rt2x00: Fix quality/activity led handling
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         u32 reg;
254
255         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
256
257         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259         else if (led->type == LED_TYPE_ACTIVITY)
260                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
261
262         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
263 }
264
265 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
266                                unsigned long *delay_on,
267                                unsigned long *delay_off)
268 {
269         struct rt2x00_led *led =
270             container_of(led_cdev, struct rt2x00_led, led_dev);
271         u32 reg;
272
273         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
277
278         return 0;
279 }
280 #endif /* CONFIG_RT2500PCI_LEDS */
281
282 /*
283  * Configuration handlers.
284  */
285 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
286                                     const unsigned int filter_flags)
287 {
288         u32 reg;
289
290         /*
291          * Start configuration steps.
292          * Note that the version error will always be dropped
293          * and broadcast frames will always be accepted since
294          * there is no filter for it at this time.
295          */
296         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
297         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
298                            !(filter_flags & FIF_FCSFAIL));
299         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
300                            !(filter_flags & FIF_PLCPFAIL));
301         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
302                            !(filter_flags & FIF_CONTROL));
303         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
304                            !(filter_flags & FIF_PROMISC_IN_BSS));
305         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
306                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
307                            !rt2x00dev->intf_ap_count);
308         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
309         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
310                            !(filter_flags & FIF_ALLMULTI));
311         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
312         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
313 }
314
315 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
316                                   struct rt2x00_intf *intf,
317                                   struct rt2x00intf_conf *conf,
318                                   const unsigned int flags)
319 {
320         struct data_queue *queue =
321             rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
322         unsigned int bcn_preload;
323         u32 reg;
324
325         if (flags & CONFIG_UPDATE_TYPE) {
326                 /*
327                  * Enable beacon config
328                  */
329                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
330                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
331                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
332                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
333                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
334
335                 /*
336                  * Enable synchronisation.
337                  */
338                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
339                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
340                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
341                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
342                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
343         }
344
345         if (flags & CONFIG_UPDATE_MAC)
346                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
347                                               conf->mac, sizeof(conf->mac));
348
349         if (flags & CONFIG_UPDATE_BSSID)
350                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
351                                               conf->bssid, sizeof(conf->bssid));
352 }
353
354 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
355                                  struct rt2x00lib_erp *erp)
356 {
357         int preamble_mask;
358         u32 reg;
359
360         /*
361          * When short preamble is enabled, we should set bit 0x08
362          */
363         preamble_mask = erp->short_preamble << 3;
364
365         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
366         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
367                            erp->ack_timeout);
368         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
369                            erp->ack_consume_time);
370         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
371
372         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
373         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
374         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
375         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
376         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
377
378         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
379         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
380         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
381         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
382         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
383
384         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
385         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
386         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
387         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
388         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
389
390         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
391         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
392         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
393         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
394         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
395 }
396
397 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
398                                      const int basic_rate_mask)
399 {
400         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
401 }
402
403 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
404                                      struct rf_channel *rf, const int txpower)
405 {
406         u8 r70;
407
408         /*
409          * Set TXpower.
410          */
411         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
412
413         /*
414          * Switch on tuning bits.
415          * For RT2523 devices we do not need to update the R1 register.
416          */
417         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
418                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
419         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
420
421         /*
422          * For RT2525 we should first set the channel to half band higher.
423          */
424         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
425                 static const u32 vals[] = {
426                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
427                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
428                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
429                         0x00080d2e, 0x00080d3a
430                 };
431
432                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
433                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
434                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
435                 if (rf->rf4)
436                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
437         }
438
439         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
440         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
441         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
442         if (rf->rf4)
443                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
444
445         /*
446          * Channel 14 requires the Japan filter bit to be set.
447          */
448         r70 = 0x46;
449         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
450         rt2500pci_bbp_write(rt2x00dev, 70, r70);
451
452         msleep(1);
453
454         /*
455          * Switch off tuning bits.
456          * For RT2523 devices we do not need to update the R1 register.
457          */
458         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
459                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
460                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
461         }
462
463         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
464         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466         /*
467          * Clear false CRC during channel switch.
468          */
469         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
470 }
471
472 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
473                                      const int txpower)
474 {
475         u32 rf3;
476
477         rt2x00_rf_read(rt2x00dev, 3, &rf3);
478         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
479         rt2500pci_rf_write(rt2x00dev, 3, rf3);
480 }
481
482 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
483                                      struct antenna_setup *ant)
484 {
485         u32 reg;
486         u8 r14;
487         u8 r2;
488
489         /*
490          * We should never come here because rt2x00lib is supposed
491          * to catch this and send us the correct antenna explicitely.
492          */
493         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
494                ant->tx == ANTENNA_SW_DIVERSITY);
495
496         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
497         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
498         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
499
500         /*
501          * Configure the TX antenna.
502          */
503         switch (ant->tx) {
504         case ANTENNA_A:
505                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
506                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
507                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
508                 break;
509         case ANTENNA_B:
510         default:
511                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
512                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
513                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
514                 break;
515         }
516
517         /*
518          * Configure the RX antenna.
519          */
520         switch (ant->rx) {
521         case ANTENNA_A:
522                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
523                 break;
524         case ANTENNA_B:
525         default:
526                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
527                 break;
528         }
529
530         /*
531          * RT2525E and RT5222 need to flip TX I/Q
532          */
533         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
534             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
535                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
536                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
537                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
538
539                 /*
540                  * RT2525E does not need RX I/Q Flip.
541                  */
542                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
543                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
544         } else {
545                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
546                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
547         }
548
549         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
550         rt2500pci_bbp_write(rt2x00dev, 14, r14);
551         rt2500pci_bbp_write(rt2x00dev, 2, r2);
552 }
553
554 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
555                                       struct rt2x00lib_conf *libconf)
556 {
557         u32 reg;
558
559         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
560         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
561         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
562
563         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
564         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
565         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
566         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
567
568         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
569         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
570         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
571         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
572
573         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
574         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
575         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
576         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
577
578         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
579         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
580                            libconf->conf->beacon_int * 16);
581         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
582                            libconf->conf->beacon_int * 16);
583         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
584 }
585
586 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
587                              struct rt2x00lib_conf *libconf,
588                              const unsigned int flags)
589 {
590         if (flags & CONFIG_UPDATE_PHYMODE)
591                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
592         if (flags & CONFIG_UPDATE_CHANNEL)
593                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
594                                          libconf->conf->power_level);
595         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
596                 rt2500pci_config_txpower(rt2x00dev,
597                                          libconf->conf->power_level);
598         if (flags & CONFIG_UPDATE_ANTENNA)
599                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
600         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
601                 rt2500pci_config_duration(rt2x00dev, libconf);
602 }
603
604 /*
605  * Link tuning
606  */
607 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
608                                  struct link_qual *qual)
609 {
610         u32 reg;
611
612         /*
613          * Update FCS error count from register.
614          */
615         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
616         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
617
618         /*
619          * Update False CCA count from register.
620          */
621         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
622         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
623 }
624
625 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
626 {
627         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
628         rt2x00dev->link.vgc_level = 0x48;
629 }
630
631 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
632 {
633         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
634         u8 r17;
635
636         /*
637          * To prevent collisions with MAC ASIC on chipsets
638          * up to version C the link tuning should halt after 20
639          * seconds while being associated.
640          */
641         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
642             rt2x00dev->intf_associated &&
643             rt2x00dev->link.count > 20)
644                 return;
645
646         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
647
648         /*
649          * Chipset versions C and lower should directly continue
650          * to the dynamic CCA tuning. Chipset version D and higher
651          * should go straight to dynamic CCA tuning when they
652          * are not associated.
653          */
654         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
655             !rt2x00dev->intf_associated)
656                 goto dynamic_cca_tune;
657
658         /*
659          * A too low RSSI will cause too much false CCA which will
660          * then corrupt the R17 tuning. To remidy this the tuning should
661          * be stopped (While making sure the R17 value will not exceed limits)
662          */
663         if (rssi < -80 && rt2x00dev->link.count > 20) {
664                 if (r17 >= 0x41) {
665                         r17 = rt2x00dev->link.vgc_level;
666                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
667                 }
668                 return;
669         }
670
671         /*
672          * Special big-R17 for short distance
673          */
674         if (rssi >= -58) {
675                 if (r17 != 0x50)
676                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
677                 return;
678         }
679
680         /*
681          * Special mid-R17 for middle distance
682          */
683         if (rssi >= -74) {
684                 if (r17 != 0x41)
685                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
686                 return;
687         }
688
689         /*
690          * Leave short or middle distance condition, restore r17
691          * to the dynamic tuning range.
692          */
693         if (r17 >= 0x41) {
694                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
695                 return;
696         }
697
698 dynamic_cca_tune:
699
700         /*
701          * R17 is inside the dynamic tuning range,
702          * start tuning the link based on the false cca counter.
703          */
704         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
705                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
706                 rt2x00dev->link.vgc_level = r17;
707         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
708                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
709                 rt2x00dev->link.vgc_level = r17;
710         }
711 }
712
713 /*
714  * Initialization functions.
715  */
716 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
717                                    struct queue_entry *entry)
718 {
719         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
720         u32 word;
721
722         rt2x00_desc_read(priv_rx->desc, 1, &word);
723         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
724         rt2x00_desc_write(priv_rx->desc, 1, word);
725
726         rt2x00_desc_read(priv_rx->desc, 0, &word);
727         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
728         rt2x00_desc_write(priv_rx->desc, 0, word);
729 }
730
731 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
732                                    struct queue_entry *entry)
733 {
734         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
735         u32 word;
736
737         rt2x00_desc_read(priv_tx->desc, 1, &word);
738         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
739         rt2x00_desc_write(priv_tx->desc, 1, word);
740
741         rt2x00_desc_read(priv_tx->desc, 0, &word);
742         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
743         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
744         rt2x00_desc_write(priv_tx->desc, 0, word);
745 }
746
747 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
748 {
749         struct queue_entry_priv_pci_rx *priv_rx;
750         struct queue_entry_priv_pci_tx *priv_tx;
751         u32 reg;
752
753         /*
754          * Initialize registers.
755          */
756         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
757         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
758         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
759         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
760         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
761         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
762
763         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
764         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
765         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
766                            priv_tx->desc_dma);
767         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
768
769         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
770         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
771         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
772                            priv_tx->desc_dma);
773         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
774
775         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
776         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
777         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
778                            priv_tx->desc_dma);
779         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
780
781         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
782         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
783         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
784                            priv_tx->desc_dma);
785         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
786
787         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
788         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
789         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
790         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
791
792         priv_rx = rt2x00dev->rx->entries[0].priv_data;
793         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
794         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
795         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
796
797         return 0;
798 }
799
800 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
801 {
802         u32 reg;
803
804         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
805         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
806         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
807         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
808
809         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
810         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
811         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
812         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
813         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
814
815         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
816         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
817                            rt2x00dev->rx->data_size / 128);
818         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
819
820         /*
821          * Always use CWmin and CWmax set in descriptor.
822          */
823         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
824         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
825         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
826
827         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
828
829         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
830         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
831         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
832         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
833         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
834         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
835         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
836         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
837         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
838         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
839
840         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
841         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
842         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
843         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
844         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
845         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
846
847         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
848         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
849         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
850         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
851         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
852         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
853
854         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
855         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
856         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
857         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
858         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
859         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
860
861         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
862         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
863         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
864         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
865         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
866         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
867         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
868         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
869         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
870         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
871
872         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
873         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
874         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
875         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
876         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
877         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
878         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
879         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
880         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
881
882         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
883
884         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
885         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
886
887         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
888                 return -EBUSY;
889
890         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
891         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
892
893         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
894         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
895         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
896
897         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
898         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
899         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
900         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
901         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
902         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
903         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
904         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
905
906         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
907
908         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
909
910         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
911         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
912         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
913         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
914         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
915
916         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
917         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
918         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
919         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
920
921         /*
922          * We must clear the FCS and FIFO error count.
923          * These registers are cleared on read,
924          * so we may pass a useless variable to store the value.
925          */
926         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
927         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
928
929         return 0;
930 }
931
932 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
933 {
934         unsigned int i;
935         u16 eeprom;
936         u8 reg_id;
937         u8 value;
938
939         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
940                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
941                 if ((value != 0xff) && (value != 0x00))
942                         goto continue_csr_init;
943                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
944                 udelay(REGISTER_BUSY_DELAY);
945         }
946
947         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
948         return -EACCES;
949
950 continue_csr_init:
951         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
952         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
953         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
954         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
955         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
956         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
957         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
958         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
959         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
960         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
961         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
962         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
963         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
964         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
965         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
966         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
967         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
968         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
969         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
970         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
971         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
972         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
973         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
974         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
975         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
976         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
977         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
978         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
979         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
980         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
981
982         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
983                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
984
985                 if (eeprom != 0xffff && eeprom != 0x0000) {
986                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
987                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
988                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
989                 }
990         }
991
992         return 0;
993 }
994
995 /*
996  * Device state switch handlers.
997  */
998 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
999                                 enum dev_state state)
1000 {
1001         u32 reg;
1002
1003         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1004         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1005                            state == STATE_RADIO_RX_OFF);
1006         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1007 }
1008
1009 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1010                                  enum dev_state state)
1011 {
1012         int mask = (state == STATE_RADIO_IRQ_OFF);
1013         u32 reg;
1014
1015         /*
1016          * When interrupts are being enabled, the interrupt registers
1017          * should clear the register to assure a clean state.
1018          */
1019         if (state == STATE_RADIO_IRQ_ON) {
1020                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1021                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1022         }
1023
1024         /*
1025          * Only toggle the interrupts bits we are going to use.
1026          * Non-checked interrupt bits are disabled by default.
1027          */
1028         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1029         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1030         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1031         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1032         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1033         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1034         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1035 }
1036
1037 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1038 {
1039         /*
1040          * Initialize all registers.
1041          */
1042         if (rt2500pci_init_queues(rt2x00dev) ||
1043             rt2500pci_init_registers(rt2x00dev) ||
1044             rt2500pci_init_bbp(rt2x00dev)) {
1045                 ERROR(rt2x00dev, "Register initialization failed.\n");
1046                 return -EIO;
1047         }
1048
1049         /*
1050          * Enable interrupts.
1051          */
1052         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1053
1054         return 0;
1055 }
1056
1057 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1058 {
1059         u32 reg;
1060
1061         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1062
1063         /*
1064          * Disable synchronisation.
1065          */
1066         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1067
1068         /*
1069          * Cancel RX and TX.
1070          */
1071         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1072         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1073         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1074
1075         /*
1076          * Disable interrupts.
1077          */
1078         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1079 }
1080
1081 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1082                                enum dev_state state)
1083 {
1084         u32 reg;
1085         unsigned int i;
1086         char put_to_sleep;
1087         char bbp_state;
1088         char rf_state;
1089
1090         put_to_sleep = (state != STATE_AWAKE);
1091
1092         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1093         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1094         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1095         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1096         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1097         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1098
1099         /*
1100          * Device is not guaranteed to be in the requested state yet.
1101          * We must wait until the register indicates that the
1102          * device has entered the correct state.
1103          */
1104         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1105                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1106                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1107                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1108                 if (bbp_state == state && rf_state == state)
1109                         return 0;
1110                 msleep(10);
1111         }
1112
1113         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1114                "current device state: bbp %d and rf %d.\n",
1115                state, bbp_state, rf_state);
1116
1117         return -EBUSY;
1118 }
1119
1120 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1121                                       enum dev_state state)
1122 {
1123         int retval = 0;
1124
1125         switch (state) {
1126         case STATE_RADIO_ON:
1127                 retval = rt2500pci_enable_radio(rt2x00dev);
1128                 break;
1129         case STATE_RADIO_OFF:
1130                 rt2500pci_disable_radio(rt2x00dev);
1131                 break;
1132         case STATE_RADIO_RX_ON:
1133         case STATE_RADIO_RX_ON_LINK:
1134                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1135                 break;
1136         case STATE_RADIO_RX_OFF:
1137         case STATE_RADIO_RX_OFF_LINK:
1138                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1139                 break;
1140         case STATE_DEEP_SLEEP:
1141         case STATE_SLEEP:
1142         case STATE_STANDBY:
1143         case STATE_AWAKE:
1144                 retval = rt2500pci_set_state(rt2x00dev, state);
1145                 break;
1146         default:
1147                 retval = -ENOTSUPP;
1148                 break;
1149         }
1150
1151         return retval;
1152 }
1153
1154 /*
1155  * TX descriptor initialization
1156  */
1157 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1158                                     struct sk_buff *skb,
1159                                     struct txentry_desc *txdesc,
1160                                     struct ieee80211_tx_control *control)
1161 {
1162         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1163         __le32 *txd = skbdesc->desc;
1164         u32 word;
1165
1166         /*
1167          * Start writing the descriptor words.
1168          */
1169         rt2x00_desc_read(txd, 2, &word);
1170         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1171         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1172         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1173         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1174         rt2x00_desc_write(txd, 2, word);
1175
1176         rt2x00_desc_read(txd, 3, &word);
1177         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1178         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1179         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1180         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1181         rt2x00_desc_write(txd, 3, word);
1182
1183         rt2x00_desc_read(txd, 10, &word);
1184         rt2x00_set_field32(&word, TXD_W10_RTS,
1185                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1186         rt2x00_desc_write(txd, 10, word);
1187
1188         rt2x00_desc_read(txd, 0, &word);
1189         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1190         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1191         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1192                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1193         rt2x00_set_field32(&word, TXD_W0_ACK,
1194                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1195         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1196                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1197         rt2x00_set_field32(&word, TXD_W0_OFDM,
1198                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1199         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1200         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1201         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1202                            !!(control->flags &
1203                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1204         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1205         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1206         rt2x00_desc_write(txd, 0, word);
1207 }
1208
1209 /*
1210  * TX data initialization
1211  */
1212 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1213                                     const unsigned int queue)
1214 {
1215         u32 reg;
1216
1217         if (queue == RT2X00_BCN_QUEUE_BEACON) {
1218                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1219                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1220                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1221                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1222                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1223                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1224                 }
1225                 return;
1226         }
1227
1228         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1229         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1230                            (queue == IEEE80211_TX_QUEUE_DATA0));
1231         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1232                            (queue == IEEE80211_TX_QUEUE_DATA1));
1233         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1234                            (queue == RT2X00_BCN_QUEUE_ATIM));
1235         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1236 }
1237
1238 /*
1239  * RX control handlers
1240  */
1241 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1242                                   struct rxdone_entry_desc *rxdesc)
1243 {
1244         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1245         u32 word0;
1246         u32 word2;
1247
1248         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1249         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1250
1251         rxdesc->flags = 0;
1252         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1253                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1254         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1255                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1256
1257         /*
1258          * Obtain the status about this packet.
1259          * When frame was received with an OFDM bitrate,
1260          * the signal is the PLCP value. If it was received with
1261          * a CCK bitrate the signal is the rate in 100kbit/s.
1262          */
1263         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1264         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1265             entry->queue->rt2x00dev->rssi_offset;
1266         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1267
1268         rxdesc->dev_flags = 0;
1269         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1270                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1271         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1272                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1273 }
1274
1275 /*
1276  * Interrupt functions.
1277  */
1278 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1279                              const enum ieee80211_tx_queue queue_idx)
1280 {
1281         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1282         struct queue_entry_priv_pci_tx *priv_tx;
1283         struct queue_entry *entry;
1284         struct txdone_entry_desc txdesc;
1285         u32 word;
1286
1287         while (!rt2x00queue_empty(queue)) {
1288                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1289                 priv_tx = entry->priv_data;
1290                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1291
1292                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1293                     !rt2x00_get_field32(word, TXD_W0_VALID))
1294                         break;
1295
1296                 /*
1297                  * Obtain the status about this packet.
1298                  */
1299                 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1300                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1301
1302                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1303         }
1304 }
1305
1306 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1307 {
1308         struct rt2x00_dev *rt2x00dev = dev_instance;
1309         u32 reg;
1310
1311         /*
1312          * Get the interrupt sources & saved to local variable.
1313          * Write register value back to clear pending interrupts.
1314          */
1315         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1316         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1317
1318         if (!reg)
1319                 return IRQ_NONE;
1320
1321         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1322                 return IRQ_HANDLED;
1323
1324         /*
1325          * Handle interrupts, walk through all bits
1326          * and run the tasks, the bits are checked in order of
1327          * priority.
1328          */
1329
1330         /*
1331          * 1 - Beacon timer expired interrupt.
1332          */
1333         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1334                 rt2x00lib_beacondone(rt2x00dev);
1335
1336         /*
1337          * 2 - Rx ring done interrupt.
1338          */
1339         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1340                 rt2x00pci_rxdone(rt2x00dev);
1341
1342         /*
1343          * 3 - Atim ring transmit done interrupt.
1344          */
1345         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1346                 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1347
1348         /*
1349          * 4 - Priority ring transmit done interrupt.
1350          */
1351         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1352                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1353
1354         /*
1355          * 5 - Tx ring transmit done interrupt.
1356          */
1357         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1358                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1359
1360         return IRQ_HANDLED;
1361 }
1362
1363 /*
1364  * Device probe functions.
1365  */
1366 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1367 {
1368         struct eeprom_93cx6 eeprom;
1369         u32 reg;
1370         u16 word;
1371         u8 *mac;
1372
1373         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1374
1375         eeprom.data = rt2x00dev;
1376         eeprom.register_read = rt2500pci_eepromregister_read;
1377         eeprom.register_write = rt2500pci_eepromregister_write;
1378         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1379             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1380         eeprom.reg_data_in = 0;
1381         eeprom.reg_data_out = 0;
1382         eeprom.reg_data_clock = 0;
1383         eeprom.reg_chip_select = 0;
1384
1385         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1386                                EEPROM_SIZE / sizeof(u16));
1387
1388         /*
1389          * Start validation of the data that has been read.
1390          */
1391         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1392         if (!is_valid_ether_addr(mac)) {
1393                 DECLARE_MAC_BUF(macbuf);
1394
1395                 random_ether_addr(mac);
1396                 EEPROM(rt2x00dev, "MAC: %s\n",
1397                        print_mac(macbuf, mac));
1398         }
1399
1400         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1401         if (word == 0xffff) {
1402                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1403                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1404                                    ANTENNA_SW_DIVERSITY);
1405                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1406                                    ANTENNA_SW_DIVERSITY);
1407                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1408                                    LED_MODE_DEFAULT);
1409                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1410                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1411                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1412                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1413                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1414         }
1415
1416         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1417         if (word == 0xffff) {
1418                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1419                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1420                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1421                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1422                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1423         }
1424
1425         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1426         if (word == 0xffff) {
1427                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1428                                    DEFAULT_RSSI_OFFSET);
1429                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1430                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1431         }
1432
1433         return 0;
1434 }
1435
1436 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1437 {
1438         u32 reg;
1439         u16 value;
1440         u16 eeprom;
1441
1442         /*
1443          * Read EEPROM word for configuration.
1444          */
1445         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1446
1447         /*
1448          * Identify RF chipset.
1449          */
1450         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1451         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1452         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1453
1454         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1455             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1456             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1457             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1458             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1459             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1460                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1461                 return -ENODEV;
1462         }
1463
1464         /*
1465          * Identify default antenna configuration.
1466          */
1467         rt2x00dev->default_ant.tx =
1468             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1469         rt2x00dev->default_ant.rx =
1470             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1471
1472         /*
1473          * Store led mode, for correct led behaviour.
1474          */
1475 #ifdef CONFIG_RT2500PCI_LEDS
1476         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1477
1478         rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
1479         rt2x00dev->led_radio.type = LED_TYPE_RADIO;
1480         rt2x00dev->led_radio.led_dev.brightness_set =
1481             rt2500pci_brightness_set;
1482         rt2x00dev->led_radio.led_dev.blink_set =
1483             rt2500pci_blink_set;
1484         rt2x00dev->led_radio.flags = LED_INITIALIZED;
1485
1486         if (value == LED_MODE_TXRX_ACTIVITY) {
1487                 rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
1488                 rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
1489                 rt2x00dev->led_qual.led_dev.brightness_set =
1490                     rt2500pci_brightness_set;
1491                 rt2x00dev->led_qual.led_dev.blink_set =
1492                     rt2500pci_blink_set;
1493                 rt2x00dev->led_qual.flags = LED_INITIALIZED;
1494         }
1495 #endif /* CONFIG_RT2500PCI_LEDS */
1496
1497         /*
1498          * Detect if this device has an hardware controlled radio.
1499          */
1500 #ifdef CONFIG_RT2500PCI_RFKILL
1501         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1502                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1503 #endif /* CONFIG_RT2500PCI_RFKILL */
1504
1505         /*
1506          * Check if the BBP tuning should be enabled.
1507          */
1508         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1509
1510         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1511                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1512
1513         /*
1514          * Read the RSSI <-> dBm offset information.
1515          */
1516         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1517         rt2x00dev->rssi_offset =
1518             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1519
1520         return 0;
1521 }
1522
1523 /*
1524  * RF value list for RF2522
1525  * Supports: 2.4 GHz
1526  */
1527 static const struct rf_channel rf_vals_bg_2522[] = {
1528         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1529         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1530         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1531         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1532         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1533         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1534         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1535         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1536         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1537         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1538         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1539         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1540         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1541         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1542 };
1543
1544 /*
1545  * RF value list for RF2523
1546  * Supports: 2.4 GHz
1547  */
1548 static const struct rf_channel rf_vals_bg_2523[] = {
1549         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1550         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1551         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1552         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1553         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1554         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1555         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1556         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1557         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1558         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1559         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1560         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1561         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1562         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1563 };
1564
1565 /*
1566  * RF value list for RF2524
1567  * Supports: 2.4 GHz
1568  */
1569 static const struct rf_channel rf_vals_bg_2524[] = {
1570         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1571         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1572         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1573         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1574         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1575         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1576         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1577         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1578         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1579         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1580         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1581         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1582         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1583         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1584 };
1585
1586 /*
1587  * RF value list for RF2525
1588  * Supports: 2.4 GHz
1589  */
1590 static const struct rf_channel rf_vals_bg_2525[] = {
1591         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1592         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1593         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1594         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1595         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1596         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1597         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1598         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1599         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1600         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1601         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1602         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1603         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1604         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1605 };
1606
1607 /*
1608  * RF value list for RF2525e
1609  * Supports: 2.4 GHz
1610  */
1611 static const struct rf_channel rf_vals_bg_2525e[] = {
1612         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1613         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1614         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1615         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1616         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1617         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1618         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1619         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1620         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1621         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1622         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1623         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1624         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1625         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1626 };
1627
1628 /*
1629  * RF value list for RF5222
1630  * Supports: 2.4 GHz & 5.2 GHz
1631  */
1632 static const struct rf_channel rf_vals_5222[] = {
1633         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1634         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1635         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1636         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1637         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1638         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1639         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1640         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1641         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1642         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1643         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1644         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1645         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1646         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1647
1648         /* 802.11 UNI / HyperLan 2 */
1649         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1650         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1651         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1652         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1653         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1654         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1655         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1656         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1657
1658         /* 802.11 HyperLan 2 */
1659         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1660         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1661         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1662         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1663         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1664         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1665         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1666         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1667         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1668         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1669
1670         /* 802.11 UNII */
1671         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1672         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1673         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1674         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1675         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1676 };
1677
1678 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1679 {
1680         struct hw_mode_spec *spec = &rt2x00dev->spec;
1681         u8 *txpower;
1682         unsigned int i;
1683
1684         /*
1685          * Initialize all hw fields.
1686          */
1687         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1688         rt2x00dev->hw->extra_tx_headroom = 0;
1689         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1690         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1691         rt2x00dev->hw->queues = 2;
1692
1693         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1694         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1695                                 rt2x00_eeprom_addr(rt2x00dev,
1696                                                    EEPROM_MAC_ADDR_0));
1697
1698         /*
1699          * Convert tx_power array in eeprom.
1700          */
1701         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1702         for (i = 0; i < 14; i++)
1703                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1704
1705         /*
1706          * Initialize hw_mode information.
1707          */
1708         spec->supported_bands = SUPPORT_BAND_2GHZ;
1709         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1710         spec->tx_power_a = NULL;
1711         spec->tx_power_bg = txpower;
1712         spec->tx_power_default = DEFAULT_TXPOWER;
1713
1714         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1715                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1716                 spec->channels = rf_vals_bg_2522;
1717         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1718                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1719                 spec->channels = rf_vals_bg_2523;
1720         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1721                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1722                 spec->channels = rf_vals_bg_2524;
1723         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1724                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1725                 spec->channels = rf_vals_bg_2525;
1726         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1727                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1728                 spec->channels = rf_vals_bg_2525e;
1729         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1730                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1731                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1732                 spec->channels = rf_vals_5222;
1733         }
1734 }
1735
1736 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1737 {
1738         int retval;
1739
1740         /*
1741          * Allocate eeprom data.
1742          */
1743         retval = rt2500pci_validate_eeprom(rt2x00dev);
1744         if (retval)
1745                 return retval;
1746
1747         retval = rt2500pci_init_eeprom(rt2x00dev);
1748         if (retval)
1749                 return retval;
1750
1751         /*
1752          * Initialize hw specifications.
1753          */
1754         rt2500pci_probe_hw_mode(rt2x00dev);
1755
1756         /*
1757          * This device requires the atim queue
1758          */
1759         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1760
1761         /*
1762          * Set the rssi offset.
1763          */
1764         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1765
1766         return 0;
1767 }
1768
1769 /*
1770  * IEEE80211 stack callback functions.
1771  */
1772 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1773                                      u32 short_retry, u32 long_retry)
1774 {
1775         struct rt2x00_dev *rt2x00dev = hw->priv;
1776         u32 reg;
1777
1778         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1779         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1780         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1781         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1782
1783         return 0;
1784 }
1785
1786 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1787 {
1788         struct rt2x00_dev *rt2x00dev = hw->priv;
1789         u64 tsf;
1790         u32 reg;
1791
1792         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1793         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1794         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1795         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1796
1797         return tsf;
1798 }
1799
1800 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1801                                    struct ieee80211_tx_control *control)
1802 {
1803         struct rt2x00_dev *rt2x00dev = hw->priv;
1804         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1805         struct queue_entry_priv_pci_tx *priv_tx;
1806         struct skb_frame_desc *skbdesc;
1807         u32 reg;
1808
1809         if (unlikely(!intf->beacon))
1810                 return -ENOBUFS;
1811
1812         priv_tx = intf->beacon->priv_data;
1813
1814         /*
1815          * Fill in skb descriptor
1816          */
1817         skbdesc = get_skb_frame_desc(skb);
1818         memset(skbdesc, 0, sizeof(*skbdesc));
1819         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1820         skbdesc->data = skb->data;
1821         skbdesc->data_len = skb->len;
1822         skbdesc->desc = priv_tx->desc;
1823         skbdesc->desc_len = intf->beacon->queue->desc_size;
1824         skbdesc->entry = intf->beacon;
1825
1826         /*
1827          * Disable beaconing while we are reloading the beacon data,
1828          * otherwise we might be sending out invalid data.
1829          */
1830         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1831         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1832         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1833         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1834         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1835
1836         /*
1837          * mac80211 doesn't provide the control->queue variable
1838          * for beacons. Set our own queue identification so
1839          * it can be used during descriptor initialization.
1840          */
1841         control->queue = RT2X00_BCN_QUEUE_BEACON;
1842         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1843
1844         /*
1845          * Enable beacon generation.
1846          * Write entire beacon with descriptor to register,
1847          * and kick the beacon generator.
1848          */
1849         memcpy(priv_tx->data, skb->data, skb->len);
1850         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1851
1852         return 0;
1853 }
1854
1855 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1856 {
1857         struct rt2x00_dev *rt2x00dev = hw->priv;
1858         u32 reg;
1859
1860         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1861         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1862 }
1863
1864 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1865         .tx                     = rt2x00mac_tx,
1866         .start                  = rt2x00mac_start,
1867         .stop                   = rt2x00mac_stop,
1868         .add_interface          = rt2x00mac_add_interface,
1869         .remove_interface       = rt2x00mac_remove_interface,
1870         .config                 = rt2x00mac_config,
1871         .config_interface       = rt2x00mac_config_interface,
1872         .configure_filter       = rt2x00mac_configure_filter,
1873         .get_stats              = rt2x00mac_get_stats,
1874         .set_retry_limit        = rt2500pci_set_retry_limit,
1875         .bss_info_changed       = rt2x00mac_bss_info_changed,
1876         .conf_tx                = rt2x00mac_conf_tx,
1877         .get_tx_stats           = rt2x00mac_get_tx_stats,
1878         .get_tsf                = rt2500pci_get_tsf,
1879         .beacon_update          = rt2500pci_beacon_update,
1880         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1881 };
1882
1883 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1884         .irq_handler            = rt2500pci_interrupt,
1885         .probe_hw               = rt2500pci_probe_hw,
1886         .initialize             = rt2x00pci_initialize,
1887         .uninitialize           = rt2x00pci_uninitialize,
1888         .init_rxentry           = rt2500pci_init_rxentry,
1889         .init_txentry           = rt2500pci_init_txentry,
1890         .set_device_state       = rt2500pci_set_device_state,
1891         .rfkill_poll            = rt2500pci_rfkill_poll,
1892         .link_stats             = rt2500pci_link_stats,
1893         .reset_tuner            = rt2500pci_reset_tuner,
1894         .link_tuner             = rt2500pci_link_tuner,
1895         .write_tx_desc          = rt2500pci_write_tx_desc,
1896         .write_tx_data          = rt2x00pci_write_tx_data,
1897         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1898         .fill_rxdone            = rt2500pci_fill_rxdone,
1899         .config_filter          = rt2500pci_config_filter,
1900         .config_intf            = rt2500pci_config_intf,
1901         .config_erp             = rt2500pci_config_erp,
1902         .config                 = rt2500pci_config,
1903 };
1904
1905 static const struct data_queue_desc rt2500pci_queue_rx = {
1906         .entry_num              = RX_ENTRIES,
1907         .data_size              = DATA_FRAME_SIZE,
1908         .desc_size              = RXD_DESC_SIZE,
1909         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1910 };
1911
1912 static const struct data_queue_desc rt2500pci_queue_tx = {
1913         .entry_num              = TX_ENTRIES,
1914         .data_size              = DATA_FRAME_SIZE,
1915         .desc_size              = TXD_DESC_SIZE,
1916         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1917 };
1918
1919 static const struct data_queue_desc rt2500pci_queue_bcn = {
1920         .entry_num              = BEACON_ENTRIES,
1921         .data_size              = MGMT_FRAME_SIZE,
1922         .desc_size              = TXD_DESC_SIZE,
1923         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1924 };
1925
1926 static const struct data_queue_desc rt2500pci_queue_atim = {
1927         .entry_num              = ATIM_ENTRIES,
1928         .data_size              = DATA_FRAME_SIZE,
1929         .desc_size              = TXD_DESC_SIZE,
1930         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1931 };
1932
1933 static const struct rt2x00_ops rt2500pci_ops = {
1934         .name           = KBUILD_MODNAME,
1935         .max_sta_intf   = 1,
1936         .max_ap_intf    = 1,
1937         .eeprom_size    = EEPROM_SIZE,
1938         .rf_size        = RF_SIZE,
1939         .rx             = &rt2500pci_queue_rx,
1940         .tx             = &rt2500pci_queue_tx,
1941         .bcn            = &rt2500pci_queue_bcn,
1942         .atim           = &rt2500pci_queue_atim,
1943         .lib            = &rt2500pci_rt2x00_ops,
1944         .hw             = &rt2500pci_mac80211_ops,
1945 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1946         .debugfs        = &rt2500pci_rt2x00debug,
1947 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1948 };
1949
1950 /*
1951  * RT2500pci module information.
1952  */
1953 static struct pci_device_id rt2500pci_device_table[] = {
1954         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1955         { 0, }
1956 };
1957
1958 MODULE_AUTHOR(DRV_PROJECT);
1959 MODULE_VERSION(DRV_VERSION);
1960 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1961 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1962 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1963 MODULE_LICENSE("GPL");
1964
1965 static struct pci_driver rt2500pci_driver = {
1966         .name           = KBUILD_MODNAME,
1967         .id_table       = rt2500pci_device_table,
1968         .probe          = rt2x00pci_probe,
1969         .remove         = __devexit_p(rt2x00pci_remove),
1970         .suspend        = rt2x00pci_suspend,
1971         .resume         = rt2x00pci_resume,
1972 };
1973
1974 static int __init rt2500pci_init(void)
1975 {
1976         return pci_register_driver(&rt2500pci_driver);
1977 }
1978
1979 static void __exit rt2500pci_exit(void)
1980 {
1981         pci_unregister_driver(&rt2500pci_driver);
1982 }
1983
1984 module_init(rt2500pci_init);
1985 module_exit(rt2500pci_exit);