rt2x00: Move packet filter flags
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 /*
247  * Configuration handlers.
248  */
249 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
250                                       __le32 *mac)
251 {
252         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
253                                       (2 * sizeof(__le32)));
254 }
255
256 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
257                                    __le32 *bssid)
258 {
259         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
260                                       (2 * sizeof(__le32)));
261 }
262
263 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
264                                   const int tsf_sync)
265 {
266         u32 reg;
267
268         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
269
270         /*
271          * Enable beacon config
272          */
273         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
274         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
275                            PREAMBLE + get_duration(IEEE80211_HEADER, 20));
276         rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
277                            rt2x00lib_get_ring(rt2x00dev,
278                                               IEEE80211_TX_QUEUE_BEACON)
279                            ->tx_params.cw_min);
280         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
281
282         /*
283          * Enable synchronisation.
284          */
285         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
286         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
287         rt2x00_set_field32(&reg, CSR14_TBCN, (tsf_sync == TSF_SYNC_BEACON));
288         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
289         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
290         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
291 }
292
293 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
294                                       const int short_preamble,
295                                       const int ack_timeout,
296                                       const int ack_consume_time)
297 {
298         int preamble_mask;
299         u32 reg;
300
301         /*
302          * When short preamble is enabled, we should set bit 0x08
303          */
304         preamble_mask = short_preamble << 3;
305
306         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
307         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
308         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
309         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
310
311         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
312         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
313         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
314         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
315         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
316
317         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
318         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
319         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
320         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
321         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
322
323         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
324         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
325         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
326         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
327         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
328
329         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
330         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
331         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
332         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
333         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
334 }
335
336 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
337                                      const int basic_rate_mask)
338 {
339         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
340 }
341
342 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
343                                      struct rf_channel *rf, const int txpower)
344 {
345         u8 r70;
346
347         /*
348          * Set TXpower.
349          */
350         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
351
352         /*
353          * Switch on tuning bits.
354          * For RT2523 devices we do not need to update the R1 register.
355          */
356         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
357                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
358         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
359
360         /*
361          * For RT2525 we should first set the channel to half band higher.
362          */
363         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
364                 static const u32 vals[] = {
365                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
366                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
367                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
368                         0x00080d2e, 0x00080d3a
369                 };
370
371                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
372                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
373                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
374                 if (rf->rf4)
375                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
376         }
377
378         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
379         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
380         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
381         if (rf->rf4)
382                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
383
384         /*
385          * Channel 14 requires the Japan filter bit to be set.
386          */
387         r70 = 0x46;
388         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
389         rt2500pci_bbp_write(rt2x00dev, 70, r70);
390
391         msleep(1);
392
393         /*
394          * Switch off tuning bits.
395          * For RT2523 devices we do not need to update the R1 register.
396          */
397         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
398                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
399                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
400         }
401
402         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
403         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
404
405         /*
406          * Clear false CRC during channel switch.
407          */
408         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
409 }
410
411 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
412                                      const int txpower)
413 {
414         u32 rf3;
415
416         rt2x00_rf_read(rt2x00dev, 3, &rf3);
417         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
418         rt2500pci_rf_write(rt2x00dev, 3, rf3);
419 }
420
421 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
422                                      struct antenna_setup *ant)
423 {
424         u32 reg;
425         u8 r14;
426         u8 r2;
427
428         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
429         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
430         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
431
432         /*
433          * Configure the TX antenna.
434          */
435         switch (ant->tx) {
436         case ANTENNA_A:
437                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
438                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
439                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
440                 break;
441         case ANTENNA_HW_DIVERSITY:
442         case ANTENNA_SW_DIVERSITY:
443                 /*
444                  * NOTE: We should never come here because rt2x00lib is
445                  * supposed to catch this and send us the correct antenna
446                  * explicitely. However we are nog going to bug about this.
447                  * Instead, just default to antenna B.
448                  */
449         case ANTENNA_B:
450                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
451                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
452                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
453                 break;
454         }
455
456         /*
457          * Configure the RX antenna.
458          */
459         switch (ant->rx) {
460         case ANTENNA_A:
461                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
462                 break;
463         case ANTENNA_HW_DIVERSITY:
464         case ANTENNA_SW_DIVERSITY:
465                 /*
466                  * NOTE: We should never come here because rt2x00lib is
467                  * supposed to catch this and send us the correct antenna
468                  * explicitely. However we are nog going to bug about this.
469                  * Instead, just default to antenna B.
470                  */
471         case ANTENNA_B:
472                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
473                 break;
474         }
475
476         /*
477          * RT2525E and RT5222 need to flip TX I/Q
478          */
479         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
480             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
481                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
482                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
483                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
484
485                 /*
486                  * RT2525E does not need RX I/Q Flip.
487                  */
488                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
489                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
490         } else {
491                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
492                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
493         }
494
495         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
496         rt2500pci_bbp_write(rt2x00dev, 14, r14);
497         rt2500pci_bbp_write(rt2x00dev, 2, r2);
498 }
499
500 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
501                                       struct rt2x00lib_conf *libconf)
502 {
503         u32 reg;
504
505         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
506         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
507         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
508
509         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
510         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
511         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
512         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
513
514         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
515         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
516         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
517         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
518
519         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
520         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
521         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
522         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
523
524         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
525         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
526                            libconf->conf->beacon_int * 16);
527         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
528                            libconf->conf->beacon_int * 16);
529         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
530 }
531
532 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
533                              const unsigned int flags,
534                              struct rt2x00lib_conf *libconf)
535 {
536         if (flags & CONFIG_UPDATE_PHYMODE)
537                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
538         if (flags & CONFIG_UPDATE_CHANNEL)
539                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
540                                          libconf->conf->power_level);
541         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
542                 rt2500pci_config_txpower(rt2x00dev,
543                                          libconf->conf->power_level);
544         if (flags & CONFIG_UPDATE_ANTENNA)
545                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
546         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
547                 rt2500pci_config_duration(rt2x00dev, libconf);
548 }
549
550 /*
551  * LED functions.
552  */
553 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
554 {
555         u32 reg;
556
557         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
558
559         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
560         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
561         rt2x00_set_field32(&reg, LEDCSR_LINK,
562                            (rt2x00dev->led_mode != LED_MODE_ASUS));
563         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
564                            (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
565         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
566 }
567
568 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
569 {
570         u32 reg;
571
572         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
573         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
574         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
575         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
576 }
577
578 /*
579  * Link tuning
580  */
581 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
582                                  struct link_qual *qual)
583 {
584         u32 reg;
585
586         /*
587          * Update FCS error count from register.
588          */
589         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
590         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
591
592         /*
593          * Update False CCA count from register.
594          */
595         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
596         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
597 }
598
599 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
600 {
601         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
602         rt2x00dev->link.vgc_level = 0x48;
603 }
604
605 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
606 {
607         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
608         u8 r17;
609
610         /*
611          * To prevent collisions with MAC ASIC on chipsets
612          * up to version C the link tuning should halt after 20
613          * seconds.
614          */
615         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
616             rt2x00dev->link.count > 20)
617                 return;
618
619         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
620
621         /*
622          * Chipset versions C and lower should directly continue
623          * to the dynamic CCA tuning.
624          */
625         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
626                 goto dynamic_cca_tune;
627
628         /*
629          * A too low RSSI will cause too much false CCA which will
630          * then corrupt the R17 tuning. To remidy this the tuning should
631          * be stopped (While making sure the R17 value will not exceed limits)
632          */
633         if (rssi < -80 && rt2x00dev->link.count > 20) {
634                 if (r17 >= 0x41) {
635                         r17 = rt2x00dev->link.vgc_level;
636                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
637                 }
638                 return;
639         }
640
641         /*
642          * Special big-R17 for short distance
643          */
644         if (rssi >= -58) {
645                 if (r17 != 0x50)
646                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
647                 return;
648         }
649
650         /*
651          * Special mid-R17 for middle distance
652          */
653         if (rssi >= -74) {
654                 if (r17 != 0x41)
655                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
656                 return;
657         }
658
659         /*
660          * Leave short or middle distance condition, restore r17
661          * to the dynamic tuning range.
662          */
663         if (r17 >= 0x41) {
664                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
665                 return;
666         }
667
668 dynamic_cca_tune:
669
670         /*
671          * R17 is inside the dynamic tuning range,
672          * start tuning the link based on the false cca counter.
673          */
674         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
675                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
676                 rt2x00dev->link.vgc_level = r17;
677         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
678                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
679                 rt2x00dev->link.vgc_level = r17;
680         }
681 }
682
683 /*
684  * Initialization functions.
685  */
686 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
687 {
688         struct data_ring *ring = rt2x00dev->rx;
689         __le32 *rxd;
690         unsigned int i;
691         u32 word;
692
693         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
694
695         for (i = 0; i < ring->stats.limit; i++) {
696                 rxd = ring->entry[i].priv;
697
698                 rt2x00_desc_read(rxd, 1, &word);
699                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
700                                    ring->entry[i].data_dma);
701                 rt2x00_desc_write(rxd, 1, word);
702
703                 rt2x00_desc_read(rxd, 0, &word);
704                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
705                 rt2x00_desc_write(rxd, 0, word);
706         }
707
708         rt2x00_ring_index_clear(rt2x00dev->rx);
709 }
710
711 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
712 {
713         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
714         __le32 *txd;
715         unsigned int i;
716         u32 word;
717
718         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
719
720         for (i = 0; i < ring->stats.limit; i++) {
721                 txd = ring->entry[i].priv;
722
723                 rt2x00_desc_read(txd, 1, &word);
724                 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
725                                    ring->entry[i].data_dma);
726                 rt2x00_desc_write(txd, 1, word);
727
728                 rt2x00_desc_read(txd, 0, &word);
729                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
730                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
731                 rt2x00_desc_write(txd, 0, word);
732         }
733
734         rt2x00_ring_index_clear(ring);
735 }
736
737 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
738 {
739         u32 reg;
740
741         /*
742          * Initialize rings.
743          */
744         rt2500pci_init_rxring(rt2x00dev);
745         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
746         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
747         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
748         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
749
750         /*
751          * Initialize registers.
752          */
753         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
754         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
755                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
756         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
757                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
758         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
759                            rt2x00dev->bcn[1].stats.limit);
760         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
761                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
762         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
763
764         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
765         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
766                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
767         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
768
769         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
770         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
771                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
772         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
773
774         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
775         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
776                            rt2x00dev->bcn[1].data_dma);
777         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
778
779         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
780         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
781                            rt2x00dev->bcn[0].data_dma);
782         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
783
784         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
785         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
786         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
787         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
788
789         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
790         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
791                            rt2x00dev->rx->data_dma);
792         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
793
794         return 0;
795 }
796
797 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
798 {
799         u32 reg;
800
801         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
802         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
803         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
804         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
805
806         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
807         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
808         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
809         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
810         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
811
812         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
813         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
814                            rt2x00dev->rx->data_size / 128);
815         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
816
817         /*
818          * Always use CWmin and CWmax set in descriptor.
819          */
820         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
821         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
822         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
823
824         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
825
826         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
827         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
828         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
829         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
830         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
831         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
832         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
833         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
834         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
835         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
836
837         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
838         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
839         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
840         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
841         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
842         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
843
844         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
845         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
846         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
847         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
848         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
849         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
850
851         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
852         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
853         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
854         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
855         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
856         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
857
858         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
859         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
860         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
861         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
862         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
863         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
864         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
865         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
866         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
867         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
868
869         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
870         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
871         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
872         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
873         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
874         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
875         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
876         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
877         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
878
879         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
880
881         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
882         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
883
884         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
885                 return -EBUSY;
886
887         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
888         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
889
890         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
891         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
892         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
893
894         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
895         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
896         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
897         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
898         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
899         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
900         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
901         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
902
903         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
904
905         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
906
907         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
908         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
909         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
910         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
911         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
912
913         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
914         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
915         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
916         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
917
918         /*
919          * We must clear the FCS and FIFO error count.
920          * These registers are cleared on read,
921          * so we may pass a useless variable to store the value.
922          */
923         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
924         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
925
926         return 0;
927 }
928
929 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
930 {
931         unsigned int i;
932         u16 eeprom;
933         u8 reg_id;
934         u8 value;
935
936         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
937                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
938                 if ((value != 0xff) && (value != 0x00))
939                         goto continue_csr_init;
940                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
941                 udelay(REGISTER_BUSY_DELAY);
942         }
943
944         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
945         return -EACCES;
946
947 continue_csr_init:
948         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
949         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
950         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
951         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
952         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
953         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
954         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
955         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
956         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
957         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
958         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
959         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
960         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
961         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
962         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
963         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
964         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
965         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
966         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
967         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
968         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
969         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
970         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
971         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
972         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
973         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
974         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
975         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
976         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
977         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
978
979         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
980         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
981                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
982
983                 if (eeprom != 0xffff && eeprom != 0x0000) {
984                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
985                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
986                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
987                               reg_id, value);
988                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
989                 }
990         }
991         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
992
993         return 0;
994 }
995
996 /*
997  * Device state switch handlers.
998  */
999 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1000                                 enum dev_state state)
1001 {
1002         u32 reg;
1003
1004         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1005         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1006                            state == STATE_RADIO_RX_OFF);
1007         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1008 }
1009
1010 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1011                                  enum dev_state state)
1012 {
1013         int mask = (state == STATE_RADIO_IRQ_OFF);
1014         u32 reg;
1015
1016         /*
1017          * When interrupts are being enabled, the interrupt registers
1018          * should clear the register to assure a clean state.
1019          */
1020         if (state == STATE_RADIO_IRQ_ON) {
1021                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1022                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1023         }
1024
1025         /*
1026          * Only toggle the interrupts bits we are going to use.
1027          * Non-checked interrupt bits are disabled by default.
1028          */
1029         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1030         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1031         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1032         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1033         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1034         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1035         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1036 }
1037
1038 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1039 {
1040         /*
1041          * Initialize all registers.
1042          */
1043         if (rt2500pci_init_rings(rt2x00dev) ||
1044             rt2500pci_init_registers(rt2x00dev) ||
1045             rt2500pci_init_bbp(rt2x00dev)) {
1046                 ERROR(rt2x00dev, "Register initialization failed.\n");
1047                 return -EIO;
1048         }
1049
1050         /*
1051          * Enable interrupts.
1052          */
1053         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1054
1055         /*
1056          * Enable LED
1057          */
1058         rt2500pci_enable_led(rt2x00dev);
1059
1060         return 0;
1061 }
1062
1063 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1064 {
1065         u32 reg;
1066
1067         /*
1068          * Disable LED
1069          */
1070         rt2500pci_disable_led(rt2x00dev);
1071
1072         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1073
1074         /*
1075          * Disable synchronisation.
1076          */
1077         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1078
1079         /*
1080          * Cancel RX and TX.
1081          */
1082         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1083         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1084         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1085
1086         /*
1087          * Disable interrupts.
1088          */
1089         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1090 }
1091
1092 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1093                                enum dev_state state)
1094 {
1095         u32 reg;
1096         unsigned int i;
1097         char put_to_sleep;
1098         char bbp_state;
1099         char rf_state;
1100
1101         put_to_sleep = (state != STATE_AWAKE);
1102
1103         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1104         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1105         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1106         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1107         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1108         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1109
1110         /*
1111          * Device is not guaranteed to be in the requested state yet.
1112          * We must wait until the register indicates that the
1113          * device has entered the correct state.
1114          */
1115         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1116                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1117                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1118                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1119                 if (bbp_state == state && rf_state == state)
1120                         return 0;
1121                 msleep(10);
1122         }
1123
1124         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1125                "current device state: bbp %d and rf %d.\n",
1126                state, bbp_state, rf_state);
1127
1128         return -EBUSY;
1129 }
1130
1131 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1132                                       enum dev_state state)
1133 {
1134         int retval = 0;
1135
1136         switch (state) {
1137         case STATE_RADIO_ON:
1138                 retval = rt2500pci_enable_radio(rt2x00dev);
1139                 break;
1140         case STATE_RADIO_OFF:
1141                 rt2500pci_disable_radio(rt2x00dev);
1142                 break;
1143         case STATE_RADIO_RX_ON:
1144         case STATE_RADIO_RX_OFF:
1145                 rt2500pci_toggle_rx(rt2x00dev, state);
1146                 break;
1147         case STATE_DEEP_SLEEP:
1148         case STATE_SLEEP:
1149         case STATE_STANDBY:
1150         case STATE_AWAKE:
1151                 retval = rt2500pci_set_state(rt2x00dev, state);
1152                 break;
1153         default:
1154                 retval = -ENOTSUPP;
1155                 break;
1156         }
1157
1158         return retval;
1159 }
1160
1161 /*
1162  * TX descriptor initialization
1163  */
1164 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1165                                     __le32 *txd,
1166                                     struct txdata_entry_desc *desc,
1167                                     struct ieee80211_hdr *ieee80211hdr,
1168                                     unsigned int length,
1169                                     struct ieee80211_tx_control *control)
1170 {
1171         u32 word;
1172
1173         /*
1174          * Start writing the descriptor words.
1175          */
1176         rt2x00_desc_read(txd, 2, &word);
1177         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1178         rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1179         rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1180         rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1181         rt2x00_desc_write(txd, 2, word);
1182
1183         rt2x00_desc_read(txd, 3, &word);
1184         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1185         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1186         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1187         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1188         rt2x00_desc_write(txd, 3, word);
1189
1190         rt2x00_desc_read(txd, 10, &word);
1191         rt2x00_set_field32(&word, TXD_W10_RTS,
1192                            test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1193         rt2x00_desc_write(txd, 10, word);
1194
1195         rt2x00_desc_read(txd, 0, &word);
1196         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1197         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1198         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1199                            test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1200         rt2x00_set_field32(&word, TXD_W0_ACK,
1201                            test_bit(ENTRY_TXD_ACK, &desc->flags));
1202         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1203                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1204         rt2x00_set_field32(&word, TXD_W0_OFDM,
1205                            test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1206         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1207         rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1208         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1209                            !!(control->flags &
1210                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1211         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1212         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1213         rt2x00_desc_write(txd, 0, word);
1214 }
1215
1216 /*
1217  * TX data initialization
1218  */
1219 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1220                                     unsigned int queue)
1221 {
1222         u32 reg;
1223
1224         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1225                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1226                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1227                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1228                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1229                 }
1230                 return;
1231         }
1232
1233         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1234         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1235                            (queue == IEEE80211_TX_QUEUE_DATA0));
1236         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1237                            (queue == IEEE80211_TX_QUEUE_DATA1));
1238         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1239                            (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1240         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1241 }
1242
1243 /*
1244  * RX control handlers
1245  */
1246 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1247                                   struct rxdata_entry_desc *desc)
1248 {
1249         __le32 *rxd = entry->priv;
1250         u32 word0;
1251         u32 word2;
1252
1253         rt2x00_desc_read(rxd, 0, &word0);
1254         rt2x00_desc_read(rxd, 2, &word2);
1255
1256         desc->flags = 0;
1257         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1258                 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1259         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1260                 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1261
1262         desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1263         desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1264             entry->ring->rt2x00dev->rssi_offset;
1265         desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1266         desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1267 }
1268
1269 /*
1270  * Interrupt functions.
1271  */
1272 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1273 {
1274         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1275         struct data_entry *entry;
1276         __le32 *txd;
1277         u32 word;
1278         int tx_status;
1279         int retry;
1280
1281         while (!rt2x00_ring_empty(ring)) {
1282                 entry = rt2x00_get_data_entry_done(ring);
1283                 txd = entry->priv;
1284                 rt2x00_desc_read(txd, 0, &word);
1285
1286                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1287                     !rt2x00_get_field32(word, TXD_W0_VALID))
1288                         break;
1289
1290                 /*
1291                  * Obtain the status about this packet.
1292                  */
1293                 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1294                 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1295
1296                 rt2x00pci_txdone(rt2x00dev, entry, tx_status, retry);
1297         }
1298 }
1299
1300 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1301 {
1302         struct rt2x00_dev *rt2x00dev = dev_instance;
1303         u32 reg;
1304
1305         /*
1306          * Get the interrupt sources & saved to local variable.
1307          * Write register value back to clear pending interrupts.
1308          */
1309         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1310         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1311
1312         if (!reg)
1313                 return IRQ_NONE;
1314
1315         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1316                 return IRQ_HANDLED;
1317
1318         /*
1319          * Handle interrupts, walk through all bits
1320          * and run the tasks, the bits are checked in order of
1321          * priority.
1322          */
1323
1324         /*
1325          * 1 - Beacon timer expired interrupt.
1326          */
1327         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1328                 rt2x00lib_beacondone(rt2x00dev);
1329
1330         /*
1331          * 2 - Rx ring done interrupt.
1332          */
1333         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1334                 rt2x00pci_rxdone(rt2x00dev);
1335
1336         /*
1337          * 3 - Atim ring transmit done interrupt.
1338          */
1339         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1340                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1341
1342         /*
1343          * 4 - Priority ring transmit done interrupt.
1344          */
1345         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1346                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1347
1348         /*
1349          * 5 - Tx ring transmit done interrupt.
1350          */
1351         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1352                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1353
1354         return IRQ_HANDLED;
1355 }
1356
1357 /*
1358  * Device probe functions.
1359  */
1360 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1361 {
1362         struct eeprom_93cx6 eeprom;
1363         u32 reg;
1364         u16 word;
1365         u8 *mac;
1366
1367         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1368
1369         eeprom.data = rt2x00dev;
1370         eeprom.register_read = rt2500pci_eepromregister_read;
1371         eeprom.register_write = rt2500pci_eepromregister_write;
1372         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1373             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1374         eeprom.reg_data_in = 0;
1375         eeprom.reg_data_out = 0;
1376         eeprom.reg_data_clock = 0;
1377         eeprom.reg_chip_select = 0;
1378
1379         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1380                                EEPROM_SIZE / sizeof(u16));
1381
1382         /*
1383          * Start validation of the data that has been read.
1384          */
1385         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1386         if (!is_valid_ether_addr(mac)) {
1387                 DECLARE_MAC_BUF(macbuf);
1388
1389                 random_ether_addr(mac);
1390                 EEPROM(rt2x00dev, "MAC: %s\n",
1391                        print_mac(macbuf, mac));
1392         }
1393
1394         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1395         if (word == 0xffff) {
1396                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1397                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1398                                    ANTENNA_SW_DIVERSITY);
1399                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1400                                    ANTENNA_SW_DIVERSITY);
1401                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1402                                    LED_MODE_DEFAULT);
1403                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1404                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1405                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1406                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1407                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1408         }
1409
1410         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1411         if (word == 0xffff) {
1412                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1413                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1414                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1415                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1416                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1417         }
1418
1419         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1420         if (word == 0xffff) {
1421                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1422                                    DEFAULT_RSSI_OFFSET);
1423                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1424                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1425         }
1426
1427         return 0;
1428 }
1429
1430 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1431 {
1432         u32 reg;
1433         u16 value;
1434         u16 eeprom;
1435
1436         /*
1437          * Read EEPROM word for configuration.
1438          */
1439         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1440
1441         /*
1442          * Identify RF chipset.
1443          */
1444         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1445         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1446         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1447
1448         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1449             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1450             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1451             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1452             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1453             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1454                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1455                 return -ENODEV;
1456         }
1457
1458         /*
1459          * Identify default antenna configuration.
1460          */
1461         rt2x00dev->default_ant.tx =
1462             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1463         rt2x00dev->default_ant.rx =
1464             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1465
1466         /*
1467          * Store led mode, for correct led behaviour.
1468          */
1469         rt2x00dev->led_mode =
1470             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1471
1472         /*
1473          * Detect if this device has an hardware controlled radio.
1474          */
1475 #ifdef CONFIG_RT2500PCI_RFKILL
1476         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1477                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1478 #endif /* CONFIG_RT2500PCI_RFKILL */
1479
1480         /*
1481          * Check if the BBP tuning should be enabled.
1482          */
1483         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1484
1485         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1486                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1487
1488         /*
1489          * Read the RSSI <-> dBm offset information.
1490          */
1491         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1492         rt2x00dev->rssi_offset =
1493             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1494
1495         return 0;
1496 }
1497
1498 /*
1499  * RF value list for RF2522
1500  * Supports: 2.4 GHz
1501  */
1502 static const struct rf_channel rf_vals_bg_2522[] = {
1503         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1504         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1505         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1506         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1507         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1508         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1509         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1510         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1511         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1512         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1513         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1514         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1515         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1516         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1517 };
1518
1519 /*
1520  * RF value list for RF2523
1521  * Supports: 2.4 GHz
1522  */
1523 static const struct rf_channel rf_vals_bg_2523[] = {
1524         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1525         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1526         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1527         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1528         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1529         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1530         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1531         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1532         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1533         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1534         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1535         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1536         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1537         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1538 };
1539
1540 /*
1541  * RF value list for RF2524
1542  * Supports: 2.4 GHz
1543  */
1544 static const struct rf_channel rf_vals_bg_2524[] = {
1545         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1546         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1547         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1548         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1549         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1550         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1551         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1552         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1553         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1554         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1555         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1556         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1557         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1558         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1559 };
1560
1561 /*
1562  * RF value list for RF2525
1563  * Supports: 2.4 GHz
1564  */
1565 static const struct rf_channel rf_vals_bg_2525[] = {
1566         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1567         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1568         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1569         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1570         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1571         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1572         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1573         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1574         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1575         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1576         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1577         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1578         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1579         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1580 };
1581
1582 /*
1583  * RF value list for RF2525e
1584  * Supports: 2.4 GHz
1585  */
1586 static const struct rf_channel rf_vals_bg_2525e[] = {
1587         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1588         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1589         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1590         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1591         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1592         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1593         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1594         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1595         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1596         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1597         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1598         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1599         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1600         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1601 };
1602
1603 /*
1604  * RF value list for RF5222
1605  * Supports: 2.4 GHz & 5.2 GHz
1606  */
1607 static const struct rf_channel rf_vals_5222[] = {
1608         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1609         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1610         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1611         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1612         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1613         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1614         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1615         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1616         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1617         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1618         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1619         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1620         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1621         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1622
1623         /* 802.11 UNI / HyperLan 2 */
1624         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1625         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1626         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1627         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1628         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1629         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1630         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1631         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1632
1633         /* 802.11 HyperLan 2 */
1634         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1635         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1636         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1637         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1638         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1639         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1640         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1641         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1642         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1643         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1644
1645         /* 802.11 UNII */
1646         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1647         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1648         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1649         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1650         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1651 };
1652
1653 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1654 {
1655         struct hw_mode_spec *spec = &rt2x00dev->spec;
1656         u8 *txpower;
1657         unsigned int i;
1658
1659         /*
1660          * Initialize all hw fields.
1661          */
1662         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1663         rt2x00dev->hw->extra_tx_headroom = 0;
1664         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1665         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1666         rt2x00dev->hw->queues = 2;
1667
1668         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1669         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1670                                 rt2x00_eeprom_addr(rt2x00dev,
1671                                                    EEPROM_MAC_ADDR_0));
1672
1673         /*
1674          * Convert tx_power array in eeprom.
1675          */
1676         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1677         for (i = 0; i < 14; i++)
1678                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1679
1680         /*
1681          * Initialize hw_mode information.
1682          */
1683         spec->num_modes = 2;
1684         spec->num_rates = 12;
1685         spec->tx_power_a = NULL;
1686         spec->tx_power_bg = txpower;
1687         spec->tx_power_default = DEFAULT_TXPOWER;
1688
1689         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1690                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1691                 spec->channels = rf_vals_bg_2522;
1692         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1693                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1694                 spec->channels = rf_vals_bg_2523;
1695         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1696                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1697                 spec->channels = rf_vals_bg_2524;
1698         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1699                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1700                 spec->channels = rf_vals_bg_2525;
1701         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1702                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1703                 spec->channels = rf_vals_bg_2525e;
1704         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1705                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1706                 spec->channels = rf_vals_5222;
1707                 spec->num_modes = 3;
1708         }
1709 }
1710
1711 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1712 {
1713         int retval;
1714
1715         /*
1716          * Allocate eeprom data.
1717          */
1718         retval = rt2500pci_validate_eeprom(rt2x00dev);
1719         if (retval)
1720                 return retval;
1721
1722         retval = rt2500pci_init_eeprom(rt2x00dev);
1723         if (retval)
1724                 return retval;
1725
1726         /*
1727          * Initialize hw specifications.
1728          */
1729         rt2500pci_probe_hw_mode(rt2x00dev);
1730
1731         /*
1732          * This device requires the beacon ring
1733          */
1734         __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1735
1736         /*
1737          * Set the rssi offset.
1738          */
1739         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1740
1741         return 0;
1742 }
1743
1744 /*
1745  * IEEE80211 stack callback functions.
1746  */
1747 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1748                                        unsigned int changed_flags,
1749                                        unsigned int *total_flags,
1750                                        int mc_count,
1751                                        struct dev_addr_list *mc_list)
1752 {
1753         struct rt2x00_dev *rt2x00dev = hw->priv;
1754         u32 reg;
1755
1756         /*
1757          * Mask off any flags we are going to ignore from
1758          * the total_flags field.
1759          */
1760         *total_flags &=
1761             FIF_ALLMULTI |
1762             FIF_FCSFAIL |
1763             FIF_PLCPFAIL |
1764             FIF_CONTROL |
1765             FIF_OTHER_BSS |
1766             FIF_PROMISC_IN_BSS;
1767
1768         /*
1769          * Apply some rules to the filters:
1770          * - Some filters imply different filters to be set.
1771          * - Some things we can't filter out at all.
1772          */
1773         if (mc_count)
1774                 *total_flags |= FIF_ALLMULTI;
1775         if (*total_flags & FIF_OTHER_BSS ||
1776             *total_flags & FIF_PROMISC_IN_BSS)
1777                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1778
1779         /*
1780          * Check if there is any work left for us.
1781          */
1782         if (rt2x00dev->packet_filter == *total_flags)
1783                 return;
1784         rt2x00dev->packet_filter = *total_flags;
1785
1786         /*
1787          * Start configuration steps.
1788          * Note that the version error will always be dropped
1789          * and broadcast frames will always be accepted since
1790          * there is no filter for it at this time.
1791          */
1792         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1793         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1794                            !(*total_flags & FIF_FCSFAIL));
1795         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1796                            !(*total_flags & FIF_PLCPFAIL));
1797         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1798                            !(*total_flags & FIF_CONTROL));
1799         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1800                            !(*total_flags & FIF_PROMISC_IN_BSS));
1801         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1802                            !(*total_flags & FIF_PROMISC_IN_BSS));
1803         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1804         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1805                            !(*total_flags & FIF_ALLMULTI));
1806         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1807         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1808 }
1809
1810 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1811                                      u32 short_retry, u32 long_retry)
1812 {
1813         struct rt2x00_dev *rt2x00dev = hw->priv;
1814         u32 reg;
1815
1816         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1817         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1818         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1819         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1820
1821         return 0;
1822 }
1823
1824 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1825 {
1826         struct rt2x00_dev *rt2x00dev = hw->priv;
1827         u64 tsf;
1828         u32 reg;
1829
1830         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1831         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1832         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1833         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1834
1835         return tsf;
1836 }
1837
1838 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1839 {
1840         struct rt2x00_dev *rt2x00dev = hw->priv;
1841
1842         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1843         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1844 }
1845
1846 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1847 {
1848         struct rt2x00_dev *rt2x00dev = hw->priv;
1849         u32 reg;
1850
1851         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1852         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1853 }
1854
1855 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1856         .tx                     = rt2x00mac_tx,
1857         .start                  = rt2x00mac_start,
1858         .stop                   = rt2x00mac_stop,
1859         .add_interface          = rt2x00mac_add_interface,
1860         .remove_interface       = rt2x00mac_remove_interface,
1861         .config                 = rt2x00mac_config,
1862         .config_interface       = rt2x00mac_config_interface,
1863         .configure_filter       = rt2500pci_configure_filter,
1864         .get_stats              = rt2x00mac_get_stats,
1865         .set_retry_limit        = rt2500pci_set_retry_limit,
1866         .erp_ie_changed         = rt2x00mac_erp_ie_changed,
1867         .conf_tx                = rt2x00mac_conf_tx,
1868         .get_tx_stats           = rt2x00mac_get_tx_stats,
1869         .get_tsf                = rt2500pci_get_tsf,
1870         .reset_tsf              = rt2500pci_reset_tsf,
1871         .beacon_update          = rt2x00pci_beacon_update,
1872         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1873 };
1874
1875 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1876         .irq_handler            = rt2500pci_interrupt,
1877         .probe_hw               = rt2500pci_probe_hw,
1878         .initialize             = rt2x00pci_initialize,
1879         .uninitialize           = rt2x00pci_uninitialize,
1880         .set_device_state       = rt2500pci_set_device_state,
1881         .rfkill_poll            = rt2500pci_rfkill_poll,
1882         .link_stats             = rt2500pci_link_stats,
1883         .reset_tuner            = rt2500pci_reset_tuner,
1884         .link_tuner             = rt2500pci_link_tuner,
1885         .write_tx_desc          = rt2500pci_write_tx_desc,
1886         .write_tx_data          = rt2x00pci_write_tx_data,
1887         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1888         .fill_rxdone            = rt2500pci_fill_rxdone,
1889         .config_mac_addr        = rt2500pci_config_mac_addr,
1890         .config_bssid           = rt2500pci_config_bssid,
1891         .config_type            = rt2500pci_config_type,
1892         .config_preamble        = rt2500pci_config_preamble,
1893         .config                 = rt2500pci_config,
1894 };
1895
1896 static const struct rt2x00_ops rt2500pci_ops = {
1897         .name           = KBUILD_MODNAME,
1898         .rxd_size       = RXD_DESC_SIZE,
1899         .txd_size       = TXD_DESC_SIZE,
1900         .eeprom_size    = EEPROM_SIZE,
1901         .rf_size        = RF_SIZE,
1902         .lib            = &rt2500pci_rt2x00_ops,
1903         .hw             = &rt2500pci_mac80211_ops,
1904 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1905         .debugfs        = &rt2500pci_rt2x00debug,
1906 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1907 };
1908
1909 /*
1910  * RT2500pci module information.
1911  */
1912 static struct pci_device_id rt2500pci_device_table[] = {
1913         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1914         { 0, }
1915 };
1916
1917 MODULE_AUTHOR(DRV_PROJECT);
1918 MODULE_VERSION(DRV_VERSION);
1919 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1920 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1921 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1922 MODULE_LICENSE("GPL");
1923
1924 static struct pci_driver rt2500pci_driver = {
1925         .name           = KBUILD_MODNAME,
1926         .id_table       = rt2500pci_device_table,
1927         .probe          = rt2x00pci_probe,
1928         .remove         = __devexit_p(rt2x00pci_remove),
1929         .suspend        = rt2x00pci_suspend,
1930         .resume         = rt2x00pci_resume,
1931 };
1932
1933 static int __init rt2500pci_init(void)
1934 {
1935         return pci_register_driver(&rt2500pci_driver);
1936 }
1937
1938 static void __exit rt2500pci_exit(void)
1939 {
1940         pci_unregister_driver(&rt2500pci_driver);
1941 }
1942
1943 module_init(rt2500pci_init);
1944 module_exit(rt2500pci_exit);