Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop the TX queues.
142          */
143         ieee80211_stop_queues(rt2x00dev->hw);
144
145         /*
146          * Disable RX.
147          */
148         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150         /*
151          * Disable radio.
152          */
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155         rt2x00led_led_activity(rt2x00dev, false);
156         rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161         /*
162          * When we are disabling the RX, we should also stop the link tuner.
163          */
164         if (state == STATE_RADIO_RX_OFF)
165                 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169         /*
170          * When we are enabling the RX, we should also start the link tuner.
171          */
172         if (state == STATE_RADIO_RX_ON &&
173             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174                 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179         enum antenna rx = rt2x00dev->link.ant.active.rx;
180         enum antenna tx = rt2x00dev->link.ant.active.tx;
181         int sample_a =
182             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183         int sample_b =
184             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186         /*
187          * We are done sampling. Now we should evaluate the results.
188          */
189         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191         /*
192          * During the last period we have sampled the RSSI
193          * from both antenna's. It now is time to determine
194          * which antenna demonstrated the best performance.
195          * When we are already on the antenna with the best
196          * performance, then there really is nothing for us
197          * left to do.
198          */
199         if (sample_a == sample_b)
200                 return;
201
202         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213         enum antenna rx = rt2x00dev->link.ant.active.rx;
214         enum antenna tx = rt2x00dev->link.ant.active.tx;
215         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218         /*
219          * Legacy driver indicates that we should swap antenna's
220          * when the difference in RSSI is greater that 5. This
221          * also should be done when the RSSI was actually better
222          * then the previous sample.
223          * When the difference exceeds the threshold we should
224          * sample the rssi from the other antenna to make a valid
225          * comparison between the 2 antennas.
226          */
227         if (abs(rssi_curr - rssi_old) < 5)
228                 return;
229
230         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243         /*
244          * Determine if software diversity is enabled for
245          * either the TX or RX antenna (or both).
246          * Always perform this check since within the link
247          * tuner interval the configuration might have changed.
248          */
249         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
253             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
256             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261                 rt2x00dev->link.ant.flags = 0;
262                 return;
263         }
264
265         /*
266          * If we have only sampled the data over the last period
267          * we should now harvest the data. Otherwise just evaluate
268          * the data. The latter should only be performed once
269          * every 2 seconds.
270          */
271         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273         else if (rt2x00dev->link.count & 1)
274                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279         int avg_rssi = rssi;
280
281         /*
282          * Update global RSSI
283          */
284         if (link->qual.avg_rssi)
285                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286         link->qual.avg_rssi = avg_rssi;
287
288         /*
289          * Update antenna RSSI
290          */
291         if (link->ant.rssi_ant)
292                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293         link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298         if (qual->rx_failed || qual->rx_success)
299                 qual->rx_percentage =
300                     (qual->rx_success * 100) /
301                     (qual->rx_failed + qual->rx_success);
302         else
303                 qual->rx_percentage = 50;
304
305         if (qual->tx_failed || qual->tx_success)
306                 qual->tx_percentage =
307                     (qual->tx_success * 100) /
308                     (qual->tx_failed + qual->tx_success);
309         else
310                 qual->tx_percentage = 50;
311
312         qual->rx_success = 0;
313         qual->rx_failed = 0;
314         qual->tx_success = 0;
315         qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319                                            int rssi)
320 {
321         int rssi_percentage = 0;
322         int signal;
323
324         /*
325          * We need a positive value for the RSSI.
326          */
327         if (rssi < 0)
328                 rssi += rt2x00dev->rssi_offset;
329
330         /*
331          * Calculate the different percentages,
332          * which will be used for the signal.
333          */
334         if (rt2x00dev->rssi_offset)
335                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337         /*
338          * Add the individual percentages and use the WEIGHT
339          * defines to calculate the current link signal.
340          */
341         signal = ((WEIGHT_RSSI * rssi_percentage) +
342                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345         return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350         struct rt2x00_dev *rt2x00dev =
351             container_of(work, struct rt2x00_dev, link.work.work);
352
353         /*
354          * When the radio is shutting down we should
355          * immediately cease all link tuning.
356          */
357         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
358                 return;
359
360         /*
361          * Update statistics.
362          */
363         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365             rt2x00dev->link.qual.rx_failed;
366
367         /*
368          * Only perform the link tuning when Link tuning
369          * has been enabled (This could have been disabled from the EEPROM).
370          */
371         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374         /*
375          * Precalculate a portion of the link signal which is
376          * in based on the tx/rx success/failure counters.
377          */
378         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380         /*
381          * Send a signal to the led to update the led signal strength.
382          */
383         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385         /*
386          * Evaluate antenna setup, make this the last step since this could
387          * possibly reset some statistics.
388          */
389         rt2x00lib_evaluate_antenna(rt2x00dev);
390
391         /*
392          * Increase tuner counter, and reschedule the next link tuner run.
393          */
394         rt2x00dev->link.count++;
395         queue_delayed_work(rt2x00dev->workqueue,
396                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401         struct rt2x00_dev *rt2x00dev =
402             container_of(work, struct rt2x00_dev, filter_work);
403
404         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408                                           struct ieee80211_vif *vif)
409 {
410         struct rt2x00_dev *rt2x00dev = data;
411         struct rt2x00_intf *intf = vif_to_intf(vif);
412         struct sk_buff *skb;
413         struct ieee80211_bss_conf conf;
414         int delayed_flags;
415
416         /*
417          * Copy all data we need during this action under the protection
418          * of a spinlock. Otherwise race conditions might occur which results
419          * into an invalid configuration.
420          */
421         spin_lock(&intf->lock);
422
423         memcpy(&conf, &intf->conf, sizeof(conf));
424         delayed_flags = intf->delayed_flags;
425         intf->delayed_flags = 0;
426
427         spin_unlock(&intf->lock);
428
429         /*
430          * It is possible the radio was disabled while the work had been
431          * scheduled. If that happens we should return here immediately,
432          * note that in the spinlock protected area above the delayed_flags
433          * have been cleared correctly.
434          */
435         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
436                 return;
437
438         if (delayed_flags & DELAYED_UPDATE_BEACON) {
439                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
440                 if (skb &&
441                     rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb))
442                         dev_kfree_skb(skb);
443         }
444
445         if (delayed_flags & DELAYED_CONFIG_ERP)
446                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
447
448         if (delayed_flags & DELAYED_LED_ASSOC)
449                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
450 }
451
452 static void rt2x00lib_intf_scheduled(struct work_struct *work)
453 {
454         struct rt2x00_dev *rt2x00dev =
455             container_of(work, struct rt2x00_dev, intf_work);
456
457         /*
458          * Iterate over each interface and perform the
459          * requested configurations.
460          */
461         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
462                                             rt2x00lib_intf_scheduled_iter,
463                                             rt2x00dev);
464 }
465
466 /*
467  * Interrupt context handlers.
468  */
469 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
470                                       struct ieee80211_vif *vif)
471 {
472         struct rt2x00_intf *intf = vif_to_intf(vif);
473
474         if (vif->type != IEEE80211_IF_TYPE_AP &&
475             vif->type != IEEE80211_IF_TYPE_IBSS)
476                 return;
477
478         spin_lock(&intf->lock);
479         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
480         spin_unlock(&intf->lock);
481 }
482
483 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
484 {
485         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
486                 return;
487
488         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
489                                                    rt2x00lib_beacondone_iter,
490                                                    rt2x00dev);
491
492         queue_work(rt2x00dev->workqueue, &rt2x00dev->intf_work);
493 }
494 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
495
496 void rt2x00lib_txdone(struct queue_entry *entry,
497                       struct txdone_entry_desc *txdesc)
498 {
499         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
500         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
501
502         /*
503          * Send frame to debugfs immediately, after this call is completed
504          * we are going to overwrite the skb->cb array.
505          */
506         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
507
508         /*
509          * Update TX statistics.
510          */
511         rt2x00dev->link.qual.tx_success +=
512             test_bit(TXDONE_SUCCESS, &txdesc->flags);
513         rt2x00dev->link.qual.tx_failed +=
514             test_bit(TXDONE_FAILURE, &txdesc->flags);
515
516         /*
517          * Initialize TX status
518          */
519         memset(&tx_info->status, 0, sizeof(tx_info->status));
520         tx_info->status.ack_signal = 0;
521         tx_info->status.excessive_retries =
522             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
523         tx_info->status.retry_count = txdesc->retry;
524
525         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
526                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
527                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
528                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
529                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
530         }
531
532         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
533                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
534                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
535                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
536                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
537         }
538
539         /*
540          * Only send the status report to mac80211 when TX status was
541          * requested by it. If this was a extra frame coming through
542          * a mac80211 library call (RTS/CTS) then we should not send the
543          * status report back.
544          */
545         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
546                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
547         else
548                 dev_kfree_skb_irq(entry->skb);
549         entry->skb = NULL;
550 }
551 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
552
553 void rt2x00lib_rxdone(struct queue_entry *entry,
554                       struct rxdone_entry_desc *rxdesc)
555 {
556         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
557         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
558         unsigned int header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
559         struct ieee80211_supported_band *sband;
560         struct ieee80211_hdr *hdr;
561         const struct rt2x00_rate *rate;
562         unsigned int align;
563         unsigned int i;
564         int idx = -1;
565         u16 fc;
566
567         /*
568          * The data behind the ieee80211 header must be
569          * aligned on a 4 byte boundary.
570          */
571         align = ((unsigned long)(entry->skb->data + header_size)) & 3;
572
573         if (align) {
574                 skb_push(entry->skb, align);
575                 /* Move entire frame in 1 command */
576                 memmove(entry->skb->data, entry->skb->data + align,
577                         rxdesc->size);
578         }
579
580         /* Update data pointers, trim buffer to correct size */
581         skb_trim(entry->skb, rxdesc->size);
582
583         /*
584          * Update RX statistics.
585          */
586         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
587         for (i = 0; i < sband->n_bitrates; i++) {
588                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
589
590                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
591                      (rate->plcp == rxdesc->signal)) ||
592                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
593                       (rate->bitrate == rxdesc->signal))) {
594                         idx = i;
595                         break;
596                 }
597         }
598
599         if (idx < 0) {
600                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
601                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
602                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
603                 idx = 0;
604         }
605
606         /*
607          * Only update link status if this is a beacon frame carrying our bssid.
608          */
609         hdr = (struct ieee80211_hdr *)entry->skb->data;
610         fc = le16_to_cpu(hdr->frame_control);
611         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
612                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
613
614         rt2x00dev->link.qual.rx_success++;
615
616         rx_status->rate_idx = idx;
617         rx_status->qual =
618             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
619         rx_status->signal = rxdesc->rssi;
620         rx_status->flag = rxdesc->flags;
621         rx_status->antenna = rt2x00dev->link.ant.active.rx;
622
623         /*
624          * Send frame to mac80211 & debugfs.
625          * mac80211 will clean up the skb structure.
626          */
627         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
628         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
629         entry->skb = NULL;
630 }
631 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
632
633 /*
634  * Driver initialization handlers.
635  */
636 const struct rt2x00_rate rt2x00_supported_rates[12] = {
637         {
638                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
639                 .bitrate = 10,
640                 .ratemask = BIT(0),
641                 .plcp = 0x00,
642         },
643         {
644                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
645                 .bitrate = 20,
646                 .ratemask = BIT(1),
647                 .plcp = 0x01,
648         },
649         {
650                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
651                 .bitrate = 55,
652                 .ratemask = BIT(2),
653                 .plcp = 0x02,
654         },
655         {
656                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
657                 .bitrate = 110,
658                 .ratemask = BIT(3),
659                 .plcp = 0x03,
660         },
661         {
662                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
663                 .bitrate = 60,
664                 .ratemask = BIT(4),
665                 .plcp = 0x0b,
666         },
667         {
668                 .flags = DEV_RATE_OFDM,
669                 .bitrate = 90,
670                 .ratemask = BIT(5),
671                 .plcp = 0x0f,
672         },
673         {
674                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
675                 .bitrate = 120,
676                 .ratemask = BIT(6),
677                 .plcp = 0x0a,
678         },
679         {
680                 .flags = DEV_RATE_OFDM,
681                 .bitrate = 180,
682                 .ratemask = BIT(7),
683                 .plcp = 0x0e,
684         },
685         {
686                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
687                 .bitrate = 240,
688                 .ratemask = BIT(8),
689                 .plcp = 0x09,
690         },
691         {
692                 .flags = DEV_RATE_OFDM,
693                 .bitrate = 360,
694                 .ratemask = BIT(9),
695                 .plcp = 0x0d,
696         },
697         {
698                 .flags = DEV_RATE_OFDM,
699                 .bitrate = 480,
700                 .ratemask = BIT(10),
701                 .plcp = 0x08,
702         },
703         {
704                 .flags = DEV_RATE_OFDM,
705                 .bitrate = 540,
706                 .ratemask = BIT(11),
707                 .plcp = 0x0c,
708         },
709 };
710
711 static void rt2x00lib_channel(struct ieee80211_channel *entry,
712                               const int channel, const int tx_power,
713                               const int value)
714 {
715         entry->center_freq = ieee80211_channel_to_frequency(channel);
716         entry->hw_value = value;
717         entry->max_power = tx_power;
718         entry->max_antenna_gain = 0xff;
719 }
720
721 static void rt2x00lib_rate(struct ieee80211_rate *entry,
722                            const u16 index, const struct rt2x00_rate *rate)
723 {
724         entry->flags = 0;
725         entry->bitrate = rate->bitrate;
726         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
727         entry->hw_value_short = entry->hw_value;
728
729         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
730                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
731                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
732         }
733 }
734
735 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
736                                     struct hw_mode_spec *spec)
737 {
738         struct ieee80211_hw *hw = rt2x00dev->hw;
739         struct ieee80211_channel *channels;
740         struct ieee80211_rate *rates;
741         unsigned int num_rates;
742         unsigned int i;
743         unsigned char tx_power;
744
745         num_rates = 0;
746         if (spec->supported_rates & SUPPORT_RATE_CCK)
747                 num_rates += 4;
748         if (spec->supported_rates & SUPPORT_RATE_OFDM)
749                 num_rates += 8;
750
751         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
752         if (!channels)
753                 return -ENOMEM;
754
755         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
756         if (!rates)
757                 goto exit_free_channels;
758
759         /*
760          * Initialize Rate list.
761          */
762         for (i = 0; i < num_rates; i++)
763                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
764
765         /*
766          * Initialize Channel list.
767          */
768         for (i = 0; i < spec->num_channels; i++) {
769                 if (spec->channels[i].channel <= 14) {
770                         if (spec->tx_power_bg)
771                                 tx_power = spec->tx_power_bg[i];
772                         else
773                                 tx_power = spec->tx_power_default;
774                 } else {
775                         if (spec->tx_power_a)
776                                 tx_power = spec->tx_power_a[i];
777                         else
778                                 tx_power = spec->tx_power_default;
779                 }
780
781                 rt2x00lib_channel(&channels[i],
782                                   spec->channels[i].channel, tx_power, i);
783         }
784
785         /*
786          * Intitialize 802.11b, 802.11g
787          * Rates: CCK, OFDM.
788          * Channels: 2.4 GHz
789          */
790         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
791                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
792                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
793                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
794                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
795                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
796                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
797         }
798
799         /*
800          * Intitialize 802.11a
801          * Rates: OFDM.
802          * Channels: OFDM, UNII, HiperLAN2.
803          */
804         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
805                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
806                     spec->num_channels - 14;
807                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
808                     num_rates - 4;
809                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
810                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
811                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
812                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
813         }
814
815         return 0;
816
817  exit_free_channels:
818         kfree(channels);
819         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
820         return -ENOMEM;
821 }
822
823 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
824 {
825         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
826                 ieee80211_unregister_hw(rt2x00dev->hw);
827
828         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
829                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
830                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
831                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
832                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
833         }
834 }
835
836 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
837 {
838         struct hw_mode_spec *spec = &rt2x00dev->spec;
839         int status;
840
841         /*
842          * Initialize HW modes.
843          */
844         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
845         if (status)
846                 return status;
847
848         /*
849          * Initialize HW fields.
850          */
851         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
852
853         /*
854          * Register HW.
855          */
856         status = ieee80211_register_hw(rt2x00dev->hw);
857         if (status) {
858                 rt2x00lib_remove_hw(rt2x00dev);
859                 return status;
860         }
861
862         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
863
864         return 0;
865 }
866
867 /*
868  * Initialization/uninitialization handlers.
869  */
870 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
871 {
872         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
873                 return;
874
875         /*
876          * Unregister extra components.
877          */
878         rt2x00rfkill_unregister(rt2x00dev);
879
880         /*
881          * Allow the HW to uninitialize.
882          */
883         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
884
885         /*
886          * Free allocated queue entries.
887          */
888         rt2x00queue_uninitialize(rt2x00dev);
889 }
890
891 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
892 {
893         int status;
894
895         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
896                 return 0;
897
898         /*
899          * Allocate all queue entries.
900          */
901         status = rt2x00queue_initialize(rt2x00dev);
902         if (status)
903                 return status;
904
905         /*
906          * Initialize the device.
907          */
908         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
909         if (status) {
910                 rt2x00queue_uninitialize(rt2x00dev);
911                 return status;
912         }
913
914         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
915
916         /*
917          * Register the extra components.
918          */
919         rt2x00rfkill_register(rt2x00dev);
920
921         return 0;
922 }
923
924 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
925 {
926         int retval;
927
928         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
929                 return 0;
930
931         /*
932          * If this is the first interface which is added,
933          * we should load the firmware now.
934          */
935         retval = rt2x00lib_load_firmware(rt2x00dev);
936         if (retval)
937                 return retval;
938
939         /*
940          * Initialize the device.
941          */
942         retval = rt2x00lib_initialize(rt2x00dev);
943         if (retval)
944                 return retval;
945
946         /*
947          * Enable radio.
948          */
949         retval = rt2x00lib_enable_radio(rt2x00dev);
950         if (retval) {
951                 rt2x00lib_uninitialize(rt2x00dev);
952                 return retval;
953         }
954
955         rt2x00dev->intf_ap_count = 0;
956         rt2x00dev->intf_sta_count = 0;
957         rt2x00dev->intf_associated = 0;
958
959         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
960
961         return 0;
962 }
963
964 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
965 {
966         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
967                 return;
968
969         /*
970          * Perhaps we can add something smarter here,
971          * but for now just disabling the radio should do.
972          */
973         rt2x00lib_disable_radio(rt2x00dev);
974
975         rt2x00dev->intf_ap_count = 0;
976         rt2x00dev->intf_sta_count = 0;
977         rt2x00dev->intf_associated = 0;
978
979         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
980 }
981
982 /*
983  * driver allocation handlers.
984  */
985 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
986 {
987         int retval = -ENOMEM;
988
989         /*
990          * Make room for rt2x00_intf inside the per-interface
991          * structure ieee80211_vif.
992          */
993         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
994
995         /*
996          * Let the driver probe the device to detect the capabilities.
997          */
998         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
999         if (retval) {
1000                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1001                 goto exit;
1002         }
1003
1004         /*
1005          * Initialize configuration work.
1006          */
1007         rt2x00dev->workqueue = create_singlethread_workqueue("rt2x00lib");
1008         if (!rt2x00dev->workqueue)
1009                 goto exit;
1010
1011         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1012         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1013         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1014
1015         /*
1016          * Allocate queue array.
1017          */
1018         retval = rt2x00queue_allocate(rt2x00dev);
1019         if (retval)
1020                 goto exit;
1021
1022         /*
1023          * Initialize ieee80211 structure.
1024          */
1025         retval = rt2x00lib_probe_hw(rt2x00dev);
1026         if (retval) {
1027                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1028                 goto exit;
1029         }
1030
1031         /*
1032          * Register extra components.
1033          */
1034         rt2x00leds_register(rt2x00dev);
1035         rt2x00rfkill_allocate(rt2x00dev);
1036         rt2x00debug_register(rt2x00dev);
1037
1038         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1039
1040         return 0;
1041
1042 exit:
1043         rt2x00lib_remove_dev(rt2x00dev);
1044
1045         return retval;
1046 }
1047 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1048
1049 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1050 {
1051         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1052
1053         /*
1054          * Disable radio.
1055          */
1056         rt2x00lib_disable_radio(rt2x00dev);
1057
1058         /*
1059          * Uninitialize device.
1060          */
1061         rt2x00lib_uninitialize(rt2x00dev);
1062
1063         /*
1064          * Free extra components
1065          */
1066         rt2x00debug_deregister(rt2x00dev);
1067         rt2x00rfkill_free(rt2x00dev);
1068         rt2x00leds_unregister(rt2x00dev);
1069
1070         /*
1071          * Stop all queued work. Note that most tasks will already be halted
1072          * during rt2x00lib_disable_radio() and rt2x00lib_uninitialize().
1073          */
1074         flush_workqueue(rt2x00dev->workqueue);
1075         destroy_workqueue(rt2x00dev->workqueue);
1076
1077         /*
1078          * Free ieee80211_hw memory.
1079          */
1080         rt2x00lib_remove_hw(rt2x00dev);
1081
1082         /*
1083          * Free firmware image.
1084          */
1085         rt2x00lib_free_firmware(rt2x00dev);
1086
1087         /*
1088          * Free queue structures.
1089          */
1090         rt2x00queue_free(rt2x00dev);
1091 }
1092 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1093
1094 /*
1095  * Device state handlers
1096  */
1097 #ifdef CONFIG_PM
1098 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1099 {
1100         int retval;
1101
1102         NOTICE(rt2x00dev, "Going to sleep.\n");
1103         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1104
1105         /*
1106          * Only continue if mac80211 has open interfaces.
1107          */
1108         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1109                 goto exit;
1110         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1111
1112         /*
1113          * Disable radio.
1114          */
1115         rt2x00lib_stop(rt2x00dev);
1116         rt2x00lib_uninitialize(rt2x00dev);
1117
1118         /*
1119          * Suspend/disable extra components.
1120          */
1121         rt2x00leds_suspend(rt2x00dev);
1122         rt2x00rfkill_suspend(rt2x00dev);
1123         rt2x00debug_deregister(rt2x00dev);
1124
1125 exit:
1126         /*
1127          * Set device mode to sleep for power management,
1128          * on some hardware this call seems to consistently fail.
1129          * From the specifications it is hard to tell why it fails,
1130          * and if this is a "bad thing".
1131          * Overall it is safe to just ignore the failure and
1132          * continue suspending. The only downside is that the
1133          * device will not be in optimal power save mode, but with
1134          * the radio and the other components already disabled the
1135          * device is as good as disabled.
1136          */
1137         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1138         if (retval)
1139                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1140                         "continue suspending.\n");
1141
1142         return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1145
1146 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1147                                   struct ieee80211_vif *vif)
1148 {
1149         struct rt2x00_dev *rt2x00dev = data;
1150         struct rt2x00_intf *intf = vif_to_intf(vif);
1151
1152         spin_lock(&intf->lock);
1153
1154         rt2x00lib_config_intf(rt2x00dev, intf,
1155                               vif->type, intf->mac, intf->bssid);
1156
1157
1158         /*
1159          * Master or Ad-hoc mode require a new beacon update.
1160          */
1161         if (vif->type == IEEE80211_IF_TYPE_AP ||
1162             vif->type == IEEE80211_IF_TYPE_IBSS)
1163                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1164
1165         spin_unlock(&intf->lock);
1166 }
1167
1168 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1169 {
1170         int retval;
1171
1172         NOTICE(rt2x00dev, "Waking up.\n");
1173
1174         /*
1175          * Restore/enable extra components.
1176          */
1177         rt2x00debug_register(rt2x00dev);
1178         rt2x00rfkill_resume(rt2x00dev);
1179         rt2x00leds_resume(rt2x00dev);
1180
1181         /*
1182          * Only continue if mac80211 had open interfaces.
1183          */
1184         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1185                 return 0;
1186
1187         /*
1188          * Reinitialize device and all active interfaces.
1189          */
1190         retval = rt2x00lib_start(rt2x00dev);
1191         if (retval)
1192                 goto exit;
1193
1194         /*
1195          * Reconfigure device.
1196          */
1197         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1198         if (!rt2x00dev->hw->conf.radio_enabled)
1199                 rt2x00lib_disable_radio(rt2x00dev);
1200
1201         /*
1202          * Iterator over each active interface to
1203          * reconfigure the hardware.
1204          */
1205         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1206                                             rt2x00lib_resume_intf, rt2x00dev);
1207
1208         /*
1209          * We are ready again to receive requests from mac80211.
1210          */
1211         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1212
1213         /*
1214          * It is possible that during that mac80211 has attempted
1215          * to send frames while we were suspending or resuming.
1216          * In that case we have disabled the TX queue and should
1217          * now enable it again
1218          */
1219         ieee80211_wake_queues(rt2x00dev->hw);
1220
1221         /*
1222          * During interface iteration we might have changed the
1223          * delayed_flags, time to handles the event by calling
1224          * the work handler directly.
1225          */
1226         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1227
1228         return 0;
1229
1230 exit:
1231         rt2x00lib_disable_radio(rt2x00dev);
1232         rt2x00lib_uninitialize(rt2x00dev);
1233         rt2x00debug_deregister(rt2x00dev);
1234
1235         return retval;
1236 }
1237 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1238 #endif /* CONFIG_PM */
1239
1240 /*
1241  * rt2x00lib module information.
1242  */
1243 MODULE_AUTHOR(DRV_PROJECT);
1244 MODULE_VERSION(DRV_VERSION);
1245 MODULE_DESCRIPTION("rt2x00 library");
1246 MODULE_LICENSE("GPL");