rt2x00: Add per-interface structure
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112                                                        STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118         /*
119          * Enable RX.
120          */
121         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123         /*
124          * Start the TX queues.
125          */
126         ieee80211_start_queues(rt2x00dev->hw);
127
128         return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134                 return;
135
136         /*
137          * Stop all scheduled work.
138          */
139         if (work_pending(&rt2x00dev->intf_work))
140                 cancel_work_sync(&rt2x00dev->intf_work);
141         if (work_pending(&rt2x00dev->filter_work))
142                 cancel_work_sync(&rt2x00dev->filter_work);
143
144         /*
145          * Stop the TX queues.
146          */
147         ieee80211_stop_queues(rt2x00dev->hw);
148
149         /*
150          * Disable RX.
151          */
152         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154         /*
155          * Disable radio.
156          */
157         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162         /*
163          * When we are disabling the RX, we should also stop the link tuner.
164          */
165         if (state == STATE_RADIO_RX_OFF)
166                 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170         /*
171          * When we are enabling the RX, we should also start the link tuner.
172          */
173         if (state == STATE_RADIO_RX_ON &&
174             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175                 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180         enum antenna rx = rt2x00dev->link.ant.active.rx;
181         enum antenna tx = rt2x00dev->link.ant.active.tx;
182         int sample_a =
183             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184         int sample_b =
185             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187         /*
188          * We are done sampling. Now we should evaluate the results.
189          */
190         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192         /*
193          * During the last period we have sampled the RSSI
194          * from both antenna's. It now is time to determine
195          * which antenna demonstrated the best performance.
196          * When we are already on the antenna with the best
197          * performance, then there really is nothing for us
198          * left to do.
199          */
200         if (sample_a == sample_b)
201                 return;
202
203         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214         enum antenna rx = rt2x00dev->link.ant.active.rx;
215         enum antenna tx = rt2x00dev->link.ant.active.tx;
216         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219         /*
220          * Legacy driver indicates that we should swap antenna's
221          * when the difference in RSSI is greater that 5. This
222          * also should be done when the RSSI was actually better
223          * then the previous sample.
224          * When the difference exceeds the threshold we should
225          * sample the rssi from the other antenna to make a valid
226          * comparison between the 2 antennas.
227          */
228         if (abs(rssi_curr - rssi_old) < 5)
229                 return;
230
231         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244         /*
245          * Determine if software diversity is enabled for
246          * either the TX or RX antenna (or both).
247          * Always perform this check since within the link
248          * tuner interval the configuration might have changed.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262                 rt2x00dev->link.ant.flags = 0;
263                 return;
264         }
265
266         /*
267          * If we have only sampled the data over the last period
268          * we should now harvest the data. Otherwise just evaluate
269          * the data. The latter should only be performed once
270          * every 2 seconds.
271          */
272         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274         else if (rt2x00dev->link.count & 1)
275                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280         int avg_rssi = rssi;
281
282         /*
283          * Update global RSSI
284          */
285         if (link->qual.avg_rssi)
286                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287         link->qual.avg_rssi = avg_rssi;
288
289         /*
290          * Update antenna RSSI
291          */
292         if (link->ant.rssi_ant)
293                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294         link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299         if (qual->rx_failed || qual->rx_success)
300                 qual->rx_percentage =
301                     (qual->rx_success * 100) /
302                     (qual->rx_failed + qual->rx_success);
303         else
304                 qual->rx_percentage = 50;
305
306         if (qual->tx_failed || qual->tx_success)
307                 qual->tx_percentage =
308                     (qual->tx_success * 100) /
309                     (qual->tx_failed + qual->tx_success);
310         else
311                 qual->tx_percentage = 50;
312
313         qual->rx_success = 0;
314         qual->rx_failed = 0;
315         qual->tx_success = 0;
316         qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320                                            int rssi)
321 {
322         int rssi_percentage = 0;
323         int signal;
324
325         /*
326          * We need a positive value for the RSSI.
327          */
328         if (rssi < 0)
329                 rssi += rt2x00dev->rssi_offset;
330
331         /*
332          * Calculate the different percentages,
333          * which will be used for the signal.
334          */
335         if (rt2x00dev->rssi_offset)
336                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338         /*
339          * Add the individual percentages and use the WEIGHT
340          * defines to calculate the current link signal.
341          */
342         signal = ((WEIGHT_RSSI * rssi_percentage) +
343                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346         return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351         struct rt2x00_dev *rt2x00dev =
352             container_of(work, struct rt2x00_dev, link.work.work);
353
354         /*
355          * When the radio is shutting down we should
356          * immediately cease all link tuning.
357          */
358         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359                 return;
360
361         /*
362          * Update statistics.
363          */
364         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366             rt2x00dev->link.qual.rx_failed;
367
368         /*
369          * Only perform the link tuning when Link tuning
370          * has been enabled (This could have been disabled from the EEPROM).
371          */
372         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375         /*
376          * Precalculate a portion of the link signal which is
377          * in based on the tx/rx success/failure counters.
378          */
379         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381         /*
382          * Evaluate antenna setup, make this the last step since this could
383          * possibly reset some statistics.
384          */
385         rt2x00lib_evaluate_antenna(rt2x00dev);
386
387         /*
388          * Increase tuner counter, and reschedule the next link tuner run.
389          */
390         rt2x00dev->link.count++;
391         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
392                            LINK_TUNE_INTERVAL);
393 }
394
395 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
396 {
397         struct rt2x00_dev *rt2x00dev =
398             container_of(work, struct rt2x00_dev, filter_work);
399         unsigned int filter = rt2x00dev->packet_filter;
400
401         /*
402          * Since we had stored the filter inside rt2x00dev->packet_filter,
403          * we should now clear that field. Otherwise the driver will
404          * assume nothing has changed (*total_flags will be compared
405          * to rt2x00dev->packet_filter to determine if any action is required).
406          */
407         rt2x00dev->packet_filter = 0;
408
409         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
410                                              filter, &filter, 0, NULL);
411 }
412
413 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
414                                           struct ieee80211_vif *vif)
415 {
416         struct rt2x00_dev *rt2x00dev = data;
417         struct rt2x00_intf *intf = vif_to_intf(vif);
418         struct sk_buff *skb;
419         struct ieee80211_tx_control control;
420         struct ieee80211_bss_conf conf;
421         int delayed_flags;
422
423         /*
424          * Copy all data we need during this action under the protection
425          * of a spinlock. Otherwise race conditions might occur which results
426          * into an invalid configuration.
427          */
428         spin_lock(&intf->lock);
429
430         memcpy(&conf, &intf->conf, sizeof(conf));
431         delayed_flags = intf->delayed_flags;
432         intf->delayed_flags = 0;
433
434         spin_unlock(&intf->lock);
435
436         if (delayed_flags & DELAYED_UPDATE_BEACON) {
437                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
438                 if (skb) {
439                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
440                                                           &control);
441                         dev_kfree_skb(skb);
442                 }
443         }
444
445         if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
446                 rt2x00lib_config_preamble(rt2x00dev, intf,
447                                           intf->conf.use_short_preamble);
448 }
449
450 static void rt2x00lib_intf_scheduled(struct work_struct *work)
451 {
452         struct rt2x00_dev *rt2x00dev =
453             container_of(work, struct rt2x00_dev, intf_work);
454
455         /*
456          * Iterate over each interface and perform the
457          * requested configurations.
458          */
459         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
460                                             rt2x00lib_intf_scheduled_iter,
461                                             rt2x00dev);
462 }
463
464 /*
465  * Interrupt context handlers.
466  */
467 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
468                                       struct ieee80211_vif *vif)
469 {
470         struct rt2x00_intf *intf = vif_to_intf(vif);
471
472         if (vif->type != IEEE80211_IF_TYPE_AP &&
473             vif->type != IEEE80211_IF_TYPE_IBSS)
474                 return;
475
476         spin_lock(&intf->lock);
477         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
478         spin_unlock(&intf->lock);
479 }
480
481 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
482 {
483         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
484                 return;
485
486         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
487                                             rt2x00lib_beacondone_iter,
488                                             rt2x00dev);
489
490         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
491 }
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
493
494 void rt2x00lib_txdone(struct queue_entry *entry,
495                       struct txdone_entry_desc *txdesc)
496 {
497         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498         struct ieee80211_tx_status tx_status;
499         int success = !!(txdesc->status == TX_SUCCESS ||
500                          txdesc->status == TX_SUCCESS_RETRY);
501         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
502                       txdesc->status == TX_FAIL_INVALID ||
503                       txdesc->status == TX_FAIL_OTHER);
504
505         /*
506          * Update TX statistics.
507          */
508         rt2x00dev->link.qual.tx_success += success;
509         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
510
511         /*
512          * Initialize TX status
513          */
514         tx_status.flags = 0;
515         tx_status.ack_signal = 0;
516         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
517         tx_status.retry_count = txdesc->retry;
518         memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
519
520         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
521                 if (success)
522                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
523                 else
524                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
525         }
526
527         tx_status.queue_length = entry->queue->limit;
528         tx_status.queue_number = tx_status.control.queue;
529
530         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
531                 if (success)
532                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
533                 else
534                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
535         }
536
537         /*
538          * Send the tx_status to mac80211 & debugfs.
539          * mac80211 will clean up the skb structure.
540          */
541         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
542         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
543         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
544         entry->skb = NULL;
545 }
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547
548 void rt2x00lib_rxdone(struct queue_entry *entry,
549                       struct rxdone_entry_desc *rxdesc)
550 {
551         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
552         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
553         struct ieee80211_hw_mode *mode;
554         struct ieee80211_rate *rate;
555         struct ieee80211_hdr *hdr;
556         unsigned int i;
557         int val = 0;
558         u16 fc;
559
560         /*
561          * Update RX statistics.
562          */
563         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
564         for (i = 0; i < mode->num_rates; i++) {
565                 rate = &mode->rates[i];
566
567                 /*
568                  * When frame was received with an OFDM bitrate,
569                  * the signal is the PLCP value. If it was received with
570                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
571                  */
572                 if (!rxdesc->ofdm)
573                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
574                 else
575                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
576
577                 if (val == rxdesc->signal) {
578                         val = rate->val;
579                         break;
580                 }
581         }
582
583         /*
584          * Only update link status if this is a beacon frame carrying our bssid.
585          */
586         hdr = (struct ieee80211_hdr*)entry->skb->data;
587         fc = le16_to_cpu(hdr->frame_control);
588         if (is_beacon(fc) && rxdesc->my_bss)
589                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
590
591         rt2x00dev->link.qual.rx_success++;
592
593         rx_status->rate = val;
594         rx_status->signal =
595             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
596         rx_status->ssi = rxdesc->rssi;
597         rx_status->flag = rxdesc->flags;
598         rx_status->antenna = rt2x00dev->link.ant.active.rx;
599
600         /*
601          * Send frame to mac80211 & debugfs.
602          * mac80211 will clean up the skb structure.
603          */
604         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
605         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
606         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
607         entry->skb = NULL;
608 }
609 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
610
611 /*
612  * TX descriptor initializer
613  */
614 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
615                              struct sk_buff *skb,
616                              struct ieee80211_tx_control *control)
617 {
618         struct txentry_desc txdesc;
619         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
620         struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
621         int tx_rate;
622         int bitrate;
623         int length;
624         int duration;
625         int residual;
626         u16 frame_control;
627         u16 seq_ctrl;
628
629         memset(&txdesc, 0, sizeof(txdesc));
630
631         txdesc.cw_min = skbdesc->entry->queue->cw_min;
632         txdesc.cw_max = skbdesc->entry->queue->cw_max;
633         txdesc.aifs = skbdesc->entry->queue->aifs;
634
635         /*
636          * Identify queue
637          */
638         if (control->queue < rt2x00dev->hw->queues)
639                 txdesc.queue = control->queue;
640         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
641                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
642                 txdesc.queue = QID_MGMT;
643         else
644                 txdesc.queue = QID_OTHER;
645
646         /*
647          * Read required fields from ieee80211 header.
648          */
649         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
650         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
651
652         tx_rate = control->tx_rate;
653
654         /*
655          * Check whether this frame is to be acked
656          */
657         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
658                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
659
660         /*
661          * Check if this is a RTS/CTS frame
662          */
663         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
664                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
665                 if (is_rts_frame(frame_control)) {
666                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
667                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
668                 } else
669                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
670                 if (control->rts_cts_rate)
671                         tx_rate = control->rts_cts_rate;
672         }
673
674         /*
675          * Check for OFDM
676          */
677         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
678                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
679
680         /*
681          * Check if more fragments are pending
682          */
683         if (ieee80211_get_morefrag(ieee80211hdr)) {
684                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
685                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
686         }
687
688         /*
689          * Beacons and probe responses require the tsf timestamp
690          * to be inserted into the frame.
691          */
692         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
693             is_probe_resp(frame_control))
694                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
695
696         /*
697          * Determine with what IFS priority this frame should be send.
698          * Set ifs to IFS_SIFS when the this is not the first fragment,
699          * or this fragment came after RTS/CTS.
700          */
701         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
702             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
703                 txdesc.ifs = IFS_SIFS;
704         else
705                 txdesc.ifs = IFS_BACKOFF;
706
707         /*
708          * PLCP setup
709          * Length calculation depends on OFDM/CCK rate.
710          */
711         txdesc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
712         txdesc.service = 0x04;
713
714         length = skb->len + FCS_LEN;
715         if (test_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags)) {
716                 txdesc.length_high = (length >> 6) & 0x3f;
717                 txdesc.length_low = length & 0x3f;
718         } else {
719                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
720
721                 /*
722                  * Convert length to microseconds.
723                  */
724                 residual = get_duration_res(length, bitrate);
725                 duration = get_duration(length, bitrate);
726
727                 if (residual != 0) {
728                         duration++;
729
730                         /*
731                          * Check if we need to set the Length Extension
732                          */
733                         if (bitrate == 110 && residual <= 30)
734                                 txdesc.service |= 0x80;
735                 }
736
737                 txdesc.length_high = (duration >> 8) & 0xff;
738                 txdesc.length_low = duration & 0xff;
739
740                 /*
741                  * When preamble is enabled we should set the
742                  * preamble bit for the signal.
743                  */
744                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
745                         txdesc.signal |= 0x08;
746         }
747
748         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
749
750         /*
751          * Update queue entry.
752          */
753         skbdesc->entry->skb = skb;
754
755         /*
756          * The frame has been completely initialized and ready
757          * for sending to the device. The caller will push the
758          * frame to the device, but we are going to push the
759          * frame to debugfs here.
760          */
761         skbdesc->frame_type = DUMP_FRAME_TX;
762         rt2x00debug_dump_frame(rt2x00dev, skb);
763 }
764 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
765
766 /*
767  * Driver initialization handlers.
768  */
769 static void rt2x00lib_channel(struct ieee80211_channel *entry,
770                               const int channel, const int tx_power,
771                               const int value)
772 {
773         entry->chan = channel;
774         if (channel <= 14)
775                 entry->freq = 2407 + (5 * channel);
776         else
777                 entry->freq = 5000 + (5 * channel);
778         entry->val = value;
779         entry->flag =
780             IEEE80211_CHAN_W_IBSS |
781             IEEE80211_CHAN_W_ACTIVE_SCAN |
782             IEEE80211_CHAN_W_SCAN;
783         entry->power_level = tx_power;
784         entry->antenna_max = 0xff;
785 }
786
787 static void rt2x00lib_rate(struct ieee80211_rate *entry,
788                            const int rate, const int mask,
789                            const int plcp, const int flags)
790 {
791         entry->rate = rate;
792         entry->val =
793             DEVICE_SET_RATE_FIELD(rate, RATE) |
794             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
795             DEVICE_SET_RATE_FIELD(plcp, PLCP);
796         entry->flags = flags;
797         entry->val2 = entry->val;
798         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
799                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
800         entry->min_rssi_ack = 0;
801         entry->min_rssi_ack_delta = 0;
802 }
803
804 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
805                                     struct hw_mode_spec *spec)
806 {
807         struct ieee80211_hw *hw = rt2x00dev->hw;
808         struct ieee80211_hw_mode *hwmodes;
809         struct ieee80211_channel *channels;
810         struct ieee80211_rate *rates;
811         unsigned int i;
812         unsigned char tx_power;
813
814         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
815         if (!hwmodes)
816                 goto exit;
817
818         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
819         if (!channels)
820                 goto exit_free_modes;
821
822         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
823         if (!rates)
824                 goto exit_free_channels;
825
826         /*
827          * Initialize Rate list.
828          */
829         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
830                        0x00, IEEE80211_RATE_CCK);
831         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
832                        0x01, IEEE80211_RATE_CCK_2);
833         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
834                        0x02, IEEE80211_RATE_CCK_2);
835         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
836                        0x03, IEEE80211_RATE_CCK_2);
837
838         if (spec->num_rates > 4) {
839                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
840                                0x0b, IEEE80211_RATE_OFDM);
841                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
842                                0x0f, IEEE80211_RATE_OFDM);
843                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
844                                0x0a, IEEE80211_RATE_OFDM);
845                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
846                                0x0e, IEEE80211_RATE_OFDM);
847                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
848                                0x09, IEEE80211_RATE_OFDM);
849                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
850                                0x0d, IEEE80211_RATE_OFDM);
851                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
852                                0x08, IEEE80211_RATE_OFDM);
853                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
854                                0x0c, IEEE80211_RATE_OFDM);
855         }
856
857         /*
858          * Initialize Channel list.
859          */
860         for (i = 0; i < spec->num_channels; i++) {
861                 if (spec->channels[i].channel <= 14)
862                         tx_power = spec->tx_power_bg[i];
863                 else if (spec->tx_power_a)
864                         tx_power = spec->tx_power_a[i];
865                 else
866                         tx_power = spec->tx_power_default;
867
868                 rt2x00lib_channel(&channels[i],
869                                   spec->channels[i].channel, tx_power, i);
870         }
871
872         /*
873          * Intitialize 802.11b
874          * Rates: CCK.
875          * Channels: OFDM.
876          */
877         if (spec->num_modes > HWMODE_B) {
878                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
879                 hwmodes[HWMODE_B].num_channels = 14;
880                 hwmodes[HWMODE_B].num_rates = 4;
881                 hwmodes[HWMODE_B].channels = channels;
882                 hwmodes[HWMODE_B].rates = rates;
883         }
884
885         /*
886          * Intitialize 802.11g
887          * Rates: CCK, OFDM.
888          * Channels: OFDM.
889          */
890         if (spec->num_modes > HWMODE_G) {
891                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
892                 hwmodes[HWMODE_G].num_channels = 14;
893                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
894                 hwmodes[HWMODE_G].channels = channels;
895                 hwmodes[HWMODE_G].rates = rates;
896         }
897
898         /*
899          * Intitialize 802.11a
900          * Rates: OFDM.
901          * Channels: OFDM, UNII, HiperLAN2.
902          */
903         if (spec->num_modes > HWMODE_A) {
904                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
905                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
906                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
907                 hwmodes[HWMODE_A].channels = &channels[14];
908                 hwmodes[HWMODE_A].rates = &rates[4];
909         }
910
911         if (spec->num_modes > HWMODE_G &&
912             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
913                 goto exit_free_rates;
914
915         if (spec->num_modes > HWMODE_B &&
916             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
917                 goto exit_free_rates;
918
919         if (spec->num_modes > HWMODE_A &&
920             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
921                 goto exit_free_rates;
922
923         rt2x00dev->hwmodes = hwmodes;
924
925         return 0;
926
927 exit_free_rates:
928         kfree(rates);
929
930 exit_free_channels:
931         kfree(channels);
932
933 exit_free_modes:
934         kfree(hwmodes);
935
936 exit:
937         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
938         return -ENOMEM;
939 }
940
941 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
942 {
943         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
944                 ieee80211_unregister_hw(rt2x00dev->hw);
945
946         if (likely(rt2x00dev->hwmodes)) {
947                 kfree(rt2x00dev->hwmodes->channels);
948                 kfree(rt2x00dev->hwmodes->rates);
949                 kfree(rt2x00dev->hwmodes);
950                 rt2x00dev->hwmodes = NULL;
951         }
952 }
953
954 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
955 {
956         struct hw_mode_spec *spec = &rt2x00dev->spec;
957         int status;
958
959         /*
960          * Initialize HW modes.
961          */
962         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
963         if (status)
964                 return status;
965
966         /*
967          * Register HW.
968          */
969         status = ieee80211_register_hw(rt2x00dev->hw);
970         if (status) {
971                 rt2x00lib_remove_hw(rt2x00dev);
972                 return status;
973         }
974
975         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
976
977         return 0;
978 }
979
980 /*
981  * Initialization/uninitialization handlers.
982  */
983 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
984 {
985         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
986                 return;
987
988         /*
989          * Unregister rfkill.
990          */
991         rt2x00rfkill_unregister(rt2x00dev);
992
993         /*
994          * Allow the HW to uninitialize.
995          */
996         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
997
998         /*
999          * Free allocated queue entries.
1000          */
1001         rt2x00queue_uninitialize(rt2x00dev);
1002 }
1003
1004 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1005 {
1006         int status;
1007
1008         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1009                 return 0;
1010
1011         /*
1012          * Allocate all queue entries.
1013          */
1014         status = rt2x00queue_initialize(rt2x00dev);
1015         if (status)
1016                 return status;
1017
1018         /*
1019          * Initialize the device.
1020          */
1021         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1022         if (status)
1023                 goto exit;
1024
1025         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1026
1027         /*
1028          * Register the rfkill handler.
1029          */
1030         status = rt2x00rfkill_register(rt2x00dev);
1031         if (status)
1032                 goto exit;
1033
1034         return 0;
1035
1036 exit:
1037         rt2x00lib_uninitialize(rt2x00dev);
1038
1039         return status;
1040 }
1041
1042 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1043 {
1044         int retval;
1045
1046         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1047                 return 0;
1048
1049         /*
1050          * If this is the first interface which is added,
1051          * we should load the firmware now.
1052          */
1053         retval = rt2x00lib_load_firmware(rt2x00dev);
1054         if (retval)
1055                 return retval;
1056
1057         /*
1058          * Initialize the device.
1059          */
1060         retval = rt2x00lib_initialize(rt2x00dev);
1061         if (retval)
1062                 return retval;
1063
1064         /*
1065          * Enable radio.
1066          */
1067         retval = rt2x00lib_enable_radio(rt2x00dev);
1068         if (retval) {
1069                 rt2x00lib_uninitialize(rt2x00dev);
1070                 return retval;
1071         }
1072
1073         rt2x00dev->intf_ap_count = 0;
1074         rt2x00dev->intf_sta_count = 0;
1075         rt2x00dev->intf_associated = 0;
1076
1077         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1078
1079         return 0;
1080 }
1081
1082 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1083 {
1084         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1085                 return;
1086
1087         /*
1088          * Perhaps we can add something smarter here,
1089          * but for now just disabling the radio should do.
1090          */
1091         rt2x00lib_disable_radio(rt2x00dev);
1092
1093         rt2x00dev->intf_ap_count = 0;
1094         rt2x00dev->intf_sta_count = 0;
1095         rt2x00dev->intf_associated = 0;
1096
1097         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1098 }
1099
1100 /*
1101  * driver allocation handlers.
1102  */
1103 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1104 {
1105         int retval = -ENOMEM;
1106
1107         /*
1108          * Make room for rt2x00_intf inside the per-interface
1109          * structure ieee80211_vif.
1110          */
1111         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1112
1113         /*
1114          * Let the driver probe the device to detect the capabilities.
1115          */
1116         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1117         if (retval) {
1118                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1119                 goto exit;
1120         }
1121
1122         /*
1123          * Initialize configuration work.
1124          */
1125         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1126         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1127         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1128
1129         /*
1130          * Allocate queue array.
1131          */
1132         retval = rt2x00queue_allocate(rt2x00dev);
1133         if (retval)
1134                 goto exit;
1135
1136         /*
1137          * Initialize ieee80211 structure.
1138          */
1139         retval = rt2x00lib_probe_hw(rt2x00dev);
1140         if (retval) {
1141                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1142                 goto exit;
1143         }
1144
1145         /*
1146          * Allocatie rfkill.
1147          */
1148         retval = rt2x00rfkill_allocate(rt2x00dev);
1149         if (retval)
1150                 goto exit;
1151
1152         /*
1153          * Open the debugfs entry.
1154          */
1155         rt2x00debug_register(rt2x00dev);
1156
1157         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1158
1159         return 0;
1160
1161 exit:
1162         rt2x00lib_remove_dev(rt2x00dev);
1163
1164         return retval;
1165 }
1166 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1167
1168 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1169 {
1170         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1171
1172         /*
1173          * Disable radio.
1174          */
1175         rt2x00lib_disable_radio(rt2x00dev);
1176
1177         /*
1178          * Uninitialize device.
1179          */
1180         rt2x00lib_uninitialize(rt2x00dev);
1181
1182         /*
1183          * Close debugfs entry.
1184          */
1185         rt2x00debug_deregister(rt2x00dev);
1186
1187         /*
1188          * Free rfkill
1189          */
1190         rt2x00rfkill_free(rt2x00dev);
1191
1192         /*
1193          * Free ieee80211_hw memory.
1194          */
1195         rt2x00lib_remove_hw(rt2x00dev);
1196
1197         /*
1198          * Free firmware image.
1199          */
1200         rt2x00lib_free_firmware(rt2x00dev);
1201
1202         /*
1203          * Free queue structures.
1204          */
1205         rt2x00queue_free(rt2x00dev);
1206 }
1207 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1208
1209 /*
1210  * Device state handlers
1211  */
1212 #ifdef CONFIG_PM
1213 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1214 {
1215         int retval;
1216
1217         NOTICE(rt2x00dev, "Going to sleep.\n");
1218         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1219
1220         /*
1221          * Only continue if mac80211 has open interfaces.
1222          */
1223         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1224                 goto exit;
1225         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1226
1227         /*
1228          * Disable radio and unitialize all items
1229          * that must be recreated on resume.
1230          */
1231         rt2x00lib_stop(rt2x00dev);
1232         rt2x00lib_uninitialize(rt2x00dev);
1233         rt2x00debug_deregister(rt2x00dev);
1234
1235 exit:
1236         /*
1237          * Set device mode to sleep for power management.
1238          */
1239         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1240         if (retval)
1241                 return retval;
1242
1243         return 0;
1244 }
1245 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1246
1247 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1248                                   struct ieee80211_vif *vif)
1249 {
1250         struct rt2x00_dev *rt2x00dev = data;
1251         struct rt2x00_intf *intf = vif_to_intf(vif);
1252
1253         spin_lock(&intf->lock);
1254
1255         rt2x00lib_config_intf(rt2x00dev, intf,
1256                               vif->type, intf->mac, intf->bssid);
1257
1258
1259         /*
1260          * Master or Ad-hoc mode require a new beacon update.
1261          */
1262         if (vif->type == IEEE80211_IF_TYPE_AP ||
1263             vif->type == IEEE80211_IF_TYPE_IBSS)
1264                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1265
1266         spin_unlock(&intf->lock);
1267 }
1268
1269 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1270 {
1271         int retval;
1272
1273         NOTICE(rt2x00dev, "Waking up.\n");
1274
1275         /*
1276          * Open the debugfs entry.
1277          */
1278         rt2x00debug_register(rt2x00dev);
1279
1280         /*
1281          * Only continue if mac80211 had open interfaces.
1282          */
1283         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1284                 return 0;
1285
1286         /*
1287          * Reinitialize device and all active interfaces.
1288          */
1289         retval = rt2x00lib_start(rt2x00dev);
1290         if (retval)
1291                 goto exit;
1292
1293         /*
1294          * Reconfigure device.
1295          */
1296         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1297         if (!rt2x00dev->hw->conf.radio_enabled)
1298                 rt2x00lib_disable_radio(rt2x00dev);
1299
1300         /*
1301          * Iterator over each active interface to
1302          * reconfigure the hardware.
1303          */
1304         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1305                                             rt2x00lib_resume_intf, rt2x00dev);
1306
1307         /*
1308          * We are ready again to receive requests from mac80211.
1309          */
1310         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1311
1312         /*
1313          * It is possible that during that mac80211 has attempted
1314          * to send frames while we were suspending or resuming.
1315          * In that case we have disabled the TX queue and should
1316          * now enable it again
1317          */
1318         ieee80211_start_queues(rt2x00dev->hw);
1319
1320         /*
1321          * During interface iteration we might have changed the
1322          * delayed_flags, time to handles the event by calling
1323          * the work handler directly.
1324          */
1325         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1326
1327         return 0;
1328
1329 exit:
1330         rt2x00lib_disable_radio(rt2x00dev);
1331         rt2x00lib_uninitialize(rt2x00dev);
1332         rt2x00debug_deregister(rt2x00dev);
1333
1334         return retval;
1335 }
1336 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1337 #endif /* CONFIG_PM */
1338
1339 /*
1340  * rt2x00lib module information.
1341  */
1342 MODULE_AUTHOR(DRV_PROJECT);
1343 MODULE_VERSION(DRV_VERSION);
1344 MODULE_DESCRIPTION("rt2x00 library");
1345 MODULE_LICENSE("GPL");