0;
2268 }
2269
2270 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2271 {
2272         u32 reg;
2273         u16 value;
2274         u16 eeprom;
2275         u16 device;
2276
2277         /*
2278          * Read EEPROM word for configuration.
2279          */
2280         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2281
2282         /*
2283          * Identify RF chipset.
2284          * To determine the RT chip we have to read the
2285          * PCI header of the device.
2286          */
2287         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2288                              PCI_CONFIG_HEADER_DEVICE, &device);
2289         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2290         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2291         rt2x00_set_chip(rt2x00dev, device, value, reg);
2292
2293         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2294             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2295             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2296             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2297                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2298                 return -ENODEV;
2299         }
2300
2301         /*
2302          * Determine number of antenna's.
2303          */
2304         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2305                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2306
2307         /*
2308          * Identify default antenna configuration.
2309          */
2310         rt2x00dev->default_ant.tx =
2311             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2312         rt2x00dev->default_ant.rx =
2313             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2314
2315         /*
2316          * Read the Frame type.
2317          */
2318         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2319                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2320
2321         /*
2322          * Detect if this device has an hardware controlled radio.
2323          */
2324 #ifdef CONFIG_RT61PCI_RFKILL
2325         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2326                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2327 #endif /* CONFIG_RT61PCI_RFKILL */
2328
2329         /*
2330          * Read frequency offset and RF programming sequence.
2331          */
2332         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2333         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2334                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2335
2336         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2337
2338         /*
2339          * Read external LNA informations.
2340          */
2341         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2342
2343         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2344                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2345         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2346                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2347
2348         /*
2349          * When working with a RF2529 chip without double antenna
2350          * the antenna settings should be gathered from the NIC
2351          * eeprom word.
2352          */
2353         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2354             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2355                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2356                 case 0:
2357                         rt2x00dev->default_ant.tx = ANTENNA_B;
2358                         rt2x00dev->default_ant.rx = ANTENNA_A;
2359                         break;
2360                 case 1:
2361                         rt2x00dev->default_ant.tx = ANTENNA_B;
2362                         rt2x00dev->default_ant.rx = ANTENNA_B;
2363                         break;
2364                 case 2:
2365                         rt2x00dev->default_ant.tx = ANTENNA_A;
2366                         rt2x00dev->default_ant.rx = ANTENNA_A;
2367                         break;
2368                 case 3:
2369                         rt2x00dev->default_ant.tx = ANTENNA_A;
2370                         rt2x00dev->default_ant.rx = ANTENNA_B;
2371                         break;
2372                 }
2373
2374                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2375                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2376                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2377                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2378         }
2379
2380         /*
2381          * Store led settings, for correct led behaviour.
2382          * If the eeprom value is invalid,
2383          * switch to default led mode.
2384          */
2385 #ifdef CONFIG_RT61PCI_LEDS
2386         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2387         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2388
2389         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2390         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2391         if (value == LED_MODE_SIGNAL_STRENGTH)
2392                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2393                                  LED_TYPE_QUALITY);
2394
2395         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2396         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2397                            rt2x00_get_field16(eeprom,
2398                                               EEPROM_LED_POLARITY_GPIO_0));
2399         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2400                            rt2x00_get_field16(eeprom,
2401                                               EEPROM_LED_POLARITY_GPIO_1));
2402         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2403                            rt2x00_get_field16(eeprom,
2404                                               EEPROM_LED_POLARITY_GPIO_2));
2405         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2406                            rt2x00_get_field16(eeprom,
2407                                               EEPROM_LED_POLARITY_GPIO_3));
2408         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2409                            rt2x00_get_field16(eeprom,
2410                                               EEPROM_LED_POLARITY_GPIO_4));
2411         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2412                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2413         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2414                            rt2x00_get_field16(eeprom,
2415                                               EEPROM_LED_POLARITY_RDY_G));
2416         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2417                            rt2x00_get_field16(eeprom,
2418                                               EEPROM_LED_POLARITY_RDY_A));
2419 #endif /* CONFIG_RT61PCI_LEDS */
2420
2421         return 0;
2422 }
2423
2424 /*
2425  * RF value list for RF5225 & RF5325
2426  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2427  */
2428 static const struct rf_channel rf_vals_noseq[] = {
2429         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2430         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2431         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2432         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2433         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2434         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2435         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2436         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2437         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2438         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2439         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2440         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2441         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2442         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2443
2444         /* 802.11 UNI / HyperLan 2 */
2445         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2446         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2447         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2448         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2449         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2450         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2451         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2452         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2453
2454         /* 802.11 HyperLan 2 */
2455         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2456         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2457         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2458         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2459         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2460         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2461         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2462         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2463         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2464         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2465
2466         /* 802.11 UNII */
2467         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2468         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2469         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2470         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2471         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2472         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2473
2474         /* MMAC(Japan)J52 ch 34,38,42,46 */
2475         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2476         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2477         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2478         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2479 };
2480
2481 /*
2482  * RF value list for RF5225 & RF5325
2483  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2484  */
2485 static const struct rf_channel rf_vals_seq[] = {
2486         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2487         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2488         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2489         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2490         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2491         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2492         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2493         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2494         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2495         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2496         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2497         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2498         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2499         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2500
2501         /* 802.11 UNI / HyperLan 2 */
2502         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2503         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2504         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2505         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2506         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2507         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2508         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2509         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2510
2511         /* 802.11 HyperLan 2 */
2512         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2513         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2514         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2515         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2516         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2517         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2518         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2519         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2520         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2521         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2522
2523         /* 802.11 UNII */
2524         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2525         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2526         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2527         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2528         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2529         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2530
2531         /* MMAC(Japan)J52 ch 34,38,42,46 */
2532         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2533         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2534         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2535         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2536 };
2537
2538 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2539 {
2540         struct hw_mode_spec *spec = &rt2x00dev->spec;
2541         struct channel_info *info;
2542         char *tx_power;
2543         unsigned int i;
2544
2545         /*
2546          * Initialize all hw fields.
2547          */
2548         rt2x00dev->hw->flags =
2549             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2550             IEEE80211_HW_SIGNAL_DBM;
2551         rt2x00dev->hw->extra_tx_headroom = 0;
2552
2553         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2554         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2555                                 rt2x00_eeprom_addr(rt2x00dev,
2556                                                    EEPROM_MAC_ADDR_0));
2557
2558         /*
2559          * Initialize hw_mode information.
2560          */
2561         spec->supported_bands = SUPPORT_BAND_2GHZ;
2562         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2563
2564         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2565                 spec->num_channels = 14;
2566                 spec->channels = rf_vals_noseq;
2567         } else {
2568                 spec->num_channels = 14;
2569                 spec->channels = rf_vals_seq;
2570         }
2571
2572         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2573             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2574                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2575                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2576         }
2577
2578         /*
2579          * Create channel information array
2580          */
2581         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2582         if (!info)
2583                 return -ENOMEM;
2584
2585         spec->channels_info = info;
2586
2587         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2588         for (i = 0; i < 14; i++)
2589                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2590
2591         if (spec->num_channels > 14) {
2592                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2593                 for (i = 14; i < spec->num_channels; i++)
2594                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2595         }
2596
2597         return 0;
2598 }
2599
2600 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2601 {
2602         int retval;
2603
2604         /*
2605          * Allocate eeprom data.
2606          */
2607         retval = rt61pci_validate_eeprom(rt2x00dev);
2608         if (retval)
2609                 return retval;
2610
2611         retval = rt61pci_init_eeprom(rt2x00dev);
2612         if (retval)
2613                 return retval;
2614
2615         /*
2616          * Initialize hw specifications.
2617          */
2618         retval = rt61pci_probe_hw_mode(rt2x00dev);
2619         if (retval)
2620                 return retval;
2621
2622         /*
2623          * This device requires firmware and DMA mapped skbs.
2624          */
2625         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2626         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2627         if (!modparam_nohwcrypt)
2628                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2629
2630         /*
2631          * Set the rssi offset.
2632          */
2633         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2634
2635         return 0;
2636 }
2637
2638 /*
2639  * IEEE80211 stack callback functions.
2640  */
2641 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2642                                    u32 short_retry, u32 long_retry)
2643 {
2644         struct rt2x00_dev *rt2x00dev = hw->priv;
2645         u32 reg;
2646
2647         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2648         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2649         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2650         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2651
2652         return 0;
2653 }
2654
2655 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2656 {
2657         struct rt2x00_dev *rt2x00dev = hw->priv;
2658         u64 tsf;
2659         u32 reg;
2660
2661         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2662         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2663         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2664         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2665
2666         return tsf;
2667 }
2668
2669 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2670         .tx                     = rt2x00mac_tx,
2671         .start                  = rt2x00mac_start,
2672         .stop                   = rt2x00mac_stop,
2673         .add_interface          = rt2x00mac_add_interface,
2674         .remove_interface       = rt2x00mac_remove_interface,
2675         .config                 = rt2x00mac_config,
2676         .config_interface       = rt2x00mac_config_interface,
2677         .configure_filter       = rt2x00mac_configure_filter,
2678         .set_key                = rt2x00mac_set_key,
2679         .get_stats              = rt2x00mac_get_stats,
2680         .set_retry_limit        = rt61pci_set_retry_limit,
2681         .bss_info_changed       = rt2x00mac_bss_info_changed,
2682         .conf_tx                = rt2x00mac_conf_tx,
2683         .get_tx_stats           = rt2x00mac_get_tx_stats,
2684         .get_tsf                = rt61pci_get_tsf,
2685 };
2686
2687 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2688         .irq_handler            = rt61pci_interrupt,
2689         .probe_hw               = rt61pci_probe_hw,
2690         .get_firmware_name      = rt61pci_get_firmware_name,
2691         .get_firmware_crc       = rt61pci_get_firmware_crc,
2692         .load_firmware          = rt61pci_load_firmware,
2693         .initialize             = rt2x00pci_initialize,
2694         .uninitialize           = rt2x00pci_uninitialize,
2695         .init_rxentry           = rt61pci_init_rxentry,
2696         .init_txentry           = rt61pci_init_txentry,
2697         .set_device_state       = rt61pci_set_device_state,
2698         .rfkill_poll            = rt61pci_rfkill_poll,
2699         .link_stats             = rt61pci_link_stats,
2700         .reset_tuner            = rt61pci_reset_tuner,
2701         .link_tuner             = rt61pci_link_tuner,
2702         .write_tx_desc          = rt61pci_write_tx_desc,
2703         .write_tx_data          = rt2x00pci_write_tx_data,
2704         .write_beacon           = rt61pci_write_beacon,
2705         .kick_tx_queue          = rt61pci_kick_tx_queue,
2706         .fill_rxdone            = rt61pci_fill_rxdone,
2707         .config_shared_key      = rt61pci_config_shared_key,
2708         .config_pairwise_key    = rt61pci_config_pairwise_key,
2709         .config_filter          = rt61pci_config_filter,
2710         .config_intf            = rt61pci_config_intf,
2711         .config_erp             = rt61pci_config_erp,
2712         .config                 = rt61pci_config,
2713 };
2714
2715 static const struct data_queue_desc rt61pci_queue_rx = {
2716         .entry_num              = RX_ENTRIES,
2717         .data_size              = DATA_FRAME_SIZE,
2718         .desc_size              = RXD_DESC_SIZE,
2719         .priv_size              = sizeof(struct queue_entry_priv_pci),
2720 };
2721
2722 static const struct data_queue_desc rt61pci_queue_tx = {
2723         .entry_num              = TX_ENTRIES,
2724         .data_size              = DATA_FRAME_SIZE,
2725         .desc_size              = TXD_DESC_SIZE,
2726         .priv_size              = sizeof(struct queue_entry_priv_pci),
2727 };
2728
2729 static const struct data_queue_desc rt61pci_queue_bcn = {
2730         .entry_num              = 4 * BEACON_ENTRIES,
2731         .data_size              = 0, /* No DMA required for beacons */
2732         .desc_size              = TXINFO_SIZE,
2733         .priv_size              = sizeof(struct queue_entry_priv_pci),
2734 };
2735
2736 static const struct rt2x00_ops rt61pci_ops = {
2737         .name           = KBUILD_MODNAME,
2738         .max_sta_intf   = 1,
2739         .max_ap_intf    = 4,
2740         .eeprom_size    = EEPROM_SIZE,
2741         .rf_size        = RF_SIZE,
2742         .tx_queues      = NUM_TX_QUEUES,
2743         .rx             = &rt61pci_queue_rx,
2744         .tx             = &rt61pci_queue_tx,
2745         .bcn            = &rt61pci_queue_bcn,
2746         .lib            = &rt61pci_rt2x00_ops,
2747         .hw             = &rt61pci_mac80211_ops,
2748 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2749         .debugfs        = &rt61pci_rt2x00debug,
2750 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2751 };
2752
2753 /*
2754  * RT61pci module information.
2755  */
2756 static struct pci_device_id rt61pci_device_table[] = {
2757         /* RT2561s */
2758         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2759         /* RT2561 v2 */
2760         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2761         /* RT2661 */
2762         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2763         { 0, }
2764 };
2765
2766 MODULE_AUTHOR(DRV_PROJECT);
2767 MODULE_VERSION(DRV_VERSION);
2768 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2769 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2770                         "PCI & PCMCIA chipset based cards");
2771 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2772 MODULE_FIRMWARE(FIRMWARE_RT2561);
2773 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2774 MODULE_FIRMWARE(FIRMWARE_RT2661);
2775 MODULE_LICENSE("GPL");
2776
2777 static struct pci_driver rt61pci_driver = {
2778         .name           = KBUILD_MODNAME,
2779         .id_table       = rt61pci_device_table,
2780         .probe          = rt2x00pci_probe,
2781         .remove         = __devexit_p(rt2x00pci_remove),
2782         .suspend        = rt2x00pci_suspend,
2783         .resume         = rt2x00pci_resume,
2784 };
2785
2786 static int __init rt61pci_init(void)
2787 {
2788         return pci_register_driver(&rt61pci_driver);
2789 }
2790
2791 static void __exit rt61pci_exit(void)
2792 {
2793         pci_unregister_driver(&rt61pci_driver);
2794 }
2795
2796 module_init(rt61pci_init);
2797 module_exit(rt61pci_exit);