rt2x00: Start bugging when rt2x00lib doesn't filter SW diversity
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         unsigned int activity =
254             led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
255         u32 reg;
256
257         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
258
259         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
261                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
262         }
263
264         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 }
266 #else
267 #define rt2500pci_led_brightness        NULL
268 #endif /* CONFIG_RT2500PCI_LEDS */
269
270 /*
271  * Configuration handlers.
272  */
273 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
274                                   struct rt2x00_intf *intf,
275                                   struct rt2x00intf_conf *conf,
276                                   const unsigned int flags)
277 {
278         struct data_queue *queue =
279             rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
280         unsigned int bcn_preload;
281         u32 reg;
282
283         if (flags & CONFIG_UPDATE_TYPE) {
284                 /*
285                  * Enable beacon config
286                  */
287                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
288                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
289                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
290                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
291                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
292
293                 /*
294                  * Enable synchronisation.
295                  */
296                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
297                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
298                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
299         }
300
301         if (flags & CONFIG_UPDATE_MAC)
302                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
303                                               conf->mac, sizeof(conf->mac));
304
305         if (flags & CONFIG_UPDATE_BSSID)
306                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
307                                               conf->bssid, sizeof(conf->bssid));
308 }
309
310 static int rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
311                                      const int short_preamble,
312                                      const int ack_timeout,
313                                      const int ack_consume_time)
314 {
315         int preamble_mask;
316         u32 reg;
317
318         /*
319          * When short preamble is enabled, we should set bit 0x08
320          */
321         preamble_mask = short_preamble << 3;
322
323         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
324         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
325         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
326         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
327
328         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
329         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
330         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
331         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
332         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
333
334         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
335         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
336         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
337         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
338         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
339
340         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
341         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
342         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
343         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
344         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
345
346         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
347         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
348         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
349         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
350         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
351
352         return 0;
353 }
354
355 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
356                                      const int basic_rate_mask)
357 {
358         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
359 }
360
361 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
362                                      struct rf_channel *rf, const int txpower)
363 {
364         u8 r70;
365
366         /*
367          * Set TXpower.
368          */
369         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
370
371         /*
372          * Switch on tuning bits.
373          * For RT2523 devices we do not need to update the R1 register.
374          */
375         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
376                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
377         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
378
379         /*
380          * For RT2525 we should first set the channel to half band higher.
381          */
382         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
383                 static const u32 vals[] = {
384                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
385                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
386                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
387                         0x00080d2e, 0x00080d3a
388                 };
389
390                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
391                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
392                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
393                 if (rf->rf4)
394                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
395         }
396
397         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
398         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
399         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
400         if (rf->rf4)
401                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
402
403         /*
404          * Channel 14 requires the Japan filter bit to be set.
405          */
406         r70 = 0x46;
407         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
408         rt2500pci_bbp_write(rt2x00dev, 70, r70);
409
410         msleep(1);
411
412         /*
413          * Switch off tuning bits.
414          * For RT2523 devices we do not need to update the R1 register.
415          */
416         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
417                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
418                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
419         }
420
421         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
422         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
423
424         /*
425          * Clear false CRC during channel switch.
426          */
427         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
428 }
429
430 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
431                                      const int txpower)
432 {
433         u32 rf3;
434
435         rt2x00_rf_read(rt2x00dev, 3, &rf3);
436         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
437         rt2500pci_rf_write(rt2x00dev, 3, rf3);
438 }
439
440 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
441                                      struct antenna_setup *ant)
442 {
443         u32 reg;
444         u8 r14;
445         u8 r2;
446
447         /*
448          * We should never come here because rt2x00lib is supposed
449          * to catch this and send us the correct antenna explicitely.
450          */
451         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
452                ant->tx == ANTENNA_SW_DIVERSITY);
453
454         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
455         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
456         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
457
458         /*
459          * Configure the TX antenna.
460          */
461         switch (ant->tx) {
462         case ANTENNA_A:
463                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
464                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
465                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
466                 break;
467         case ANTENNA_B:
468         default:
469                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
470                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
471                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
472                 break;
473         }
474
475         /*
476          * Configure the RX antenna.
477          */
478         switch (ant->rx) {
479         case ANTENNA_A:
480                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
481                 break;
482         case ANTENNA_B:
483         default:
484                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
485                 break;
486         }
487
488         /*
489          * RT2525E and RT5222 need to flip TX I/Q
490          */
491         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
492             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
493                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
494                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
495                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
496
497                 /*
498                  * RT2525E does not need RX I/Q Flip.
499                  */
500                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
501                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
502         } else {
503                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
504                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
505         }
506
507         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
508         rt2500pci_bbp_write(rt2x00dev, 14, r14);
509         rt2500pci_bbp_write(rt2x00dev, 2, r2);
510 }
511
512 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
513                                       struct rt2x00lib_conf *libconf)
514 {
515         u32 reg;
516
517         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
518         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
519         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
520
521         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
522         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
523         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
524         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
525
526         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
527         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
528         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
529         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
530
531         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
532         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
533         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
534         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
535
536         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
537         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
538                            libconf->conf->beacon_int * 16);
539         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
540                            libconf->conf->beacon_int * 16);
541         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
542 }
543
544 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
545                              struct rt2x00lib_conf *libconf,
546                              const unsigned int flags)
547 {
548         if (flags & CONFIG_UPDATE_PHYMODE)
549                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
550         if (flags & CONFIG_UPDATE_CHANNEL)
551                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
552                                          libconf->conf->power_level);
553         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
554                 rt2500pci_config_txpower(rt2x00dev,
555                                          libconf->conf->power_level);
556         if (flags & CONFIG_UPDATE_ANTENNA)
557                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
558         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
559                 rt2500pci_config_duration(rt2x00dev, libconf);
560 }
561
562 /*
563  * Link tuning
564  */
565 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
566                                  struct link_qual *qual)
567 {
568         u32 reg;
569
570         /*
571          * Update FCS error count from register.
572          */
573         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
574         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
575
576         /*
577          * Update False CCA count from register.
578          */
579         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
580         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
581 }
582
583 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
584 {
585         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
586         rt2x00dev->link.vgc_level = 0x48;
587 }
588
589 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
590 {
591         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
592         u8 r17;
593
594         /*
595          * To prevent collisions with MAC ASIC on chipsets
596          * up to version C the link tuning should halt after 20
597          * seconds while being associated.
598          */
599         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
600             rt2x00dev->intf_associated &&
601             rt2x00dev->link.count > 20)
602                 return;
603
604         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
605
606         /*
607          * Chipset versions C and lower should directly continue
608          * to the dynamic CCA tuning. Chipset version D and higher
609          * should go straight to dynamic CCA tuning when they
610          * are not associated.
611          */
612         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
613             !rt2x00dev->intf_associated)
614                 goto dynamic_cca_tune;
615
616         /*
617          * A too low RSSI will cause too much false CCA which will
618          * then corrupt the R17 tuning. To remidy this the tuning should
619          * be stopped (While making sure the R17 value will not exceed limits)
620          */
621         if (rssi < -80 && rt2x00dev->link.count > 20) {
622                 if (r17 >= 0x41) {
623                         r17 = rt2x00dev->link.vgc_level;
624                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
625                 }
626                 return;
627         }
628
629         /*
630          * Special big-R17 for short distance
631          */
632         if (rssi >= -58) {
633                 if (r17 != 0x50)
634                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
635                 return;
636         }
637
638         /*
639          * Special mid-R17 for middle distance
640          */
641         if (rssi >= -74) {
642                 if (r17 != 0x41)
643                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
644                 return;
645         }
646
647         /*
648          * Leave short or middle distance condition, restore r17
649          * to the dynamic tuning range.
650          */
651         if (r17 >= 0x41) {
652                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
653                 return;
654         }
655
656 dynamic_cca_tune:
657
658         /*
659          * R17 is inside the dynamic tuning range,
660          * start tuning the link based on the false cca counter.
661          */
662         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
663                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
664                 rt2x00dev->link.vgc_level = r17;
665         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
666                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
667                 rt2x00dev->link.vgc_level = r17;
668         }
669 }
670
671 /*
672  * Initialization functions.
673  */
674 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
675                                    struct queue_entry *entry)
676 {
677         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
678         u32 word;
679
680         rt2x00_desc_read(priv_rx->desc, 1, &word);
681         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
682         rt2x00_desc_write(priv_rx->desc, 1, word);
683
684         rt2x00_desc_read(priv_rx->desc, 0, &word);
685         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
686         rt2x00_desc_write(priv_rx->desc, 0, word);
687 }
688
689 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
690                                    struct queue_entry *entry)
691 {
692         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
693         u32 word;
694
695         rt2x00_desc_read(priv_tx->desc, 1, &word);
696         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
697         rt2x00_desc_write(priv_tx->desc, 1, word);
698
699         rt2x00_desc_read(priv_tx->desc, 0, &word);
700         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
701         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
702         rt2x00_desc_write(priv_tx->desc, 0, word);
703 }
704
705 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
706 {
707         struct queue_entry_priv_pci_rx *priv_rx;
708         struct queue_entry_priv_pci_tx *priv_tx;
709         u32 reg;
710
711         /*
712          * Initialize registers.
713          */
714         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
715         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
716         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
717         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
718         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
719         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
720
721         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
722         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
723         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
724                            priv_tx->desc_dma);
725         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
726
727         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
728         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
729         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
730                            priv_tx->desc_dma);
731         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
732
733         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
734         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
735         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
736                            priv_tx->desc_dma);
737         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
738
739         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
740         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
741         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
742                            priv_tx->desc_dma);
743         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
744
745         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
746         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
747         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
748         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
749
750         priv_rx = rt2x00dev->rx->entries[0].priv_data;
751         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
752         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->desc_dma);
753         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
754
755         return 0;
756 }
757
758 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
759 {
760         u32 reg;
761
762         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
763         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
764         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
765         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
766
767         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
768         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
769         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
770         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
771         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
772
773         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
774         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
775                            rt2x00dev->rx->data_size / 128);
776         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
777
778         /*
779          * Always use CWmin and CWmax set in descriptor.
780          */
781         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
782         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
783         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
784
785         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
786         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
787         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
788         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
789
790         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
791
792         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
793         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
794         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
795         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
796         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
797         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
798         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
799         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
800         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
801         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
802
803         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
804         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
805         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
806         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
807         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
808         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
809
810         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
811         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
812         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
813         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
814         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
815         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
816
817         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
818         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
819         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
820         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
821         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
822         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
823
824         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
825         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
826         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
827         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
828         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
829         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
830         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
831         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
832         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
833         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
834
835         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
836         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
837         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
838         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
839         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
840         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
841         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
842         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
843         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
844
845         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
846
847         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
848         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
849
850         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
851                 return -EBUSY;
852
853         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
854         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
855
856         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
857         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
858         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
859
860         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
861         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
862         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
863         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
864         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
865         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
866         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
867         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
868
869         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
870
871         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
872
873         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
874         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
875         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
876         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
877         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
878
879         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
880         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
881         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
882         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
883
884         /*
885          * We must clear the FCS and FIFO error count.
886          * These registers are cleared on read,
887          * so we may pass a useless variable to store the value.
888          */
889         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
890         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
891
892         return 0;
893 }
894
895 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
896 {
897         unsigned int i;
898         u16 eeprom;
899         u8 reg_id;
900         u8 value;
901
902         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
903                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
904                 if ((value != 0xff) && (value != 0x00))
905                         goto continue_csr_init;
906                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
907                 udelay(REGISTER_BUSY_DELAY);
908         }
909
910         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
911         return -EACCES;
912
913 continue_csr_init:
914         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
915         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
916         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
917         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
918         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
919         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
920         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
921         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
922         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
923         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
924         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
925         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
926         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
927         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
928         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
929         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
930         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
931         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
932         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
933         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
934         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
935         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
936         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
937         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
938         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
939         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
940         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
941         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
942         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
943         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
944
945         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
946                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
947
948                 if (eeprom != 0xffff && eeprom != 0x0000) {
949                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
950                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
951                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
952                 }
953         }
954
955         return 0;
956 }
957
958 /*
959  * Device state switch handlers.
960  */
961 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
962                                 enum dev_state state)
963 {
964         u32 reg;
965
966         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
967         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
968                            state == STATE_RADIO_RX_OFF);
969         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
970 }
971
972 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
973                                  enum dev_state state)
974 {
975         int mask = (state == STATE_RADIO_IRQ_OFF);
976         u32 reg;
977
978         /*
979          * When interrupts are being enabled, the interrupt registers
980          * should clear the register to assure a clean state.
981          */
982         if (state == STATE_RADIO_IRQ_ON) {
983                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
984                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
985         }
986
987         /*
988          * Only toggle the interrupts bits we are going to use.
989          * Non-checked interrupt bits are disabled by default.
990          */
991         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
992         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
993         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
994         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
995         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
996         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
997         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
998 }
999
1000 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1001 {
1002         /*
1003          * Initialize all registers.
1004          */
1005         if (rt2500pci_init_queues(rt2x00dev) ||
1006             rt2500pci_init_registers(rt2x00dev) ||
1007             rt2500pci_init_bbp(rt2x00dev)) {
1008                 ERROR(rt2x00dev, "Register initialization failed.\n");
1009                 return -EIO;
1010         }
1011
1012         /*
1013          * Enable interrupts.
1014          */
1015         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1016
1017         return 0;
1018 }
1019
1020 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1021 {
1022         u32 reg;
1023
1024         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1025
1026         /*
1027          * Disable synchronisation.
1028          */
1029         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1030
1031         /*
1032          * Cancel RX and TX.
1033          */
1034         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1035         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1036         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1037
1038         /*
1039          * Disable interrupts.
1040          */
1041         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1042 }
1043
1044 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1045                                enum dev_state state)
1046 {
1047         u32 reg;
1048         unsigned int i;
1049         char put_to_sleep;
1050         char bbp_state;
1051         char rf_state;
1052
1053         put_to_sleep = (state != STATE_AWAKE);
1054
1055         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1056         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1057         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1058         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1059         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1060         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1061
1062         /*
1063          * Device is not guaranteed to be in the requested state yet.
1064          * We must wait until the register indicates that the
1065          * device has entered the correct state.
1066          */
1067         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1068                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1069                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1070                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1071                 if (bbp_state == state && rf_state == state)
1072                         return 0;
1073                 msleep(10);
1074         }
1075
1076         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1077                "current device state: bbp %d and rf %d.\n",
1078                state, bbp_state, rf_state);
1079
1080         return -EBUSY;
1081 }
1082
1083 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1084                                       enum dev_state state)
1085 {
1086         int retval = 0;
1087
1088         switch (state) {
1089         case STATE_RADIO_ON:
1090                 retval = rt2500pci_enable_radio(rt2x00dev);
1091                 break;
1092         case STATE_RADIO_OFF:
1093                 rt2500pci_disable_radio(rt2x00dev);
1094                 break;
1095         case STATE_RADIO_RX_ON:
1096         case STATE_RADIO_RX_ON_LINK:
1097                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1098                 break;
1099         case STATE_RADIO_RX_OFF:
1100         case STATE_RADIO_RX_OFF_LINK:
1101                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1102                 break;
1103         case STATE_DEEP_SLEEP:
1104         case STATE_SLEEP:
1105         case STATE_STANDBY:
1106         case STATE_AWAKE:
1107                 retval = rt2500pci_set_state(rt2x00dev, state);
1108                 break;
1109         default:
1110                 retval = -ENOTSUPP;
1111                 break;
1112         }
1113
1114         return retval;
1115 }
1116
1117 /*
1118  * TX descriptor initialization
1119  */
1120 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1121                                     struct sk_buff *skb,
1122                                     struct txentry_desc *txdesc,
1123                                     struct ieee80211_tx_control *control)
1124 {
1125         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1126         __le32 *txd = skbdesc->desc;
1127         u32 word;
1128
1129         /*
1130          * Start writing the descriptor words.
1131          */
1132         rt2x00_desc_read(txd, 2, &word);
1133         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1134         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1135         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1136         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1137         rt2x00_desc_write(txd, 2, word);
1138
1139         rt2x00_desc_read(txd, 3, &word);
1140         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1141         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1142         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1143         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1144         rt2x00_desc_write(txd, 3, word);
1145
1146         rt2x00_desc_read(txd, 10, &word);
1147         rt2x00_set_field32(&word, TXD_W10_RTS,
1148                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1149         rt2x00_desc_write(txd, 10, word);
1150
1151         rt2x00_desc_read(txd, 0, &word);
1152         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1153         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1154         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1155                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1156         rt2x00_set_field32(&word, TXD_W0_ACK,
1157                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1158         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1159                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1160         rt2x00_set_field32(&word, TXD_W0_OFDM,
1161                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1162         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1163         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1164         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1165                            !!(control->flags &
1166                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1167         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1168         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1169         rt2x00_desc_write(txd, 0, word);
1170 }
1171
1172 /*
1173  * TX data initialization
1174  */
1175 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1176                                     const unsigned int queue)
1177 {
1178         u32 reg;
1179
1180         if (queue == RT2X00_BCN_QUEUE_BEACON) {
1181                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1182                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1183                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1184                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1185                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1186                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1187                 }
1188                 return;
1189         }
1190
1191         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1192         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1193                            (queue == IEEE80211_TX_QUEUE_DATA0));
1194         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1195                            (queue == IEEE80211_TX_QUEUE_DATA1));
1196         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1197                            (queue == RT2X00_BCN_QUEUE_ATIM));
1198         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1199 }
1200
1201 /*
1202  * RX control handlers
1203  */
1204 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1205                                   struct rxdone_entry_desc *rxdesc)
1206 {
1207         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1208         u32 word0;
1209         u32 word2;
1210
1211         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1212         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1213
1214         rxdesc->flags = 0;
1215         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1216                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1217         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1218                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1219
1220         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1221         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1222             entry->queue->rt2x00dev->rssi_offset;
1223         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1224         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1225         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1226 }
1227
1228 /*
1229  * Interrupt functions.
1230  */
1231 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1232                              const enum ieee80211_tx_queue queue_idx)
1233 {
1234         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1235         struct queue_entry_priv_pci_tx *priv_tx;
1236         struct queue_entry *entry;
1237         struct txdone_entry_desc txdesc;
1238         u32 word;
1239
1240         while (!rt2x00queue_empty(queue)) {
1241                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1242                 priv_tx = entry->priv_data;
1243                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1244
1245                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1246                     !rt2x00_get_field32(word, TXD_W0_VALID))
1247                         break;
1248
1249                 /*
1250                  * Obtain the status about this packet.
1251                  */
1252                 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1253                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1254
1255                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1256         }
1257 }
1258
1259 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1260 {
1261         struct rt2x00_dev *rt2x00dev = dev_instance;
1262         u32 reg;
1263
1264         /*
1265          * Get the interrupt sources & saved to local variable.
1266          * Write register value back to clear pending interrupts.
1267          */
1268         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1269         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1270
1271         if (!reg)
1272                 return IRQ_NONE;
1273
1274         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1275                 return IRQ_HANDLED;
1276
1277         /*
1278          * Handle interrupts, walk through all bits
1279          * and run the tasks, the bits are checked in order of
1280          * priority.
1281          */
1282
1283         /*
1284          * 1 - Beacon timer expired interrupt.
1285          */
1286         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1287                 rt2x00lib_beacondone(rt2x00dev);
1288
1289         /*
1290          * 2 - Rx ring done interrupt.
1291          */
1292         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1293                 rt2x00pci_rxdone(rt2x00dev);
1294
1295         /*
1296          * 3 - Atim ring transmit done interrupt.
1297          */
1298         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1299                 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1300
1301         /*
1302          * 4 - Priority ring transmit done interrupt.
1303          */
1304         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1305                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1306
1307         /*
1308          * 5 - Tx ring transmit done interrupt.
1309          */
1310         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1311                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1312
1313         return IRQ_HANDLED;
1314 }
1315
1316 /*
1317  * Device probe functions.
1318  */
1319 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1320 {
1321         struct eeprom_93cx6 eeprom;
1322         u32 reg;
1323         u16 word;
1324         u8 *mac;
1325
1326         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1327
1328         eeprom.data = rt2x00dev;
1329         eeprom.register_read = rt2500pci_eepromregister_read;
1330         eeprom.register_write = rt2500pci_eepromregister_write;
1331         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1332             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1333         eeprom.reg_data_in = 0;
1334         eeprom.reg_data_out = 0;
1335         eeprom.reg_data_clock = 0;
1336         eeprom.reg_chip_select = 0;
1337
1338         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1339                                EEPROM_SIZE / sizeof(u16));
1340
1341         /*
1342          * Start validation of the data that has been read.
1343          */
1344         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1345         if (!is_valid_ether_addr(mac)) {
1346                 DECLARE_MAC_BUF(macbuf);
1347
1348                 random_ether_addr(mac);
1349                 EEPROM(rt2x00dev, "MAC: %s\n",
1350                        print_mac(macbuf, mac));
1351         }
1352
1353         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1354         if (word == 0xffff) {
1355                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1356                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1357                                    ANTENNA_SW_DIVERSITY);
1358                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1359                                    ANTENNA_SW_DIVERSITY);
1360                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1361                                    LED_MODE_DEFAULT);
1362                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1363                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1364                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1365                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1366                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1367         }
1368
1369         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1370         if (word == 0xffff) {
1371                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1372                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1373                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1374                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1375                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1376         }
1377
1378         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1379         if (word == 0xffff) {
1380                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1381                                    DEFAULT_RSSI_OFFSET);
1382                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1383                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1384         }
1385
1386         return 0;
1387 }
1388
1389 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1390 {
1391         u32 reg;
1392         u16 value;
1393         u16 eeprom;
1394
1395         /*
1396          * Read EEPROM word for configuration.
1397          */
1398         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1399
1400         /*
1401          * Identify RF chipset.
1402          */
1403         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1404         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1405         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1406
1407         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1408             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1409             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1410             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1411             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1412             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1413                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1414                 return -ENODEV;
1415         }
1416
1417         /*
1418          * Identify default antenna configuration.
1419          */
1420         rt2x00dev->default_ant.tx =
1421             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1422         rt2x00dev->default_ant.rx =
1423             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1424
1425         /*
1426          * Store led mode, for correct led behaviour.
1427          */
1428 #ifdef CONFIG_RT2500PCI_LEDS
1429         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1430
1431         switch (value) {
1432         case LED_MODE_ASUS:
1433         case LED_MODE_ALPHA:
1434         case LED_MODE_DEFAULT:
1435                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1436                 break;
1437         case LED_MODE_TXRX_ACTIVITY:
1438                 rt2x00dev->led_flags =
1439                     LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1440                 break;
1441         case LED_MODE_SIGNAL_STRENGTH:
1442                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1443                 break;
1444         }
1445 #endif /* CONFIG_RT2500PCI_LEDS */
1446
1447         /*
1448          * Detect if this device has an hardware controlled radio.
1449          */
1450 #ifdef CONFIG_RT2500PCI_RFKILL
1451         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1452                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1453 #endif /* CONFIG_RT2500PCI_RFKILL */
1454
1455         /*
1456          * Check if the BBP tuning should be enabled.
1457          */
1458         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1459
1460         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1461                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1462
1463         /*
1464          * Read the RSSI <-> dBm offset information.
1465          */
1466         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1467         rt2x00dev->rssi_offset =
1468             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1469
1470         return 0;
1471 }
1472
1473 /*
1474  * RF value list for RF2522
1475  * Supports: 2.4 GHz
1476  */
1477 static const struct rf_channel rf_vals_bg_2522[] = {
1478         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1479         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1480         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1481         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1482         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1483         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1484         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1485         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1486         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1487         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1488         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1489         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1490         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1491         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1492 };
1493
1494 /*
1495  * RF value list for RF2523
1496  * Supports: 2.4 GHz
1497  */
1498 static const struct rf_channel rf_vals_bg_2523[] = {
1499         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1500         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1501         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1502         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1503         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1504         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1505         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1506         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1507         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1508         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1509         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1510         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1511         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1512         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1513 };
1514
1515 /*
1516  * RF value list for RF2524
1517  * Supports: 2.4 GHz
1518  */
1519 static const struct rf_channel rf_vals_bg_2524[] = {
1520         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1521         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1522         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1523         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1524         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1525         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1526         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1527         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1528         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1529         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1530         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1531         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1532         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1533         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1534 };
1535
1536 /*
1537  * RF value list for RF2525
1538  * Supports: 2.4 GHz
1539  */
1540 static const struct rf_channel rf_vals_bg_2525[] = {
1541         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1542         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1543         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1544         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1545         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1546         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1547         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1548         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1549         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1550         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1551         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1552         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1553         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1554         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1555 };
1556
1557 /*
1558  * RF value list for RF2525e
1559  * Supports: 2.4 GHz
1560  */
1561 static const struct rf_channel rf_vals_bg_2525e[] = {
1562         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1563         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1564         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1565         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1566         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1567         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1568         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1569         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1570         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1571         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1572         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1573         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1574         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1575         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1576 };
1577
1578 /*
1579  * RF value list for RF5222
1580  * Supports: 2.4 GHz & 5.2 GHz
1581  */
1582 static const struct rf_channel rf_vals_5222[] = {
1583         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1584         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1585         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1586         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1587         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1588         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1589         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1590         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1591         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1592         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1593         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1594         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1595         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1596         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1597
1598         /* 802.11 UNI / HyperLan 2 */
1599         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1600         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1601         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1602         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1603         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1604         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1605         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1606         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1607
1608         /* 802.11 HyperLan 2 */
1609         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1610         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1611         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1612         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1613         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1614         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1615         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1616         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1617         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1618         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1619
1620         /* 802.11 UNII */
1621         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1622         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1623         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1624         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1625         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1626 };
1627
1628 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1629 {
1630         struct hw_mode_spec *spec = &rt2x00dev->spec;
1631         u8 *txpower;
1632         unsigned int i;
1633
1634         /*
1635          * Initialize all hw fields.
1636          */
1637         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1638         rt2x00dev->hw->extra_tx_headroom = 0;
1639         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1640         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1641         rt2x00dev->hw->queues = 2;
1642
1643         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1644         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1645                                 rt2x00_eeprom_addr(rt2x00dev,
1646                                                    EEPROM_MAC_ADDR_0));
1647
1648         /*
1649          * Convert tx_power array in eeprom.
1650          */
1651         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1652         for (i = 0; i < 14; i++)
1653                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1654
1655         /*
1656          * Initialize hw_mode information.
1657          */
1658         spec->supported_bands = SUPPORT_BAND_2GHZ;
1659         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1660         spec->tx_power_a = NULL;
1661         spec->tx_power_bg = txpower;
1662         spec->tx_power_default = DEFAULT_TXPOWER;
1663
1664         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1665                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1666                 spec->channels = rf_vals_bg_2522;
1667         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1668                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1669                 spec->channels = rf_vals_bg_2523;
1670         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1671                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1672                 spec->channels = rf_vals_bg_2524;
1673         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1674                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1675                 spec->channels = rf_vals_bg_2525;
1676         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1677                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1678                 spec->channels = rf_vals_bg_2525e;
1679         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1680                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1681                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1682                 spec->channels = rf_vals_5222;
1683         }
1684 }
1685
1686 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1687 {
1688         int retval;
1689
1690         /*
1691          * Allocate eeprom data.
1692          */
1693         retval = rt2500pci_validate_eeprom(rt2x00dev);
1694         if (retval)
1695                 return retval;
1696
1697         retval = rt2500pci_init_eeprom(rt2x00dev);
1698         if (retval)
1699                 return retval;
1700
1701         /*
1702          * Initialize hw specifications.
1703          */
1704         rt2500pci_probe_hw_mode(rt2x00dev);
1705
1706         /*
1707          * This device requires the atim queue
1708          */
1709         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1710
1711         /*
1712          * Set the rssi offset.
1713          */
1714         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1715
1716         return 0;
1717 }
1718
1719 /*
1720  * IEEE80211 stack callback functions.
1721  */
1722 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1723                                        unsigned int changed_flags,
1724                                        unsigned int *total_flags,
1725                                        int mc_count,
1726                                        struct dev_addr_list *mc_list)
1727 {
1728         struct rt2x00_dev *rt2x00dev = hw->priv;
1729         u32 reg;
1730
1731         /*
1732          * Mask off any flags we are going to ignore from
1733          * the total_flags field.
1734          */
1735         *total_flags &=
1736             FIF_ALLMULTI |
1737             FIF_FCSFAIL |
1738             FIF_PLCPFAIL |
1739             FIF_CONTROL |
1740             FIF_OTHER_BSS |
1741             FIF_PROMISC_IN_BSS;
1742
1743         /*
1744          * Apply some rules to the filters:
1745          * - Some filters imply different filters to be set.
1746          * - Some things we can't filter out at all.
1747          */
1748         if (mc_count)
1749                 *total_flags |= FIF_ALLMULTI;
1750         if (*total_flags & FIF_OTHER_BSS ||
1751             *total_flags & FIF_PROMISC_IN_BSS)
1752                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1753
1754         /*
1755          * Check if there is any work left for us.
1756          */
1757         if (rt2x00dev->packet_filter == *total_flags)
1758                 return;
1759         rt2x00dev->packet_filter = *total_flags;
1760
1761         /*
1762          * Start configuration steps.
1763          * Note that the version error will always be dropped
1764          * and broadcast frames will always be accepted since
1765          * there is no filter for it at this time.
1766          */
1767         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1768         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1769                            !(*total_flags & FIF_FCSFAIL));
1770         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1771                            !(*total_flags & FIF_PLCPFAIL));
1772         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1773                            !(*total_flags & FIF_CONTROL));
1774         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1775                            !(*total_flags & FIF_PROMISC_IN_BSS));
1776         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1777                            !(*total_flags & FIF_PROMISC_IN_BSS));
1778         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1779         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1780                            !(*total_flags & FIF_ALLMULTI));
1781         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1782         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1783 }
1784
1785 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1786                                      u32 short_retry, u32 long_retry)
1787 {
1788         struct rt2x00_dev *rt2x00dev = hw->priv;
1789         u32 reg;
1790
1791         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1792         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1793         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1794         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1795
1796         return 0;
1797 }
1798
1799 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1800 {
1801         struct rt2x00_dev *rt2x00dev = hw->priv;
1802         u64 tsf;
1803         u32 reg;
1804
1805         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1806         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1807         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1808         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1809
1810         return tsf;
1811 }
1812
1813 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1814                                    struct ieee80211_tx_control *control)
1815 {
1816         struct rt2x00_dev *rt2x00dev = hw->priv;
1817         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1818         struct queue_entry_priv_pci_tx *priv_tx;
1819         struct skb_frame_desc *skbdesc;
1820         u32 reg;
1821
1822         if (unlikely(!intf->beacon))
1823                 return -ENOBUFS;
1824
1825         priv_tx = intf->beacon->priv_data;
1826
1827         /*
1828          * Fill in skb descriptor
1829          */
1830         skbdesc = get_skb_frame_desc(skb);
1831         memset(skbdesc, 0, sizeof(*skbdesc));
1832         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1833         skbdesc->data = skb->data;
1834         skbdesc->data_len = skb->len;
1835         skbdesc->desc = priv_tx->desc;
1836         skbdesc->desc_len = intf->beacon->queue->desc_size;
1837         skbdesc->entry = intf->beacon;
1838
1839         /*
1840          * Disable beaconing while we are reloading the beacon data,
1841          * otherwise we might be sending out invalid data.
1842          */
1843         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1844         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1845         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1846         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1847         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1848
1849         /*
1850          * mac80211 doesn't provide the control->queue variable
1851          * for beacons. Set our own queue identification so
1852          * it can be used during descriptor initialization.
1853          */
1854         control->queue = RT2X00_BCN_QUEUE_BEACON;
1855         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1856
1857         /*
1858          * Enable beacon generation.
1859          * Write entire beacon with descriptor to register,
1860          * and kick the beacon generator.
1861          */
1862         memcpy(priv_tx->data, skb->data, skb->len);
1863         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1864
1865         return 0;
1866 }
1867
1868 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1869 {
1870         struct rt2x00_dev *rt2x00dev = hw->priv;
1871         u32 reg;
1872
1873         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1874         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1875 }
1876
1877 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1878         .tx                     = rt2x00mac_tx,
1879         .start                  = rt2x00mac_start,
1880         .stop                   = rt2x00mac_stop,
1881         .add_interface          = rt2x00mac_add_interface,
1882         .remove_interface       = rt2x00mac_remove_interface,
1883         .config                 = rt2x00mac_config,
1884         .config_interface       = rt2x00mac_config_interface,
1885         .configure_filter       = rt2500pci_configure_filter,
1886         .get_stats              = rt2x00mac_get_stats,
1887         .set_retry_limit        = rt2500pci_set_retry_limit,
1888         .bss_info_changed       = rt2x00mac_bss_info_changed,
1889         .conf_tx                = rt2x00mac_conf_tx,
1890         .get_tx_stats           = rt2x00mac_get_tx_stats,
1891         .get_tsf                = rt2500pci_get_tsf,
1892         .beacon_update          = rt2500pci_beacon_update,
1893         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1894 };
1895
1896 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1897         .irq_handler            = rt2500pci_interrupt,
1898         .probe_hw               = rt2500pci_probe_hw,
1899         .initialize             = rt2x00pci_initialize,
1900         .uninitialize           = rt2x00pci_uninitialize,
1901         .init_rxentry           = rt2500pci_init_rxentry,
1902         .init_txentry           = rt2500pci_init_txentry,
1903         .set_device_state       = rt2500pci_set_device_state,
1904         .rfkill_poll            = rt2500pci_rfkill_poll,
1905         .link_stats             = rt2500pci_link_stats,
1906         .reset_tuner            = rt2500pci_reset_tuner,
1907         .link_tuner             = rt2500pci_link_tuner,
1908         .led_brightness         = rt2500pci_led_brightness,
1909         .write_tx_desc          = rt2500pci_write_tx_desc,
1910         .write_tx_data          = rt2x00pci_write_tx_data,
1911         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1912         .fill_rxdone            = rt2500pci_fill_rxdone,
1913         .config_intf            = rt2500pci_config_intf,
1914         .config_preamble        = rt2500pci_config_preamble,
1915         .config                 = rt2500pci_config,
1916 };
1917
1918 static const struct data_queue_desc rt2500pci_queue_rx = {
1919         .entry_num              = RX_ENTRIES,
1920         .data_size              = DATA_FRAME_SIZE,
1921         .desc_size              = RXD_DESC_SIZE,
1922         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1923 };
1924
1925 static const struct data_queue_desc rt2500pci_queue_tx = {
1926         .entry_num              = TX_ENTRIES,
1927         .data_size              = DATA_FRAME_SIZE,
1928         .desc_size              = TXD_DESC_SIZE,
1929         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1930 };
1931
1932 static const struct data_queue_desc rt2500pci_queue_bcn = {
1933         .entry_num              = BEACON_ENTRIES,
1934         .data_size              = MGMT_FRAME_SIZE,
1935         .desc_size              = TXD_DESC_SIZE,
1936         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1937 };
1938
1939 static const struct data_queue_desc rt2500pci_queue_atim = {
1940         .entry_num              = ATIM_ENTRIES,
1941         .data_size              = DATA_FRAME_SIZE,
1942         .desc_size              = TXD_DESC_SIZE,
1943         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1944 };
1945
1946 static const struct rt2x00_ops rt2500pci_ops = {
1947         .name           = KBUILD_MODNAME,
1948         .max_sta_intf   = 1,
1949         .max_ap_intf    = 1,
1950         .eeprom_size    = EEPROM_SIZE,
1951         .rf_size        = RF_SIZE,
1952         .rx             = &rt2500pci_queue_rx,
1953         .tx             = &rt2500pci_queue_tx,
1954         .bcn            = &rt2500pci_queue_bcn,
1955         .atim           = &rt2500pci_queue_atim,
1956         .lib            = &rt2500pci_rt2x00_ops,
1957         .hw             = &rt2500pci_mac80211_ops,
1958 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1959         .debugfs        = &rt2500pci_rt2x00debug,
1960 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1961 };
1962
1963 /*
1964  * RT2500pci module information.
1965  */
1966 static struct pci_device_id rt2500pci_device_table[] = {
1967         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1968         { 0, }
1969 };
1970
1971 MODULE_AUTHOR(DRV_PROJECT);
1972 MODULE_VERSION(DRV_VERSION);
1973 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1974 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1975 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1976 MODULE_LICENSE("GPL");
1977
1978 static struct pci_driver rt2500pci_driver = {
1979         .name           = KBUILD_MODNAME,
1980         .id_table       = rt2500pci_device_table,
1981         .probe          = rt2x00pci_probe,
1982         .remove         = __devexit_p(rt2x00pci_remove),
1983         .suspend        = rt2x00pci_suspend,
1984         .resume         = rt2x00pci_resume,
1985 };
1986
1987 static int __init rt2500pci_init(void)
1988 {
1989         return pci_register_driver(&rt2500pci_driver);
1990 }
1991
1992 static void __exit rt2500pci_exit(void)
1993 {
1994         pci_unregister_driver(&rt2500pci_driver);
1995 }
1996
1997 module_init(rt2500pci_init);
1998 module_exit(rt2500pci_exit);