rt2x00: Correctly set ACK bit in tx descriptors
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 /*
28  * Set enviroment defines for rt2x00.h
29  */
30 #define DRV_NAME "rt2500pci"
31
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt2500pci.h"
43
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00pci_register_read and rt2x00pci_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
58 {
59         u32 reg;
60         unsigned int i;
61
62         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65                         break;
66                 udelay(REGISTER_BUSY_DELAY);
67         }
68
69         return reg;
70 }
71
72 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
73                                 const unsigned int word, const u8 value)
74 {
75         u32 reg;
76
77         /*
78          * Wait until the BBP becomes ready.
79          */
80         reg = rt2500pci_bbp_check(rt2x00dev);
81         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83                 return;
84         }
85
86         /*
87          * Write the data into the BBP.
88          */
89         reg = 0;
90         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96 }
97
98 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
99                                const unsigned int word, u8 *value)
100 {
101         u32 reg;
102
103         /*
104          * Wait until the BBP becomes ready.
105          */
106         reg = rt2500pci_bbp_check(rt2x00dev);
107         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109                 return;
110         }
111
112         /*
113          * Write the request into the BBP.
114          */
115         reg = 0;
116         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122         /*
123          * Wait until the BBP becomes ready.
124          */
125         reg = rt2500pci_bbp_check(rt2x00dev);
126         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128                 *value = 0xff;
129                 return;
130         }
131
132         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133 }
134
135 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
136                                const unsigned int word, const u32 value)
137 {
138         u32 reg;
139         unsigned int i;
140
141         if (!word)
142                 return;
143
144         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147                         goto rf_write;
148                 udelay(REGISTER_BUSY_DELAY);
149         }
150
151         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152         return;
153
154 rf_write:
155         reg = 0;
156         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162         rt2x00_rf_write(rt2x00dev, word, value);
163 }
164
165 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166 {
167         struct rt2x00_dev *rt2x00dev = eeprom->data;
168         u32 reg;
169
170         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174         eeprom->reg_data_clock =
175             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176         eeprom->reg_chip_select =
177             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178 }
179
180 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181 {
182         struct rt2x00_dev *rt2x00dev = eeprom->data;
183         u32 reg = 0;
184
185         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188                            !!eeprom->reg_data_clock);
189         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190                            !!eeprom->reg_chip_select);
191
192         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, u32 *data)
200 {
201         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202 }
203
204 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
205                                 const unsigned int word, u32 data)
206 {
207         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208 }
209
210 static const struct rt2x00debug rt2500pci_rt2x00debug = {
211         .owner  = THIS_MODULE,
212         .csr    = {
213                 .read           = rt2500pci_read_csr,
214                 .write          = rt2500pci_write_csr,
215                 .word_size      = sizeof(u32),
216                 .word_count     = CSR_REG_SIZE / sizeof(u32),
217         },
218         .eeprom = {
219                 .read           = rt2x00_eeprom_read,
220                 .write          = rt2x00_eeprom_write,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt2500pci_bbp_read,
226                 .write          = rt2500pci_bbp_write,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt2500pci_rf_write,
233                 .word_size      = sizeof(u32),
234                 .word_count     = RF_SIZE / sizeof(u32),
235         },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 #ifdef CONFIG_RT2500PCI_RFKILL
240 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246 }
247 #else
248 #define rt2500pci_rfkill_poll   NULL
249 #endif /* CONFIG_RT2500PCI_RFKILL */
250
251 /*
252  * Configuration handlers.
253  */
254 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255                                       __le32 *mac)
256 {
257         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258                                       (2 * sizeof(__le32)));
259 }
260
261 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262                                    __le32 *bssid)
263 {
264         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265                                       (2 * sizeof(__le32)));
266 }
267
268 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
269                                   const int tsf_sync)
270 {
271         u32 reg;
272
273         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275         /*
276          * Enable beacon config
277          */
278         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
280                            PREAMBLE + get_duration(IEEE80211_HEADER, 20));
281         rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
282                            rt2x00lib_get_ring(rt2x00dev,
283                                               IEEE80211_TX_QUEUE_BEACON)
284                            ->tx_params.cw_min);
285         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
286
287         /*
288          * Enable synchronisation.
289          */
290         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
291         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
292         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
293         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
294         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
295         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
296 }
297
298 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
299                                       const int short_preamble,
300                                       const int ack_timeout,
301                                       const int ack_consume_time)
302 {
303         int preamble_mask;
304         u32 reg;
305
306         /*
307          * When short preamble is enabled, we should set bit 0x08
308          */
309         preamble_mask = short_preamble << 3;
310
311         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
312         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
313         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
314         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
315
316         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
317         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
318         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
319         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
320         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
321
322         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
323         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
324         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
325         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
326         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
327
328         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
329         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
330         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
331         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
332         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
333
334         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
335         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
336         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
337         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
338         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
339 }
340
341 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
342                                      const int basic_rate_mask)
343 {
344         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
345 }
346
347 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
348                                      struct rf_channel *rf, const int txpower)
349 {
350         u8 r70;
351
352         /*
353          * Set TXpower.
354          */
355         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
356
357         /*
358          * Switch on tuning bits.
359          * For RT2523 devices we do not need to update the R1 register.
360          */
361         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
362                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
363         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
364
365         /*
366          * For RT2525 we should first set the channel to half band higher.
367          */
368         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
369                 static const u32 vals[] = {
370                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
371                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
372                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
373                         0x00080d2e, 0x00080d3a
374                 };
375
376                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
377                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
378                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
379                 if (rf->rf4)
380                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
381         }
382
383         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
384         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
385         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
386         if (rf->rf4)
387                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
388
389         /*
390          * Channel 14 requires the Japan filter bit to be set.
391          */
392         r70 = 0x46;
393         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
394         rt2500pci_bbp_write(rt2x00dev, 70, r70);
395
396         msleep(1);
397
398         /*
399          * Switch off tuning bits.
400          * For RT2523 devices we do not need to update the R1 register.
401          */
402         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
403                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
404                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
405         }
406
407         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
408         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
409
410         /*
411          * Clear false CRC during channel switch.
412          */
413         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
414 }
415
416 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
417                                      const int txpower)
418 {
419         u32 rf3;
420
421         rt2x00_rf_read(rt2x00dev, 3, &rf3);
422         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
423         rt2500pci_rf_write(rt2x00dev, 3, rf3);
424 }
425
426 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
427                                      struct antenna_setup *ant)
428 {
429         u32 reg;
430         u8 r14;
431         u8 r2;
432
433         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
434         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
435         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
436
437         /*
438          * Configure the TX antenna.
439          */
440         switch (ant->tx) {
441         case ANTENNA_A:
442                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
443                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
444                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
445                 break;
446         case ANTENNA_HW_DIVERSITY:
447         case ANTENNA_SW_DIVERSITY:
448                 /*
449                  * NOTE: We should never come here because rt2x00lib is
450                  * supposed to catch this and send us the correct antenna
451                  * explicitely. However we are nog going to bug about this.
452                  * Instead, just default to antenna B.
453                  */
454         case ANTENNA_B:
455                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
456                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
457                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
458                 break;
459         }
460
461         /*
462          * Configure the RX antenna.
463          */
464         switch (ant->rx) {
465         case ANTENNA_A:
466                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
467                 break;
468         case ANTENNA_HW_DIVERSITY:
469         case ANTENNA_SW_DIVERSITY:
470                 /*
471                  * NOTE: We should never come here because rt2x00lib is
472                  * supposed to catch this and send us the correct antenna
473                  * explicitely. However we are nog going to bug about this.
474                  * Instead, just default to antenna B.
475                  */
476         case ANTENNA_B:
477                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
478                 break;
479         }
480
481         /*
482          * RT2525E and RT5222 need to flip TX I/Q
483          */
484         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
485             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
486                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
487                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
488                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
489
490                 /*
491                  * RT2525E does not need RX I/Q Flip.
492                  */
493                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
494                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
495         } else {
496                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
497                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
498         }
499
500         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
501         rt2500pci_bbp_write(rt2x00dev, 14, r14);
502         rt2500pci_bbp_write(rt2x00dev, 2, r2);
503 }
504
505 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
506                                       struct rt2x00lib_conf *libconf)
507 {
508         u32 reg;
509
510         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
511         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
512         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
513
514         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
515         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
516         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
517         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
518
519         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
520         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
521         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
522         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
523
524         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
525         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
526         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
527         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
528
529         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
530         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
531                            libconf->conf->beacon_int * 16);
532         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
533                            libconf->conf->beacon_int * 16);
534         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
535 }
536
537 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
538                              const unsigned int flags,
539                              struct rt2x00lib_conf *libconf)
540 {
541         if (flags & CONFIG_UPDATE_PHYMODE)
542                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
543         if (flags & CONFIG_UPDATE_CHANNEL)
544                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
545                                          libconf->conf->power_level);
546         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
547                 rt2500pci_config_txpower(rt2x00dev,
548                                          libconf->conf->power_level);
549         if (flags & CONFIG_UPDATE_ANTENNA)
550                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
551         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
552                 rt2500pci_config_duration(rt2x00dev, libconf);
553 }
554
555 /*
556  * LED functions.
557  */
558 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
559 {
560         u32 reg;
561
562         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
563
564         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
565         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
566         rt2x00_set_field32(&reg, LEDCSR_LINK,
567                            (rt2x00dev->led_mode != LED_MODE_ASUS));
568         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
569                            (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
570         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
571 }
572
573 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
574 {
575         u32 reg;
576
577         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
578         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
579         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
580         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
581 }
582
583 /*
584  * Link tuning
585  */
586 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
587                                  struct link_qual *qual)
588 {
589         u32 reg;
590
591         /*
592          * Update FCS error count from register.
593          */
594         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
595         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
596
597         /*
598          * Update False CCA count from register.
599          */
600         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
601         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
602 }
603
604 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
605 {
606         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
607         rt2x00dev->link.vgc_level = 0x48;
608 }
609
610 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
611 {
612         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
613         u8 r17;
614
615         /*
616          * To prevent collisions with MAC ASIC on chipsets
617          * up to version C the link tuning should halt after 20
618          * seconds.
619          */
620         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
621             rt2x00dev->link.count > 20)
622                 return;
623
624         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
625
626         /*
627          * Chipset versions C and lower should directly continue
628          * to the dynamic CCA tuning.
629          */
630         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
631                 goto dynamic_cca_tune;
632
633         /*
634          * A too low RSSI will cause too much false CCA which will
635          * then corrupt the R17 tuning. To remidy this the tuning should
636          * be stopped (While making sure the R17 value will not exceed limits)
637          */
638         if (rssi < -80 && rt2x00dev->link.count > 20) {
639                 if (r17 >= 0x41) {
640                         r17 = rt2x00dev->link.vgc_level;
641                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
642                 }
643                 return;
644         }
645
646         /*
647          * Special big-R17 for short distance
648          */
649         if (rssi >= -58) {
650                 if (r17 != 0x50)
651                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
652                 return;
653         }
654
655         /*
656          * Special mid-R17 for middle distance
657          */
658         if (rssi >= -74) {
659                 if (r17 != 0x41)
660                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
661                 return;
662         }
663
664         /*
665          * Leave short or middle distance condition, restore r17
666          * to the dynamic tuning range.
667          */
668         if (r17 >= 0x41) {
669                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
670                 return;
671         }
672
673 dynamic_cca_tune:
674
675         /*
676          * R17 is inside the dynamic tuning range,
677          * start tuning the link based on the false cca counter.
678          */
679         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
680                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
681                 rt2x00dev->link.vgc_level = r17;
682         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
683                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
684                 rt2x00dev->link.vgc_level = r17;
685         }
686 }
687
688 /*
689  * Initialization functions.
690  */
691 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
692 {
693         struct data_ring *ring = rt2x00dev->rx;
694         __le32 *rxd;
695         unsigned int i;
696         u32 word;
697
698         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
699
700         for (i = 0; i < ring->stats.limit; i++) {
701                 rxd = ring->entry[i].priv;
702
703                 rt2x00_desc_read(rxd, 1, &word);
704                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
705                                    ring->entry[i].data_dma);
706                 rt2x00_desc_write(rxd, 1, word);
707
708                 rt2x00_desc_read(rxd, 0, &word);
709                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
710                 rt2x00_desc_write(rxd, 0, word);
711         }
712
713         rt2x00_ring_index_clear(rt2x00dev->rx);
714 }
715
716 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
717 {
718         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
719         __le32 *txd;
720         unsigned int i;
721         u32 word;
722
723         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
724
725         for (i = 0; i < ring->stats.limit; i++) {
726                 txd = ring->entry[i].priv;
727
728                 rt2x00_desc_read(txd, 1, &word);
729                 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
730                                    ring->entry[i].data_dma);
731                 rt2x00_desc_write(txd, 1, word);
732
733                 rt2x00_desc_read(txd, 0, &word);
734                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
735                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
736                 rt2x00_desc_write(txd, 0, word);
737         }
738
739         rt2x00_ring_index_clear(ring);
740 }
741
742 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
743 {
744         u32 reg;
745
746         /*
747          * Initialize rings.
748          */
749         rt2500pci_init_rxring(rt2x00dev);
750         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
751         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
752         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
753         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
754
755         /*
756          * Initialize registers.
757          */
758         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
759         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
760                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
761         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
762                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
763         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
764                            rt2x00dev->bcn[1].stats.limit);
765         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
766                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
767         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
768
769         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
770         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
771                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
772         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
773
774         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
775         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
776                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
777         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
778
779         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
780         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
781                            rt2x00dev->bcn[1].data_dma);
782         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
783
784         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
785         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
786                            rt2x00dev->bcn[0].data_dma);
787         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
788
789         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
790         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
791         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
792         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
793
794         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
795         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
796                            rt2x00dev->rx->data_dma);
797         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
798
799         return 0;
800 }
801
802 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
803 {
804         u32 reg;
805
806         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
807         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
808         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
809         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
810
811         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
812         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
813         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
814         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
815         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
816
817         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
818         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
819                            rt2x00dev->rx->data_size / 128);
820         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
821
822         /*
823          * Always use CWmin and CWmax set in descriptor.
824          */
825         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
826         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
827         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
828
829         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
830
831         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
832         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
833         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
834         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
835         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
836         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
837         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
838         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
839         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
840         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
841
842         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
843         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
844         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
845         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
846         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
847         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
848
849         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
850         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
851         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
852         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
853         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
854         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
855
856         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
857         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
858         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
859         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
860         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
861         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
862
863         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
864         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
865         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
866         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
867         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
868         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
869         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
870         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
871         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
872         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
873
874         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
875         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
876         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
877         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
878         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
879         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
880         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
881         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
882         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
883
884         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
885
886         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
887         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
888
889         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
890                 return -EBUSY;
891
892         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
893         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
894
895         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
896         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
897         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
898
899         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
900         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
901         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
902         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
903         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
904         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
905         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
906         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
907
908         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
909
910         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
911
912         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
913         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
914         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
915         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
916         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
917
918         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
919         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
920         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
921         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
922
923         /*
924          * We must clear the FCS and FIFO error count.
925          * These registers are cleared on read,
926          * so we may pass a useless variable to store the value.
927          */
928         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
929         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
930
931         return 0;
932 }
933
934 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
935 {
936         unsigned int i;
937         u16 eeprom;
938         u8 reg_id;
939         u8 value;
940
941         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
942                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
943                 if ((value != 0xff) && (value != 0x00))
944                         goto continue_csr_init;
945                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
946                 udelay(REGISTER_BUSY_DELAY);
947         }
948
949         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
950         return -EACCES;
951
952 continue_csr_init:
953         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
954         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
955         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
956         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
957         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
958         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
959         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
960         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
961         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
962         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
963         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
964         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
965         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
966         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
967         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
968         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
969         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
970         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
971         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
972         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
973         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
974         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
975         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
976         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
977         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
978         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
979         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
980         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
981         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
982         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
983
984         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
985         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
986                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
987
988                 if (eeprom != 0xffff && eeprom != 0x0000) {
989                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
990                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
991                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
992                               reg_id, value);
993                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
994                 }
995         }
996         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
997
998         return 0;
999 }
1000
1001 /*
1002  * Device state switch handlers.
1003  */
1004 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1005                                 enum dev_state state)
1006 {
1007         u32 reg;
1008
1009         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1010         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1011                            state == STATE_RADIO_RX_OFF);
1012         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1013 }
1014
1015 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1016                                  enum dev_state state)
1017 {
1018         int mask = (state == STATE_RADIO_IRQ_OFF);
1019         u32 reg;
1020
1021         /*
1022          * When interrupts are being enabled, the interrupt registers
1023          * should clear the register to assure a clean state.
1024          */
1025         if (state == STATE_RADIO_IRQ_ON) {
1026                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1027                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1028         }
1029
1030         /*
1031          * Only toggle the interrupts bits we are going to use.
1032          * Non-checked interrupt bits are disabled by default.
1033          */
1034         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1035         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1036         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1037         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1038         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1039         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1040         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1041 }
1042
1043 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1044 {
1045         /*
1046          * Initialize all registers.
1047          */
1048         if (rt2500pci_init_rings(rt2x00dev) ||
1049             rt2500pci_init_registers(rt2x00dev) ||
1050             rt2500pci_init_bbp(rt2x00dev)) {
1051                 ERROR(rt2x00dev, "Register initialization failed.\n");
1052                 return -EIO;
1053         }
1054
1055         /*
1056          * Enable interrupts.
1057          */
1058         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1059
1060         /*
1061          * Enable LED
1062          */
1063         rt2500pci_enable_led(rt2x00dev);
1064
1065         return 0;
1066 }
1067
1068 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1069 {
1070         u32 reg;
1071
1072         /*
1073          * Disable LED
1074          */
1075         rt2500pci_disable_led(rt2x00dev);
1076
1077         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1078
1079         /*
1080          * Disable synchronisation.
1081          */
1082         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1083
1084         /*
1085          * Cancel RX and TX.
1086          */
1087         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1088         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1089         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1090
1091         /*
1092          * Disable interrupts.
1093          */
1094         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1095 }
1096
1097 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1098                                enum dev_state state)
1099 {
1100         u32 reg;
1101         unsigned int i;
1102         char put_to_sleep;
1103         char bbp_state;
1104         char rf_state;
1105
1106         put_to_sleep = (state != STATE_AWAKE);
1107
1108         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1109         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1110         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1111         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1112         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1113         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1114
1115         /*
1116          * Device is not guaranteed to be in the requested state yet.
1117          * We must wait until the register indicates that the
1118          * device has entered the correct state.
1119          */
1120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1121                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1122                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1123                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1124                 if (bbp_state == state && rf_state == state)
1125                         return 0;
1126                 msleep(10);
1127         }
1128
1129         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1130                "current device state: bbp %d and rf %d.\n",
1131                state, bbp_state, rf_state);
1132
1133         return -EBUSY;
1134 }
1135
1136 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1137                                       enum dev_state state)
1138 {
1139         int retval = 0;
1140
1141         switch (state) {
1142         case STATE_RADIO_ON:
1143                 retval = rt2500pci_enable_radio(rt2x00dev);
1144                 break;
1145         case STATE_RADIO_OFF:
1146                 rt2500pci_disable_radio(rt2x00dev);
1147                 break;
1148         case STATE_RADIO_RX_ON:
1149         case STATE_RADIO_RX_OFF:
1150                 rt2500pci_toggle_rx(rt2x00dev, state);
1151                 break;
1152         case STATE_DEEP_SLEEP:
1153         case STATE_SLEEP:
1154         case STATE_STANDBY:
1155         case STATE_AWAKE:
1156                 retval = rt2500pci_set_state(rt2x00dev, state);
1157                 break;
1158         default:
1159                 retval = -ENOTSUPP;
1160                 break;
1161         }
1162
1163         return retval;
1164 }
1165
1166 /*
1167  * TX descriptor initialization
1168  */
1169 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1170                                     __le32 *txd,
1171                                     struct txdata_entry_desc *desc,
1172                                     struct ieee80211_hdr *ieee80211hdr,
1173                                     unsigned int length,
1174                                     struct ieee80211_tx_control *control)
1175 {
1176         u32 word;
1177
1178         /*
1179          * Start writing the descriptor words.
1180          */
1181         rt2x00_desc_read(txd, 2, &word);
1182         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1183         rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1184         rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1185         rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1186         rt2x00_desc_write(txd, 2, word);
1187
1188         rt2x00_desc_read(txd, 3, &word);
1189         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1190         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1191         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1192         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1193         rt2x00_desc_write(txd, 3, word);
1194
1195         rt2x00_desc_read(txd, 10, &word);
1196         rt2x00_set_field32(&word, TXD_W10_RTS,
1197                            test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1198         rt2x00_desc_write(txd, 10, word);
1199
1200         rt2x00_desc_read(txd, 0, &word);
1201         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1202         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1203         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1204                            test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1205         rt2x00_set_field32(&word, TXD_W0_ACK,
1206                            test_bit(ENTRY_TXD_ACK, &desc->flags));
1207         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1208                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1209         rt2x00_set_field32(&word, TXD_W0_OFDM,
1210                            test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1211         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1212         rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1213         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1214                            !!(control->flags &
1215                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1216         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1217         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1218         rt2x00_desc_write(txd, 0, word);
1219 }
1220
1221 /*
1222  * TX data initialization
1223  */
1224 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1225                                     unsigned int queue)
1226 {
1227         u32 reg;
1228
1229         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1230                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1231                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1232                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1233                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1234                 }
1235                 return;
1236         }
1237
1238         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1239         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1240                            (queue == IEEE80211_TX_QUEUE_DATA0));
1241         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1242                            (queue == IEEE80211_TX_QUEUE_DATA1));
1243         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1244                            (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1245         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1246 }
1247
1248 /*
1249  * RX control handlers
1250  */
1251 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1252                                   struct rxdata_entry_desc *desc)
1253 {
1254         __le32 *rxd = entry->priv;
1255         u32 word0;
1256         u32 word2;
1257
1258         rt2x00_desc_read(rxd, 0, &word0);
1259         rt2x00_desc_read(rxd, 2, &word2);
1260
1261         desc->flags = 0;
1262         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1263                 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1264         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1265                 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1266
1267         desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1268         desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1269             entry->ring->rt2x00dev->rssi_offset;
1270         desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1271         desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1272 }
1273
1274 /*
1275  * Interrupt functions.
1276  */
1277 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1278 {
1279         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1280         struct data_entry *entry;
1281         __le32 *txd;
1282         u32 word;
1283         int tx_status;
1284         int retry;
1285
1286         while (!rt2x00_ring_empty(ring)) {
1287                 entry = rt2x00_get_data_entry_done(ring);
1288                 txd = entry->priv;
1289                 rt2x00_desc_read(txd, 0, &word);
1290
1291                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1292                     !rt2x00_get_field32(word, TXD_W0_VALID))
1293                         break;
1294
1295                 /*
1296                  * Obtain the status about this packet.
1297                  */
1298                 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1299                 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1300
1301                 rt2x00lib_txdone(entry, tx_status, retry);
1302
1303                 /*
1304                  * Make this entry available for reuse.
1305                  */
1306                 entry->flags = 0;
1307                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1308                 rt2x00_desc_write(txd, 0, word);
1309                 rt2x00_ring_index_done_inc(ring);
1310         }
1311
1312         /*
1313          * If the data ring was full before the txdone handler
1314          * we must make sure the packet queue in the mac80211 stack
1315          * is reenabled when the txdone handler has finished.
1316          */
1317         entry = ring->entry;
1318         if (!rt2x00_ring_full(ring))
1319                 ieee80211_wake_queue(rt2x00dev->hw,
1320                                      entry->tx_status.control.queue);
1321 }
1322
1323 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1324 {
1325         struct rt2x00_dev *rt2x00dev = dev_instance;
1326         u32 reg;
1327
1328         /*
1329          * Get the interrupt sources & saved to local variable.
1330          * Write register value back to clear pending interrupts.
1331          */
1332         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1333         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1334
1335         if (!reg)
1336                 return IRQ_NONE;
1337
1338         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1339                 return IRQ_HANDLED;
1340
1341         /*
1342          * Handle interrupts, walk through all bits
1343          * and run the tasks, the bits are checked in order of
1344          * priority.
1345          */
1346
1347         /*
1348          * 1 - Beacon timer expired interrupt.
1349          */
1350         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1351                 rt2x00lib_beacondone(rt2x00dev);
1352
1353         /*
1354          * 2 - Rx ring done interrupt.
1355          */
1356         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1357                 rt2x00pci_rxdone(rt2x00dev);
1358
1359         /*
1360          * 3 - Atim ring transmit done interrupt.
1361          */
1362         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1363                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1364
1365         /*
1366          * 4 - Priority ring transmit done interrupt.
1367          */
1368         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1369                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1370
1371         /*
1372          * 5 - Tx ring transmit done interrupt.
1373          */
1374         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1375                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1376
1377         return IRQ_HANDLED;
1378 }
1379
1380 /*
1381  * Device probe functions.
1382  */
1383 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1384 {
1385         struct eeprom_93cx6 eeprom;
1386         u32 reg;
1387         u16 word;
1388         u8 *mac;
1389
1390         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1391
1392         eeprom.data = rt2x00dev;
1393         eeprom.register_read = rt2500pci_eepromregister_read;
1394         eeprom.register_write = rt2500pci_eepromregister_write;
1395         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1396             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1397         eeprom.reg_data_in = 0;
1398         eeprom.reg_data_out = 0;
1399         eeprom.reg_data_clock = 0;
1400         eeprom.reg_chip_select = 0;
1401
1402         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1403                                EEPROM_SIZE / sizeof(u16));
1404
1405         /*
1406          * Start validation of the data that has been read.
1407          */
1408         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1409         if (!is_valid_ether_addr(mac)) {
1410                 DECLARE_MAC_BUF(macbuf);
1411
1412                 random_ether_addr(mac);
1413                 EEPROM(rt2x00dev, "MAC: %s\n",
1414                        print_mac(macbuf, mac));
1415         }
1416
1417         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1418         if (word == 0xffff) {
1419                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1420                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1421                                    ANTENNA_SW_DIVERSITY);
1422                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1423                                    ANTENNA_SW_DIVERSITY);
1424                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1425                                    LED_MODE_DEFAULT);
1426                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1427                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1428                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1429                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1430                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1431         }
1432
1433         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1434         if (word == 0xffff) {
1435                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1436                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1437                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1438                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1439                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1440         }
1441
1442         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1443         if (word == 0xffff) {
1444                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1445                                    DEFAULT_RSSI_OFFSET);
1446                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1447                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1448         }
1449
1450         return 0;
1451 }
1452
1453 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1454 {
1455         u32 reg;
1456         u16 value;
1457         u16 eeprom;
1458
1459         /*
1460          * Read EEPROM word for configuration.
1461          */
1462         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1463
1464         /*
1465          * Identify RF chipset.
1466          */
1467         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1468         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1469         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1470
1471         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1472             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1473             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1474             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1475             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1476             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1477                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1478                 return -ENODEV;
1479         }
1480
1481         /*
1482          * Identify default antenna configuration.
1483          */
1484         rt2x00dev->default_ant.tx =
1485             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1486         rt2x00dev->default_ant.rx =
1487             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1488
1489         /*
1490          * Store led mode, for correct led behaviour.
1491          */
1492         rt2x00dev->led_mode =
1493             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1494
1495         /*
1496          * Detect if this device has an hardware controlled radio.
1497          */
1498 #ifdef CONFIG_RT2500PCI_RFKILL
1499         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1500                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1501 #endif /* CONFIG_RT2500PCI_RFKILL */
1502
1503         /*
1504          * Check if the BBP tuning should be enabled.
1505          */
1506         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1507
1508         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1509                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1510
1511         /*
1512          * Read the RSSI <-> dBm offset information.
1513          */
1514         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1515         rt2x00dev->rssi_offset =
1516             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1517
1518         return 0;
1519 }
1520
1521 /*
1522  * RF value list for RF2522
1523  * Supports: 2.4 GHz
1524  */
1525 static const struct rf_channel rf_vals_bg_2522[] = {
1526         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1527         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1528         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1529         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1530         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1531         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1532         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1533         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1534         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1535         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1536         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1537         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1538         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1539         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1540 };
1541
1542 /*
1543  * RF value list for RF2523
1544  * Supports: 2.4 GHz
1545  */
1546 static const struct rf_channel rf_vals_bg_2523[] = {
1547         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1548         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1549         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1550         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1551         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1552         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1553         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1554         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1555         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1556         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1557         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1558         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1559         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1560         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1561 };
1562
1563 /*
1564  * RF value list for RF2524
1565  * Supports: 2.4 GHz
1566  */
1567 static const struct rf_channel rf_vals_bg_2524[] = {
1568         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1569         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1570         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1571         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1572         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1573         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1574         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1575         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1576         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1577         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1578         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1579         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1580         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1581         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1582 };
1583
1584 /*
1585  * RF value list for RF2525
1586  * Supports: 2.4 GHz
1587  */
1588 static const struct rf_channel rf_vals_bg_2525[] = {
1589         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1590         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1591         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1592         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1593         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1594         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1595         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1596         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1597         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1598         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1599         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1600         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1601         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1602         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1603 };
1604
1605 /*
1606  * RF value list for RF2525e
1607  * Supports: 2.4 GHz
1608  */
1609 static const struct rf_channel rf_vals_bg_2525e[] = {
1610         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1611         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1612         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1613         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1614         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1615         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1616         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1617         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1618         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1619         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1620         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1621         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1622         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1623         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1624 };
1625
1626 /*
1627  * RF value list for RF5222
1628  * Supports: 2.4 GHz & 5.2 GHz
1629  */
1630 static const struct rf_channel rf_vals_5222[] = {
1631         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1632         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1633         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1634         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1635         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1636         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1637         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1638         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1639         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1640         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1641         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1642         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1643         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1644         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1645
1646         /* 802.11 UNI / HyperLan 2 */
1647         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1648         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1649         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1650         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1651         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1652         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1653         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1654         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1655
1656         /* 802.11 HyperLan 2 */
1657         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1658         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1659         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1660         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1661         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1662         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1663         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1664         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1665         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1666         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1667
1668         /* 802.11 UNII */
1669         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1670         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1671         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1672         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1673         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1674 };
1675
1676 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1677 {
1678         struct hw_mode_spec *spec = &rt2x00dev->spec;
1679         u8 *txpower;
1680         unsigned int i;
1681
1682         /*
1683          * Initialize all hw fields.
1684          */
1685         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1686         rt2x00dev->hw->extra_tx_headroom = 0;
1687         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1688         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1689         rt2x00dev->hw->queues = 2;
1690
1691         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1692         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1693                                 rt2x00_eeprom_addr(rt2x00dev,
1694                                                    EEPROM_MAC_ADDR_0));
1695
1696         /*
1697          * Convert tx_power array in eeprom.
1698          */
1699         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1700         for (i = 0; i < 14; i++)
1701                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1702
1703         /*
1704          * Initialize hw_mode information.
1705          */
1706         spec->num_modes = 2;
1707         spec->num_rates = 12;
1708         spec->tx_power_a = NULL;
1709         spec->tx_power_bg = txpower;
1710         spec->tx_power_default = DEFAULT_TXPOWER;
1711
1712         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1713                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1714                 spec->channels = rf_vals_bg_2522;
1715         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1716                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1717                 spec->channels = rf_vals_bg_2523;
1718         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1719                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1720                 spec->channels = rf_vals_bg_2524;
1721         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1722                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1723                 spec->channels = rf_vals_bg_2525;
1724         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1725                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1726                 spec->channels = rf_vals_bg_2525e;
1727         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1728                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1729                 spec->channels = rf_vals_5222;
1730                 spec->num_modes = 3;
1731         }
1732 }
1733
1734 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1735 {
1736         int retval;
1737
1738         /*
1739          * Allocate eeprom data.
1740          */
1741         retval = rt2500pci_validate_eeprom(rt2x00dev);
1742         if (retval)
1743                 return retval;
1744
1745         retval = rt2500pci_init_eeprom(rt2x00dev);
1746         if (retval)
1747                 return retval;
1748
1749         /*
1750          * Initialize hw specifications.
1751          */
1752         rt2500pci_probe_hw_mode(rt2x00dev);
1753
1754         /*
1755          * This device requires the beacon ring
1756          */
1757         __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1758
1759         /*
1760          * Set the rssi offset.
1761          */
1762         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1763
1764         return 0;
1765 }
1766
1767 /*
1768  * IEEE80211 stack callback functions.
1769  */
1770 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1771                                        unsigned int changed_flags,
1772                                        unsigned int *total_flags,
1773                                        int mc_count,
1774                                        struct dev_addr_list *mc_list)
1775 {
1776         struct rt2x00_dev *rt2x00dev = hw->priv;
1777         struct interface *intf = &rt2x00dev->interface;
1778         u32 reg;
1779
1780         /*
1781          * Mask off any flags we are going to ignore from
1782          * the total_flags field.
1783          */
1784         *total_flags &=
1785             FIF_ALLMULTI |
1786             FIF_FCSFAIL |
1787             FIF_PLCPFAIL |
1788             FIF_CONTROL |
1789             FIF_OTHER_BSS |
1790             FIF_PROMISC_IN_BSS;
1791
1792         /*
1793          * Apply some rules to the filters:
1794          * - Some filters imply different filters to be set.
1795          * - Some things we can't filter out at all.
1796          * - Some filters are set based on interface type.
1797          */
1798         if (mc_count)
1799                 *total_flags |= FIF_ALLMULTI;
1800         if (*total_flags & FIF_OTHER_BSS ||
1801             *total_flags & FIF_PROMISC_IN_BSS)
1802                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1803         if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1804                 *total_flags |= FIF_PROMISC_IN_BSS;
1805
1806         /*
1807          * Check if there is any work left for us.
1808          */
1809         if (intf->filter == *total_flags)
1810                 return;
1811         intf->filter = *total_flags;
1812
1813         /*
1814          * Start configuration steps.
1815          * Note that the version error will always be dropped
1816          * and broadcast frames will always be accepted since
1817          * there is no filter for it at this time.
1818          */
1819         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1820         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1821                            !(*total_flags & FIF_FCSFAIL));
1822         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1823                            !(*total_flags & FIF_PLCPFAIL));
1824         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1825                            !(*total_flags & FIF_CONTROL));
1826         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1827                            !(*total_flags & FIF_PROMISC_IN_BSS));
1828         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1829                            !(*total_flags & FIF_PROMISC_IN_BSS));
1830         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1831         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1832                            !(*total_flags & FIF_ALLMULTI));
1833         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1834         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1835 }
1836
1837 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1838                                      u32 short_retry, u32 long_retry)
1839 {
1840         struct rt2x00_dev *rt2x00dev = hw->priv;
1841         u32 reg;
1842
1843         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1844         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1845         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1846         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1847
1848         return 0;
1849 }
1850
1851 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1852 {
1853         struct rt2x00_dev *rt2x00dev = hw->priv;
1854         u64 tsf;
1855         u32 reg;
1856
1857         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1858         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1859         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1860         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1861
1862         return tsf;
1863 }
1864
1865 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1866 {
1867         struct rt2x00_dev *rt2x00dev = hw->priv;
1868
1869         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1870         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1871 }
1872
1873 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1874 {
1875         struct rt2x00_dev *rt2x00dev = hw->priv;
1876         u32 reg;
1877
1878         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1879         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1880 }
1881
1882 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1883         .tx                     = rt2x00mac_tx,
1884         .start                  = rt2x00mac_start,
1885         .stop                   = rt2x00mac_stop,
1886         .add_interface          = rt2x00mac_add_interface,
1887         .remove_interface       = rt2x00mac_remove_interface,
1888         .config                 = rt2x00mac_config,
1889         .config_interface       = rt2x00mac_config_interface,
1890         .configure_filter       = rt2500pci_configure_filter,
1891         .get_stats              = rt2x00mac_get_stats,
1892         .set_retry_limit        = rt2500pci_set_retry_limit,
1893         .erp_ie_changed         = rt2x00mac_erp_ie_changed,
1894         .conf_tx                = rt2x00mac_conf_tx,
1895         .get_tx_stats           = rt2x00mac_get_tx_stats,
1896         .get_tsf                = rt2500pci_get_tsf,
1897         .reset_tsf              = rt2500pci_reset_tsf,
1898         .beacon_update          = rt2x00pci_beacon_update,
1899         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1900 };
1901
1902 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1903         .irq_handler            = rt2500pci_interrupt,
1904         .probe_hw               = rt2500pci_probe_hw,
1905         .initialize             = rt2x00pci_initialize,
1906         .uninitialize           = rt2x00pci_uninitialize,
1907         .set_device_state       = rt2500pci_set_device_state,
1908         .rfkill_poll            = rt2500pci_rfkill_poll,
1909         .link_stats             = rt2500pci_link_stats,
1910         .reset_tuner            = rt2500pci_reset_tuner,
1911         .link_tuner             = rt2500pci_link_tuner,
1912         .write_tx_desc          = rt2500pci_write_tx_desc,
1913         .write_tx_data          = rt2x00pci_write_tx_data,
1914         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1915         .fill_rxdone            = rt2500pci_fill_rxdone,
1916         .config_mac_addr        = rt2500pci_config_mac_addr,
1917         .config_bssid           = rt2500pci_config_bssid,
1918         .config_type            = rt2500pci_config_type,
1919         .config_preamble        = rt2500pci_config_preamble,
1920         .config                 = rt2500pci_config,
1921 };
1922
1923 static const struct rt2x00_ops rt2500pci_ops = {
1924         .name           = DRV_NAME,
1925         .rxd_size       = RXD_DESC_SIZE,
1926         .txd_size       = TXD_DESC_SIZE,
1927         .eeprom_size    = EEPROM_SIZE,
1928         .rf_size        = RF_SIZE,
1929         .lib            = &rt2500pci_rt2x00_ops,
1930         .hw             = &rt2500pci_mac80211_ops,
1931 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1932         .debugfs        = &rt2500pci_rt2x00debug,
1933 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1934 };
1935
1936 /*
1937  * RT2500pci module information.
1938  */
1939 static struct pci_device_id rt2500pci_device_table[] = {
1940         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1941         { 0, }
1942 };
1943
1944 MODULE_AUTHOR(DRV_PROJECT);
1945 MODULE_VERSION(DRV_VERSION);
1946 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1947 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1948 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1949 MODULE_LICENSE("GPL");
1950
1951 static struct pci_driver rt2500pci_driver = {
1952         .name           = DRV_NAME,
1953         .id_table       = rt2500pci_device_table,
1954         .probe          = rt2x00pci_probe,
1955         .remove         = __devexit_p(rt2x00pci_remove),
1956         .suspend        = rt2x00pci_suspend,
1957         .resume         = rt2x00pci_resume,
1958 };
1959
1960 static int __init rt2500pci_init(void)
1961 {
1962         return pci_register_driver(&rt2500pci_driver);
1963 }
1964
1965 static void __exit rt2500pci_exit(void)
1966 {
1967         pci_unregister_driver(&rt2500pci_driver);
1968 }
1969
1970 module_init(rt2500pci_init);
1971 module_exit(rt2500pci_exit);