rt2x00: Queue handling overhaul
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 /*
247  * Configuration handlers.
248  */
249 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
250                                       __le32 *mac)
251 {
252         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
253                                       (2 * sizeof(__le32)));
254 }
255
256 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
257                                    __le32 *bssid)
258 {
259         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
260                                       (2 * sizeof(__le32)));
261 }
262
263 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
264                                   const int tsf_sync)
265 {
266         struct data_queue *queue =
267             rt2x00queue_get_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
268         u32 reg;
269
270         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
271
272         /*
273          * Enable beacon config
274          */
275         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
276         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
277                            PREAMBLE + get_duration(IEEE80211_HEADER, 20));
278         rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
279         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
280
281         /*
282          * Enable synchronisation.
283          */
284         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
285         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
286         rt2x00_set_field32(&reg, CSR14_TBCN, (tsf_sync == TSF_SYNC_BEACON));
287         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
288         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
289         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
290 }
291
292 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
293                                       const int short_preamble,
294                                       const int ack_timeout,
295                                       const int ack_consume_time)
296 {
297         int preamble_mask;
298         u32 reg;
299
300         /*
301          * When short preamble is enabled, we should set bit 0x08
302          */
303         preamble_mask = short_preamble << 3;
304
305         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
306         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
307         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
308         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
309
310         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
311         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
312         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
313         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
314         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
315
316         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
317         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
318         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
319         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
320         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
321
322         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
323         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
324         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
325         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
326         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
327
328         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
329         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
330         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
331         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
332         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
333 }
334
335 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
336                                      const int basic_rate_mask)
337 {
338         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
339 }
340
341 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
342                                      struct rf_channel *rf, const int txpower)
343 {
344         u8 r70;
345
346         /*
347          * Set TXpower.
348          */
349         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
350
351         /*
352          * Switch on tuning bits.
353          * For RT2523 devices we do not need to update the R1 register.
354          */
355         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
356                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
357         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
358
359         /*
360          * For RT2525 we should first set the channel to half band higher.
361          */
362         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
363                 static const u32 vals[] = {
364                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
365                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
366                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
367                         0x00080d2e, 0x00080d3a
368                 };
369
370                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
371                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
372                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
373                 if (rf->rf4)
374                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
375         }
376
377         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
378         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
379         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
380         if (rf->rf4)
381                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
382
383         /*
384          * Channel 14 requires the Japan filter bit to be set.
385          */
386         r70 = 0x46;
387         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
388         rt2500pci_bbp_write(rt2x00dev, 70, r70);
389
390         msleep(1);
391
392         /*
393          * Switch off tuning bits.
394          * For RT2523 devices we do not need to update the R1 register.
395          */
396         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
397                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
398                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
399         }
400
401         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
402         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
403
404         /*
405          * Clear false CRC during channel switch.
406          */
407         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
408 }
409
410 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
411                                      const int txpower)
412 {
413         u32 rf3;
414
415         rt2x00_rf_read(rt2x00dev, 3, &rf3);
416         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
417         rt2500pci_rf_write(rt2x00dev, 3, rf3);
418 }
419
420 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
421                                      struct antenna_setup *ant)
422 {
423         u32 reg;
424         u8 r14;
425         u8 r2;
426
427         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
428         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
429         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
430
431         /*
432          * Configure the TX antenna.
433          */
434         switch (ant->tx) {
435         case ANTENNA_A:
436                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
437                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
438                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
439                 break;
440         case ANTENNA_HW_DIVERSITY:
441         case ANTENNA_SW_DIVERSITY:
442                 /*
443                  * NOTE: We should never come here because rt2x00lib is
444                  * supposed to catch this and send us the correct antenna
445                  * explicitely. However we are nog going to bug about this.
446                  * Instead, just default to antenna B.
447                  */
448         case ANTENNA_B:
449                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
450                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
451                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
452                 break;
453         }
454
455         /*
456          * Configure the RX antenna.
457          */
458         switch (ant->rx) {
459         case ANTENNA_A:
460                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
461                 break;
462         case ANTENNA_HW_DIVERSITY:
463         case ANTENNA_SW_DIVERSITY:
464                 /*
465                  * NOTE: We should never come here because rt2x00lib is
466                  * supposed to catch this and send us the correct antenna
467                  * explicitely. However we are nog going to bug about this.
468                  * Instead, just default to antenna B.
469                  */
470         case ANTENNA_B:
471                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
472                 break;
473         }
474
475         /*
476          * RT2525E and RT5222 need to flip TX I/Q
477          */
478         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
479             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
480                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
481                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
482                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
483
484                 /*
485                  * RT2525E does not need RX I/Q Flip.
486                  */
487                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
488                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
489         } else {
490                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
491                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
492         }
493
494         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
495         rt2500pci_bbp_write(rt2x00dev, 14, r14);
496         rt2500pci_bbp_write(rt2x00dev, 2, r2);
497 }
498
499 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
500                                       struct rt2x00lib_conf *libconf)
501 {
502         u32 reg;
503
504         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
505         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
506         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
507
508         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
509         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
510         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
511         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
512
513         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
514         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
515         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
516         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
517
518         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
519         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
520         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
521         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
522
523         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
524         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
525                            libconf->conf->beacon_int * 16);
526         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
527                            libconf->conf->beacon_int * 16);
528         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
529 }
530
531 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
532                              const unsigned int flags,
533                              struct rt2x00lib_conf *libconf)
534 {
535         if (flags & CONFIG_UPDATE_PHYMODE)
536                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
537         if (flags & CONFIG_UPDATE_CHANNEL)
538                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
539                                          libconf->conf->power_level);
540         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
541                 rt2500pci_config_txpower(rt2x00dev,
542                                          libconf->conf->power_level);
543         if (flags & CONFIG_UPDATE_ANTENNA)
544                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
545         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
546                 rt2500pci_config_duration(rt2x00dev, libconf);
547 }
548
549 /*
550  * LED functions.
551  */
552 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
553 {
554         u32 reg;
555
556         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
557
558         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
559         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
560         rt2x00_set_field32(&reg, LEDCSR_LINK,
561                            (rt2x00dev->led_mode != LED_MODE_ASUS));
562         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
563                            (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
564         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
565 }
566
567 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
568 {
569         u32 reg;
570
571         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
572         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
573         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
574         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
575 }
576
577 /*
578  * Link tuning
579  */
580 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
581                                  struct link_qual *qual)
582 {
583         u32 reg;
584
585         /*
586          * Update FCS error count from register.
587          */
588         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
589         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
590
591         /*
592          * Update False CCA count from register.
593          */
594         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
595         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
596 }
597
598 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
599 {
600         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
601         rt2x00dev->link.vgc_level = 0x48;
602 }
603
604 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
605 {
606         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
607         u8 r17;
608
609         /*
610          * To prevent collisions with MAC ASIC on chipsets
611          * up to version C the link tuning should halt after 20
612          * seconds.
613          */
614         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
615             rt2x00dev->link.count > 20)
616                 return;
617
618         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
619
620         /*
621          * Chipset versions C and lower should directly continue
622          * to the dynamic CCA tuning.
623          */
624         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
625                 goto dynamic_cca_tune;
626
627         /*
628          * A too low RSSI will cause too much false CCA which will
629          * then corrupt the R17 tuning. To remidy this the tuning should
630          * be stopped (While making sure the R17 value will not exceed limits)
631          */
632         if (rssi < -80 && rt2x00dev->link.count > 20) {
633                 if (r17 >= 0x41) {
634                         r17 = rt2x00dev->link.vgc_level;
635                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
636                 }
637                 return;
638         }
639
640         /*
641          * Special big-R17 for short distance
642          */
643         if (rssi >= -58) {
644                 if (r17 != 0x50)
645                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
646                 return;
647         }
648
649         /*
650          * Special mid-R17 for middle distance
651          */
652         if (rssi >= -74) {
653                 if (r17 != 0x41)
654                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
655                 return;
656         }
657
658         /*
659          * Leave short or middle distance condition, restore r17
660          * to the dynamic tuning range.
661          */
662         if (r17 >= 0x41) {
663                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
664                 return;
665         }
666
667 dynamic_cca_tune:
668
669         /*
670          * R17 is inside the dynamic tuning range,
671          * start tuning the link based on the false cca counter.
672          */
673         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
674                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
675                 rt2x00dev->link.vgc_level = r17;
676         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
677                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
678                 rt2x00dev->link.vgc_level = r17;
679         }
680 }
681
682 /*
683  * Initialization functions.
684  */
685 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
686                                    struct queue_entry *entry)
687 {
688         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
689         u32 word;
690
691         rt2x00_desc_read(priv_rx->desc, 1, &word);
692         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->dma);
693         rt2x00_desc_write(priv_rx->desc, 1, word);
694
695         rt2x00_desc_read(priv_rx->desc, 0, &word);
696         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
697         rt2x00_desc_write(priv_rx->desc, 0, word);
698 }
699
700 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
701                                    struct queue_entry *entry)
702 {
703         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
704         u32 word;
705
706         rt2x00_desc_read(priv_tx->desc, 1, &word);
707         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->dma);
708         rt2x00_desc_write(priv_tx->desc, 1, word);
709
710         rt2x00_desc_read(priv_tx->desc, 0, &word);
711         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
712         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
713         rt2x00_desc_write(priv_tx->desc, 0, word);
714 }
715
716 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
717 {
718         struct queue_entry_priv_pci_rx *priv_rx;
719         struct queue_entry_priv_pci_tx *priv_tx;
720         u32 reg;
721
722         /*
723          * Initialize registers.
724          */
725         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
726         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
727         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
728         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
729         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
730         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
731
732         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
733         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
734         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER, priv_tx->dma);
735         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
736
737         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
738         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
739         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER, priv_tx->dma);
740         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
741
742         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
743         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
744         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER, priv_tx->dma);
745         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
746
747         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
748         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
749         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER, priv_tx->dma);
750         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
751
752         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
753         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
754         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
755         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
756
757         priv_rx = rt2x00dev->rx->entries[0].priv_data;
758         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
759         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->dma);
760         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
761
762         return 0;
763 }
764
765 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
766 {
767         u32 reg;
768
769         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
770         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
771         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
772         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
773
774         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
775         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
776         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
777         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
778         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
779
780         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
781         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
782                            rt2x00dev->rx->data_size / 128);
783         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
784
785         /*
786          * Always use CWmin and CWmax set in descriptor.
787          */
788         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
789         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
790         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
791
792         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
793
794         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
795         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
796         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
797         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
798         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
799         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
800         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
801         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
802         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
803         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
804
805         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
806         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
807         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
808         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
809         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
810         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
811
812         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
813         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
814         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
815         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
816         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
817         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
818
819         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
820         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
821         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
822         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
823         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
824         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
825
826         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
827         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
828         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
829         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
830         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
831         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
832         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
833         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
834         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
835         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
836
837         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
838         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
839         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
840         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
841         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
842         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
843         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
844         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
845         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
846
847         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
848
849         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
850         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
851
852         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
853                 return -EBUSY;
854
855         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
856         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
857
858         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
859         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
860         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
861
862         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
863         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
864         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
865         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
866         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
867         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
868         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
869         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
870
871         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
872
873         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
874
875         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
876         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
877         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
878         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
879         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
880
881         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
882         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
883         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
884         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
885
886         /*
887          * We must clear the FCS and FIFO error count.
888          * These registers are cleared on read,
889          * so we may pass a useless variable to store the value.
890          */
891         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
892         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
893
894         return 0;
895 }
896
897 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
898 {
899         unsigned int i;
900         u16 eeprom;
901         u8 reg_id;
902         u8 value;
903
904         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
905                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
906                 if ((value != 0xff) && (value != 0x00))
907                         goto continue_csr_init;
908                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
909                 udelay(REGISTER_BUSY_DELAY);
910         }
911
912         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
913         return -EACCES;
914
915 continue_csr_init:
916         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
917         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
918         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
919         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
920         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
921         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
922         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
923         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
924         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
925         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
926         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
927         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
928         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
929         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
930         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
931         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
932         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
933         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
934         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
935         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
936         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
937         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
938         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
939         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
940         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
941         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
942         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
943         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
944         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
945         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
946
947         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
948         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
949                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
950
951                 if (eeprom != 0xffff && eeprom != 0x0000) {
952                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
953                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
954                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
955                               reg_id, value);
956                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
957                 }
958         }
959         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
960
961         return 0;
962 }
963
964 /*
965  * Device state switch handlers.
966  */
967 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
968                                 enum dev_state state)
969 {
970         u32 reg;
971
972         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
973         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
974                            state == STATE_RADIO_RX_OFF);
975         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
976 }
977
978 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
979                                  enum dev_state state)
980 {
981         int mask = (state == STATE_RADIO_IRQ_OFF);
982         u32 reg;
983
984         /*
985          * When interrupts are being enabled, the interrupt registers
986          * should clear the register to assure a clean state.
987          */
988         if (state == STATE_RADIO_IRQ_ON) {
989                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
990                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
991         }
992
993         /*
994          * Only toggle the interrupts bits we are going to use.
995          * Non-checked interrupt bits are disabled by default.
996          */
997         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
998         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
999         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1000         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1001         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1002         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1003         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1004 }
1005
1006 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1007 {
1008         /*
1009          * Initialize all registers.
1010          */
1011         if (rt2500pci_init_queues(rt2x00dev) ||
1012             rt2500pci_init_registers(rt2x00dev) ||
1013             rt2500pci_init_bbp(rt2x00dev)) {
1014                 ERROR(rt2x00dev, "Register initialization failed.\n");
1015                 return -EIO;
1016         }
1017
1018         /*
1019          * Enable interrupts.
1020          */
1021         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1022
1023         /*
1024          * Enable LED
1025          */
1026         rt2500pci_enable_led(rt2x00dev);
1027
1028         return 0;
1029 }
1030
1031 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1032 {
1033         u32 reg;
1034
1035         /*
1036          * Disable LED
1037          */
1038         rt2500pci_disable_led(rt2x00dev);
1039
1040         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1041
1042         /*
1043          * Disable synchronisation.
1044          */
1045         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1046
1047         /*
1048          * Cancel RX and TX.
1049          */
1050         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1051         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1052         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1053
1054         /*
1055          * Disable interrupts.
1056          */
1057         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1058 }
1059
1060 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1061                                enum dev_state state)
1062 {
1063         u32 reg;
1064         unsigned int i;
1065         char put_to_sleep;
1066         char bbp_state;
1067         char rf_state;
1068
1069         put_to_sleep = (state != STATE_AWAKE);
1070
1071         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1072         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1073         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1074         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1075         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1076         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1077
1078         /*
1079          * Device is not guaranteed to be in the requested state yet.
1080          * We must wait until the register indicates that the
1081          * device has entered the correct state.
1082          */
1083         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1084                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1085                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1086                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1087                 if (bbp_state == state && rf_state == state)
1088                         return 0;
1089                 msleep(10);
1090         }
1091
1092         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1093                "current device state: bbp %d and rf %d.\n",
1094                state, bbp_state, rf_state);
1095
1096         return -EBUSY;
1097 }
1098
1099 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1100                                       enum dev_state state)
1101 {
1102         int retval = 0;
1103
1104         switch (state) {
1105         case STATE_RADIO_ON:
1106                 retval = rt2500pci_enable_radio(rt2x00dev);
1107                 break;
1108         case STATE_RADIO_OFF:
1109                 rt2500pci_disable_radio(rt2x00dev);
1110                 break;
1111         case STATE_RADIO_RX_ON:
1112         case STATE_RADIO_RX_ON_LINK:
1113                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1114                 break;
1115         case STATE_RADIO_RX_OFF:
1116         case STATE_RADIO_RX_OFF_LINK:
1117                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1118                 break;
1119         case STATE_DEEP_SLEEP:
1120         case STATE_SLEEP:
1121         case STATE_STANDBY:
1122         case STATE_AWAKE:
1123                 retval = rt2500pci_set_state(rt2x00dev, state);
1124                 break;
1125         default:
1126                 retval = -ENOTSUPP;
1127                 break;
1128         }
1129
1130         return retval;
1131 }
1132
1133 /*
1134  * TX descriptor initialization
1135  */
1136 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1137                                     struct sk_buff *skb,
1138                                     struct txentry_desc *txdesc,
1139                                     struct ieee80211_tx_control *control)
1140 {
1141         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1142         __le32 *txd = skbdesc->desc;
1143         u32 word;
1144
1145         /*
1146          * Start writing the descriptor words.
1147          */
1148         rt2x00_desc_read(txd, 2, &word);
1149         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1150         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1151         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1152         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1153         rt2x00_desc_write(txd, 2, word);
1154
1155         rt2x00_desc_read(txd, 3, &word);
1156         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1157         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1158         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1159         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1160         rt2x00_desc_write(txd, 3, word);
1161
1162         rt2x00_desc_read(txd, 10, &word);
1163         rt2x00_set_field32(&word, TXD_W10_RTS,
1164                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1165         rt2x00_desc_write(txd, 10, word);
1166
1167         rt2x00_desc_read(txd, 0, &word);
1168         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1169         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1170         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1171                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1172         rt2x00_set_field32(&word, TXD_W0_ACK,
1173                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1174         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1175                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1176         rt2x00_set_field32(&word, TXD_W0_OFDM,
1177                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1178         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1179         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1180         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1181                            !!(control->flags &
1182                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1183         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1184         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1185         rt2x00_desc_write(txd, 0, word);
1186 }
1187
1188 /*
1189  * TX data initialization
1190  */
1191 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1192                                     unsigned int queue)
1193 {
1194         u32 reg;
1195
1196         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1197                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1198                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1199                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1200                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1201                 }
1202                 return;
1203         }
1204
1205         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1206         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1207                            (queue == IEEE80211_TX_QUEUE_DATA0));
1208         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1209                            (queue == IEEE80211_TX_QUEUE_DATA1));
1210         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1211                            (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1212         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1213 }
1214
1215 /*
1216  * RX control handlers
1217  */
1218 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1219                                   struct rxdone_entry_desc *rxdesc)
1220 {
1221         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1222         u32 word0;
1223         u32 word2;
1224
1225         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1226         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1227
1228         rxdesc->flags = 0;
1229         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1230                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1231         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1232                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1233
1234         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1235         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1236             entry->queue->rt2x00dev->rssi_offset;
1237         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1238         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1239         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1240 }
1241
1242 /*
1243  * Interrupt functions.
1244  */
1245 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1246                              const enum ieee80211_tx_queue queue_idx)
1247 {
1248         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1249         struct queue_entry_priv_pci_tx *priv_tx;
1250         struct queue_entry *entry;
1251         struct txdone_entry_desc txdesc;
1252         u32 word;
1253
1254         while (!rt2x00queue_empty(queue)) {
1255                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1256                 priv_tx = entry->priv_data;
1257                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1258
1259                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1260                     !rt2x00_get_field32(word, TXD_W0_VALID))
1261                         break;
1262
1263                 /*
1264                  * Obtain the status about this packet.
1265                  */
1266                 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1267                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1268
1269                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1270         }
1271 }
1272
1273 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1274 {
1275         struct rt2x00_dev *rt2x00dev = dev_instance;
1276         u32 reg;
1277
1278         /*
1279          * Get the interrupt sources & saved to local variable.
1280          * Write register value back to clear pending interrupts.
1281          */
1282         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1283         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1284
1285         if (!reg)
1286                 return IRQ_NONE;
1287
1288         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1289                 return IRQ_HANDLED;
1290
1291         /*
1292          * Handle interrupts, walk through all bits
1293          * and run the tasks, the bits are checked in order of
1294          * priority.
1295          */
1296
1297         /*
1298          * 1 - Beacon timer expired interrupt.
1299          */
1300         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1301                 rt2x00lib_beacondone(rt2x00dev);
1302
1303         /*
1304          * 2 - Rx ring done interrupt.
1305          */
1306         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1307                 rt2x00pci_rxdone(rt2x00dev);
1308
1309         /*
1310          * 3 - Atim ring transmit done interrupt.
1311          */
1312         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1313                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1314
1315         /*
1316          * 4 - Priority ring transmit done interrupt.
1317          */
1318         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1319                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1320
1321         /*
1322          * 5 - Tx ring transmit done interrupt.
1323          */
1324         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1325                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1326
1327         return IRQ_HANDLED;
1328 }
1329
1330 /*
1331  * Device probe functions.
1332  */
1333 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1334 {
1335         struct eeprom_93cx6 eeprom;
1336         u32 reg;
1337         u16 word;
1338         u8 *mac;
1339
1340         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1341
1342         eeprom.data = rt2x00dev;
1343         eeprom.register_read = rt2500pci_eepromregister_read;
1344         eeprom.register_write = rt2500pci_eepromregister_write;
1345         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1346             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1347         eeprom.reg_data_in = 0;
1348         eeprom.reg_data_out = 0;
1349         eeprom.reg_data_clock = 0;
1350         eeprom.reg_chip_select = 0;
1351
1352         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1353                                EEPROM_SIZE / sizeof(u16));
1354
1355         /*
1356          * Start validation of the data that has been read.
1357          */
1358         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1359         if (!is_valid_ether_addr(mac)) {
1360                 DECLARE_MAC_BUF(macbuf);
1361
1362                 random_ether_addr(mac);
1363                 EEPROM(rt2x00dev, "MAC: %s\n",
1364                        print_mac(macbuf, mac));
1365         }
1366
1367         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1368         if (word == 0xffff) {
1369                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1370                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1371                                    ANTENNA_SW_DIVERSITY);
1372                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1373                                    ANTENNA_SW_DIVERSITY);
1374                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1375                                    LED_MODE_DEFAULT);
1376                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1377                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1378                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1379                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1380                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1381         }
1382
1383         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1384         if (word == 0xffff) {
1385                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1386                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1387                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1388                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1389                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1390         }
1391
1392         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1393         if (word == 0xffff) {
1394                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1395                                    DEFAULT_RSSI_OFFSET);
1396                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1397                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1398         }
1399
1400         return 0;
1401 }
1402
1403 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1404 {
1405         u32 reg;
1406         u16 value;
1407         u16 eeprom;
1408
1409         /*
1410          * Read EEPROM word for configuration.
1411          */
1412         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1413
1414         /*
1415          * Identify RF chipset.
1416          */
1417         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1418         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1419         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1420
1421         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1422             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1423             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1424             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1425             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1426             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1427                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1428                 return -ENODEV;
1429         }
1430
1431         /*
1432          * Identify default antenna configuration.
1433          */
1434         rt2x00dev->default_ant.tx =
1435             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1436         rt2x00dev->default_ant.rx =
1437             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1438
1439         /*
1440          * Store led mode, for correct led behaviour.
1441          */
1442         rt2x00dev->led_mode =
1443             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1444
1445         /*
1446          * Detect if this device has an hardware controlled radio.
1447          */
1448 #ifdef CONFIG_RT2500PCI_RFKILL
1449         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1450                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1451 #endif /* CONFIG_RT2500PCI_RFKILL */
1452
1453         /*
1454          * Check if the BBP tuning should be enabled.
1455          */
1456         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1457
1458         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1459                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1460
1461         /*
1462          * Read the RSSI <-> dBm offset information.
1463          */
1464         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1465         rt2x00dev->rssi_offset =
1466             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1467
1468         return 0;
1469 }
1470
1471 /*
1472  * RF value list for RF2522
1473  * Supports: 2.4 GHz
1474  */
1475 static const struct rf_channel rf_vals_bg_2522[] = {
1476         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1477         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1478         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1479         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1480         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1481         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1482         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1483         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1484         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1485         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1486         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1487         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1488         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1489         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1490 };
1491
1492 /*
1493  * RF value list for RF2523
1494  * Supports: 2.4 GHz
1495  */
1496 static const struct rf_channel rf_vals_bg_2523[] = {
1497         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1498         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1499         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1500         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1501         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1502         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1503         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1504         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1505         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1506         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1507         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1508         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1509         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1510         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1511 };
1512
1513 /*
1514  * RF value list for RF2524
1515  * Supports: 2.4 GHz
1516  */
1517 static const struct rf_channel rf_vals_bg_2524[] = {
1518         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1519         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1520         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1521         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1522         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1523         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1524         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1525         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1526         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1527         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1528         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1529         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1530         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1531         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1532 };
1533
1534 /*
1535  * RF value list for RF2525
1536  * Supports: 2.4 GHz
1537  */
1538 static const struct rf_channel rf_vals_bg_2525[] = {
1539         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1540         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1541         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1542         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1543         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1544         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1545         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1546         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1547         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1548         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1549         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1550         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1551         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1552         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1553 };
1554
1555 /*
1556  * RF value list for RF2525e
1557  * Supports: 2.4 GHz
1558  */
1559 static const struct rf_channel rf_vals_bg_2525e[] = {
1560         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1561         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1562         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1563         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1564         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1565         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1566         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1567         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1568         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1569         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1570         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1571         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1572         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1573         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1574 };
1575
1576 /*
1577  * RF value list for RF5222
1578  * Supports: 2.4 GHz & 5.2 GHz
1579  */
1580 static const struct rf_channel rf_vals_5222[] = {
1581         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1582         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1583         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1584         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1585         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1586         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1587         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1588         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1589         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1590         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1591         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1592         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1593         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1594         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1595
1596         /* 802.11 UNI / HyperLan 2 */
1597         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1598         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1599         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1600         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1601         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1602         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1603         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1604         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1605
1606         /* 802.11 HyperLan 2 */
1607         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1608         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1609         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1610         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1611         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1612         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1613         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1614         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1615         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1616         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1617
1618         /* 802.11 UNII */
1619         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1620         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1621         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1622         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1623         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1624 };
1625
1626 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1627 {
1628         struct hw_mode_spec *spec = &rt2x00dev->spec;
1629         u8 *txpower;
1630         unsigned int i;
1631
1632         /*
1633          * Initialize all hw fields.
1634          */
1635         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1636         rt2x00dev->hw->extra_tx_headroom = 0;
1637         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1638         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1639         rt2x00dev->hw->queues = 2;
1640
1641         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1642         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1643                                 rt2x00_eeprom_addr(rt2x00dev,
1644                                                    EEPROM_MAC_ADDR_0));
1645
1646         /*
1647          * Convert tx_power array in eeprom.
1648          */
1649         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1650         for (i = 0; i < 14; i++)
1651                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1652
1653         /*
1654          * Initialize hw_mode information.
1655          */
1656         spec->num_modes = 2;
1657         spec->num_rates = 12;
1658         spec->tx_power_a = NULL;
1659         spec->tx_power_bg = txpower;
1660         spec->tx_power_default = DEFAULT_TXPOWER;
1661
1662         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1663                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1664                 spec->channels = rf_vals_bg_2522;
1665         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1666                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1667                 spec->channels = rf_vals_bg_2523;
1668         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1669                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1670                 spec->channels = rf_vals_bg_2524;
1671         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1672                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1673                 spec->channels = rf_vals_bg_2525;
1674         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1675                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1676                 spec->channels = rf_vals_bg_2525e;
1677         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1678                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1679                 spec->channels = rf_vals_5222;
1680                 spec->num_modes = 3;
1681         }
1682 }
1683
1684 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1685 {
1686         int retval;
1687
1688         /*
1689          * Allocate eeprom data.
1690          */
1691         retval = rt2500pci_validate_eeprom(rt2x00dev);
1692         if (retval)
1693                 return retval;
1694
1695         retval = rt2500pci_init_eeprom(rt2x00dev);
1696         if (retval)
1697                 return retval;
1698
1699         /*
1700          * Initialize hw specifications.
1701          */
1702         rt2500pci_probe_hw_mode(rt2x00dev);
1703
1704         /*
1705          * This device requires the atim queue
1706          */
1707         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1708
1709         /*
1710          * Set the rssi offset.
1711          */
1712         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1713
1714         return 0;
1715 }
1716
1717 /*
1718  * IEEE80211 stack callback functions.
1719  */
1720 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1721                                        unsigned int changed_flags,
1722                                        unsigned int *total_flags,
1723                                        int mc_count,
1724                                        struct dev_addr_list *mc_list)
1725 {
1726         struct rt2x00_dev *rt2x00dev = hw->priv;
1727         u32 reg;
1728
1729         /*
1730          * Mask off any flags we are going to ignore from
1731          * the total_flags field.
1732          */
1733         *total_flags &=
1734             FIF_ALLMULTI |
1735             FIF_FCSFAIL |
1736             FIF_PLCPFAIL |
1737             FIF_CONTROL |
1738             FIF_OTHER_BSS |
1739             FIF_PROMISC_IN_BSS;
1740
1741         /*
1742          * Apply some rules to the filters:
1743          * - Some filters imply different filters to be set.
1744          * - Some things we can't filter out at all.
1745          */
1746         if (mc_count)
1747                 *total_flags |= FIF_ALLMULTI;
1748         if (*total_flags & FIF_OTHER_BSS ||
1749             *total_flags & FIF_PROMISC_IN_BSS)
1750                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1751
1752         /*
1753          * Check if there is any work left for us.
1754          */
1755         if (rt2x00dev->packet_filter == *total_flags)
1756                 return;
1757         rt2x00dev->packet_filter = *total_flags;
1758
1759         /*
1760          * Start configuration steps.
1761          * Note that the version error will always be dropped
1762          * and broadcast frames will always be accepted since
1763          * there is no filter for it at this time.
1764          */
1765         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1766         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1767                            !(*total_flags & FIF_FCSFAIL));
1768         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1769                            !(*total_flags & FIF_PLCPFAIL));
1770         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1771                            !(*total_flags & FIF_CONTROL));
1772         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1773                            !(*total_flags & FIF_PROMISC_IN_BSS));
1774         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1775                            !(*total_flags & FIF_PROMISC_IN_BSS));
1776         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1777         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1778                            !(*total_flags & FIF_ALLMULTI));
1779         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1780         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1781 }
1782
1783 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1784                                      u32 short_retry, u32 long_retry)
1785 {
1786         struct rt2x00_dev *rt2x00dev = hw->priv;
1787         u32 reg;
1788
1789         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1790         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1791         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1792         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1793
1794         return 0;
1795 }
1796
1797 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1798 {
1799         struct rt2x00_dev *rt2x00dev = hw->priv;
1800         u64 tsf;
1801         u32 reg;
1802
1803         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1804         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1805         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1806         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1807
1808         return tsf;
1809 }
1810
1811 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1812 {
1813         struct rt2x00_dev *rt2x00dev = hw->priv;
1814
1815         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1816         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1817 }
1818
1819 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1820 {
1821         struct rt2x00_dev *rt2x00dev = hw->priv;
1822         u32 reg;
1823
1824         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1825         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1826 }
1827
1828 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1829         .tx                     = rt2x00mac_tx,
1830         .start                  = rt2x00mac_start,
1831         .stop                   = rt2x00mac_stop,
1832         .add_interface          = rt2x00mac_add_interface,
1833         .remove_interface       = rt2x00mac_remove_interface,
1834         .config                 = rt2x00mac_config,
1835         .config_interface       = rt2x00mac_config_interface,
1836         .configure_filter       = rt2500pci_configure_filter,
1837         .get_stats              = rt2x00mac_get_stats,
1838         .set_retry_limit        = rt2500pci_set_retry_limit,
1839         .bss_info_changed       = rt2x00mac_bss_info_changed,
1840         .conf_tx                = rt2x00mac_conf_tx,
1841         .get_tx_stats           = rt2x00mac_get_tx_stats,
1842         .get_tsf                = rt2500pci_get_tsf,
1843         .reset_tsf              = rt2500pci_reset_tsf,
1844         .beacon_update          = rt2x00pci_beacon_update,
1845         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1846 };
1847
1848 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1849         .irq_handler            = rt2500pci_interrupt,
1850         .probe_hw               = rt2500pci_probe_hw,
1851         .initialize             = rt2x00pci_initialize,
1852         .uninitialize           = rt2x00pci_uninitialize,
1853         .init_rxentry           = rt2500pci_init_rxentry,
1854         .init_txentry           = rt2500pci_init_txentry,
1855         .set_device_state       = rt2500pci_set_device_state,
1856         .rfkill_poll            = rt2500pci_rfkill_poll,
1857         .link_stats             = rt2500pci_link_stats,
1858         .reset_tuner            = rt2500pci_reset_tuner,
1859         .link_tuner             = rt2500pci_link_tuner,
1860         .write_tx_desc          = rt2500pci_write_tx_desc,
1861         .write_tx_data          = rt2x00pci_write_tx_data,
1862         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1863         .fill_rxdone            = rt2500pci_fill_rxdone,
1864         .config_mac_addr        = rt2500pci_config_mac_addr,
1865         .config_bssid           = rt2500pci_config_bssid,
1866         .config_type            = rt2500pci_config_type,
1867         .config_preamble        = rt2500pci_config_preamble,
1868         .config                 = rt2500pci_config,
1869 };
1870
1871 static const struct data_queue_desc rt2500pci_queue_rx = {
1872         .entry_num              = RX_ENTRIES,
1873         .data_size              = DATA_FRAME_SIZE,
1874         .desc_size              = RXD_DESC_SIZE,
1875         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1876 };
1877
1878 static const struct data_queue_desc rt2500pci_queue_tx = {
1879         .entry_num              = TX_ENTRIES,
1880         .data_size              = DATA_FRAME_SIZE,
1881         .desc_size              = TXD_DESC_SIZE,
1882         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1883 };
1884
1885 static const struct data_queue_desc rt2500pci_queue_bcn = {
1886         .entry_num              = BEACON_ENTRIES,
1887         .data_size              = MGMT_FRAME_SIZE,
1888         .desc_size              = TXD_DESC_SIZE,
1889         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1890 };
1891
1892 static const struct data_queue_desc rt2500pci_queue_atim = {
1893         .entry_num              = ATIM_ENTRIES,
1894         .data_size              = DATA_FRAME_SIZE,
1895         .desc_size              = TXD_DESC_SIZE,
1896         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1897 };
1898
1899 static const struct rt2x00_ops rt2500pci_ops = {
1900         .name           = KBUILD_MODNAME,
1901         .eeprom_size    = EEPROM_SIZE,
1902         .rf_size        = RF_SIZE,
1903         .rx             = &rt2500pci_queue_rx,
1904         .tx             = &rt2500pci_queue_tx,
1905         .bcn            = &rt2500pci_queue_bcn,
1906         .atim           = &rt2500pci_queue_atim,
1907         .lib            = &rt2500pci_rt2x00_ops,
1908         .hw             = &rt2500pci_mac80211_ops,
1909 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1910         .debugfs        = &rt2500pci_rt2x00debug,
1911 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1912 };
1913
1914 /*
1915  * RT2500pci module information.
1916  */
1917 static struct pci_device_id rt2500pci_device_table[] = {
1918         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1919         { 0, }
1920 };
1921
1922 MODULE_AUTHOR(DRV_PROJECT);
1923 MODULE_VERSION(DRV_VERSION);
1924 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1925 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1926 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1927 MODULE_LICENSE("GPL");
1928
1929 static struct pci_driver rt2500pci_driver = {
1930         .name           = KBUILD_MODNAME,
1931         .id_table       = rt2500pci_device_table,
1932         .probe          = rt2x00pci_probe,
1933         .remove         = __devexit_p(rt2x00pci_remove),
1934         .suspend        = rt2x00pci_suspend,
1935         .resume         = rt2x00pci_resume,
1936 };
1937
1938 static int __init rt2500pci_init(void)
1939 {
1940         return pci_register_driver(&rt2500pci_driver);
1941 }
1942
1943 static void __exit rt2500pci_exit(void)
1944 {
1945         pci_unregister_driver(&rt2500pci_driver);
1946 }
1947
1948 module_init(rt2500pci_init);
1949 module_exit(rt2500pci_exit);