[PATCH] rt2x00: Move TSF sync values into rt2x00config
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 /*
28  * Set enviroment defines for rt2x00.h
29  */
30 #define DRV_NAME "rt2500pci"
31
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt2500pci.h"
43
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00pci_register_read and rt2x00pci_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58 {
59         u32 reg;
60         unsigned int i;
61
62         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65                         break;
66                 udelay(REGISTER_BUSY_DELAY);
67         }
68
69         return reg;
70 }
71
72 static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73                                 const unsigned int word, const u8 value)
74 {
75         u32 reg;
76
77         /*
78          * Wait until the BBP becomes ready.
79          */
80         reg = rt2500pci_bbp_check(rt2x00dev);
81         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83                 return;
84         }
85
86         /*
87          * Write the data into the BBP.
88          */
89         reg = 0;
90         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96 }
97
98 static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99                                const unsigned int word, u8 *value)
100 {
101         u32 reg;
102
103         /*
104          * Wait until the BBP becomes ready.
105          */
106         reg = rt2500pci_bbp_check(rt2x00dev);
107         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109                 return;
110         }
111
112         /*
113          * Write the request into the BBP.
114          */
115         reg = 0;
116         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122         /*
123          * Wait until the BBP becomes ready.
124          */
125         reg = rt2500pci_bbp_check(rt2x00dev);
126         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128                 *value = 0xff;
129                 return;
130         }
131
132         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133 }
134
135 static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136                                const unsigned int word, const u32 value)
137 {
138         u32 reg;
139         unsigned int i;
140
141         if (!word)
142                 return;
143
144         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147                         goto rf_write;
148                 udelay(REGISTER_BUSY_DELAY);
149         }
150
151         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152         return;
153
154 rf_write:
155         reg = 0;
156         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162         rt2x00_rf_write(rt2x00dev, word, value);
163 }
164
165 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166 {
167         struct rt2x00_dev *rt2x00dev = eeprom->data;
168         u32 reg;
169
170         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174         eeprom->reg_data_clock =
175             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176         eeprom->reg_chip_select =
177             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178 }
179
180 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181 {
182         struct rt2x00_dev *rt2x00dev = eeprom->data;
183         u32 reg = 0;
184
185         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188                            !!eeprom->reg_data_clock);
189         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190                            !!eeprom->reg_chip_select);
191
192         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198 static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, u32 *data)
200 {
201         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202 }
203
204 static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205                                 const unsigned int word, u32 data)
206 {
207         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208 }
209
210 static const struct rt2x00debug rt2500pci_rt2x00debug = {
211         .owner  = THIS_MODULE,
212         .csr    = {
213                 .read           = rt2500pci_read_csr,
214                 .write          = rt2500pci_write_csr,
215                 .word_size      = sizeof(u32),
216                 .word_count     = CSR_REG_SIZE / sizeof(u32),
217         },
218         .eeprom = {
219                 .read           = rt2x00_eeprom_read,
220                 .write          = rt2x00_eeprom_write,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt2500pci_bbp_read,
226                 .write          = rt2500pci_bbp_write,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt2500pci_rf_write,
233                 .word_size      = sizeof(u32),
234                 .word_count     = RF_SIZE / sizeof(u32),
235         },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 #ifdef CONFIG_RT2500PCI_RFKILL
240 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246 }
247 #else
248 #define rt2500pci_rfkill_poll   NULL
249 #endif /* CONFIG_RT2500PCI_RFKILL */
250
251 /*
252  * Configuration handlers.
253  */
254 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255                                       __le32 *mac)
256 {
257         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258                                       (2 * sizeof(__le32)));
259 }
260
261 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262                                    __le32 *bssid)
263 {
264         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265                                       (2 * sizeof(__le32)));
266 }
267
268 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
269                                   const int tsf_sync)
270 {
271         u32 reg;
272
273         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275         /*
276          * Enable beacon config
277          */
278         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
280                            PREAMBLE + get_duration(IEEE80211_HEADER, 2));
281         rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
282                            rt2x00lib_get_ring(rt2x00dev,
283                                               IEEE80211_TX_QUEUE_BEACON)
284                            ->tx_params.cw_min);
285         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
286
287         /*
288          * Enable synchronisation.
289          */
290         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
291         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
292         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
293         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
294         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
295         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
296 }
297
298 static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
299 {
300         struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
301         u32 reg;
302         u32 preamble;
303         u16 value;
304
305         if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
306                 preamble = SHORT_PREAMBLE;
307         else
308                 preamble = PREAMBLE;
309
310         reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
311         rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
312
313         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
314         value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
315                  SHORT_DIFS : DIFS) +
316             PLCP + preamble + get_duration(ACK_SIZE, 10);
317         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
318         value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
319         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
320         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
321
322         preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
323
324         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
325         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
326         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
327         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
328         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
329
330         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
331         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
332         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
333         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
334         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
335
336         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
337         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
338         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
339         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
340         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
341
342         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
343         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
344         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
345         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
346         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
347 }
348
349 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
350                                      const int phymode)
351 {
352         struct ieee80211_hw_mode *mode;
353         struct ieee80211_rate *rate;
354
355         if (phymode == MODE_IEEE80211A)
356                 rt2x00dev->curr_hwmode = HWMODE_A;
357         else if (phymode == MODE_IEEE80211B)
358                 rt2x00dev->curr_hwmode = HWMODE_B;
359         else
360                 rt2x00dev->curr_hwmode = HWMODE_G;
361
362         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
363         rate = &mode->rates[mode->num_rates - 1];
364
365         rt2500pci_config_rate(rt2x00dev, rate->val2);
366 }
367
368 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
369                                      const int index, const int channel,
370                                      const int txpower)
371 {
372         struct rf_channel reg;
373         u8 r70;
374
375         /*
376          * Fill rf_reg structure.
377          */
378         memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
379
380         /*
381          * Set TXpower.
382          */
383         rt2x00_set_field32(&reg.rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
384
385         /*
386          * Switch on tuning bits.
387          * For RT2523 devices we do not need to update the R1 register.
388          */
389         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
390                 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
391         rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
392
393         /*
394          * For RT2525 we should first set the channel to half band higher.
395          */
396         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
397                 static const u32 vals[] = {
398                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
399                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
400                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
401                         0x00080d2e, 0x00080d3a
402                 };
403
404                 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
405                 rt2500pci_rf_write(rt2x00dev, 2, vals[channel - 1]);
406                 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
407                 if (reg.rf4)
408                         rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
409         }
410
411         rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
412         rt2500pci_rf_write(rt2x00dev, 2, reg.rf2);
413         rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
414         if (reg.rf4)
415                 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
416
417         /*
418          * Channel 14 requires the Japan filter bit to be set.
419          */
420         r70 = 0x46;
421         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, channel == 14);
422         rt2500pci_bbp_write(rt2x00dev, 70, r70);
423
424         msleep(1);
425
426         /*
427          * Switch off tuning bits.
428          * For RT2523 devices we do not need to update the R1 register.
429          */
430         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
431                 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
432                 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
433         }
434
435         rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
436         rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
437
438         /*
439          * Clear false CRC during channel switch.
440          */
441         rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
442 }
443
444 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
445                                      const int txpower)
446 {
447         u32 rf3;
448
449         rt2x00_rf_read(rt2x00dev, 3, &rf3);
450         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
451         rt2500pci_rf_write(rt2x00dev, 3, rf3);
452 }
453
454 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
455                                      const int antenna_tx, const int antenna_rx)
456 {
457         u32 reg;
458         u8 r14;
459         u8 r2;
460
461         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
462         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
463         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
464
465         /*
466          * Configure the TX antenna.
467          */
468         switch (antenna_tx) {
469         case ANTENNA_SW_DIVERSITY:
470         case ANTENNA_HW_DIVERSITY:
471                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
472                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
473                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
474                 break;
475         case ANTENNA_A:
476                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
477                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
478                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
479                 break;
480         case ANTENNA_B:
481                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
482                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
483                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
484                 break;
485         }
486
487         /*
488          * Configure the RX antenna.
489          */
490         switch (antenna_rx) {
491         case ANTENNA_SW_DIVERSITY:
492         case ANTENNA_HW_DIVERSITY:
493                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
494                 break;
495         case ANTENNA_A:
496                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
497                 break;
498         case ANTENNA_B:
499                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
500                 break;
501         }
502
503         /*
504          * RT2525E and RT5222 need to flip TX I/Q
505          */
506         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
507             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
508                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
509                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
510                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
511
512                 /*
513                  * RT2525E does not need RX I/Q Flip.
514                  */
515                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
516                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
517         } else {
518                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
519                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
520         }
521
522         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
523         rt2500pci_bbp_write(rt2x00dev, 14, r14);
524         rt2500pci_bbp_write(rt2x00dev, 2, r2);
525 }
526
527 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
528                                       const int short_slot_time,
529                                       const int beacon_int)
530 {
531         u32 reg;
532
533         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
534         rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
535                            short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
536         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
537
538         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
539         rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
540         rt2x00_set_field32(&reg, CSR18_PIFS,
541                            short_slot_time ? SHORT_PIFS : PIFS);
542         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
543
544         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
545         rt2x00_set_field32(&reg, CSR19_DIFS,
546                            short_slot_time ? SHORT_DIFS : DIFS);
547         rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
548         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
549
550         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
551         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
552         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
553         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
554
555         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
556         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
557         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
558         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
559 }
560
561 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
562                              const unsigned int flags,
563                              struct ieee80211_conf *conf)
564 {
565         int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
566
567         if (flags & CONFIG_UPDATE_PHYMODE)
568                 rt2500pci_config_phymode(rt2x00dev, conf->phymode);
569         if (flags & CONFIG_UPDATE_CHANNEL)
570                 rt2500pci_config_channel(rt2x00dev, conf->channel_val,
571                                          conf->channel, conf->power_level);
572         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
573                 rt2500pci_config_txpower(rt2x00dev, conf->power_level);
574         if (flags & CONFIG_UPDATE_ANTENNA)
575                 rt2500pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
576                                          conf->antenna_sel_rx);
577         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
578                 rt2500pci_config_duration(rt2x00dev, short_slot_time,
579                                           conf->beacon_int);
580 }
581
582 /*
583  * LED functions.
584  */
585 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
586 {
587         u32 reg;
588
589         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
590
591         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
592         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
593
594         if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
595                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
596                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
597         } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
598                 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
599                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
600         } else {
601                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
602                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
603         }
604
605         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
606 }
607
608 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
609 {
610         u32 reg;
611
612         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
613         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
614         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
615         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
616 }
617
618 /*
619  * Link tuning
620  */
621 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev)
622 {
623         u32 reg;
624
625         /*
626          * Update FCS error count from register.
627          */
628         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
629         rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
630
631         /*
632          * Update False CCA count from register.
633          */
634         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
635         rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
636 }
637
638 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
639 {
640         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
641         rt2x00dev->link.vgc_level = 0x48;
642 }
643
644 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
645 {
646         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
647         u8 r17;
648
649         /*
650          * To prevent collisions with MAC ASIC on chipsets
651          * up to version C the link tuning should halt after 20
652          * seconds.
653          */
654         if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
655             rt2x00dev->link.count > 20)
656                 return;
657
658         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
659
660         /*
661          * Chipset versions C and lower should directly continue
662          * to the dynamic CCA tuning.
663          */
664         if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
665                 goto dynamic_cca_tune;
666
667         /*
668          * A too low RSSI will cause too much false CCA which will
669          * then corrupt the R17 tuning. To remidy this the tuning should
670          * be stopped (While making sure the R17 value will not exceed limits)
671          */
672         if (rssi < -80 && rt2x00dev->link.count > 20) {
673                 if (r17 >= 0x41) {
674                         r17 = rt2x00dev->link.vgc_level;
675                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
676                 }
677                 return;
678         }
679
680         /*
681          * Special big-R17 for short distance
682          */
683         if (rssi >= -58) {
684                 if (r17 != 0x50)
685                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
686                 return;
687         }
688
689         /*
690          * Special mid-R17 for middle distance
691          */
692         if (rssi >= -74) {
693                 if (r17 != 0x41)
694                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
695                 return;
696         }
697
698         /*
699          * Leave short or middle distance condition, restore r17
700          * to the dynamic tuning range.
701          */
702         if (r17 >= 0x41) {
703                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
704                 return;
705         }
706
707 dynamic_cca_tune:
708
709         /*
710          * R17 is inside the dynamic tuning range,
711          * start tuning the link based on the false cca counter.
712          */
713         if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
714                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
715                 rt2x00dev->link.vgc_level = r17;
716         } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
717                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
718                 rt2x00dev->link.vgc_level = r17;
719         }
720 }
721
722 /*
723  * Initialization functions.
724  */
725 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
726 {
727         struct data_ring *ring = rt2x00dev->rx;
728         struct data_desc *rxd;
729         unsigned int i;
730         u32 word;
731
732         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
733
734         for (i = 0; i < ring->stats.limit; i++) {
735                 rxd = ring->entry[i].priv;
736
737                 rt2x00_desc_read(rxd, 1, &word);
738                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
739                                    ring->entry[i].data_dma);
740                 rt2x00_desc_write(rxd, 1, word);
741
742                 rt2x00_desc_read(rxd, 0, &word);
743                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
744                 rt2x00_desc_write(rxd, 0, word);
745         }
746
747         rt2x00_ring_index_clear(rt2x00dev->rx);
748 }
749
750 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
751 {
752         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
753         struct data_desc *txd;
754         unsigned int i;
755         u32 word;
756
757         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
758
759         for (i = 0; i < ring->stats.limit; i++) {
760                 txd = ring->entry[i].priv;
761
762                 rt2x00_desc_read(txd, 1, &word);
763                 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
764                                    ring->entry[i].data_dma);
765                 rt2x00_desc_write(txd, 1, word);
766
767                 rt2x00_desc_read(txd, 0, &word);
768                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
769                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
770                 rt2x00_desc_write(txd, 0, word);
771         }
772
773         rt2x00_ring_index_clear(ring);
774 }
775
776 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
777 {
778         u32 reg;
779
780         /*
781          * Initialize rings.
782          */
783         rt2500pci_init_rxring(rt2x00dev);
784         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
785         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
786         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
787         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
788
789         /*
790          * Initialize registers.
791          */
792         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
793         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
794                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
795         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
796                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
797         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
798                            rt2x00dev->bcn[1].stats.limit);
799         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
800                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
801         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
802
803         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
804         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
805                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
806         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
807
808         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
809         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
810                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
811         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
812
813         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
814         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
815                            rt2x00dev->bcn[1].data_dma);
816         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
817
818         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
819         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
820                            rt2x00dev->bcn[0].data_dma);
821         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
822
823         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
824         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
825         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
826         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
827
828         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
829         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
830                            rt2x00dev->rx->data_dma);
831         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
832
833         return 0;
834 }
835
836 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
837 {
838         u32 reg;
839
840         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
841         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
842         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
843         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
844
845         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
846         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
847         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
848         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
849         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
850
851         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
852         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
853                            rt2x00dev->rx->data_size / 128);
854         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
855
856         /*
857          * Always use CWmin and CWmax set in descriptor.
858          */
859         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
860         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
861         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
862
863         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
864
865         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
866         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
867         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
868         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
869         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
870         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
871         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
872         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
873         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
874         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
875
876         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
877         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
878         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
879         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
880         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
881         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
882
883         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
884         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
885         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
886         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
887         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
888         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
889
890         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
891         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
892         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
893         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
894         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
895         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
896
897         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
898         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
899         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
900         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
901         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
902         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
903         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
904         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
905         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
906         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
907
908         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
909         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
910         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
911         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
912         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
913         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
914         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
915         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
916         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
917
918         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
919
920         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
921         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
922
923         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
924                 return -EBUSY;
925
926         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
927         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
928
929         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
930         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
931         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
932
933         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
934         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
935         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
936         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
937         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
938         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
939         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
940         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
941
942         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
943
944         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
945
946         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
947         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
948         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
949         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
950         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
951
952         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
953         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
954         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
955         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
956
957         /*
958          * We must clear the FCS and FIFO error count.
959          * These registers are cleared on read,
960          * so we may pass a useless variable to store the value.
961          */
962         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
963         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
964
965         return 0;
966 }
967
968 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
969 {
970         unsigned int i;
971         u16 eeprom;
972         u8 reg_id;
973         u8 value;
974
975         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
976                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
977                 if ((value != 0xff) && (value != 0x00))
978                         goto continue_csr_init;
979                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
980                 udelay(REGISTER_BUSY_DELAY);
981         }
982
983         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
984         return -EACCES;
985
986 continue_csr_init:
987         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
988         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
989         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
990         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
991         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
992         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
993         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
994         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
995         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
996         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
997         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
998         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
999         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1000         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1001         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1002         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1003         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1004         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1005         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1006         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1007         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1008         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1009         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1010         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1011         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1012         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1013         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1014         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1015         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1016         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1017
1018         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1019         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1020                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1021
1022                 if (eeprom != 0xffff && eeprom != 0x0000) {
1023                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1024                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1025                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1026                               reg_id, value);
1027                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1028                 }
1029         }
1030         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1031
1032         return 0;
1033 }
1034
1035 /*
1036  * Device state switch handlers.
1037  */
1038 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1039                                 enum dev_state state)
1040 {
1041         u32 reg;
1042
1043         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1044         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1045                            state == STATE_RADIO_RX_OFF);
1046         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1047 }
1048
1049 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1050                                  enum dev_state state)
1051 {
1052         int mask = (state == STATE_RADIO_IRQ_OFF);
1053         u32 reg;
1054
1055         /*
1056          * When interrupts are being enabled, the interrupt registers
1057          * should clear the register to assure a clean state.
1058          */
1059         if (state == STATE_RADIO_IRQ_ON) {
1060                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1061                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1062         }
1063
1064         /*
1065          * Only toggle the interrupts bits we are going to use.
1066          * Non-checked interrupt bits are disabled by default.
1067          */
1068         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1069         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1070         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1071         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1072         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1073         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1074         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1075 }
1076
1077 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1078 {
1079         /*
1080          * Initialize all registers.
1081          */
1082         if (rt2500pci_init_rings(rt2x00dev) ||
1083             rt2500pci_init_registers(rt2x00dev) ||
1084             rt2500pci_init_bbp(rt2x00dev)) {
1085                 ERROR(rt2x00dev, "Register initialization failed.\n");
1086                 return -EIO;
1087         }
1088
1089         /*
1090          * Enable interrupts.
1091          */
1092         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1093
1094         /*
1095          * Enable LED
1096          */
1097         rt2500pci_enable_led(rt2x00dev);
1098
1099         return 0;
1100 }
1101
1102 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1103 {
1104         u32 reg;
1105
1106         /*
1107          * Disable LED
1108          */
1109         rt2500pci_disable_led(rt2x00dev);
1110
1111         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1112
1113         /*
1114          * Disable synchronisation.
1115          */
1116         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1117
1118         /*
1119          * Cancel RX and TX.
1120          */
1121         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1122         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1123         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1124
1125         /*
1126          * Disable interrupts.
1127          */
1128         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1129 }
1130
1131 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1132                                enum dev_state state)
1133 {
1134         u32 reg;
1135         unsigned int i;
1136         char put_to_sleep;
1137         char bbp_state;
1138         char rf_state;
1139
1140         put_to_sleep = (state != STATE_AWAKE);
1141
1142         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1143         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1144         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1145         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1146         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1147         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1148
1149         /*
1150          * Device is not guaranteed to be in the requested state yet.
1151          * We must wait until the register indicates that the
1152          * device has entered the correct state.
1153          */
1154         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1155                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1156                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1157                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1158                 if (bbp_state == state && rf_state == state)
1159                         return 0;
1160                 msleep(10);
1161         }
1162
1163         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1164                "current device state: bbp %d and rf %d.\n",
1165                state, bbp_state, rf_state);
1166
1167         return -EBUSY;
1168 }
1169
1170 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1171                                       enum dev_state state)
1172 {
1173         int retval = 0;
1174
1175         switch (state) {
1176         case STATE_RADIO_ON:
1177                 retval = rt2500pci_enable_radio(rt2x00dev);
1178                 break;
1179         case STATE_RADIO_OFF:
1180                 rt2500pci_disable_radio(rt2x00dev);
1181                 break;
1182         case STATE_RADIO_RX_ON:
1183         case STATE_RADIO_RX_OFF:
1184                 rt2500pci_toggle_rx(rt2x00dev, state);
1185                 break;
1186         case STATE_DEEP_SLEEP:
1187         case STATE_SLEEP:
1188         case STATE_STANDBY:
1189         case STATE_AWAKE:
1190                 retval = rt2500pci_set_state(rt2x00dev, state);
1191                 break;
1192         default:
1193                 retval = -ENOTSUPP;
1194                 break;
1195         }
1196
1197         return retval;
1198 }
1199
1200 /*
1201  * TX descriptor initialization
1202  */
1203 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1204                                     struct data_desc *txd,
1205                                     struct txdata_entry_desc *desc,
1206                                     struct ieee80211_hdr *ieee80211hdr,
1207                                     unsigned int length,
1208                                     struct ieee80211_tx_control *control)
1209 {
1210         u32 word;
1211
1212         /*
1213          * Start writing the descriptor words.
1214          */
1215         rt2x00_desc_read(txd, 2, &word);
1216         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1217         rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1218         rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1219         rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1220         rt2x00_desc_write(txd, 2, word);
1221
1222         rt2x00_desc_read(txd, 3, &word);
1223         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1224         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1225         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1226         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1227         rt2x00_desc_write(txd, 3, word);
1228
1229         rt2x00_desc_read(txd, 10, &word);
1230         rt2x00_set_field32(&word, TXD_W10_RTS,
1231                            test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1232         rt2x00_desc_write(txd, 10, word);
1233
1234         rt2x00_desc_read(txd, 0, &word);
1235         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1236         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1237         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1238                            test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1239         rt2x00_set_field32(&word, TXD_W0_ACK,
1240                            !(control->flags & IEEE80211_TXCTL_NO_ACK));
1241         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1242                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1243         rt2x00_set_field32(&word, TXD_W0_OFDM,
1244                            test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1245         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1246         rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1247         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1248                            !!(control->flags &
1249                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1250         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1251         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1252         rt2x00_desc_write(txd, 0, word);
1253 }
1254
1255 /*
1256  * TX data initialization
1257  */
1258 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1259                                     unsigned int queue)
1260 {
1261         u32 reg;
1262
1263         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1264                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1265                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1266                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1267                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1268                 }
1269                 return;
1270         }
1271
1272         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1273         if (queue == IEEE80211_TX_QUEUE_DATA0)
1274                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1275         else if (queue == IEEE80211_TX_QUEUE_DATA1)
1276                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1277         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1278                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1279         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1280 }
1281
1282 /*
1283  * RX control handlers
1284  */
1285 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1286                                   struct rxdata_entry_desc *desc)
1287 {
1288         struct data_desc *rxd = entry->priv;
1289         u32 word0;
1290         u32 word2;
1291
1292         rt2x00_desc_read(rxd, 0, &word0);
1293         rt2x00_desc_read(rxd, 2, &word2);
1294
1295         desc->flags = 0;
1296         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1297                 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1298         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1299                 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1300
1301         desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1302         desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1303             entry->ring->rt2x00dev->rssi_offset;
1304         desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1305         desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1306 }
1307
1308 /*
1309  * Interrupt functions.
1310  */
1311 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1312 {
1313         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1314         struct data_entry *entry;
1315         struct data_desc *txd;
1316         u32 word;
1317         int tx_status;
1318         int retry;
1319
1320         while (!rt2x00_ring_empty(ring)) {
1321                 entry = rt2x00_get_data_entry_done(ring);
1322                 txd = entry->priv;
1323                 rt2x00_desc_read(txd, 0, &word);
1324
1325                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1326                     !rt2x00_get_field32(word, TXD_W0_VALID))
1327                         break;
1328
1329                 /*
1330                  * Obtain the status about this packet.
1331                  */
1332                 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1333                 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1334
1335                 rt2x00lib_txdone(entry, tx_status, retry);
1336
1337                 /*
1338                  * Make this entry available for reuse.
1339                  */
1340                 entry->flags = 0;
1341                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1342                 rt2x00_desc_write(txd, 0, word);
1343                 rt2x00_ring_index_done_inc(ring);
1344         }
1345
1346         /*
1347          * If the data ring was full before the txdone handler
1348          * we must make sure the packet queue in the mac80211 stack
1349          * is reenabled when the txdone handler has finished.
1350          */
1351         entry = ring->entry;
1352         if (!rt2x00_ring_full(ring))
1353                 ieee80211_wake_queue(rt2x00dev->hw,
1354                                      entry->tx_status.control.queue);
1355 }
1356
1357 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1358 {
1359         struct rt2x00_dev *rt2x00dev = dev_instance;
1360         u32 reg;
1361
1362         /*
1363          * Get the interrupt sources & saved to local variable.
1364          * Write register value back to clear pending interrupts.
1365          */
1366         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1367         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1368
1369         if (!reg)
1370                 return IRQ_NONE;
1371
1372         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1373                 return IRQ_HANDLED;
1374
1375         /*
1376          * Handle interrupts, walk through all bits
1377          * and run the tasks, the bits are checked in order of
1378          * priority.
1379          */
1380
1381         /*
1382          * 1 - Beacon timer expired interrupt.
1383          */
1384         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1385                 rt2x00lib_beacondone(rt2x00dev);
1386
1387         /*
1388          * 2 - Rx ring done interrupt.
1389          */
1390         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1391                 rt2x00pci_rxdone(rt2x00dev);
1392
1393         /*
1394          * 3 - Atim ring transmit done interrupt.
1395          */
1396         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1397                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1398
1399         /*
1400          * 4 - Priority ring transmit done interrupt.
1401          */
1402         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1403                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1404
1405         /*
1406          * 5 - Tx ring transmit done interrupt.
1407          */
1408         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1409                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1410
1411         return IRQ_HANDLED;
1412 }
1413
1414 /*
1415  * Device probe functions.
1416  */
1417 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1418 {
1419         struct eeprom_93cx6 eeprom;
1420         u32 reg;
1421         u16 word;
1422         u8 *mac;
1423
1424         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1425
1426         eeprom.data = rt2x00dev;
1427         eeprom.register_read = rt2500pci_eepromregister_read;
1428         eeprom.register_write = rt2500pci_eepromregister_write;
1429         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1430             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1431         eeprom.reg_data_in = 0;
1432         eeprom.reg_data_out = 0;
1433         eeprom.reg_data_clock = 0;
1434         eeprom.reg_chip_select = 0;
1435
1436         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1437                                EEPROM_SIZE / sizeof(u16));
1438
1439         /*
1440          * Start validation of the data that has been read.
1441          */
1442         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1443         if (!is_valid_ether_addr(mac)) {
1444                 DECLARE_MAC_BUF(macbuf);
1445
1446                 random_ether_addr(mac);
1447                 EEPROM(rt2x00dev, "MAC: %s\n",
1448                        print_mac(macbuf, mac));
1449         }
1450
1451         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1452         if (word == 0xffff) {
1453                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1454                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
1455                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
1456                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
1457                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1458                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1459                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1460                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1461                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1462         }
1463
1464         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1465         if (word == 0xffff) {
1466                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1467                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1468                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1469                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1470                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1471         }
1472
1473         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1474         if (word == 0xffff) {
1475                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1476                                    DEFAULT_RSSI_OFFSET);
1477                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1478                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1479         }
1480
1481         return 0;
1482 }
1483
1484 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1485 {
1486         u32 reg;
1487         u16 value;
1488         u16 eeprom;
1489
1490         /*
1491          * Read EEPROM word for configuration.
1492          */
1493         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1494
1495         /*
1496          * Identify RF chipset.
1497          */
1498         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1499         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1500         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1501
1502         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1503             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1504             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1505             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1506             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1507             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1508                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1509                 return -ENODEV;
1510         }
1511
1512         /*
1513          * Identify default antenna configuration.
1514          */
1515         rt2x00dev->hw->conf.antenna_sel_tx =
1516             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1517         rt2x00dev->hw->conf.antenna_sel_rx =
1518             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1519
1520         /*
1521          * Store led mode, for correct led behaviour.
1522          */
1523         rt2x00dev->led_mode =
1524             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1525
1526         /*
1527          * Detect if this device has an hardware controlled radio.
1528          */
1529 #ifdef CONFIG_RT2500PCI_RFKILL
1530         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1531                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1532 #endif /* CONFIG_RT2500PCI_RFKILL */
1533
1534         /*
1535          * Check if the BBP tuning should be enabled.
1536          */
1537         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1538
1539         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1540                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1541
1542         /*
1543          * Read the RSSI <-> dBm offset information.
1544          */
1545         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1546         rt2x00dev->rssi_offset =
1547             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1548
1549         return 0;
1550 }
1551
1552 /*
1553  * RF value list for RF2522
1554  * Supports: 2.4 GHz
1555  */
1556 static const struct rf_channel rf_vals_bg_2522[] = {
1557         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1558         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1559         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1560         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1561         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1562         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1563         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1564         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1565         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1566         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1567         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1568         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1569         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1570         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1571 };
1572
1573 /*
1574  * RF value list for RF2523
1575  * Supports: 2.4 GHz
1576  */
1577 static const struct rf_channel rf_vals_bg_2523[] = {
1578         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1579         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1580         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1581         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1582         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1583         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1584         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1585         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1586         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1587         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1588         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1589         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1590         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1591         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1592 };
1593
1594 /*
1595  * RF value list for RF2524
1596  * Supports: 2.4 GHz
1597  */
1598 static const struct rf_channel rf_vals_bg_2524[] = {
1599         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1600         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1601         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1602         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1603         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1604         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1605         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1606         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1607         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1608         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1609         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1610         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1611         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1612         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1613 };
1614
1615 /*
1616  * RF value list for RF2525
1617  * Supports: 2.4 GHz
1618  */
1619 static const struct rf_channel rf_vals_bg_2525[] = {
1620         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1621         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1622         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1623         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1624         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1625         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1626         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1627         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1628         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1629         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1630         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1631         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1632         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1633         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1634 };
1635
1636 /*
1637  * RF value list for RF2525e
1638  * Supports: 2.4 GHz
1639  */
1640 static const struct rf_channel rf_vals_bg_2525e[] = {
1641         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1642         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1643         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1644         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1645         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1646         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1647         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1648         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1649         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1650         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1651         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1652         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1653         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1654         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1655 };
1656
1657 /*
1658  * RF value list for RF5222
1659  * Supports: 2.4 GHz & 5.2 GHz
1660  */
1661 static const struct rf_channel rf_vals_5222[] = {
1662         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1663         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1664         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1665         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1666         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1667         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1668         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1669         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1670         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1671         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1672         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1673         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1674         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1675         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1676
1677         /* 802.11 UNI / HyperLan 2 */
1678         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1679         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1680         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1681         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1682         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1683         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1684         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1685         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1686
1687         /* 802.11 HyperLan 2 */
1688         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1689         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1690         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1691         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1692         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1693         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1694         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1695         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1696         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1697         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1698
1699         /* 802.11 UNII */
1700         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1701         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1702         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1703         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1704         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1705 };
1706
1707 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1708 {
1709         struct hw_mode_spec *spec = &rt2x00dev->spec;
1710         u8 *txpower;
1711         unsigned int i;
1712
1713         /*
1714          * Initialize all hw fields.
1715          */
1716         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1717         rt2x00dev->hw->extra_tx_headroom = 0;
1718         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1719         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1720         rt2x00dev->hw->queues = 2;
1721
1722         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1723         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1724                                 rt2x00_eeprom_addr(rt2x00dev,
1725                                                    EEPROM_MAC_ADDR_0));
1726
1727         /*
1728          * Convert tx_power array in eeprom.
1729          */
1730         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1731         for (i = 0; i < 14; i++)
1732                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1733
1734         /*
1735          * Initialize hw_mode information.
1736          */
1737         spec->num_modes = 2;
1738         spec->num_rates = 12;
1739         spec->tx_power_a = NULL;
1740         spec->tx_power_bg = txpower;
1741         spec->tx_power_default = DEFAULT_TXPOWER;
1742
1743         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1744                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1745                 spec->channels = rf_vals_bg_2522;
1746         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1747                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1748                 spec->channels = rf_vals_bg_2523;
1749         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1750                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1751                 spec->channels = rf_vals_bg_2524;
1752         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1753                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1754                 spec->channels = rf_vals_bg_2525;
1755         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1756                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1757                 spec->channels = rf_vals_bg_2525e;
1758         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1759                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1760                 spec->channels = rf_vals_5222;
1761                 spec->num_modes = 3;
1762         }
1763 }
1764
1765 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1766 {
1767         int retval;
1768
1769         /*
1770          * Allocate eeprom data.
1771          */
1772         retval = rt2500pci_validate_eeprom(rt2x00dev);
1773         if (retval)
1774                 return retval;
1775
1776         retval = rt2500pci_init_eeprom(rt2x00dev);
1777         if (retval)
1778                 return retval;
1779
1780         /*
1781          * Initialize hw specifications.
1782          */
1783         rt2500pci_probe_hw_mode(rt2x00dev);
1784
1785         /*
1786          * This device requires the beacon ring
1787          */
1788         __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1789
1790         /*
1791          * Set the rssi offset.
1792          */
1793         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1794
1795         return 0;
1796 }
1797
1798 /*
1799  * IEEE80211 stack callback functions.
1800  */
1801 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1802                                        unsigned int changed_flags,
1803                                        unsigned int *total_flags,
1804                                        int mc_count,
1805                                        struct dev_addr_list *mc_list)
1806 {
1807         struct rt2x00_dev *rt2x00dev = hw->priv;
1808         struct interface *intf = &rt2x00dev->interface;
1809         u32 reg;
1810
1811         /*
1812          * Mask off any flags we are going to ignore from
1813          * the total_flags field.
1814          */
1815         *total_flags &=
1816             FIF_ALLMULTI |
1817             FIF_FCSFAIL |
1818             FIF_PLCPFAIL |
1819             FIF_CONTROL |
1820             FIF_OTHER_BSS |
1821             FIF_PROMISC_IN_BSS;
1822
1823         /*
1824          * Apply some rules to the filters:
1825          * - Some filters imply different filters to be set.
1826          * - Some things we can't filter out at all.
1827          * - Some filters are set based on interface type.
1828          */
1829         if (mc_count)
1830                 *total_flags |= FIF_ALLMULTI;
1831         if (*total_flags & FIF_OTHER_BSS ||
1832             *total_flags & FIF_PROMISC_IN_BSS)
1833                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1834         if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1835                 *total_flags |= FIF_PROMISC_IN_BSS;
1836
1837         /*
1838          * Check if there is any work left for us.
1839          */
1840         if (intf->filter == *total_flags)
1841                 return;
1842         intf->filter = *total_flags;
1843
1844         /*
1845          * Start configuration steps.
1846          * Note that the version error will always be dropped
1847          * and broadcast frames will always be accepted since
1848          * there is no filter for it at this time.
1849          */
1850         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1851         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1852                            !(*total_flags & FIF_FCSFAIL));
1853         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1854                            !(*total_flags & FIF_PLCPFAIL));
1855         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1856                            !(*total_flags & FIF_CONTROL));
1857         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1858                            !(*total_flags & FIF_PROMISC_IN_BSS));
1859         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1860                            !(*total_flags & FIF_PROMISC_IN_BSS));
1861         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1862         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1863                            !(*total_flags & FIF_ALLMULTI));
1864         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1865         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1866 }
1867
1868 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1869                                      u32 short_retry, u32 long_retry)
1870 {
1871         struct rt2x00_dev *rt2x00dev = hw->priv;
1872         u32 reg;
1873
1874         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1875         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1876         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1877         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1878
1879         return 0;
1880 }
1881
1882 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1883 {
1884         struct rt2x00_dev *rt2x00dev = hw->priv;
1885         u64 tsf;
1886         u32 reg;
1887
1888         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1889         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1890         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1891         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1892
1893         return tsf;
1894 }
1895
1896 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1897 {
1898         struct rt2x00_dev *rt2x00dev = hw->priv;
1899
1900         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1901         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1902 }
1903
1904 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1905 {
1906         struct rt2x00_dev *rt2x00dev = hw->priv;
1907         u32 reg;
1908
1909         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1910         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1911 }
1912
1913 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1914         .tx                     = rt2x00mac_tx,
1915         .start                  = rt2x00mac_start,
1916         .stop                   = rt2x00mac_stop,
1917         .add_interface          = rt2x00mac_add_interface,
1918         .remove_interface       = rt2x00mac_remove_interface,
1919         .config                 = rt2x00mac_config,
1920         .config_interface       = rt2x00mac_config_interface,
1921         .configure_filter       = rt2500pci_configure_filter,
1922         .get_stats              = rt2x00mac_get_stats,
1923         .set_retry_limit        = rt2500pci_set_retry_limit,
1924         .conf_tx                = rt2x00mac_conf_tx,
1925         .get_tx_stats           = rt2x00mac_get_tx_stats,
1926         .get_tsf                = rt2500pci_get_tsf,
1927         .reset_tsf              = rt2500pci_reset_tsf,
1928         .beacon_update          = rt2x00pci_beacon_update,
1929         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1930 };
1931
1932 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1933         .irq_handler            = rt2500pci_interrupt,
1934         .probe_hw               = rt2500pci_probe_hw,
1935         .initialize             = rt2x00pci_initialize,
1936         .uninitialize           = rt2x00pci_uninitialize,
1937         .set_device_state       = rt2500pci_set_device_state,
1938         .rfkill_poll            = rt2500pci_rfkill_poll,
1939         .link_stats             = rt2500pci_link_stats,
1940         .reset_tuner            = rt2500pci_reset_tuner,
1941         .link_tuner             = rt2500pci_link_tuner,
1942         .write_tx_desc          = rt2500pci_write_tx_desc,
1943         .write_tx_data          = rt2x00pci_write_tx_data,
1944         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1945         .fill_rxdone            = rt2500pci_fill_rxdone,
1946         .config_mac_addr        = rt2500pci_config_mac_addr,
1947         .config_bssid           = rt2500pci_config_bssid,
1948         .config_type            = rt2500pci_config_type,
1949         .config                 = rt2500pci_config,
1950 };
1951
1952 static const struct rt2x00_ops rt2500pci_ops = {
1953         .name           = DRV_NAME,
1954         .rxd_size       = RXD_DESC_SIZE,
1955         .txd_size       = TXD_DESC_SIZE,
1956         .eeprom_size    = EEPROM_SIZE,
1957         .rf_size        = RF_SIZE,
1958         .lib            = &rt2500pci_rt2x00_ops,
1959         .hw             = &rt2500pci_mac80211_ops,
1960 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1961         .debugfs        = &rt2500pci_rt2x00debug,
1962 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1963 };
1964
1965 /*
1966  * RT2500pci module information.
1967  */
1968 static struct pci_device_id rt2500pci_device_table[] = {
1969         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1970         { 0, }
1971 };
1972
1973 MODULE_AUTHOR(DRV_PROJECT);
1974 MODULE_VERSION(DRV_VERSION);
1975 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1976 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1977 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1978 MODULE_LICENSE("GPL");
1979
1980 static struct pci_driver rt2500pci_driver = {
1981         .name           = DRV_NAME,
1982         .id_table       = rt2500pci_device_table,
1983         .probe          = rt2x00pci_probe,
1984         .remove         = __devexit_p(rt2x00pci_remove),
1985         .suspend        = rt2x00pci_suspend,
1986         .resume         = rt2x00pci_resume,
1987 };
1988
1989 static int __init rt2500pci_init(void)
1990 {
1991         return pci_register_driver(&rt2500pci_driver);
1992 }
1993
1994 static void __exit rt2500pci_exit(void)
1995 {
1996         pci_unregister_driver(&rt2500pci_driver);
1997 }
1998
1999 module_init(rt2500pci_init);
2000 module_exit(rt2500pci_exit);