rt2x00: Split rt2x00lib_write_tx_desc()
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         u32 reg;
254
255         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
256
257         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259         else if (led->type == LED_TYPE_ACTIVITY)
260                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
261
262         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
263 }
264
265 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
266                                unsigned long *delay_on,
267                                unsigned long *delay_off)
268 {
269         struct rt2x00_led *led =
270             container_of(led_cdev, struct rt2x00_led, led_dev);
271         u32 reg;
272
273         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
277
278         return 0;
279 }
280 #endif /* CONFIG_RT2500PCI_LEDS */
281
282 /*
283  * Configuration handlers.
284  */
285 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
286                                     const unsigned int filter_flags)
287 {
288         u32 reg;
289
290         /*
291          * Start configuration steps.
292          * Note that the version error will always be dropped
293          * and broadcast frames will always be accepted since
294          * there is no filter for it at this time.
295          */
296         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
297         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
298                            !(filter_flags & FIF_FCSFAIL));
299         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
300                            !(filter_flags & FIF_PLCPFAIL));
301         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
302                            !(filter_flags & FIF_CONTROL));
303         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
304                            !(filter_flags & FIF_PROMISC_IN_BSS));
305         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
306                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
307                            !rt2x00dev->intf_ap_count);
308         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
309         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
310                            !(filter_flags & FIF_ALLMULTI));
311         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
312         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
313 }
314
315 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
316                                   struct rt2x00_intf *intf,
317                                   struct rt2x00intf_conf *conf,
318                                   const unsigned int flags)
319 {
320         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
321         unsigned int bcn_preload;
322         u32 reg;
323
324         if (flags & CONFIG_UPDATE_TYPE) {
325                 /*
326                  * Enable beacon config
327                  */
328                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
329                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
330                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
331                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
332                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
333
334                 /*
335                  * Enable synchronisation.
336                  */
337                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
338                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
339                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
340                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
341                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
342         }
343
344         if (flags & CONFIG_UPDATE_MAC)
345                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
346                                               conf->mac, sizeof(conf->mac));
347
348         if (flags & CONFIG_UPDATE_BSSID)
349                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
350                                               conf->bssid, sizeof(conf->bssid));
351 }
352
353 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
354                                  struct rt2x00lib_erp *erp)
355 {
356         int preamble_mask;
357         u32 reg;
358
359         /*
360          * When short preamble is enabled, we should set bit 0x08
361          */
362         preamble_mask = erp->short_preamble << 3;
363
364         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
365         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
366                            erp->ack_timeout);
367         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
368                            erp->ack_consume_time);
369         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
370
371         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
372         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
373         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
374         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
375         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
376
377         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
378         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
379         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
380         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
381         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
382
383         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
384         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
385         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
386         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
387         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
388
389         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
390         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
391         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
392         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
393         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
394 }
395
396 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
397                                      const int basic_rate_mask)
398 {
399         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
400 }
401
402 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
403                                      struct rf_channel *rf, const int txpower)
404 {
405         u8 r70;
406
407         /*
408          * Set TXpower.
409          */
410         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
411
412         /*
413          * Switch on tuning bits.
414          * For RT2523 devices we do not need to update the R1 register.
415          */
416         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
417                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
418         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
419
420         /*
421          * For RT2525 we should first set the channel to half band higher.
422          */
423         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
424                 static const u32 vals[] = {
425                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
426                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
427                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
428                         0x00080d2e, 0x00080d3a
429                 };
430
431                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
432                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
433                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
434                 if (rf->rf4)
435                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
436         }
437
438         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
439         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
440         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
441         if (rf->rf4)
442                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
443
444         /*
445          * Channel 14 requires the Japan filter bit to be set.
446          */
447         r70 = 0x46;
448         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
449         rt2500pci_bbp_write(rt2x00dev, 70, r70);
450
451         msleep(1);
452
453         /*
454          * Switch off tuning bits.
455          * For RT2523 devices we do not need to update the R1 register.
456          */
457         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
458                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
459                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
460         }
461
462         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
463         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
464
465         /*
466          * Clear false CRC during channel switch.
467          */
468         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
469 }
470
471 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
472                                      const int txpower)
473 {
474         u32 rf3;
475
476         rt2x00_rf_read(rt2x00dev, 3, &rf3);
477         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
478         rt2500pci_rf_write(rt2x00dev, 3, rf3);
479 }
480
481 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
482                                      struct antenna_setup *ant)
483 {
484         u32 reg;
485         u8 r14;
486         u8 r2;
487
488         /*
489          * We should never come here because rt2x00lib is supposed
490          * to catch this and send us the correct antenna explicitely.
491          */
492         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
493                ant->tx == ANTENNA_SW_DIVERSITY);
494
495         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
496         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
497         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
498
499         /*
500          * Configure the TX antenna.
501          */
502         switch (ant->tx) {
503         case ANTENNA_A:
504                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
505                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
506                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
507                 break;
508         case ANTENNA_B:
509         default:
510                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
511                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
512                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
513                 break;
514         }
515
516         /*
517          * Configure the RX antenna.
518          */
519         switch (ant->rx) {
520         case ANTENNA_A:
521                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
522                 break;
523         case ANTENNA_B:
524         default:
525                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
526                 break;
527         }
528
529         /*
530          * RT2525E and RT5222 need to flip TX I/Q
531          */
532         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
533             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
534                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
535                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
536                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
537
538                 /*
539                  * RT2525E does not need RX I/Q Flip.
540                  */
541                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
542                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
543         } else {
544                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
545                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
546         }
547
548         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
549         rt2500pci_bbp_write(rt2x00dev, 14, r14);
550         rt2500pci_bbp_write(rt2x00dev, 2, r2);
551 }
552
553 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
554                                       struct rt2x00lib_conf *libconf)
555 {
556         u32 reg;
557
558         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
560         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
561
562         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
563         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
564         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
565         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
566
567         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
568         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
569         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
570         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
571
572         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
573         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
574         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
575         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
576
577         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
578         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
579                            libconf->conf->beacon_int * 16);
580         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
581                            libconf->conf->beacon_int * 16);
582         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
583 }
584
585 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
586                              struct rt2x00lib_conf *libconf,
587                              const unsigned int flags)
588 {
589         if (flags & CONFIG_UPDATE_PHYMODE)
590                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
591         if (flags & CONFIG_UPDATE_CHANNEL)
592                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
593                                          libconf->conf->power_level);
594         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
595                 rt2500pci_config_txpower(rt2x00dev,
596                                          libconf->conf->power_level);
597         if (flags & CONFIG_UPDATE_ANTENNA)
598                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
599         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
600                 rt2500pci_config_duration(rt2x00dev, libconf);
601 }
602
603 /*
604  * Link tuning
605  */
606 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
607                                  struct link_qual *qual)
608 {
609         u32 reg;
610
611         /*
612          * Update FCS error count from register.
613          */
614         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
615         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
616
617         /*
618          * Update False CCA count from register.
619          */
620         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
621         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
622 }
623
624 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
625 {
626         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
627         rt2x00dev->link.vgc_level = 0x48;
628 }
629
630 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
631 {
632         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
633         u8 r17;
634
635         /*
636          * To prevent collisions with MAC ASIC on chipsets
637          * up to version C the link tuning should halt after 20
638          * seconds while being associated.
639          */
640         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
641             rt2x00dev->intf_associated &&
642             rt2x00dev->link.count > 20)
643                 return;
644
645         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
646
647         /*
648          * Chipset versions C and lower should directly continue
649          * to the dynamic CCA tuning. Chipset version D and higher
650          * should go straight to dynamic CCA tuning when they
651          * are not associated.
652          */
653         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
654             !rt2x00dev->intf_associated)
655                 goto dynamic_cca_tune;
656
657         /*
658          * A too low RSSI will cause too much false CCA which will
659          * then corrupt the R17 tuning. To remidy this the tuning should
660          * be stopped (While making sure the R17 value will not exceed limits)
661          */
662         if (rssi < -80 && rt2x00dev->link.count > 20) {
663                 if (r17 >= 0x41) {
664                         r17 = rt2x00dev->link.vgc_level;
665                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
666                 }
667                 return;
668         }
669
670         /*
671          * Special big-R17 for short distance
672          */
673         if (rssi >= -58) {
674                 if (r17 != 0x50)
675                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
676                 return;
677         }
678
679         /*
680          * Special mid-R17 for middle distance
681          */
682         if (rssi >= -74) {
683                 if (r17 != 0x41)
684                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
685                 return;
686         }
687
688         /*
689          * Leave short or middle distance condition, restore r17
690          * to the dynamic tuning range.
691          */
692         if (r17 >= 0x41) {
693                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
694                 return;
695         }
696
697 dynamic_cca_tune:
698
699         /*
700          * R17 is inside the dynamic tuning range,
701          * start tuning the link based on the false cca counter.
702          */
703         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
704                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
705                 rt2x00dev->link.vgc_level = r17;
706         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
707                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
708                 rt2x00dev->link.vgc_level = r17;
709         }
710 }
711
712 /*
713  * Initialization functions.
714  */
715 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
716                                    struct queue_entry *entry)
717 {
718         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
719         u32 word;
720
721         rt2x00_desc_read(priv_rx->desc, 1, &word);
722         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
723         rt2x00_desc_write(priv_rx->desc, 1, word);
724
725         rt2x00_desc_read(priv_rx->desc, 0, &word);
726         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
727         rt2x00_desc_write(priv_rx->desc, 0, word);
728 }
729
730 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
731                                    struct queue_entry *entry)
732 {
733         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
734         u32 word;
735
736         rt2x00_desc_read(priv_tx->desc, 0, &word);
737         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
738         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
739         rt2x00_desc_write(priv_tx->desc, 0, word);
740 }
741
742 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
743 {
744         struct queue_entry_priv_pci_rx *priv_rx;
745         struct queue_entry_priv_pci_tx *priv_tx;
746         u32 reg;
747
748         /*
749          * Initialize registers.
750          */
751         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
752         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
753         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
754         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
755         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
756         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
757
758         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
759         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
760         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
761                            priv_tx->desc_dma);
762         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
763
764         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
765         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
766         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
767                            priv_tx->desc_dma);
768         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
769
770         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
771         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
772         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
773                            priv_tx->desc_dma);
774         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
775
776         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
777         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
778         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
779                            priv_tx->desc_dma);
780         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
781
782         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
783         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
784         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
785         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
786
787         priv_rx = rt2x00dev->rx->entries[0].priv_data;
788         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
789         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
790         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
791
792         return 0;
793 }
794
795 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
796 {
797         u32 reg;
798
799         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
800         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
801         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
802         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
803
804         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
805         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
806         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
807         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
808         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
809
810         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
811         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
812                            rt2x00dev->rx->data_size / 128);
813         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
814
815         /*
816          * Always use CWmin and CWmax set in descriptor.
817          */
818         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
819         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
820         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
821
822         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
823
824         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
825         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
826         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
827         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
828         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
829         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
830         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
831         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
832         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
833         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
834
835         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
836         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
837         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
838         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
839         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
840         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
841
842         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
843         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
844         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
845         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
846         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
847         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
848
849         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
850         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
851         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
852         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
853         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
854         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
855
856         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
857         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
858         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
859         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
860         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
861         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
862         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
863         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
864         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
865         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
866
867         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
868         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
869         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
870         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
871         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
872         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
873         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
874         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
875         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
876
877         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
878
879         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
880         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
881
882         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
883                 return -EBUSY;
884
885         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
886         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
887
888         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
889         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
890         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
891
892         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
893         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
894         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
895         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
896         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
897         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
898         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
899         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
900
901         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
902
903         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
904
905         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
906         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
907         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
908         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
909         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
910
911         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
912         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
913         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
914         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
915
916         /*
917          * We must clear the FCS and FIFO error count.
918          * These registers are cleared on read,
919          * so we may pass a useless variable to store the value.
920          */
921         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
922         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
923
924         return 0;
925 }
926
927 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
928 {
929         unsigned int i;
930         u16 eeprom;
931         u8 reg_id;
932         u8 value;
933
934         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
935                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
936                 if ((value != 0xff) && (value != 0x00))
937                         goto continue_csr_init;
938                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
939                 udelay(REGISTER_BUSY_DELAY);
940         }
941
942         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
943         return -EACCES;
944
945 continue_csr_init:
946         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
947         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
948         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
949         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
950         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
951         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
952         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
953         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
954         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
955         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
956         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
957         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
958         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
959         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
960         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
961         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
962         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
963         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
964         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
965         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
966         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
967         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
968         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
969         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
970         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
971         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
972         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
973         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
974         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
975         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
976
977         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
978                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
979
980                 if (eeprom != 0xffff && eeprom != 0x0000) {
981                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
982                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
983                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
984                 }
985         }
986
987         return 0;
988 }
989
990 /*
991  * Device state switch handlers.
992  */
993 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
994                                 enum dev_state state)
995 {
996         u32 reg;
997
998         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
999         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1000                            state == STATE_RADIO_RX_OFF);
1001         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1002 }
1003
1004 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1005                                  enum dev_state state)
1006 {
1007         int mask = (state == STATE_RADIO_IRQ_OFF);
1008         u32 reg;
1009
1010         /*
1011          * When interrupts are being enabled, the interrupt registers
1012          * should clear the register to assure a clean state.
1013          */
1014         if (state == STATE_RADIO_IRQ_ON) {
1015                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1016                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1017         }
1018
1019         /*
1020          * Only toggle the interrupts bits we are going to use.
1021          * Non-checked interrupt bits are disabled by default.
1022          */
1023         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1024         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1025         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1026         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1027         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1028         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1029         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1030 }
1031
1032 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1033 {
1034         /*
1035          * Initialize all registers.
1036          */
1037         if (rt2500pci_init_queues(rt2x00dev) ||
1038             rt2500pci_init_registers(rt2x00dev) ||
1039             rt2500pci_init_bbp(rt2x00dev)) {
1040                 ERROR(rt2x00dev, "Register initialization failed.\n");
1041                 return -EIO;
1042         }
1043
1044         /*
1045          * Enable interrupts.
1046          */
1047         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1048
1049         return 0;
1050 }
1051
1052 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1053 {
1054         u32 reg;
1055
1056         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1057
1058         /*
1059          * Disable synchronisation.
1060          */
1061         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1062
1063         /*
1064          * Cancel RX and TX.
1065          */
1066         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1067         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1068         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1069
1070         /*
1071          * Disable interrupts.
1072          */
1073         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1074 }
1075
1076 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1077                                enum dev_state state)
1078 {
1079         u32 reg;
1080         unsigned int i;
1081         char put_to_sleep;
1082         char bbp_state;
1083         char rf_state;
1084
1085         put_to_sleep = (state != STATE_AWAKE);
1086
1087         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1088         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1089         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1090         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1091         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1092         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1093
1094         /*
1095          * Device is not guaranteed to be in the requested state yet.
1096          * We must wait until the register indicates that the
1097          * device has entered the correct state.
1098          */
1099         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1100                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1101                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1102                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1103                 if (bbp_state == state && rf_state == state)
1104                         return 0;
1105                 msleep(10);
1106         }
1107
1108         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1109                "current device state: bbp %d and rf %d.\n",
1110                state, bbp_state, rf_state);
1111
1112         return -EBUSY;
1113 }
1114
1115 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1116                                       enum dev_state state)
1117 {
1118         int retval = 0;
1119
1120         switch (state) {
1121         case STATE_RADIO_ON:
1122                 retval = rt2500pci_enable_radio(rt2x00dev);
1123                 break;
1124         case STATE_RADIO_OFF:
1125                 rt2500pci_disable_radio(rt2x00dev);
1126                 break;
1127         case STATE_RADIO_RX_ON:
1128         case STATE_RADIO_RX_ON_LINK:
1129                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1130                 break;
1131         case STATE_RADIO_RX_OFF:
1132         case STATE_RADIO_RX_OFF_LINK:
1133                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1134                 break;
1135         case STATE_DEEP_SLEEP:
1136         case STATE_SLEEP:
1137         case STATE_STANDBY:
1138         case STATE_AWAKE:
1139                 retval = rt2500pci_set_state(rt2x00dev, state);
1140                 break;
1141         default:
1142                 retval = -ENOTSUPP;
1143                 break;
1144         }
1145
1146         return retval;
1147 }
1148
1149 /*
1150  * TX descriptor initialization
1151  */
1152 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1153                                     struct sk_buff *skb,
1154                                     struct txentry_desc *txdesc)
1155 {
1156         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1157         struct queue_entry_priv_pci_tx *entry_priv = skbdesc->entry->priv_data;
1158         __le32 *txd = skbdesc->desc;
1159         u32 word;
1160
1161         /*
1162          * Start writing the descriptor words.
1163          */
1164         rt2x00_desc_read(entry_priv->desc, 1, &word);
1165         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, entry_priv->data_dma);
1166         rt2x00_desc_write(entry_priv->desc, 1, word);
1167
1168         rt2x00_desc_read(txd, 2, &word);
1169         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1170         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1171         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1172         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1173         rt2x00_desc_write(txd, 2, word);
1174
1175         rt2x00_desc_read(txd, 3, &word);
1176         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1177         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1178         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1179         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1180         rt2x00_desc_write(txd, 3, word);
1181
1182         rt2x00_desc_read(txd, 10, &word);
1183         rt2x00_set_field32(&word, TXD_W10_RTS,
1184                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1185         rt2x00_desc_write(txd, 10, word);
1186
1187         rt2x00_desc_read(txd, 0, &word);
1188         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1189         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1190         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1191                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1192         rt2x00_set_field32(&word, TXD_W0_ACK,
1193                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1194         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1195                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1196         rt2x00_set_field32(&word, TXD_W0_OFDM,
1197                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1198         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1199         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1200         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1201                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1202         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1203         rt2x00_desc_write(txd, 0, word);
1204 }
1205
1206 /*
1207  * TX data initialization
1208  */
1209 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1210                                     const enum data_queue_qid queue)
1211 {
1212         u32 reg;
1213
1214         if (queue == QID_BEACON) {
1215                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1216                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1217                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1218                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1219                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1220                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1221                 }
1222                 return;
1223         }
1224
1225         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1226         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1227         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1228         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1229         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1230 }
1231
1232 /*
1233  * RX control handlers
1234  */
1235 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1236                                   struct rxdone_entry_desc *rxdesc)
1237 {
1238         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1239         u32 word0;
1240         u32 word2;
1241
1242         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1243         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1244
1245         rxdesc->flags = 0;
1246         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1247                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1248         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1249                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1250
1251         /*
1252          * Obtain the status about this packet.
1253          * When frame was received with an OFDM bitrate,
1254          * the signal is the PLCP value. If it was received with
1255          * a CCK bitrate the signal is the rate in 100kbit/s.
1256          */
1257         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1258         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1259             entry->queue->rt2x00dev->rssi_offset;
1260         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1261
1262         rxdesc->dev_flags = 0;
1263         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1264                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1265         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1266                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1267 }
1268
1269 /*
1270  * Interrupt functions.
1271  */
1272 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1273                              const enum data_queue_qid queue_idx)
1274 {
1275         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1276         struct queue_entry_priv_pci_tx *priv_tx;
1277         struct queue_entry *entry;
1278         struct txdone_entry_desc txdesc;
1279         u32 word;
1280
1281         while (!rt2x00queue_empty(queue)) {
1282                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1283                 priv_tx = entry->priv_data;
1284                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1285
1286                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1287                     !rt2x00_get_field32(word, TXD_W0_VALID))
1288                         break;
1289
1290                 /*
1291                  * Obtain the status about this packet.
1292                  */
1293                 txdesc.flags = 0;
1294                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1295                 case 0: /* Success */
1296                 case 1: /* Success with retry */
1297                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1298                         break;
1299                 case 2: /* Failure, excessive retries */
1300                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1301                         /* Don't break, this is a failed frame! */
1302                 default: /* Failure */
1303                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1304                 }
1305                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1306
1307                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1308         }
1309 }
1310
1311 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1312 {
1313         struct rt2x00_dev *rt2x00dev = dev_instance;
1314         u32 reg;
1315
1316         /*
1317          * Get the interrupt sources & saved to local variable.
1318          * Write register value back to clear pending interrupts.
1319          */
1320         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1321         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1322
1323         if (!reg)
1324                 return IRQ_NONE;
1325
1326         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1327                 return IRQ_HANDLED;
1328
1329         /*
1330          * Handle interrupts, walk through all bits
1331          * and run the tasks, the bits are checked in order of
1332          * priority.
1333          */
1334
1335         /*
1336          * 1 - Beacon timer expired interrupt.
1337          */
1338         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1339                 rt2x00lib_beacondone(rt2x00dev);
1340
1341         /*
1342          * 2 - Rx ring done interrupt.
1343          */
1344         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1345                 rt2x00pci_rxdone(rt2x00dev);
1346
1347         /*
1348          * 3 - Atim ring transmit done interrupt.
1349          */
1350         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1351                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1352
1353         /*
1354          * 4 - Priority ring transmit done interrupt.
1355          */
1356         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1357                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1358
1359         /*
1360          * 5 - Tx ring transmit done interrupt.
1361          */
1362         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1363                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1364
1365         return IRQ_HANDLED;
1366 }
1367
1368 /*
1369  * Device probe functions.
1370  */
1371 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1372 {
1373         struct eeprom_93cx6 eeprom;
1374         u32 reg;
1375         u16 word;
1376         u8 *mac;
1377
1378         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1379
1380         eeprom.data = rt2x00dev;
1381         eeprom.register_read = rt2500pci_eepromregister_read;
1382         eeprom.register_write = rt2500pci_eepromregister_write;
1383         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1384             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1385         eeprom.reg_data_in = 0;
1386         eeprom.reg_data_out = 0;
1387         eeprom.reg_data_clock = 0;
1388         eeprom.reg_chip_select = 0;
1389
1390         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1391                                EEPROM_SIZE / sizeof(u16));
1392
1393         /*
1394          * Start validation of the data that has been read.
1395          */
1396         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1397         if (!is_valid_ether_addr(mac)) {
1398                 DECLARE_MAC_BUF(macbuf);
1399
1400                 random_ether_addr(mac);
1401                 EEPROM(rt2x00dev, "MAC: %s\n",
1402                        print_mac(macbuf, mac));
1403         }
1404
1405         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1406         if (word == 0xffff) {
1407                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1408                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1409                                    ANTENNA_SW_DIVERSITY);
1410                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1411                                    ANTENNA_SW_DIVERSITY);
1412                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1413                                    LED_MODE_DEFAULT);
1414                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1415                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1416                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1417                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1418                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1419         }
1420
1421         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1422         if (word == 0xffff) {
1423                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1424                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1425                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1426                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1427                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1428         }
1429
1430         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1431         if (word == 0xffff) {
1432                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1433                                    DEFAULT_RSSI_OFFSET);
1434                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1435                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1436         }
1437
1438         return 0;
1439 }
1440
1441 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1442 {
1443         u32 reg;
1444         u16 value;
1445         u16 eeprom;
1446
1447         /*
1448          * Read EEPROM word for configuration.
1449          */
1450         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1451
1452         /*
1453          * Identify RF chipset.
1454          */
1455         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1456         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1457         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1458
1459         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1460             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1461             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1462             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1463             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1464             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1465                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1466                 return -ENODEV;
1467         }
1468
1469         /*
1470          * Identify default antenna configuration.
1471          */
1472         rt2x00dev->default_ant.tx =
1473             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1474         rt2x00dev->default_ant.rx =
1475             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1476
1477         /*
1478          * Store led mode, for correct led behaviour.
1479          */
1480 #ifdef CONFIG_RT2500PCI_LEDS
1481         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1482
1483         rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
1484         rt2x00dev->led_radio.type = LED_TYPE_RADIO;
1485         rt2x00dev->led_radio.led_dev.brightness_set =
1486             rt2500pci_brightness_set;
1487         rt2x00dev->led_radio.led_dev.blink_set =
1488             rt2500pci_blink_set;
1489         rt2x00dev->led_radio.flags = LED_INITIALIZED;
1490
1491         if (value == LED_MODE_TXRX_ACTIVITY) {
1492                 rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
1493                 rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
1494                 rt2x00dev->led_qual.led_dev.brightness_set =
1495                     rt2500pci_brightness_set;
1496                 rt2x00dev->led_qual.led_dev.blink_set =
1497                     rt2500pci_blink_set;
1498                 rt2x00dev->led_qual.flags = LED_INITIALIZED;
1499         }
1500 #endif /* CONFIG_RT2500PCI_LEDS */
1501
1502         /*
1503          * Detect if this device has an hardware controlled radio.
1504          */
1505 #ifdef CONFIG_RT2500PCI_RFKILL
1506         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1507                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1508 #endif /* CONFIG_RT2500PCI_RFKILL */
1509
1510         /*
1511          * Check if the BBP tuning should be enabled.
1512          */
1513         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1514
1515         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1516                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1517
1518         /*
1519          * Read the RSSI <-> dBm offset information.
1520          */
1521         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1522         rt2x00dev->rssi_offset =
1523             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1524
1525         return 0;
1526 }
1527
1528 /*
1529  * RF value list for RF2522
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2522[] = {
1533         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1534         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1535         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1536         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1537         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1538         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1539         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1540         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1541         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1542         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1543         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1544         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1545         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1546         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1547 };
1548
1549 /*
1550  * RF value list for RF2523
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2523[] = {
1554         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1555         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1556         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1557         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1558         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1559         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1560         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1561         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1562         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1563         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1564         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1565         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1566         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1567         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1568 };
1569
1570 /*
1571  * RF value list for RF2524
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2524[] = {
1575         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1576         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1577         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1578         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1579         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1580         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1581         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1582         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1583         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1584         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1585         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1586         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1587         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1588         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1589 };
1590
1591 /*
1592  * RF value list for RF2525
1593  * Supports: 2.4 GHz
1594  */
1595 static const struct rf_channel rf_vals_bg_2525[] = {
1596         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1597         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1598         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1599         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1600         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1601         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1602         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1603         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1604         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1605         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1606         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1607         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1608         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1609         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1610 };
1611
1612 /*
1613  * RF value list for RF2525e
1614  * Supports: 2.4 GHz
1615  */
1616 static const struct rf_channel rf_vals_bg_2525e[] = {
1617         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1618         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1619         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1620         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1621         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1622         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1623         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1624         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1625         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1626         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1627         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1628         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1629         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1630         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1631 };
1632
1633 /*
1634  * RF value list for RF5222
1635  * Supports: 2.4 GHz & 5.2 GHz
1636  */
1637 static const struct rf_channel rf_vals_5222[] = {
1638         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1639         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1640         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1641         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1642         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1643         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1644         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1645         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1646         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1647         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1648         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1649         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1650         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1651         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1652
1653         /* 802.11 UNI / HyperLan 2 */
1654         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1655         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1656         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1657         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1658         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1659         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1660         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1661         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1662
1663         /* 802.11 HyperLan 2 */
1664         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1665         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1666         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1667         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1668         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1669         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1670         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1671         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1672         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1673         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1674
1675         /* 802.11 UNII */
1676         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1677         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1678         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1679         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1680         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1681 };
1682
1683 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1684 {
1685         struct hw_mode_spec *spec = &rt2x00dev->spec;
1686         u8 *txpower;
1687         unsigned int i;
1688
1689         /*
1690          * Initialize all hw fields.
1691          */
1692         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1693                                IEEE80211_HW_SIGNAL_DBM;
1694
1695         rt2x00dev->hw->extra_tx_headroom = 0;
1696
1697         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1698         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1699                                 rt2x00_eeprom_addr(rt2x00dev,
1700                                                    EEPROM_MAC_ADDR_0));
1701
1702         /*
1703          * Convert tx_power array in eeprom.
1704          */
1705         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1706         for (i = 0; i < 14; i++)
1707                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1708
1709         /*
1710          * Initialize hw_mode information.
1711          */
1712         spec->supported_bands = SUPPORT_BAND_2GHZ;
1713         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1714         spec->tx_power_a = NULL;
1715         spec->tx_power_bg = txpower;
1716         spec->tx_power_default = DEFAULT_TXPOWER;
1717
1718         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1719                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1720                 spec->channels = rf_vals_bg_2522;
1721         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1722                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1723                 spec->channels = rf_vals_bg_2523;
1724         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1725                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1726                 spec->channels = rf_vals_bg_2524;
1727         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1728                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1729                 spec->channels = rf_vals_bg_2525;
1730         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1731                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1732                 spec->channels = rf_vals_bg_2525e;
1733         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1734                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1735                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1736                 spec->channels = rf_vals_5222;
1737         }
1738 }
1739
1740 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1741 {
1742         int retval;
1743
1744         /*
1745          * Allocate eeprom data.
1746          */
1747         retval = rt2500pci_validate_eeprom(rt2x00dev);
1748         if (retval)
1749                 return retval;
1750
1751         retval = rt2500pci_init_eeprom(rt2x00dev);
1752         if (retval)
1753                 return retval;
1754
1755         /*
1756          * Initialize hw specifications.
1757          */
1758         rt2500pci_probe_hw_mode(rt2x00dev);
1759
1760         /*
1761          * This device requires the atim queue
1762          */
1763         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1764
1765         /*
1766          * Set the rssi offset.
1767          */
1768         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1769
1770         return 0;
1771 }
1772
1773 /*
1774  * IEEE80211 stack callback functions.
1775  */
1776 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1777                                      u32 short_retry, u32 long_retry)
1778 {
1779         struct rt2x00_dev *rt2x00dev = hw->priv;
1780         u32 reg;
1781
1782         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1783         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1784         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1785         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1786
1787         return 0;
1788 }
1789
1790 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1791 {
1792         struct rt2x00_dev *rt2x00dev = hw->priv;
1793         u64 tsf;
1794         u32 reg;
1795
1796         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1797         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1798         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1799         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1800
1801         return tsf;
1802 }
1803
1804 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1805                                    struct ieee80211_tx_control *control)
1806 {
1807         struct rt2x00_dev *rt2x00dev = hw->priv;
1808         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1809         struct queue_entry_priv_pci_tx *priv_tx;
1810         struct skb_frame_desc *skbdesc;
1811         struct txentry_desc txdesc;
1812         u32 reg;
1813
1814         if (unlikely(!intf->beacon))
1815                 return -ENOBUFS;
1816
1817         priv_tx = intf->beacon->priv_data;
1818
1819         /*
1820          * Copy all TX descriptor information into txdesc,
1821          * after that we are free to use the skb->cb array
1822          * for our information.
1823          */
1824         intf->beacon->skb = skb;
1825         rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc, control);
1826
1827         /*
1828          * Fill in skb descriptor
1829          */
1830         skbdesc = get_skb_frame_desc(skb);
1831         memset(skbdesc, 0, sizeof(*skbdesc));
1832         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1833         skbdesc->data = skb->data;
1834         skbdesc->data_len = skb->len;
1835         skbdesc->desc = priv_tx->desc;
1836         skbdesc->desc_len = intf->beacon->queue->desc_size;
1837         skbdesc->entry = intf->beacon;
1838
1839         /*
1840          * Disable beaconing while we are reloading the beacon data,
1841          * otherwise we might be sending out invalid data.
1842          */
1843         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1844         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1845         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1846         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1847         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1848
1849         /*
1850          * Enable beacon generation.
1851          * Write entire beacon with descriptor to register,
1852          * and kick the beacon generator.
1853          */
1854         memcpy(priv_tx->data, skb->data, skb->len);
1855         rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
1856         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
1857
1858         return 0;
1859 }
1860
1861 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1862 {
1863         struct rt2x00_dev *rt2x00dev = hw->priv;
1864         u32 reg;
1865
1866         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1867         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1868 }
1869
1870 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1871         .tx                     = rt2x00mac_tx,
1872         .start                  = rt2x00mac_start,
1873         .stop                   = rt2x00mac_stop,
1874         .add_interface          = rt2x00mac_add_interface,
1875         .remove_interface       = rt2x00mac_remove_interface,
1876         .config                 = rt2x00mac_config,
1877         .config_interface       = rt2x00mac_config_interface,
1878         .configure_filter       = rt2x00mac_configure_filter,
1879         .get_stats              = rt2x00mac_get_stats,
1880         .set_retry_limit        = rt2500pci_set_retry_limit,
1881         .bss_info_changed       = rt2x00mac_bss_info_changed,
1882         .conf_tx                = rt2x00mac_conf_tx,
1883         .get_tx_stats           = rt2x00mac_get_tx_stats,
1884         .get_tsf                = rt2500pci_get_tsf,
1885         .beacon_update          = rt2500pci_beacon_update,
1886         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1887 };
1888
1889 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1890         .irq_handler            = rt2500pci_interrupt,
1891         .probe_hw               = rt2500pci_probe_hw,
1892         .initialize             = rt2x00pci_initialize,
1893         .uninitialize           = rt2x00pci_uninitialize,
1894         .init_rxentry           = rt2500pci_init_rxentry,
1895         .init_txentry           = rt2500pci_init_txentry,
1896         .set_device_state       = rt2500pci_set_device_state,
1897         .rfkill_poll            = rt2500pci_rfkill_poll,
1898         .link_stats             = rt2500pci_link_stats,
1899         .reset_tuner            = rt2500pci_reset_tuner,
1900         .link_tuner             = rt2500pci_link_tuner,
1901         .write_tx_desc          = rt2500pci_write_tx_desc,
1902         .write_tx_data          = rt2x00pci_write_tx_data,
1903         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1904         .fill_rxdone            = rt2500pci_fill_rxdone,
1905         .config_filter          = rt2500pci_config_filter,
1906         .config_intf            = rt2500pci_config_intf,
1907         .config_erp             = rt2500pci_config_erp,
1908         .config                 = rt2500pci_config,
1909 };
1910
1911 static const struct data_queue_desc rt2500pci_queue_rx = {
1912         .entry_num              = RX_ENTRIES,
1913         .data_size              = DATA_FRAME_SIZE,
1914         .desc_size              = RXD_DESC_SIZE,
1915         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1916 };
1917
1918 static const struct data_queue_desc rt2500pci_queue_tx = {
1919         .entry_num              = TX_ENTRIES,
1920         .data_size              = DATA_FRAME_SIZE,
1921         .desc_size              = TXD_DESC_SIZE,
1922         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1923 };
1924
1925 static const struct data_queue_desc rt2500pci_queue_bcn = {
1926         .entry_num              = BEACON_ENTRIES,
1927         .data_size              = MGMT_FRAME_SIZE,
1928         .desc_size              = TXD_DESC_SIZE,
1929         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1930 };
1931
1932 static const struct data_queue_desc rt2500pci_queue_atim = {
1933         .entry_num              = ATIM_ENTRIES,
1934         .data_size              = DATA_FRAME_SIZE,
1935         .desc_size              = TXD_DESC_SIZE,
1936         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1937 };
1938
1939 static const struct rt2x00_ops rt2500pci_ops = {
1940         .name           = KBUILD_MODNAME,
1941         .max_sta_intf   = 1,
1942         .max_ap_intf    = 1,
1943         .eeprom_size    = EEPROM_SIZE,
1944         .rf_size        = RF_SIZE,
1945         .tx_queues      = NUM_TX_QUEUES,
1946         .rx             = &rt2500pci_queue_rx,
1947         .tx             = &rt2500pci_queue_tx,
1948         .bcn            = &rt2500pci_queue_bcn,
1949         .atim           = &rt2500pci_queue_atim,
1950         .lib            = &rt2500pci_rt2x00_ops,
1951         .hw             = &rt2500pci_mac80211_ops,
1952 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1953         .debugfs        = &rt2500pci_rt2x00debug,
1954 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1955 };
1956
1957 /*
1958  * RT2500pci module information.
1959  */
1960 static struct pci_device_id rt2500pci_device_table[] = {
1961         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1962         { 0, }
1963 };
1964
1965 MODULE_AUTHOR(DRV_PROJECT);
1966 MODULE_VERSION(DRV_VERSION);
1967 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1968 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1969 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1970 MODULE_LICENSE("GPL");
1971
1972 static struct pci_driver rt2500pci_driver = {
1973         .name           = KBUILD_MODNAME,
1974         .id_table       = rt2500pci_device_table,
1975         .probe          = rt2x00pci_probe,
1976         .remove         = __devexit_p(rt2x00pci_remove),
1977         .suspend        = rt2x00pci_suspend,
1978         .resume         = rt2x00pci_resume,
1979 };
1980
1981 static int __init rt2500pci_init(void)
1982 {
1983         return pci_register_driver(&rt2500pci_driver);
1984 }
1985
1986 static void __exit rt2500pci_exit(void)
1987 {
1988         pci_unregister_driver(&rt2500pci_driver);
1989 }
1990
1991 module_init(rt2500pci_init);
1992 module_exit(rt2500pci_exit);