rt2x00: Don't report driver generated frames to tx_status()
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         unsigned int activity =
254             led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
255         u32 reg;
256
257         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
258
259         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
261                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
262         }
263
264         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 }
266 #else
267 #define rt2500pci_led_brightness        NULL
268 #endif /* CONFIG_RT2500PCI_LEDS */
269
270 /*
271  * Configuration handlers.
272  */
273 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
274                                   struct rt2x00_intf *intf,
275                                   struct rt2x00intf_conf *conf,
276                                   const unsigned int flags)
277 {
278         struct data_queue *queue =
279             rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
280         unsigned int bcn_preload;
281         u32 reg;
282
283         if (flags & CONFIG_UPDATE_TYPE) {
284                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
285
286                 /*
287                  * Enable beacon config
288                  */
289                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
290                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
291                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
292                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
293                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
294
295                 /*
296                  * Enable synchronisation.
297                  */
298                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
299                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
300                 rt2x00_set_field32(&reg, CSR14_TBCN,
301                                    (conf->sync == TSF_SYNC_BEACON));
302                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
303                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
304                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
305         }
306
307         if (flags & CONFIG_UPDATE_MAC)
308                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
309                                               conf->mac, sizeof(conf->mac));
310
311         if (flags & CONFIG_UPDATE_BSSID)
312                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
313                                               conf->bssid, sizeof(conf->bssid));
314 }
315
316 static int rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
317                                      const int short_preamble,
318                                      const int ack_timeout,
319                                      const int ack_consume_time)
320 {
321         int preamble_mask;
322         u32 reg;
323
324         /*
325          * When short preamble is enabled, we should set bit 0x08
326          */
327         preamble_mask = short_preamble << 3;
328
329         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
330         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
331         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
332         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
333
334         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
335         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
336         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
337         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
338         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
339
340         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
341         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
342         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
343         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
344         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
345
346         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
347         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
348         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
349         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
350         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
351
352         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
353         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
354         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
355         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
356         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
357
358         return 0;
359 }
360
361 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
362                                      const int basic_rate_mask)
363 {
364         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
365 }
366
367 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
368                                      struct rf_channel *rf, const int txpower)
369 {
370         u8 r70;
371
372         /*
373          * Set TXpower.
374          */
375         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
376
377         /*
378          * Switch on tuning bits.
379          * For RT2523 devices we do not need to update the R1 register.
380          */
381         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
382                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
383         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
384
385         /*
386          * For RT2525 we should first set the channel to half band higher.
387          */
388         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
389                 static const u32 vals[] = {
390                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
391                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
392                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
393                         0x00080d2e, 0x00080d3a
394                 };
395
396                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
397                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
398                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
399                 if (rf->rf4)
400                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
401         }
402
403         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
404         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
405         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
406         if (rf->rf4)
407                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
408
409         /*
410          * Channel 14 requires the Japan filter bit to be set.
411          */
412         r70 = 0x46;
413         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
414         rt2500pci_bbp_write(rt2x00dev, 70, r70);
415
416         msleep(1);
417
418         /*
419          * Switch off tuning bits.
420          * For RT2523 devices we do not need to update the R1 register.
421          */
422         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
423                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
424                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
425         }
426
427         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
428         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
429
430         /*
431          * Clear false CRC during channel switch.
432          */
433         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
434 }
435
436 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
437                                      const int txpower)
438 {
439         u32 rf3;
440
441         rt2x00_rf_read(rt2x00dev, 3, &rf3);
442         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
443         rt2500pci_rf_write(rt2x00dev, 3, rf3);
444 }
445
446 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
447                                      struct antenna_setup *ant)
448 {
449         u32 reg;
450         u8 r14;
451         u8 r2;
452
453         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
454         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
455         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
456
457         /*
458          * Configure the TX antenna.
459          */
460         switch (ant->tx) {
461         case ANTENNA_A:
462                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
463                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
464                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
465                 break;
466         case ANTENNA_HW_DIVERSITY:
467         case ANTENNA_SW_DIVERSITY:
468                 /*
469                  * NOTE: We should never come here because rt2x00lib is
470                  * supposed to catch this and send us the correct antenna
471                  * explicitely. However we are nog going to bug about this.
472                  * Instead, just default to antenna B.
473                  */
474         case ANTENNA_B:
475                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
476                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
477                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
478                 break;
479         }
480
481         /*
482          * Configure the RX antenna.
483          */
484         switch (ant->rx) {
485         case ANTENNA_A:
486                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
487                 break;
488         case ANTENNA_HW_DIVERSITY:
489         case ANTENNA_SW_DIVERSITY:
490                 /*
491                  * NOTE: We should never come here because rt2x00lib is
492                  * supposed to catch this and send us the correct antenna
493                  * explicitely. However we are nog going to bug about this.
494                  * Instead, just default to antenna B.
495                  */
496         case ANTENNA_B:
497                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
498                 break;
499         }
500
501         /*
502          * RT2525E and RT5222 need to flip TX I/Q
503          */
504         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
505             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
506                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
507                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
508                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
509
510                 /*
511                  * RT2525E does not need RX I/Q Flip.
512                  */
513                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
514                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
515         } else {
516                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
517                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
518         }
519
520         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
521         rt2500pci_bbp_write(rt2x00dev, 14, r14);
522         rt2500pci_bbp_write(rt2x00dev, 2, r2);
523 }
524
525 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
526                                       struct rt2x00lib_conf *libconf)
527 {
528         u32 reg;
529
530         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
531         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
532         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
533
534         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
535         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
536         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
537         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
538
539         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
540         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
541         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
542         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
543
544         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
545         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
546         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
547         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
548
549         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
550         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
551                            libconf->conf->beacon_int * 16);
552         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
553                            libconf->conf->beacon_int * 16);
554         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
555 }
556
557 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
558                              struct rt2x00lib_conf *libconf,
559                              const unsigned int flags)
560 {
561         if (flags & CONFIG_UPDATE_PHYMODE)
562                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
563         if (flags & CONFIG_UPDATE_CHANNEL)
564                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
565                                          libconf->conf->power_level);
566         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
567                 rt2500pci_config_txpower(rt2x00dev,
568                                          libconf->conf->power_level);
569         if (flags & CONFIG_UPDATE_ANTENNA)
570                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
571         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
572                 rt2500pci_config_duration(rt2x00dev, libconf);
573 }
574
575 /*
576  * Link tuning
577  */
578 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
579                                  struct link_qual *qual)
580 {
581         u32 reg;
582
583         /*
584          * Update FCS error count from register.
585          */
586         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
587         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
588
589         /*
590          * Update False CCA count from register.
591          */
592         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
593         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
594 }
595
596 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
597 {
598         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
599         rt2x00dev->link.vgc_level = 0x48;
600 }
601
602 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
603 {
604         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
605         u8 r17;
606
607         /*
608          * To prevent collisions with MAC ASIC on chipsets
609          * up to version C the link tuning should halt after 20
610          * seconds while being associated.
611          */
612         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
613             rt2x00dev->intf_associated &&
614             rt2x00dev->link.count > 20)
615                 return;
616
617         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
618
619         /*
620          * Chipset versions C and lower should directly continue
621          * to the dynamic CCA tuning. Chipset version D and higher
622          * should go straight to dynamic CCA tuning when they
623          * are not associated.
624          */
625         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
626             !rt2x00dev->intf_associated)
627                 goto dynamic_cca_tune;
628
629         /*
630          * A too low RSSI will cause too much false CCA which will
631          * then corrupt the R17 tuning. To remidy this the tuning should
632          * be stopped (While making sure the R17 value will not exceed limits)
633          */
634         if (rssi < -80 && rt2x00dev->link.count > 20) {
635                 if (r17 >= 0x41) {
636                         r17 = rt2x00dev->link.vgc_level;
637                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
638                 }
639                 return;
640         }
641
642         /*
643          * Special big-R17 for short distance
644          */
645         if (rssi >= -58) {
646                 if (r17 != 0x50)
647                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
648                 return;
649         }
650
651         /*
652          * Special mid-R17 for middle distance
653          */
654         if (rssi >= -74) {
655                 if (r17 != 0x41)
656                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
657                 return;
658         }
659
660         /*
661          * Leave short or middle distance condition, restore r17
662          * to the dynamic tuning range.
663          */
664         if (r17 >= 0x41) {
665                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
666                 return;
667         }
668
669 dynamic_cca_tune:
670
671         /*
672          * R17 is inside the dynamic tuning range,
673          * start tuning the link based on the false cca counter.
674          */
675         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
676                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
677                 rt2x00dev->link.vgc_level = r17;
678         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
679                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
680                 rt2x00dev->link.vgc_level = r17;
681         }
682 }
683
684 /*
685  * Initialization functions.
686  */
687 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
688                                    struct queue_entry *entry)
689 {
690         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
691         u32 word;
692
693         rt2x00_desc_read(priv_rx->desc, 1, &word);
694         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->dma);
695         rt2x00_desc_write(priv_rx->desc, 1, word);
696
697         rt2x00_desc_read(priv_rx->desc, 0, &word);
698         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
699         rt2x00_desc_write(priv_rx->desc, 0, word);
700 }
701
702 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
703                                    struct queue_entry *entry)
704 {
705         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
706         u32 word;
707
708         rt2x00_desc_read(priv_tx->desc, 1, &word);
709         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->dma);
710         rt2x00_desc_write(priv_tx->desc, 1, word);
711
712         rt2x00_desc_read(priv_tx->desc, 0, &word);
713         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
714         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
715         rt2x00_desc_write(priv_tx->desc, 0, word);
716 }
717
718 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
719 {
720         struct queue_entry_priv_pci_rx *priv_rx;
721         struct queue_entry_priv_pci_tx *priv_tx;
722         u32 reg;
723
724         /*
725          * Initialize registers.
726          */
727         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
728         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
729         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
730         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
731         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
732         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
733
734         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
735         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
736         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER, priv_tx->dma);
737         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
738
739         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
740         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
741         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER, priv_tx->dma);
742         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
743
744         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
745         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
746         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER, priv_tx->dma);
747         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
748
749         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
750         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
751         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER, priv_tx->dma);
752         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
753
754         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
755         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
756         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
757         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
758
759         priv_rx = rt2x00dev->rx->entries[0].priv_data;
760         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
761         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->dma);
762         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
763
764         return 0;
765 }
766
767 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
768 {
769         u32 reg;
770
771         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
772         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
773         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
774         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
775
776         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
777         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
778         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
779         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
780         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
781
782         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
783         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
784                            rt2x00dev->rx->data_size / 128);
785         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
786
787         /*
788          * Always use CWmin and CWmax set in descriptor.
789          */
790         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
791         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
792         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
793
794         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
795         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
796         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
797         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
798
799         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
800
801         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
802         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
803         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
804         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
805         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
806         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
807         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
808         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
809         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
810         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
811
812         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
813         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
814         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
815         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
816         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
817         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
818
819         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
820         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
821         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
822         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
823         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
824         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
825
826         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
827         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
828         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
829         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
830         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
831         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
832
833         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
834         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
835         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
836         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
837         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
838         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
839         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
840         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
841         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
842         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
843
844         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
845         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
846         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
847         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
848         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
849         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
850         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
851         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
852         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
853
854         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
855
856         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
857         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
858
859         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
860                 return -EBUSY;
861
862         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
863         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
864
865         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
866         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
867         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
868
869         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
870         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
871         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
872         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
873         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
874         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
875         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
876         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
877
878         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
879
880         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
881
882         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
883         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
884         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
885         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
886         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
887
888         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
889         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
890         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
891         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
892
893         /*
894          * We must clear the FCS and FIFO error count.
895          * These registers are cleared on read,
896          * so we may pass a useless variable to store the value.
897          */
898         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
899         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
900
901         return 0;
902 }
903
904 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
905 {
906         unsigned int i;
907         u16 eeprom;
908         u8 reg_id;
909         u8 value;
910
911         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
912                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
913                 if ((value != 0xff) && (value != 0x00))
914                         goto continue_csr_init;
915                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
916                 udelay(REGISTER_BUSY_DELAY);
917         }
918
919         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
920         return -EACCES;
921
922 continue_csr_init:
923         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
924         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
925         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
926         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
927         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
928         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
929         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
930         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
931         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
932         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
933         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
934         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
935         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
936         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
937         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
938         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
939         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
940         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
941         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
942         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
943         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
944         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
945         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
946         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
947         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
948         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
949         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
950         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
951         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
952         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
953
954         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
955                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
956
957                 if (eeprom != 0xffff && eeprom != 0x0000) {
958                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
959                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
960                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
961                 }
962         }
963
964         return 0;
965 }
966
967 /*
968  * Device state switch handlers.
969  */
970 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
971                                 enum dev_state state)
972 {
973         u32 reg;
974
975         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
976         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
977                            state == STATE_RADIO_RX_OFF);
978         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
979 }
980
981 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
982                                  enum dev_state state)
983 {
984         int mask = (state == STATE_RADIO_IRQ_OFF);
985         u32 reg;
986
987         /*
988          * When interrupts are being enabled, the interrupt registers
989          * should clear the register to assure a clean state.
990          */
991         if (state == STATE_RADIO_IRQ_ON) {
992                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
993                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
994         }
995
996         /*
997          * Only toggle the interrupts bits we are going to use.
998          * Non-checked interrupt bits are disabled by default.
999          */
1000         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1001         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1002         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1003         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1004         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1005         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1006         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1007 }
1008
1009 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1010 {
1011         /*
1012          * Initialize all registers.
1013          */
1014         if (rt2500pci_init_queues(rt2x00dev) ||
1015             rt2500pci_init_registers(rt2x00dev) ||
1016             rt2500pci_init_bbp(rt2x00dev)) {
1017                 ERROR(rt2x00dev, "Register initialization failed.\n");
1018                 return -EIO;
1019         }
1020
1021         /*
1022          * Enable interrupts.
1023          */
1024         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1025
1026         return 0;
1027 }
1028
1029 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1030 {
1031         u32 reg;
1032
1033         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1034
1035         /*
1036          * Disable synchronisation.
1037          */
1038         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1039
1040         /*
1041          * Cancel RX and TX.
1042          */
1043         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1044         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1045         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1046
1047         /*
1048          * Disable interrupts.
1049          */
1050         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1051 }
1052
1053 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1054                                enum dev_state state)
1055 {
1056         u32 reg;
1057         unsigned int i;
1058         char put_to_sleep;
1059         char bbp_state;
1060         char rf_state;
1061
1062         put_to_sleep = (state != STATE_AWAKE);
1063
1064         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1065         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1066         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1067         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1068         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1069         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1070
1071         /*
1072          * Device is not guaranteed to be in the requested state yet.
1073          * We must wait until the register indicates that the
1074          * device has entered the correct state.
1075          */
1076         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1077                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1078                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1079                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1080                 if (bbp_state == state && rf_state == state)
1081                         return 0;
1082                 msleep(10);
1083         }
1084
1085         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1086                "current device state: bbp %d and rf %d.\n",
1087                state, bbp_state, rf_state);
1088
1089         return -EBUSY;
1090 }
1091
1092 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1093                                       enum dev_state state)
1094 {
1095         int retval = 0;
1096
1097         switch (state) {
1098         case STATE_RADIO_ON:
1099                 retval = rt2500pci_enable_radio(rt2x00dev);
1100                 break;
1101         case STATE_RADIO_OFF:
1102                 rt2500pci_disable_radio(rt2x00dev);
1103                 break;
1104         case STATE_RADIO_RX_ON:
1105         case STATE_RADIO_RX_ON_LINK:
1106                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1107                 break;
1108         case STATE_RADIO_RX_OFF:
1109         case STATE_RADIO_RX_OFF_LINK:
1110                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1111                 break;
1112         case STATE_DEEP_SLEEP:
1113         case STATE_SLEEP:
1114         case STATE_STANDBY:
1115         case STATE_AWAKE:
1116                 retval = rt2500pci_set_state(rt2x00dev, state);
1117                 break;
1118         default:
1119                 retval = -ENOTSUPP;
1120                 break;
1121         }
1122
1123         return retval;
1124 }
1125
1126 /*
1127  * TX descriptor initialization
1128  */
1129 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1130                                     struct sk_buff *skb,
1131                                     struct txentry_desc *txdesc,
1132                                     struct ieee80211_tx_control *control)
1133 {
1134         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1135         __le32 *txd = skbdesc->desc;
1136         u32 word;
1137
1138         /*
1139          * Start writing the descriptor words.
1140          */
1141         rt2x00_desc_read(txd, 2, &word);
1142         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1143         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1144         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1145         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1146         rt2x00_desc_write(txd, 2, word);
1147
1148         rt2x00_desc_read(txd, 3, &word);
1149         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1150         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1151         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1152         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1153         rt2x00_desc_write(txd, 3, word);
1154
1155         rt2x00_desc_read(txd, 10, &word);
1156         rt2x00_set_field32(&word, TXD_W10_RTS,
1157                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1158         rt2x00_desc_write(txd, 10, word);
1159
1160         rt2x00_desc_read(txd, 0, &word);
1161         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1162         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1163         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1164                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1165         rt2x00_set_field32(&word, TXD_W0_ACK,
1166                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1167         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1168                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1169         rt2x00_set_field32(&word, TXD_W0_OFDM,
1170                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1171         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1172         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1173         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1174                            !!(control->flags &
1175                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1176         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1177         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1178         rt2x00_desc_write(txd, 0, word);
1179 }
1180
1181 /*
1182  * TX data initialization
1183  */
1184 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1185                                     const unsigned int queue)
1186 {
1187         u32 reg;
1188
1189         if (queue == RT2X00_BCN_QUEUE_BEACON) {
1190                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1191                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1192                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1193                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1194                 }
1195                 return;
1196         }
1197
1198         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1199         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1200                            (queue == IEEE80211_TX_QUEUE_DATA0));
1201         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1202                            (queue == IEEE80211_TX_QUEUE_DATA1));
1203         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1204                            (queue == RT2X00_BCN_QUEUE_ATIM));
1205         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1206 }
1207
1208 /*
1209  * RX control handlers
1210  */
1211 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1212                                   struct rxdone_entry_desc *rxdesc)
1213 {
1214         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1215         u32 word0;
1216         u32 word2;
1217
1218         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1219         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1220
1221         rxdesc->flags = 0;
1222         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1223                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1224         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1225                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1226
1227         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1228         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1229             entry->queue->rt2x00dev->rssi_offset;
1230         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1231         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1232         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1233 }
1234
1235 /*
1236  * Interrupt functions.
1237  */
1238 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1239                              const enum ieee80211_tx_queue queue_idx)
1240 {
1241         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1242         struct queue_entry_priv_pci_tx *priv_tx;
1243         struct queue_entry *entry;
1244         struct txdone_entry_desc txdesc;
1245         u32 word;
1246
1247         while (!rt2x00queue_empty(queue)) {
1248                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1249                 priv_tx = entry->priv_data;
1250                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1251
1252                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1253                     !rt2x00_get_field32(word, TXD_W0_VALID))
1254                         break;
1255
1256                 /*
1257                  * Obtain the status about this packet.
1258                  */
1259                 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1260                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1261
1262                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1263         }
1264 }
1265
1266 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1267 {
1268         struct rt2x00_dev *rt2x00dev = dev_instance;
1269         u32 reg;
1270
1271         /*
1272          * Get the interrupt sources & saved to local variable.
1273          * Write register value back to clear pending interrupts.
1274          */
1275         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1276         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1277
1278         if (!reg)
1279                 return IRQ_NONE;
1280
1281         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1282                 return IRQ_HANDLED;
1283
1284         /*
1285          * Handle interrupts, walk through all bits
1286          * and run the tasks, the bits are checked in order of
1287          * priority.
1288          */
1289
1290         /*
1291          * 1 - Beacon timer expired interrupt.
1292          */
1293         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1294                 rt2x00lib_beacondone(rt2x00dev);
1295
1296         /*
1297          * 2 - Rx ring done interrupt.
1298          */
1299         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1300                 rt2x00pci_rxdone(rt2x00dev);
1301
1302         /*
1303          * 3 - Atim ring transmit done interrupt.
1304          */
1305         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1306                 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1307
1308         /*
1309          * 4 - Priority ring transmit done interrupt.
1310          */
1311         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1312                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1313
1314         /*
1315          * 5 - Tx ring transmit done interrupt.
1316          */
1317         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1318                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1319
1320         return IRQ_HANDLED;
1321 }
1322
1323 /*
1324  * Device probe functions.
1325  */
1326 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1327 {
1328         struct eeprom_93cx6 eeprom;
1329         u32 reg;
1330         u16 word;
1331         u8 *mac;
1332
1333         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1334
1335         eeprom.data = rt2x00dev;
1336         eeprom.register_read = rt2500pci_eepromregister_read;
1337         eeprom.register_write = rt2500pci_eepromregister_write;
1338         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1339             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1340         eeprom.reg_data_in = 0;
1341         eeprom.reg_data_out = 0;
1342         eeprom.reg_data_clock = 0;
1343         eeprom.reg_chip_select = 0;
1344
1345         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1346                                EEPROM_SIZE / sizeof(u16));
1347
1348         /*
1349          * Start validation of the data that has been read.
1350          */
1351         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1352         if (!is_valid_ether_addr(mac)) {
1353                 DECLARE_MAC_BUF(macbuf);
1354
1355                 random_ether_addr(mac);
1356                 EEPROM(rt2x00dev, "MAC: %s\n",
1357                        print_mac(macbuf, mac));
1358         }
1359
1360         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1361         if (word == 0xffff) {
1362                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1363                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1364                                    ANTENNA_SW_DIVERSITY);
1365                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1366                                    ANTENNA_SW_DIVERSITY);
1367                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1368                                    LED_MODE_DEFAULT);
1369                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1370                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1371                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1372                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1373                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1374         }
1375
1376         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1377         if (word == 0xffff) {
1378                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1379                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1380                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1381                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1382                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1383         }
1384
1385         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1386         if (word == 0xffff) {
1387                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1388                                    DEFAULT_RSSI_OFFSET);
1389                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1390                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1391         }
1392
1393         return 0;
1394 }
1395
1396 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1397 {
1398         u32 reg;
1399         u16 value;
1400         u16 eeprom;
1401
1402         /*
1403          * Read EEPROM word for configuration.
1404          */
1405         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1406
1407         /*
1408          * Identify RF chipset.
1409          */
1410         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1411         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1412         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1413
1414         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1415             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1416             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1417             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1418             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1419             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1420                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1421                 return -ENODEV;
1422         }
1423
1424         /*
1425          * Identify default antenna configuration.
1426          */
1427         rt2x00dev->default_ant.tx =
1428             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1429         rt2x00dev->default_ant.rx =
1430             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1431
1432         /*
1433          * Store led mode, for correct led behaviour.
1434          */
1435 #ifdef CONFIG_RT2500PCI_LEDS
1436         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1437
1438         switch (value) {
1439         case LED_MODE_ASUS:
1440         case LED_MODE_ALPHA:
1441         case LED_MODE_DEFAULT:
1442                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1443                 break;
1444         case LED_MODE_TXRX_ACTIVITY:
1445                 rt2x00dev->led_flags =
1446                     LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1447                 break;
1448         case LED_MODE_SIGNAL_STRENGTH:
1449                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1450                 break;
1451         }
1452 #endif /* CONFIG_RT2500PCI_LEDS */
1453
1454         /*
1455          * Detect if this device has an hardware controlled radio.
1456          */
1457 #ifdef CONFIG_RT2500PCI_RFKILL
1458         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1459                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1460 #endif /* CONFIG_RT2500PCI_RFKILL */
1461
1462         /*
1463          * Check if the BBP tuning should be enabled.
1464          */
1465         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1466
1467         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1468                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1469
1470         /*
1471          * Read the RSSI <-> dBm offset information.
1472          */
1473         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1474         rt2x00dev->rssi_offset =
1475             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1476
1477         return 0;
1478 }
1479
1480 /*
1481  * RF value list for RF2522
1482  * Supports: 2.4 GHz
1483  */
1484 static const struct rf_channel rf_vals_bg_2522[] = {
1485         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1486         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1487         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1488         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1489         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1490         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1491         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1492         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1493         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1494         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1495         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1496         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1497         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1498         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1499 };
1500
1501 /*
1502  * RF value list for RF2523
1503  * Supports: 2.4 GHz
1504  */
1505 static const struct rf_channel rf_vals_bg_2523[] = {
1506         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1507         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1508         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1509         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1510         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1511         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1512         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1513         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1514         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1515         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1516         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1517         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1518         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1519         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1520 };
1521
1522 /*
1523  * RF value list for RF2524
1524  * Supports: 2.4 GHz
1525  */
1526 static const struct rf_channel rf_vals_bg_2524[] = {
1527         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1528         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1529         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1530         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1531         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1532         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1533         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1534         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1535         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1536         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1537         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1538         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1539         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1540         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1541 };
1542
1543 /*
1544  * RF value list for RF2525
1545  * Supports: 2.4 GHz
1546  */
1547 static const struct rf_channel rf_vals_bg_2525[] = {
1548         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1549         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1550         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1551         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1552         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1553         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1554         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1555         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1556         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1557         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1558         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1559         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1560         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1561         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1562 };
1563
1564 /*
1565  * RF value list for RF2525e
1566  * Supports: 2.4 GHz
1567  */
1568 static const struct rf_channel rf_vals_bg_2525e[] = {
1569         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1570         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1571         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1572         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1573         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1574         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1575         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1576         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1577         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1578         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1579         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1580         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1581         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1582         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1583 };
1584
1585 /*
1586  * RF value list for RF5222
1587  * Supports: 2.4 GHz & 5.2 GHz
1588  */
1589 static const struct rf_channel rf_vals_5222[] = {
1590         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1591         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1592         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1593         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1594         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1595         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1596         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1597         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1598         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1599         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1600         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1601         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1602         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1603         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1604
1605         /* 802.11 UNI / HyperLan 2 */
1606         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1607         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1608         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1609         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1610         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1611         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1612         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1613         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1614
1615         /* 802.11 HyperLan 2 */
1616         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1617         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1618         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1619         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1620         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1621         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1622         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1623         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1624         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1625         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1626
1627         /* 802.11 UNII */
1628         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1629         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1630         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1631         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1632         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1633 };
1634
1635 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1636 {
1637         struct hw_mode_spec *spec = &rt2x00dev->spec;
1638         u8 *txpower;
1639         unsigned int i;
1640
1641         /*
1642          * Initialize all hw fields.
1643          */
1644         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1645         rt2x00dev->hw->extra_tx_headroom = 0;
1646         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1647         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1648         rt2x00dev->hw->queues = 2;
1649
1650         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1651         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1652                                 rt2x00_eeprom_addr(rt2x00dev,
1653                                                    EEPROM_MAC_ADDR_0));
1654
1655         /*
1656          * Convert tx_power array in eeprom.
1657          */
1658         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1659         for (i = 0; i < 14; i++)
1660                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1661
1662         /*
1663          * Initialize hw_mode information.
1664          */
1665         spec->num_modes = 2;
1666         spec->num_rates = 12;
1667         spec->tx_power_a = NULL;
1668         spec->tx_power_bg = txpower;
1669         spec->tx_power_default = DEFAULT_TXPOWER;
1670
1671         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1672                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1673                 spec->channels = rf_vals_bg_2522;
1674         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1675                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1676                 spec->channels = rf_vals_bg_2523;
1677         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1678                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1679                 spec->channels = rf_vals_bg_2524;
1680         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1681                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1682                 spec->channels = rf_vals_bg_2525;
1683         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1684                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1685                 spec->channels = rf_vals_bg_2525e;
1686         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1687                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1688                 spec->channels = rf_vals_5222;
1689                 spec->num_modes = 3;
1690         }
1691 }
1692
1693 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1694 {
1695         int retval;
1696
1697         /*
1698          * Allocate eeprom data.
1699          */
1700         retval = rt2500pci_validate_eeprom(rt2x00dev);
1701         if (retval)
1702                 return retval;
1703
1704         retval = rt2500pci_init_eeprom(rt2x00dev);
1705         if (retval)
1706                 return retval;
1707
1708         /*
1709          * Initialize hw specifications.
1710          */
1711         rt2500pci_probe_hw_mode(rt2x00dev);
1712
1713         /*
1714          * This device requires the atim queue
1715          */
1716         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1717
1718         /*
1719          * Set the rssi offset.
1720          */
1721         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1722
1723         return 0;
1724 }
1725
1726 /*
1727  * IEEE80211 stack callback functions.
1728  */
1729 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1730                                        unsigned int changed_flags,
1731                                        unsigned int *total_flags,
1732                                        int mc_count,
1733                                        struct dev_addr_list *mc_list)
1734 {
1735         struct rt2x00_dev *rt2x00dev = hw->priv;
1736         u32 reg;
1737
1738         /*
1739          * Mask off any flags we are going to ignore from
1740          * the total_flags field.
1741          */
1742         *total_flags &=
1743             FIF_ALLMULTI |
1744             FIF_FCSFAIL |
1745             FIF_PLCPFAIL |
1746             FIF_CONTROL |
1747             FIF_OTHER_BSS |
1748             FIF_PROMISC_IN_BSS;
1749
1750         /*
1751          * Apply some rules to the filters:
1752          * - Some filters imply different filters to be set.
1753          * - Some things we can't filter out at all.
1754          */
1755         if (mc_count)
1756                 *total_flags |= FIF_ALLMULTI;
1757         if (*total_flags & FIF_OTHER_BSS ||
1758             *total_flags & FIF_PROMISC_IN_BSS)
1759                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1760
1761         /*
1762          * Check if there is any work left for us.
1763          */
1764         if (rt2x00dev->packet_filter == *total_flags)
1765                 return;
1766         rt2x00dev->packet_filter = *total_flags;
1767
1768         /*
1769          * Start configuration steps.
1770          * Note that the version error will always be dropped
1771          * and broadcast frames will always be accepted since
1772          * there is no filter for it at this time.
1773          */
1774         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1775         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1776                            !(*total_flags & FIF_FCSFAIL));
1777         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1778                            !(*total_flags & FIF_PLCPFAIL));
1779         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1780                            !(*total_flags & FIF_CONTROL));
1781         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1782                            !(*total_flags & FIF_PROMISC_IN_BSS));
1783         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1784                            !(*total_flags & FIF_PROMISC_IN_BSS));
1785         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1786         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1787                            !(*total_flags & FIF_ALLMULTI));
1788         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1789         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1790 }
1791
1792 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1793                                      u32 short_retry, u32 long_retry)
1794 {
1795         struct rt2x00_dev *rt2x00dev = hw->priv;
1796         u32 reg;
1797
1798         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1799         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1800         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1801         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1802
1803         return 0;
1804 }
1805
1806 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1807 {
1808         struct rt2x00_dev *rt2x00dev = hw->priv;
1809         u64 tsf;
1810         u32 reg;
1811
1812         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1813         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1814         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1815         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1816
1817         return tsf;
1818 }
1819
1820 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1821 {
1822         struct rt2x00_dev *rt2x00dev = hw->priv;
1823
1824         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1825         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1826 }
1827
1828 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1829                                    struct ieee80211_tx_control *control)
1830 {
1831         struct rt2x00_dev *rt2x00dev = hw->priv;
1832         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1833         struct queue_entry_priv_pci_tx *priv_tx;
1834         struct skb_frame_desc *skbdesc;
1835
1836         if (unlikely(!intf->beacon))
1837                 return -ENOBUFS;
1838
1839         priv_tx = intf->beacon->priv_data;
1840
1841         /*
1842          * Fill in skb descriptor
1843          */
1844         skbdesc = get_skb_frame_desc(skb);
1845         memset(skbdesc, 0, sizeof(*skbdesc));
1846         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1847         skbdesc->data = skb->data;
1848         skbdesc->data_len = skb->len;
1849         skbdesc->desc = priv_tx->desc;
1850         skbdesc->desc_len = intf->beacon->queue->desc_size;
1851         skbdesc->entry = intf->beacon;
1852
1853         /*
1854          * mac80211 doesn't provide the control->queue variable
1855          * for beacons. Set our own queue identification so
1856          * it can be used during descriptor initialization.
1857          */
1858         control->queue = RT2X00_BCN_QUEUE_BEACON;
1859         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1860
1861         /*
1862          * Enable beacon generation.
1863          * Write entire beacon with descriptor to register,
1864          * and kick the beacon generator.
1865          */
1866         memcpy(priv_tx->data, skb->data, skb->len);
1867         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1868
1869         return 0;
1870 }
1871
1872 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1873 {
1874         struct rt2x00_dev *rt2x00dev = hw->priv;
1875         u32 reg;
1876
1877         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1878         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1879 }
1880
1881 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1882         .tx                     = rt2x00mac_tx,
1883         .start                  = rt2x00mac_start,
1884         .stop                   = rt2x00mac_stop,
1885         .add_interface          = rt2x00mac_add_interface,
1886         .remove_interface       = rt2x00mac_remove_interface,
1887         .config                 = rt2x00mac_config,
1888         .config_interface       = rt2x00mac_config_interface,
1889         .configure_filter       = rt2500pci_configure_filter,
1890         .get_stats              = rt2x00mac_get_stats,
1891         .set_retry_limit        = rt2500pci_set_retry_limit,
1892         .bss_info_changed       = rt2x00mac_bss_info_changed,
1893         .conf_tx                = rt2x00mac_conf_tx,
1894         .get_tx_stats           = rt2x00mac_get_tx_stats,
1895         .get_tsf                = rt2500pci_get_tsf,
1896         .reset_tsf              = rt2500pci_reset_tsf,
1897         .beacon_update          = rt2500pci_beacon_update,
1898         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1899 };
1900
1901 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1902         .irq_handler            = rt2500pci_interrupt,
1903         .probe_hw               = rt2500pci_probe_hw,
1904         .initialize             = rt2x00pci_initialize,
1905         .uninitialize           = rt2x00pci_uninitialize,
1906         .init_rxentry           = rt2500pci_init_rxentry,
1907         .init_txentry           = rt2500pci_init_txentry,
1908         .set_device_state       = rt2500pci_set_device_state,
1909         .rfkill_poll            = rt2500pci_rfkill_poll,
1910         .link_stats             = rt2500pci_link_stats,
1911         .reset_tuner            = rt2500pci_reset_tuner,
1912         .link_tuner             = rt2500pci_link_tuner,
1913         .led_brightness         = rt2500pci_led_brightness,
1914         .write_tx_desc          = rt2500pci_write_tx_desc,
1915         .write_tx_data          = rt2x00pci_write_tx_data,
1916         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1917         .fill_rxdone            = rt2500pci_fill_rxdone,
1918         .config_intf            = rt2500pci_config_intf,
1919         .config_preamble        = rt2500pci_config_preamble,
1920         .config                 = rt2500pci_config,
1921 };
1922
1923 static const struct data_queue_desc rt2500pci_queue_rx = {
1924         .entry_num              = RX_ENTRIES,
1925         .data_size              = DATA_FRAME_SIZE,
1926         .desc_size              = RXD_DESC_SIZE,
1927         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1928 };
1929
1930 static const struct data_queue_desc rt2500pci_queue_tx = {
1931         .entry_num              = TX_ENTRIES,
1932         .data_size              = DATA_FRAME_SIZE,
1933         .desc_size              = TXD_DESC_SIZE,
1934         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1935 };
1936
1937 static const struct data_queue_desc rt2500pci_queue_bcn = {
1938         .entry_num              = BEACON_ENTRIES,
1939         .data_size              = MGMT_FRAME_SIZE,
1940         .desc_size              = TXD_DESC_SIZE,
1941         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1942 };
1943
1944 static const struct data_queue_desc rt2500pci_queue_atim = {
1945         .entry_num              = ATIM_ENTRIES,
1946         .data_size              = DATA_FRAME_SIZE,
1947         .desc_size              = TXD_DESC_SIZE,
1948         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1949 };
1950
1951 static const struct rt2x00_ops rt2500pci_ops = {
1952         .name           = KBUILD_MODNAME,
1953         .max_sta_intf   = 1,
1954         .max_ap_intf    = 1,
1955         .eeprom_size    = EEPROM_SIZE,
1956         .rf_size        = RF_SIZE,
1957         .rx             = &rt2500pci_queue_rx,
1958         .tx             = &rt2500pci_queue_tx,
1959         .bcn            = &rt2500pci_queue_bcn,
1960         .atim           = &rt2500pci_queue_atim,
1961         .lib            = &rt2500pci_rt2x00_ops,
1962         .hw             = &rt2500pci_mac80211_ops,
1963 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1964         .debugfs        = &rt2500pci_rt2x00debug,
1965 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1966 };
1967
1968 /*
1969  * RT2500pci module information.
1970  */
1971 static struct pci_device_id rt2500pci_device_table[] = {
1972         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1973         { 0, }
1974 };
1975
1976 MODULE_AUTHOR(DRV_PROJECT);
1977 MODULE_VERSION(DRV_VERSION);
1978 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1979 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1980 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1981 MODULE_LICENSE("GPL");
1982
1983 static struct pci_driver rt2500pci_driver = {
1984         .name           = KBUILD_MODNAME,
1985         .id_table       = rt2500pci_device_table,
1986         .probe          = rt2x00pci_probe,
1987         .remove         = __devexit_p(rt2x00pci_remove),
1988         .suspend        = rt2x00pci_suspend,
1989         .resume         = rt2x00pci_resume,
1990 };
1991
1992 static int __init rt2500pci_init(void)
1993 {
1994         return pci_register_driver(&rt2500pci_driver);
1995 }
1996
1997 static void __exit rt2500pci_exit(void)
1998 {
1999         pci_unregister_driver(&rt2500pci_driver);
2000 }
2001
2002 module_init(rt2500pci_init);
2003 module_exit(rt2500pci_exit);