rt2x00: Add rt3390 support in rt2800 register initialization.
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58                                 const unsigned int word, const u8 value)
59 {
60         u32 reg;
61
62         mutex_lock(&rt2x00dev->csr_mutex);
63
64         /*
65          * Wait until the BBP becomes available, afterwards we
66          * can safely write the new data into the register.
67          */
68         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69                 reg = 0;
70                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76         }
77
78         mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82                                const unsigned int word, u8 *value)
83 {
84         u32 reg;
85
86         mutex_lock(&rt2x00dev->csr_mutex);
87
88         /*
89          * Wait until the BBP becomes available, afterwards we
90          * can safely write the read request into the register.
91          * After the data has been written, we wait until hardware
92          * returns the correct value, if at any time the register
93          * doesn't become available in time, reg will be 0xffffffff
94          * which means we return 0xff to the caller.
95          */
96         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97                 reg = 0;
98                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104                 WAIT_FOR_BBP(rt2x00dev, &reg);
105         }
106
107         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109         mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                                const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         mutex_lock(&rt2x00dev->csr_mutex);
118
119         /*
120          * Wait until the RF becomes available, afterwards we
121          * can safely write the new data into the register.
122          */
123         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124                 reg = 0;
125                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131                 rt2x00_rf_write(rt2x00dev, word, value);
132         }
133
134         mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139         struct rt2x00_dev *rt2x00dev = eeprom->data;
140         u32 reg;
141
142         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146         eeprom->reg_data_clock =
147             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148         eeprom->reg_chip_select =
149             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154         struct rt2x00_dev *rt2x00dev = eeprom->data;
155         u32 reg = 0;
156
157         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160                            !!eeprom->reg_data_clock);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162                            !!eeprom->reg_chip_select);
163
164         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2500pci_rt2x00debug = {
169         .owner  = THIS_MODULE,
170         .csr    = {
171                 .read           = rt2x00pci_register_read,
172                 .write          = rt2x00pci_register_write,
173                 .flags          = RT2X00DEBUGFS_OFFSET,
174                 .word_base      = CSR_REG_BASE,
175                 .word_size      = sizeof(u32),
176                 .word_count     = CSR_REG_SIZE / sizeof(u32),
177         },
178         .eeprom = {
179                 .read           = rt2x00_eeprom_read,
180                 .write          = rt2x00_eeprom_write,
181                 .word_base      = EEPROM_BASE,
182                 .word_size      = sizeof(u16),
183                 .word_count     = EEPROM_SIZE / sizeof(u16),
184         },
185         .bbp    = {
186                 .read           = rt2500pci_bbp_read,
187                 .write          = rt2500pci_bbp_write,
188                 .word_base      = BBP_BASE,
189                 .word_size      = sizeof(u8),
190                 .word_count     = BBP_SIZE / sizeof(u8),
191         },
192         .rf     = {
193                 .read           = rt2x00_rf_read,
194                 .write          = rt2500pci_rf_write,
195                 .word_base      = RF_BASE,
196                 .word_size      = sizeof(u32),
197                 .word_count     = RF_SIZE / sizeof(u32),
198         },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
203 {
204         u32 reg;
205
206         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
208 }
209
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
212                                      enum led_brightness brightness)
213 {
214         struct rt2x00_led *led =
215             container_of(led_cdev, struct rt2x00_led, led_dev);
216         unsigned int enabled = brightness != LED_OFF;
217         u32 reg;
218
219         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
220
221         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223         else if (led->type == LED_TYPE_ACTIVITY)
224                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
225
226         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
227 }
228
229 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
230                                unsigned long *delay_on,
231                                unsigned long *delay_off)
232 {
233         struct rt2x00_led *led =
234             container_of(led_cdev, struct rt2x00_led, led_dev);
235         u32 reg;
236
237         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
241
242         return 0;
243 }
244
245 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
246                                struct rt2x00_led *led,
247                                enum led_type type)
248 {
249         led->rt2x00dev = rt2x00dev;
250         led->type = type;
251         led->led_dev.brightness_set = rt2500pci_brightness_set;
252         led->led_dev.blink_set = rt2500pci_blink_set;
253         led->flags = LED_INITIALIZED;
254 }
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
256
257 /*
258  * Configuration handlers.
259  */
260 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
261                                     const unsigned int filter_flags)
262 {
263         u32 reg;
264
265         /*
266          * Start configuration steps.
267          * Note that the version error will always be dropped
268          * and broadcast frames will always be accepted since
269          * there is no filter for it at this time.
270          */
271         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273                            !(filter_flags & FIF_FCSFAIL));
274         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275                            !(filter_flags & FIF_PLCPFAIL));
276         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277                            !(filter_flags & FIF_CONTROL));
278         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279                            !(filter_flags & FIF_PROMISC_IN_BSS));
280         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
282                            !rt2x00dev->intf_ap_count);
283         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
285                            !(filter_flags & FIF_ALLMULTI));
286         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
287         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
288 }
289
290 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
291                                   struct rt2x00_intf *intf,
292                                   struct rt2x00intf_conf *conf,
293                                   const unsigned int flags)
294 {
295         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
296         unsigned int bcn_preload;
297         u32 reg;
298
299         if (flags & CONFIG_UPDATE_TYPE) {
300                 /*
301                  * Enable beacon config
302                  */
303                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
304                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
305                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
306                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
307                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
308
309                 /*
310                  * Enable synchronisation.
311                  */
312                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
313                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
314                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
316                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
317         }
318
319         if (flags & CONFIG_UPDATE_MAC)
320                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
321                                               conf->mac, sizeof(conf->mac));
322
323         if (flags & CONFIG_UPDATE_BSSID)
324                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
325                                               conf->bssid, sizeof(conf->bssid));
326 }
327
328 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
329                                  struct rt2x00lib_erp *erp)
330 {
331         int preamble_mask;
332         u32 reg;
333
334         /*
335          * When short preamble is enabled, we should set bit 0x08
336          */
337         preamble_mask = erp->short_preamble << 3;
338
339         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
340         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
341         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
342         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
343         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
344         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
345
346         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
347         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
348         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
349         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
350         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
351
352         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
353         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
354         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
355         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
356         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
357
358         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
359         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
360         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
361         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
362         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
363
364         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
365         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
368         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
369
370         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
371
372         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
373         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
374         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
375
376         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
377         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
378         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
379         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
380
381         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
382         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
383         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
384         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
385
386         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
387         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
388         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
389         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
390 }
391
392 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
393                                  struct antenna_setup *ant)
394 {
395         u32 reg;
396         u8 r14;
397         u8 r2;
398
399         /*
400          * We should never come here because rt2x00lib is supposed
401          * to catch this and send us the correct antenna explicitely.
402          */
403         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
404                ant->tx == ANTENNA_SW_DIVERSITY);
405
406         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
407         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
408         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
409
410         /*
411          * Configure the TX antenna.
412          */
413         switch (ant->tx) {
414         case ANTENNA_A:
415                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
416                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
417                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
418                 break;
419         case ANTENNA_B:
420         default:
421                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
422                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
423                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
424                 break;
425         }
426
427         /*
428          * Configure the RX antenna.
429          */
430         switch (ant->rx) {
431         case ANTENNA_A:
432                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
433                 break;
434         case ANTENNA_B:
435         default:
436                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
437                 break;
438         }
439
440         /*
441          * RT2525E and RT5222 need to flip TX I/Q
442          */
443         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
444                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
445                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
446                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
447
448                 /*
449                  * RT2525E does not need RX I/Q Flip.
450                  */
451                 if (rt2x00_rf(rt2x00dev, RF2525E))
452                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
453         } else {
454                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
455                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
456         }
457
458         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
459         rt2500pci_bbp_write(rt2x00dev, 14, r14);
460         rt2500pci_bbp_write(rt2x00dev, 2, r2);
461 }
462
463 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
464                                      struct rf_channel *rf, const int txpower)
465 {
466         u8 r70;
467
468         /*
469          * Set TXpower.
470          */
471         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
472
473         /*
474          * Switch on tuning bits.
475          * For RT2523 devices we do not need to update the R1 register.
476          */
477         if (!rt2x00_rf(rt2x00dev, RF2523))
478                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
479         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
480
481         /*
482          * For RT2525 we should first set the channel to half band higher.
483          */
484         if (rt2x00_rf(rt2x00dev, RF2525)) {
485                 static const u32 vals[] = {
486                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
487                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
488                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
489                         0x00080d2e, 0x00080d3a
490                 };
491
492                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
493                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
494                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
495                 if (rf->rf4)
496                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
497         }
498
499         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
500         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
501         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
502         if (rf->rf4)
503                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
504
505         /*
506          * Channel 14 requires the Japan filter bit to be set.
507          */
508         r70 = 0x46;
509         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
510         rt2500pci_bbp_write(rt2x00dev, 70, r70);
511
512         msleep(1);
513
514         /*
515          * Switch off tuning bits.
516          * For RT2523 devices we do not need to update the R1 register.
517          */
518         if (!rt2x00_rf(rt2x00dev, RF2523)) {
519                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
520                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
521         }
522
523         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
524         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
525
526         /*
527          * Clear false CRC during channel switch.
528          */
529         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
530 }
531
532 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
533                                      const int txpower)
534 {
535         u32 rf3;
536
537         rt2x00_rf_read(rt2x00dev, 3, &rf3);
538         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
539         rt2500pci_rf_write(rt2x00dev, 3, rf3);
540 }
541
542 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
543                                          struct rt2x00lib_conf *libconf)
544 {
545         u32 reg;
546
547         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
548         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
549                            libconf->conf->long_frame_max_tx_count);
550         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
551                            libconf->conf->short_frame_max_tx_count);
552         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
553 }
554
555 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
556                                 struct rt2x00lib_conf *libconf)
557 {
558         enum dev_state state =
559             (libconf->conf->flags & IEEE80211_CONF_PS) ?
560                 STATE_SLEEP : STATE_AWAKE;
561         u32 reg;
562
563         if (state == STATE_SLEEP) {
564                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
565                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
566                                    (rt2x00dev->beacon_int - 20) * 16);
567                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
568                                    libconf->conf->listen_interval - 1);
569
570                 /* We must first disable autowake before it can be enabled */
571                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
572                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
573
574                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
575                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
576         } else {
577                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
578                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
579                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
580         }
581
582         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
583 }
584
585 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
586                              struct rt2x00lib_conf *libconf,
587                              const unsigned int flags)
588 {
589         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
590                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
591                                          libconf->conf->power_level);
592         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
593             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
594                 rt2500pci_config_txpower(rt2x00dev,
595                                          libconf->conf->power_level);
596         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
597                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
598         if (flags & IEEE80211_CONF_CHANGE_PS)
599                 rt2500pci_config_ps(rt2x00dev, libconf);
600 }
601
602 /*
603  * Link tuning
604  */
605 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
606                                  struct link_qual *qual)
607 {
608         u32 reg;
609
610         /*
611          * Update FCS error count from register.
612          */
613         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
614         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
615
616         /*
617          * Update False CCA count from register.
618          */
619         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
620         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
621 }
622
623 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
624                                      struct link_qual *qual, u8 vgc_level)
625 {
626         if (qual->vgc_level_reg != vgc_level) {
627                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
628                 qual->vgc_level_reg = vgc_level;
629         }
630 }
631
632 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
633                                   struct link_qual *qual)
634 {
635         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
636 }
637
638 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
639                                  struct link_qual *qual, const u32 count)
640 {
641         /*
642          * To prevent collisions with MAC ASIC on chipsets
643          * up to version C the link tuning should halt after 20
644          * seconds while being associated.
645          */
646         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
647             rt2x00dev->intf_associated && count > 20)
648                 return;
649
650         /*
651          * Chipset versions C and lower should directly continue
652          * to the dynamic CCA tuning. Chipset version D and higher
653          * should go straight to dynamic CCA tuning when they
654          * are not associated.
655          */
656         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
657             !rt2x00dev->intf_associated)
658                 goto dynamic_cca_tune;
659
660         /*
661          * A too low RSSI will cause too much false CCA which will
662          * then corrupt the R17 tuning. To remidy this the tuning should
663          * be stopped (While making sure the R17 value will not exceed limits)
664          */
665         if (qual->rssi < -80 && count > 20) {
666                 if (qual->vgc_level_reg >= 0x41)
667                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
668                 return;
669         }
670
671         /*
672          * Special big-R17 for short distance
673          */
674         if (qual->rssi >= -58) {
675                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
676                 return;
677         }
678
679         /*
680          * Special mid-R17 for middle distance
681          */
682         if (qual->rssi >= -74) {
683                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
684                 return;
685         }
686
687         /*
688          * Leave short or middle distance condition, restore r17
689          * to the dynamic tuning range.
690          */
691         if (qual->vgc_level_reg >= 0x41) {
692                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
693                 return;
694         }
695
696 dynamic_cca_tune:
697
698         /*
699          * R17 is inside the dynamic tuning range,
700          * start tuning the link based on the false cca counter.
701          */
702         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
703                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
704                 qual->vgc_level = qual->vgc_level_reg;
705         } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
706                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
707                 qual->vgc_level = qual->vgc_level_reg;
708         }
709 }
710
711 /*
712  * Initialization functions.
713  */
714 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
715 {
716         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
717         u32 word;
718
719         if (entry->queue->qid == QID_RX) {
720                 rt2x00_desc_read(entry_priv->desc, 0, &word);
721
722                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
723         } else {
724                 rt2x00_desc_read(entry_priv->desc, 0, &word);
725
726                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
727                         rt2x00_get_field32(word, TXD_W0_VALID));
728         }
729 }
730
731 static void rt2500pci_clear_entry(struct queue_entry *entry)
732 {
733         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
734         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
735         u32 word;
736
737         if (entry->queue->qid == QID_RX) {
738                 rt2x00_desc_read(entry_priv->desc, 1, &word);
739                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
740                 rt2x00_desc_write(entry_priv->desc, 1, word);
741
742                 rt2x00_desc_read(entry_priv->desc, 0, &word);
743                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
744                 rt2x00_desc_write(entry_priv->desc, 0, word);
745         } else {
746                 rt2x00_desc_read(entry_priv->desc, 0, &word);
747                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
748                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
749                 rt2x00_desc_write(entry_priv->desc, 0, word);
750         }
751 }
752
753 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
754 {
755         struct queue_entry_priv_pci *entry_priv;
756         u32 reg;
757
758         /*
759          * Initialize registers.
760          */
761         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
762         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
763         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
764         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
765         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
766         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
767
768         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
769         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
770         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
771                            entry_priv->desc_dma);
772         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
773
774         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
775         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
776         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
777                            entry_priv->desc_dma);
778         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
779
780         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
781         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
782         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
783                            entry_priv->desc_dma);
784         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
785
786         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
787         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
788         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
789                            entry_priv->desc_dma);
790         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
791
792         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
793         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
794         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
795         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
796
797         entry_priv = rt2x00dev->rx->entries[0].priv_data;
798         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
799         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
800                            entry_priv->desc_dma);
801         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
802
803         return 0;
804 }
805
806 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
807 {
808         u32 reg;
809
810         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
811         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
812         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
813         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
814
815         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
816         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
817         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
818         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
819         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
820
821         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
822         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
823                            rt2x00dev->rx->data_size / 128);
824         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
825
826         /*
827          * Always use CWmin and CWmax set in descriptor.
828          */
829         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
830         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
831         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
832
833         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
834         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
835         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
836         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
837         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
838         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
839         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
840         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
841         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
842         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
843
844         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
845
846         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
847         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
848         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
849         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
850         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
851         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
852         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
853         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
854         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
855         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
856
857         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
858         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
859         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
860         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
861         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
862         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
863
864         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
865         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
866         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
867         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
868         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
869         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
870
871         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
872         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
873         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
874         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
875         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
876         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
877
878         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
879         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
880         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
881         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
882         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
883         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
884         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
885         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
886         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
887         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
888
889         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
890         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
891         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
892         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
893         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
894         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
895         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
896         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
897         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
898
899         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
900
901         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
902         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
903
904         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
905                 return -EBUSY;
906
907         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
908         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
909
910         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
911         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
912         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
913
914         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
915         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
916         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
917         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
918         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
919         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
920         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
921         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
922
923         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
924
925         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
926
927         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
928         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
929         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
930         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
931         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
932
933         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
934         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
935         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
936         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
937
938         /*
939          * We must clear the FCS and FIFO error count.
940          * These registers are cleared on read,
941          * so we may pass a useless variable to store the value.
942          */
943         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
944         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
945
946         return 0;
947 }
948
949 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
950 {
951         unsigned int i;
952         u8 value;
953
954         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
955                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
956                 if ((value != 0xff) && (value != 0x00))
957                         return 0;
958                 udelay(REGISTER_BUSY_DELAY);
959         }
960
961         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
962         return -EACCES;
963 }
964
965 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
966 {
967         unsigned int i;
968         u16 eeprom;
969         u8 reg_id;
970         u8 value;
971
972         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
973                 return -EACCES;
974
975         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
976         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
977         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
978         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
979         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
980         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
981         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
982         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
983         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
984         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
985         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
986         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
987         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
988         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
989         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
990         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
991         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
992         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
993         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
994         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
995         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
996         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
997         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
998         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
999         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1000         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1001         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1002         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1003         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1004         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1005
1006         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1007                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1008
1009                 if (eeprom != 0xffff && eeprom != 0x0000) {
1010                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1011                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1012                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1013                 }
1014         }
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * Device state switch handlers.
1021  */
1022 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1023                                 enum dev_state state)
1024 {
1025         u32 reg;
1026
1027         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1028         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1029                            (state == STATE_RADIO_RX_OFF) ||
1030                            (state == STATE_RADIO_RX_OFF_LINK));
1031         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1032 }
1033
1034 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1035                                  enum dev_state state)
1036 {
1037         int mask = (state == STATE_RADIO_IRQ_OFF);
1038         u32 reg;
1039
1040         /*
1041          * When interrupts are being enabled, the interrupt registers
1042          * should clear the register to assure a clean state.
1043          */
1044         if (state == STATE_RADIO_IRQ_ON) {
1045                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1046                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1047         }
1048
1049         /*
1050          * Only toggle the interrupts bits we are going to use.
1051          * Non-checked interrupt bits are disabled by default.
1052          */
1053         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1054         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1055         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1056         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1057         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1058         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1059         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1060 }
1061
1062 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1063 {
1064         /*
1065          * Initialize all registers.
1066          */
1067         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1068                      rt2500pci_init_registers(rt2x00dev) ||
1069                      rt2500pci_init_bbp(rt2x00dev)))
1070                 return -EIO;
1071
1072         return 0;
1073 }
1074
1075 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1076 {
1077         /*
1078          * Disable power
1079          */
1080         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1081 }
1082
1083 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1084                                enum dev_state state)
1085 {
1086         u32 reg;
1087         unsigned int i;
1088         char put_to_sleep;
1089         char bbp_state;
1090         char rf_state;
1091
1092         put_to_sleep = (state != STATE_AWAKE);
1093
1094         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1095         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1096         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1097         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1098         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1099         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1100
1101         /*
1102          * Device is not guaranteed to be in the requested state yet.
1103          * We must wait until the register indicates that the
1104          * device has entered the correct state.
1105          */
1106         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1107                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1108                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1109                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1110                 if (bbp_state == state && rf_state == state)
1111                         return 0;
1112                 msleep(10);
1113         }
1114
1115         return -EBUSY;
1116 }
1117
1118 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1119                                       enum dev_state state)
1120 {
1121         int retval = 0;
1122
1123         switch (state) {
1124         case STATE_RADIO_ON:
1125                 retval = rt2500pci_enable_radio(rt2x00dev);
1126                 break;
1127         case STATE_RADIO_OFF:
1128                 rt2500pci_disable_radio(rt2x00dev);
1129                 break;
1130         case STATE_RADIO_RX_ON:
1131         case STATE_RADIO_RX_ON_LINK:
1132         case STATE_RADIO_RX_OFF:
1133         case STATE_RADIO_RX_OFF_LINK:
1134                 rt2500pci_toggle_rx(rt2x00dev, state);
1135                 break;
1136         case STATE_RADIO_IRQ_ON:
1137         case STATE_RADIO_IRQ_OFF:
1138                 rt2500pci_toggle_irq(rt2x00dev, state);
1139                 break;
1140         case STATE_DEEP_SLEEP:
1141         case STATE_SLEEP:
1142         case STATE_STANDBY:
1143         case STATE_AWAKE:
1144                 retval = rt2500pci_set_state(rt2x00dev, state);
1145                 break;
1146         default:
1147                 retval = -ENOTSUPP;
1148                 break;
1149         }
1150
1151         if (unlikely(retval))
1152                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1153                       state, retval);
1154
1155         return retval;
1156 }
1157
1158 /*
1159  * TX descriptor initialization
1160  */
1161 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1162                                     struct sk_buff *skb,
1163                                     struct txentry_desc *txdesc)
1164 {
1165         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1166         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1167         __le32 *txd = skbdesc->desc;
1168         u32 word;
1169
1170         /*
1171          * Start writing the descriptor words.
1172          */
1173         rt2x00_desc_read(entry_priv->desc, 1, &word);
1174         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1175         rt2x00_desc_write(entry_priv->desc, 1, word);
1176
1177         rt2x00_desc_read(txd, 2, &word);
1178         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1179         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1180         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1181         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1182         rt2x00_desc_write(txd, 2, word);
1183
1184         rt2x00_desc_read(txd, 3, &word);
1185         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1186         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1187         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1188         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1189         rt2x00_desc_write(txd, 3, word);
1190
1191         rt2x00_desc_read(txd, 10, &word);
1192         rt2x00_set_field32(&word, TXD_W10_RTS,
1193                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1194         rt2x00_desc_write(txd, 10, word);
1195
1196         rt2x00_desc_read(txd, 0, &word);
1197         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1198         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1199         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1200                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1201         rt2x00_set_field32(&word, TXD_W0_ACK,
1202                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1203         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1204                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1205         rt2x00_set_field32(&word, TXD_W0_OFDM,
1206                            (txdesc->rate_mode == RATE_MODE_OFDM));
1207         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1208         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1209         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1210                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1211         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1212         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1213         rt2x00_desc_write(txd, 0, word);
1214 }
1215
1216 /*
1217  * TX data initialization
1218  */
1219 static void rt2500pci_write_beacon(struct queue_entry *entry)
1220 {
1221         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1222         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1223         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1224         u32 word;
1225         u32 reg;
1226
1227         /*
1228          * Disable beaconing while we are reloading the beacon data,
1229          * otherwise we might be sending out invalid data.
1230          */
1231         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1232         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1233         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1234
1235         /*
1236          * Replace rt2x00lib allocated descriptor with the
1237          * pointer to the _real_ hardware descriptor.
1238          * After that, map the beacon to DMA and update the
1239          * descriptor.
1240          */
1241         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1242         skbdesc->desc = entry_priv->desc;
1243
1244         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1245
1246         rt2x00_desc_read(entry_priv->desc, 1, &word);
1247         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1248         rt2x00_desc_write(entry_priv->desc, 1, word);
1249 }
1250
1251 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1252                                     const enum data_queue_qid queue)
1253 {
1254         u32 reg;
1255
1256         if (queue == QID_BEACON) {
1257                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1258                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1259                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1260                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1261                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1262                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1263                 }
1264                 return;
1265         }
1266
1267         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1268         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1269         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1270         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1271         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1272 }
1273
1274 static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1275                                     const enum data_queue_qid qid)
1276 {
1277         u32 reg;
1278
1279         if (qid == QID_BEACON) {
1280                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1281         } else {
1282                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1283                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1284                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1285         }
1286 }
1287
1288 /*
1289  * RX control handlers
1290  */
1291 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1292                                   struct rxdone_entry_desc *rxdesc)
1293 {
1294         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1295         u32 word0;
1296         u32 word2;
1297
1298         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1299         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1300
1301         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1302                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1303         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1304                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1305
1306         /*
1307          * Obtain the status about this packet.
1308          * When frame was received with an OFDM bitrate,
1309          * the signal is the PLCP value. If it was received with
1310          * a CCK bitrate the signal is the rate in 100kbit/s.
1311          */
1312         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1313         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1314             entry->queue->rt2x00dev->rssi_offset;
1315         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1316
1317         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1318                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1319         else
1320                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1321         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1322                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1323 }
1324
1325 /*
1326  * Interrupt functions.
1327  */
1328 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1329                              const enum data_queue_qid queue_idx)
1330 {
1331         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1332         struct queue_entry_priv_pci *entry_priv;
1333         struct queue_entry *entry;
1334         struct txdone_entry_desc txdesc;
1335         u32 word;
1336
1337         while (!rt2x00queue_empty(queue)) {
1338                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1339                 entry_priv = entry->priv_data;
1340                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1341
1342                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1343                     !rt2x00_get_field32(word, TXD_W0_VALID))
1344                         break;
1345
1346                 /*
1347                  * Obtain the status about this packet.
1348                  */
1349                 txdesc.flags = 0;
1350                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1351                 case 0: /* Success */
1352                 case 1: /* Success with retry */
1353                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1354                         break;
1355                 case 2: /* Failure, excessive retries */
1356                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1357                         /* Don't break, this is a failed frame! */
1358                 default: /* Failure */
1359                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1360                 }
1361                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1362
1363                 rt2x00lib_txdone(entry, &txdesc);
1364         }
1365 }
1366
1367 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1368 {
1369         struct rt2x00_dev *rt2x00dev = dev_instance;
1370         u32 reg;
1371
1372         /*
1373          * Get the interrupt sources & saved to local variable.
1374          * Write register value back to clear pending interrupts.
1375          */
1376         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1377         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1378
1379         if (!reg)
1380                 return IRQ_NONE;
1381
1382         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1383                 return IRQ_HANDLED;
1384
1385         /*
1386          * Handle interrupts, walk through all bits
1387          * and run the tasks, the bits are checked in order of
1388          * priority.
1389          */
1390
1391         /*
1392          * 1 - Beacon timer expired interrupt.
1393          */
1394         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1395                 rt2x00lib_beacondone(rt2x00dev);
1396
1397         /*
1398          * 2 - Rx ring done interrupt.
1399          */
1400         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1401                 rt2x00pci_rxdone(rt2x00dev);
1402
1403         /*
1404          * 3 - Atim ring transmit done interrupt.
1405          */
1406         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1407                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1408
1409         /*
1410          * 4 - Priority ring transmit done interrupt.
1411          */
1412         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1413                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1414
1415         /*
1416          * 5 - Tx ring transmit done interrupt.
1417          */
1418         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1419                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1420
1421         return IRQ_HANDLED;
1422 }
1423
1424 /*
1425  * Device probe functions.
1426  */
1427 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1428 {
1429         struct eeprom_93cx6 eeprom;
1430         u32 reg;
1431         u16 word;
1432         u8 *mac;
1433
1434         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1435
1436         eeprom.data = rt2x00dev;
1437         eeprom.register_read = rt2500pci_eepromregister_read;
1438         eeprom.register_write = rt2500pci_eepromregister_write;
1439         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1440             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1441         eeprom.reg_data_in = 0;
1442         eeprom.reg_data_out = 0;
1443         eeprom.reg_data_clock = 0;
1444         eeprom.reg_chip_select = 0;
1445
1446         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1447                                EEPROM_SIZE / sizeof(u16));
1448
1449         /*
1450          * Start validation of the data that has been read.
1451          */
1452         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1453         if (!is_valid_ether_addr(mac)) {
1454                 random_ether_addr(mac);
1455                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1456         }
1457
1458         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1459         if (word == 0xffff) {
1460                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1461                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1462                                    ANTENNA_SW_DIVERSITY);
1463                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1464                                    ANTENNA_SW_DIVERSITY);
1465                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1466                                    LED_MODE_DEFAULT);
1467                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1468                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1469                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1470                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1471                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1472         }
1473
1474         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1475         if (word == 0xffff) {
1476                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1477                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1478                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1479                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1480                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1481         }
1482
1483         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1484         if (word == 0xffff) {
1485                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1486                                    DEFAULT_RSSI_OFFSET);
1487                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1488                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1489         }
1490
1491         return 0;
1492 }
1493
1494 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1495 {
1496         u32 reg;
1497         u16 value;
1498         u16 eeprom;
1499
1500         /*
1501          * Read EEPROM word for configuration.
1502          */
1503         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1504
1505         /*
1506          * Identify RF chipset.
1507          */
1508         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1509         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1510         rt2x00_set_chip(rt2x00dev, RT2560, value,
1511                         rt2x00_get_field32(reg, CSR0_REVISION));
1512
1513         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1514             !rt2x00_rf(rt2x00dev, RF2523) &&
1515             !rt2x00_rf(rt2x00dev, RF2524) &&
1516             !rt2x00_rf(rt2x00dev, RF2525) &&
1517             !rt2x00_rf(rt2x00dev, RF2525E) &&
1518             !rt2x00_rf(rt2x00dev, RF5222)) {
1519                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1520                 return -ENODEV;
1521         }
1522
1523         /*
1524          * Identify default antenna configuration.
1525          */
1526         rt2x00dev->default_ant.tx =
1527             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1528         rt2x00dev->default_ant.rx =
1529             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1530
1531         /*
1532          * Store led mode, for correct led behaviour.
1533          */
1534 #ifdef CONFIG_RT2X00_LIB_LEDS
1535         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1536
1537         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1538         if (value == LED_MODE_TXRX_ACTIVITY ||
1539             value == LED_MODE_DEFAULT ||
1540             value == LED_MODE_ASUS)
1541                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1542                                    LED_TYPE_ACTIVITY);
1543 #endif /* CONFIG_RT2X00_LIB_LEDS */
1544
1545         /*
1546          * Detect if this device has an hardware controlled radio.
1547          */
1548         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1549                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1550
1551         /*
1552          * Check if the BBP tuning should be enabled.
1553          */
1554         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1555
1556         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1557                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1558
1559         /*
1560          * Read the RSSI <-> dBm offset information.
1561          */
1562         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1563         rt2x00dev->rssi_offset =
1564             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1565
1566         return 0;
1567 }
1568
1569 /*
1570  * RF value list for RF2522
1571  * Supports: 2.4 GHz
1572  */
1573 static const struct rf_channel rf_vals_bg_2522[] = {
1574         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1575         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1576         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1577         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1578         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1579         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1580         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1581         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1582         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1583         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1584         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1585         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1586         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1587         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1588 };
1589
1590 /*
1591  * RF value list for RF2523
1592  * Supports: 2.4 GHz
1593  */
1594 static const struct rf_channel rf_vals_bg_2523[] = {
1595         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1596         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1597         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1598         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1599         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1600         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1601         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1602         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1603         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1604         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1605         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1606         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1607         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1608         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1609 };
1610
1611 /*
1612  * RF value list for RF2524
1613  * Supports: 2.4 GHz
1614  */
1615 static const struct rf_channel rf_vals_bg_2524[] = {
1616         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1617         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1618         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1619         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1620         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1621         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1622         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1623         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1624         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1625         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1626         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1627         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1628         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1629         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1630 };
1631
1632 /*
1633  * RF value list for RF2525
1634  * Supports: 2.4 GHz
1635  */
1636 static const struct rf_channel rf_vals_bg_2525[] = {
1637         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1638         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1639         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1640         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1641         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1642         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1643         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1644         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1645         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1646         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1647         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1648         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1649         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1650         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1651 };
1652
1653 /*
1654  * RF value list for RF2525e
1655  * Supports: 2.4 GHz
1656  */
1657 static const struct rf_channel rf_vals_bg_2525e[] = {
1658         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1659         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1660         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1661         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1662         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1663         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1664         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1665         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1666         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1667         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1668         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1669         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1670         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1671         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1672 };
1673
1674 /*
1675  * RF value list for RF5222
1676  * Supports: 2.4 GHz & 5.2 GHz
1677  */
1678 static const struct rf_channel rf_vals_5222[] = {
1679         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1680         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1681         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1682         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1683         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1684         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1685         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1686         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1687         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1688         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1689         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1690         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1691         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1692         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1693
1694         /* 802.11 UNI / HyperLan 2 */
1695         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1696         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1697         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1698         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1699         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1700         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1701         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1702         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1703
1704         /* 802.11 HyperLan 2 */
1705         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1706         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1707         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1708         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1709         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1710         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1711         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1712         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1713         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1714         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1715
1716         /* 802.11 UNII */
1717         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1718         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1719         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1720         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1721         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1722 };
1723
1724 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1725 {
1726         struct hw_mode_spec *spec = &rt2x00dev->spec;
1727         struct channel_info *info;
1728         char *tx_power;
1729         unsigned int i;
1730
1731         /*
1732          * Initialize all hw fields.
1733          */
1734         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1735                                IEEE80211_HW_SIGNAL_DBM |
1736                                IEEE80211_HW_SUPPORTS_PS |
1737                                IEEE80211_HW_PS_NULLFUNC_STACK;
1738
1739         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1740         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1741                                 rt2x00_eeprom_addr(rt2x00dev,
1742                                                    EEPROM_MAC_ADDR_0));
1743
1744         /*
1745          * Initialize hw_mode information.
1746          */
1747         spec->supported_bands = SUPPORT_BAND_2GHZ;
1748         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1749
1750         if (rt2x00_rf(rt2x00dev, RF2522)) {
1751                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1752                 spec->channels = rf_vals_bg_2522;
1753         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1754                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1755                 spec->channels = rf_vals_bg_2523;
1756         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1757                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1758                 spec->channels = rf_vals_bg_2524;
1759         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1760                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1761                 spec->channels = rf_vals_bg_2525;
1762         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1763                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1764                 spec->channels = rf_vals_bg_2525e;
1765         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1766                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1767                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1768                 spec->channels = rf_vals_5222;
1769         }
1770
1771         /*
1772          * Create channel information array
1773          */
1774         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1775         if (!info)
1776                 return -ENOMEM;
1777
1778         spec->channels_info = info;
1779
1780         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1781         for (i = 0; i < 14; i++)
1782                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1783
1784         if (spec->num_channels > 14) {
1785                 for (i = 14; i < spec->num_channels; i++)
1786                         info[i].tx_power1 = DEFAULT_TXPOWER;
1787         }
1788
1789         return 0;
1790 }
1791
1792 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1793 {
1794         int retval;
1795
1796         /*
1797          * Allocate eeprom data.
1798          */
1799         retval = rt2500pci_validate_eeprom(rt2x00dev);
1800         if (retval)
1801                 return retval;
1802
1803         retval = rt2500pci_init_eeprom(rt2x00dev);
1804         if (retval)
1805                 return retval;
1806
1807         /*
1808          * Initialize hw specifications.
1809          */
1810         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1811         if (retval)
1812                 return retval;
1813
1814         /*
1815          * This device requires the atim queue and DMA-mapped skbs.
1816          */
1817         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1818         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1819
1820         /*
1821          * Set the rssi offset.
1822          */
1823         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1824
1825         return 0;
1826 }
1827
1828 /*
1829  * IEEE80211 stack callback functions.
1830  */
1831 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1832 {
1833         struct rt2x00_dev *rt2x00dev = hw->priv;
1834         u64 tsf;
1835         u32 reg;
1836
1837         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1838         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1839         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1840         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1841
1842         return tsf;
1843 }
1844
1845 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1846 {
1847         struct rt2x00_dev *rt2x00dev = hw->priv;
1848         u32 reg;
1849
1850         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1851         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1852 }
1853
1854 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1855         .tx                     = rt2x00mac_tx,
1856         .start                  = rt2x00mac_start,
1857         .stop                   = rt2x00mac_stop,
1858         .add_interface          = rt2x00mac_add_interface,
1859         .remove_interface       = rt2x00mac_remove_interface,
1860         .config                 = rt2x00mac_config,
1861         .configure_filter       = rt2x00mac_configure_filter,
1862         .set_tim                = rt2x00mac_set_tim,
1863         .get_stats              = rt2x00mac_get_stats,
1864         .bss_info_changed       = rt2x00mac_bss_info_changed,
1865         .conf_tx                = rt2x00mac_conf_tx,
1866         .get_tsf                = rt2500pci_get_tsf,
1867         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1868         .rfkill_poll            = rt2x00mac_rfkill_poll,
1869 };
1870
1871 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1872         .irq_handler            = rt2500pci_interrupt,
1873         .probe_hw               = rt2500pci_probe_hw,
1874         .initialize             = rt2x00pci_initialize,
1875         .uninitialize           = rt2x00pci_uninitialize,
1876         .get_entry_state        = rt2500pci_get_entry_state,
1877         .clear_entry            = rt2500pci_clear_entry,
1878         .set_device_state       = rt2500pci_set_device_state,
1879         .rfkill_poll            = rt2500pci_rfkill_poll,
1880         .link_stats             = rt2500pci_link_stats,
1881         .reset_tuner            = rt2500pci_reset_tuner,
1882         .link_tuner             = rt2500pci_link_tuner,
1883         .write_tx_desc          = rt2500pci_write_tx_desc,
1884         .write_tx_data          = rt2x00pci_write_tx_data,
1885         .write_beacon           = rt2500pci_write_beacon,
1886         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1887         .kill_tx_queue          = rt2500pci_kill_tx_queue,
1888         .fill_rxdone            = rt2500pci_fill_rxdone,
1889         .config_filter          = rt2500pci_config_filter,
1890         .config_intf            = rt2500pci_config_intf,
1891         .config_erp             = rt2500pci_config_erp,
1892         .config_ant             = rt2500pci_config_ant,
1893         .config                 = rt2500pci_config,
1894 };
1895
1896 static const struct data_queue_desc rt2500pci_queue_rx = {
1897         .entry_num              = RX_ENTRIES,
1898         .data_size              = DATA_FRAME_SIZE,
1899         .desc_size              = RXD_DESC_SIZE,
1900         .priv_size              = sizeof(struct queue_entry_priv_pci),
1901 };
1902
1903 static const struct data_queue_desc rt2500pci_queue_tx = {
1904         .entry_num              = TX_ENTRIES,
1905         .data_size              = DATA_FRAME_SIZE,
1906         .desc_size              = TXD_DESC_SIZE,
1907         .priv_size              = sizeof(struct queue_entry_priv_pci),
1908 };
1909
1910 static const struct data_queue_desc rt2500pci_queue_bcn = {
1911         .entry_num              = BEACON_ENTRIES,
1912         .data_size              = MGMT_FRAME_SIZE,
1913         .desc_size              = TXD_DESC_SIZE,
1914         .priv_size              = sizeof(struct queue_entry_priv_pci),
1915 };
1916
1917 static const struct data_queue_desc rt2500pci_queue_atim = {
1918         .entry_num              = ATIM_ENTRIES,
1919         .data_size              = DATA_FRAME_SIZE,
1920         .desc_size              = TXD_DESC_SIZE,
1921         .priv_size              = sizeof(struct queue_entry_priv_pci),
1922 };
1923
1924 static const struct rt2x00_ops rt2500pci_ops = {
1925         .name                   = KBUILD_MODNAME,
1926         .max_sta_intf           = 1,
1927         .max_ap_intf            = 1,
1928         .eeprom_size            = EEPROM_SIZE,
1929         .rf_size                = RF_SIZE,
1930         .tx_queues              = NUM_TX_QUEUES,
1931         .extra_tx_headroom      = 0,
1932         .rx                     = &rt2500pci_queue_rx,
1933         .tx                     = &rt2500pci_queue_tx,
1934         .bcn                    = &rt2500pci_queue_bcn,
1935         .atim                   = &rt2500pci_queue_atim,
1936         .lib                    = &rt2500pci_rt2x00_ops,
1937         .hw                     = &rt2500pci_mac80211_ops,
1938 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1939         .debugfs                = &rt2500pci_rt2x00debug,
1940 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1941 };
1942
1943 /*
1944  * RT2500pci module information.
1945  */
1946 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
1947         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1948         { 0, }
1949 };
1950
1951 MODULE_AUTHOR(DRV_PROJECT);
1952 MODULE_VERSION(DRV_VERSION);
1953 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1954 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1955 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1956 MODULE_LICENSE("GPL");
1957
1958 static struct pci_driver rt2500pci_driver = {
1959         .name           = KBUILD_MODNAME,
1960         .id_table       = rt2500pci_device_table,
1961         .probe          = rt2x00pci_probe,
1962         .remove         = __devexit_p(rt2x00pci_remove),
1963         .suspend        = rt2x00pci_suspend,
1964         .resume         = rt2x00pci_resume,
1965 };
1966
1967 static int __init rt2500pci_init(void)
1968 {
1969         return pci_register_driver(&rt2500pci_driver);
1970 }
1971
1972 static void __exit rt2500pci_exit(void)
1973 {
1974         pci_unregister_driver(&rt2500pci_driver);
1975 }
1976
1977 module_init(rt2500pci_init);
1978 module_exit(rt2500pci_exit);