[PATCH] rt2x00: Fix obvious typo in comment
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 /*
28  * Set enviroment defines for rt2x00.h
29  */
30 #define DRV_NAME "rt2500pci"
31
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt2500pci.h"
43
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00pci_register_read and rt2x00pci_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58 {
59         u32 reg;
60         unsigned int i;
61
62         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65                         break;
66                 udelay(REGISTER_BUSY_DELAY);
67         }
68
69         return reg;
70 }
71
72 static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73                                 const unsigned int word, const u8 value)
74 {
75         u32 reg;
76
77         /*
78          * Wait until the BBP becomes ready.
79          */
80         reg = rt2500pci_bbp_check(rt2x00dev);
81         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83                 return;
84         }
85
86         /*
87          * Write the data into the BBP.
88          */
89         reg = 0;
90         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96 }
97
98 static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99                                const unsigned int word, u8 *value)
100 {
101         u32 reg;
102
103         /*
104          * Wait until the BBP becomes ready.
105          */
106         reg = rt2500pci_bbp_check(rt2x00dev);
107         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109                 return;
110         }
111
112         /*
113          * Write the request into the BBP.
114          */
115         reg = 0;
116         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122         /*
123          * Wait until the BBP becomes ready.
124          */
125         reg = rt2500pci_bbp_check(rt2x00dev);
126         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128                 *value = 0xff;
129                 return;
130         }
131
132         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133 }
134
135 static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136                                const unsigned int word, const u32 value)
137 {
138         u32 reg;
139         unsigned int i;
140
141         if (!word)
142                 return;
143
144         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147                         goto rf_write;
148                 udelay(REGISTER_BUSY_DELAY);
149         }
150
151         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152         return;
153
154 rf_write:
155         reg = 0;
156         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162         rt2x00_rf_write(rt2x00dev, word, value);
163 }
164
165 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166 {
167         struct rt2x00_dev *rt2x00dev = eeprom->data;
168         u32 reg;
169
170         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174         eeprom->reg_data_clock =
175             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176         eeprom->reg_chip_select =
177             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178 }
179
180 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181 {
182         struct rt2x00_dev *rt2x00dev = eeprom->data;
183         u32 reg = 0;
184
185         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188                            !!eeprom->reg_data_clock);
189         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190                            !!eeprom->reg_chip_select);
191
192         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198 static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, u32 *data)
200 {
201         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202 }
203
204 static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205                                 const unsigned int word, u32 data)
206 {
207         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208 }
209
210 static const struct rt2x00debug rt2500pci_rt2x00debug = {
211         .owner  = THIS_MODULE,
212         .csr    = {
213                 .read           = rt2500pci_read_csr,
214                 .write          = rt2500pci_write_csr,
215                 .word_size      = sizeof(u32),
216                 .word_count     = CSR_REG_SIZE / sizeof(u32),
217         },
218         .eeprom = {
219                 .read           = rt2x00_eeprom_read,
220                 .write          = rt2x00_eeprom_write,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt2500pci_bbp_read,
226                 .write          = rt2500pci_bbp_write,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt2500pci_rf_write,
233                 .word_size      = sizeof(u32),
234                 .word_count     = RF_SIZE / sizeof(u32),
235         },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 #ifdef CONFIG_RT2500PCI_RFKILL
240 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246 }
247 #endif /* CONFIG_RT2500PCI_RFKILL */
248
249 /*
250  * Configuration handlers.
251  */
252 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
253 {
254         __le32 reg[2];
255
256         memset(&reg, 0, sizeof(reg));
257         memcpy(&reg, addr, ETH_ALEN);
258
259         /*
260          * The MAC address is passed to us as an array of bytes,
261          * that array is little endian, so no need for byte ordering.
262          */
263         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, &reg, sizeof(reg));
264 }
265
266 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
267 {
268         __le32 reg[2];
269
270         memset(&reg, 0, sizeof(reg));
271         memcpy(&reg, bssid, ETH_ALEN);
272
273         /*
274          * The BSSID is passed to us as an array of bytes,
275          * that array is little endian, so no need for byte ordering.
276          */
277         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, &reg, sizeof(reg));
278 }
279
280 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type)
281 {
282         struct interface *intf = &rt2x00dev->interface;
283         u32 reg;
284
285         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
286
287         /*
288          * Enable beacon config
289          */
290         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
291         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
292                            PREAMBLE + get_duration(IEEE80211_HEADER, 2));
293         rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
294                            rt2x00lib_get_ring(rt2x00dev,
295                                               IEEE80211_TX_QUEUE_BEACON)
296                            ->tx_params.cw_min);
297         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
298
299         /*
300          * Enable synchronisation.
301          */
302         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
303         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
304         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
305         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
306         if (is_interface_type(intf, IEEE80211_IF_TYPE_IBSS) ||
307             is_interface_type(intf, IEEE80211_IF_TYPE_AP))
308                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
309         else if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
310                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
311         else
312                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
313         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
314 }
315
316 static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
317 {
318         struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
319         u32 reg;
320         u32 preamble;
321         u16 value;
322
323         if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
324                 preamble = SHORT_PREAMBLE;
325         else
326                 preamble = PREAMBLE;
327
328         reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
329         rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
330
331         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
332         value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
333                  SHORT_DIFS : DIFS) +
334             PLCP + preamble + get_duration(ACK_SIZE, 10);
335         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
336         value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
337         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
338         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
339
340         preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
341
342         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
343         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
344         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
345         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
346         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
347
348         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
349         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
350         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
351         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
352         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
353
354         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
355         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
356         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
357         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
358         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
359
360         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
361         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
362         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
363         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
364         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
365 }
366
367 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
368                                      const int phymode)
369 {
370         struct ieee80211_hw_mode *mode;
371         struct ieee80211_rate *rate;
372
373         if (phymode == MODE_IEEE80211A)
374                 rt2x00dev->curr_hwmode = HWMODE_A;
375         else if (phymode == MODE_IEEE80211B)
376                 rt2x00dev->curr_hwmode = HWMODE_B;
377         else
378                 rt2x00dev->curr_hwmode = HWMODE_G;
379
380         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
381         rate = &mode->rates[mode->num_rates - 1];
382
383         rt2500pci_config_rate(rt2x00dev, rate->val2);
384 }
385
386 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
387                                      const int index, const int channel,
388                                      const int txpower)
389 {
390         struct rf_channel reg;
391         u8 r70;
392
393         /*
394          * Fill rf_reg structure.
395          */
396         memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
397
398         /*
399          * Set TXpower.
400          */
401         rt2x00_set_field32(&reg.rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
402
403         /*
404          * Switch on tuning bits.
405          * For RT2523 devices we do not need to update the R1 register.
406          */
407         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
408                 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
409         rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
410
411         /*
412          * For RT2525 we should first set the channel to half band higher.
413          */
414         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
415                 static const u32 vals[] = {
416                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
417                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
418                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
419                         0x00080d2e, 0x00080d3a
420                 };
421
422                 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
423                 rt2500pci_rf_write(rt2x00dev, 2, vals[channel - 1]);
424                 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
425                 if (reg.rf4)
426                         rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
427         }
428
429         rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
430         rt2500pci_rf_write(rt2x00dev, 2, reg.rf2);
431         rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
432         if (reg.rf4)
433                 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
434
435         /*
436          * Channel 14 requires the Japan filter bit to be set.
437          */
438         r70 = 0x46;
439         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, channel == 14);
440         rt2500pci_bbp_write(rt2x00dev, 70, r70);
441
442         msleep(1);
443
444         /*
445          * Switch off tuning bits.
446          * For RT2523 devices we do not need to update the R1 register.
447          */
448         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
449                 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
450                 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
451         }
452
453         rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
454         rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
455
456         /*
457          * Clear false CRC during channel switch.
458          */
459         rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
460 }
461
462 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
463                                      const int txpower)
464 {
465         u32 rf3;
466
467         rt2x00_rf_read(rt2x00dev, 3, &rf3);
468         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
469         rt2500pci_rf_write(rt2x00dev, 3, rf3);
470 }
471
472 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
473                                      const int antenna_tx, const int antenna_rx)
474 {
475         u32 reg;
476         u8 r14;
477         u8 r2;
478
479         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
480         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
481         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
482
483         /*
484          * Configure the TX antenna.
485          */
486         switch (antenna_tx) {
487         case ANTENNA_SW_DIVERSITY:
488         case ANTENNA_HW_DIVERSITY:
489                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
490                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
491                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
492                 break;
493         case ANTENNA_A:
494                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
495                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
496                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
497                 break;
498         case ANTENNA_B:
499                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
500                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
501                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
502                 break;
503         }
504
505         /*
506          * Configure the RX antenna.
507          */
508         switch (antenna_rx) {
509         case ANTENNA_SW_DIVERSITY:
510         case ANTENNA_HW_DIVERSITY:
511                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
512                 break;
513         case ANTENNA_A:
514                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
515                 break;
516         case ANTENNA_B:
517                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
518                 break;
519         }
520
521         /*
522          * RT2525E and RT5222 need to flip TX I/Q
523          */
524         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
525             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
526                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
527                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
528                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
529
530                 /*
531                  * RT2525E does not need RX I/Q Flip.
532                  */
533                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
534                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
535         } else {
536                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
537                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
538         }
539
540         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
541         rt2500pci_bbp_write(rt2x00dev, 14, r14);
542         rt2500pci_bbp_write(rt2x00dev, 2, r2);
543 }
544
545 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
546                                       const int short_slot_time,
547                                       const int beacon_int)
548 {
549         u32 reg;
550
551         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
552         rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
553                            short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
554         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
555
556         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
557         rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
558         rt2x00_set_field32(&reg, CSR18_PIFS,
559                            short_slot_time ? SHORT_PIFS : PIFS);
560         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
561
562         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
563         rt2x00_set_field32(&reg, CSR19_DIFS,
564                            short_slot_time ? SHORT_DIFS : DIFS);
565         rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
566         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
567
568         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
569         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
570         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
571         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
572
573         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
574         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
575         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
576         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
577 }
578
579 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
580                              const unsigned int flags,
581                              struct ieee80211_conf *conf)
582 {
583         int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
584
585         if (flags & CONFIG_UPDATE_PHYMODE)
586                 rt2500pci_config_phymode(rt2x00dev, conf->phymode);
587         if (flags & CONFIG_UPDATE_CHANNEL)
588                 rt2500pci_config_channel(rt2x00dev, conf->channel_val,
589                                          conf->channel, conf->power_level);
590         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
591                 rt2500pci_config_txpower(rt2x00dev, conf->power_level);
592         if (flags & CONFIG_UPDATE_ANTENNA)
593                 rt2500pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
594                                          conf->antenna_sel_rx);
595         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
596                 rt2500pci_config_duration(rt2x00dev, short_slot_time,
597                                           conf->beacon_int);
598 }
599
600 /*
601  * LED functions.
602  */
603 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
604 {
605         u32 reg;
606
607         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
608
609         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
610         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
611
612         if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
613                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
614                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
615         } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
616                 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
617                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
618         } else {
619                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
620                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
621         }
622
623         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
624 }
625
626 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
627 {
628         u32 reg;
629
630         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
631         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
632         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
633         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
634 }
635
636 /*
637  * Link tuning
638  */
639 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev)
640 {
641         u32 reg;
642
643         /*
644          * Update FCS error count from register.
645          */
646         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
647         rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
648
649         /*
650          * Update False CCA count from register.
651          */
652         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
653         rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
654 }
655
656 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
657 {
658         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
659         rt2x00dev->link.vgc_level = 0x48;
660 }
661
662 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
663 {
664         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
665         u8 r17;
666
667         /*
668          * To prevent collisions with MAC ASIC on chipsets
669          * up to version C the link tuning should halt after 20
670          * seconds.
671          */
672         if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
673             rt2x00dev->link.count > 20)
674                 return;
675
676         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
677
678         /*
679          * Chipset versions C and lower should directly continue
680          * to the dynamic CCA tuning.
681          */
682         if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
683                 goto dynamic_cca_tune;
684
685         /*
686          * A too low RSSI will cause too much false CCA which will
687          * then corrupt the R17 tuning. To remidy this the tuning should
688          * be stopped (While making sure the R17 value will not exceed limits)
689          */
690         if (rssi < -80 && rt2x00dev->link.count > 20) {
691                 if (r17 >= 0x41) {
692                         r17 = rt2x00dev->link.vgc_level;
693                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
694                 }
695                 return;
696         }
697
698         /*
699          * Special big-R17 for short distance
700          */
701         if (rssi >= -58) {
702                 if (r17 != 0x50)
703                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
704                 return;
705         }
706
707         /*
708          * Special mid-R17 for middle distance
709          */
710         if (rssi >= -74) {
711                 if (r17 != 0x41)
712                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
713                 return;
714         }
715
716         /*
717          * Leave short or middle distance condition, restore r17
718          * to the dynamic tuning range.
719          */
720         if (r17 >= 0x41) {
721                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
722                 return;
723         }
724
725 dynamic_cca_tune:
726
727         /*
728          * R17 is inside the dynamic tuning range,
729          * start tuning the link based on the false cca counter.
730          */
731         if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
732                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
733                 rt2x00dev->link.vgc_level = r17;
734         } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
735                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
736                 rt2x00dev->link.vgc_level = r17;
737         }
738 }
739
740 /*
741  * Initialization functions.
742  */
743 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
744 {
745         struct data_ring *ring = rt2x00dev->rx;
746         struct data_desc *rxd;
747         unsigned int i;
748         u32 word;
749
750         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
751
752         for (i = 0; i < ring->stats.limit; i++) {
753                 rxd = ring->entry[i].priv;
754
755                 rt2x00_desc_read(rxd, 1, &word);
756                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
757                                    ring->entry[i].data_dma);
758                 rt2x00_desc_write(rxd, 1, word);
759
760                 rt2x00_desc_read(rxd, 0, &word);
761                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
762                 rt2x00_desc_write(rxd, 0, word);
763         }
764
765         rt2x00_ring_index_clear(rt2x00dev->rx);
766 }
767
768 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
769 {
770         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
771         struct data_desc *txd;
772         unsigned int i;
773         u32 word;
774
775         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
776
777         for (i = 0; i < ring->stats.limit; i++) {
778                 txd = ring->entry[i].priv;
779
780                 rt2x00_desc_read(txd, 1, &word);
781                 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
782                                    ring->entry[i].data_dma);
783                 rt2x00_desc_write(txd, 1, word);
784
785                 rt2x00_desc_read(txd, 0, &word);
786                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
787                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
788                 rt2x00_desc_write(txd, 0, word);
789         }
790
791         rt2x00_ring_index_clear(ring);
792 }
793
794 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
795 {
796         u32 reg;
797
798         /*
799          * Initialize rings.
800          */
801         rt2500pci_init_rxring(rt2x00dev);
802         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
803         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
804         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
805         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
806
807         /*
808          * Initialize registers.
809          */
810         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
811         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
812                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
813         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
814                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
815         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
816                            rt2x00dev->bcn[1].stats.limit);
817         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
818                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
819         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
820
821         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
822         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
823                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
824         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
825
826         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
827         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
828                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
829         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
830
831         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
832         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
833                            rt2x00dev->bcn[1].data_dma);
834         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
835
836         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
837         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
838                            rt2x00dev->bcn[0].data_dma);
839         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
840
841         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
842         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
843         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
844         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
845
846         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
847         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
848                            rt2x00dev->rx->data_dma);
849         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
850
851         return 0;
852 }
853
854 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
855 {
856         u32 reg;
857
858         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
859         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
860         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
861         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
862
863         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
864         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
865         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
866         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
867         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
868
869         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
870         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
871                            rt2x00dev->rx->data_size / 128);
872         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
873
874         /*
875          * Always use CWmin and CWmax set in descriptor.
876          */
877         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
878         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
879         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
880
881         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
882
883         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
884         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
885         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
886         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
887         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
888         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
889         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
890         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
891         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
892         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
893
894         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
895         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
896         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
897         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
898         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
899         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
900
901         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
902         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
903         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
904         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
905         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
906         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
907
908         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
909         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
910         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
911         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
912         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
913         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
914
915         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
916         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
917         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
918         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
919         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
920         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
921         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
922         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
923         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
924         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
925
926         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
927         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
928         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
929         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
930         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
931         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
932         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
933         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
934         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
935
936         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
937
938         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
939         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
940
941         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
942                 return -EBUSY;
943
944         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
945         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
946
947         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
948         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
949         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
950
951         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
952         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
953         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
954         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
955         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
956         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
957         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
958         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
959
960         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
961
962         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
963
964         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
965         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
966         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
967         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
968         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
969
970         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
971         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
972         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
973         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
974
975         /*
976          * We must clear the FCS and FIFO error count.
977          * These registers are cleared on read,
978          * so we may pass a useless variable to store the value.
979          */
980         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
981         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
982
983         return 0;
984 }
985
986 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
987 {
988         unsigned int i;
989         u16 eeprom;
990         u8 reg_id;
991         u8 value;
992
993         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
994                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
995                 if ((value != 0xff) && (value != 0x00))
996                         goto continue_csr_init;
997                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
998                 udelay(REGISTER_BUSY_DELAY);
999         }
1000
1001         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1002         return -EACCES;
1003
1004 continue_csr_init:
1005         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1006         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1007         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1008         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1009         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1010         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1011         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1012         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1013         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1014         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1015         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1016         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1017         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1018         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1019         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1020         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1021         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1022         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1023         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1024         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1025         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1026         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1027         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1028         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1029         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1030         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1031         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1032         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1033         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1034         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1035
1036         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1037         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1038                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1039
1040                 if (eeprom != 0xffff && eeprom != 0x0000) {
1041                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1042                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1043                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1044                               reg_id, value);
1045                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1046                 }
1047         }
1048         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1049
1050         return 0;
1051 }
1052
1053 /*
1054  * Device state switch handlers.
1055  */
1056 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1057                                 enum dev_state state)
1058 {
1059         u32 reg;
1060
1061         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1062         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1063                            state == STATE_RADIO_RX_OFF);
1064         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1065 }
1066
1067 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1068                                  enum dev_state state)
1069 {
1070         int mask = (state == STATE_RADIO_IRQ_OFF);
1071         u32 reg;
1072
1073         /*
1074          * When interrupts are being enabled, the interrupt registers
1075          * should clear the register to assure a clean state.
1076          */
1077         if (state == STATE_RADIO_IRQ_ON) {
1078                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1079                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1080         }
1081
1082         /*
1083          * Only toggle the interrupts bits we are going to use.
1084          * Non-checked interrupt bits are disabled by default.
1085          */
1086         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1087         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1088         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1089         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1090         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1091         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1092         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1093 }
1094
1095 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1096 {
1097         /*
1098          * Initialize all registers.
1099          */
1100         if (rt2500pci_init_rings(rt2x00dev) ||
1101             rt2500pci_init_registers(rt2x00dev) ||
1102             rt2500pci_init_bbp(rt2x00dev)) {
1103                 ERROR(rt2x00dev, "Register initialization failed.\n");
1104                 return -EIO;
1105         }
1106
1107         /*
1108          * Enable interrupts.
1109          */
1110         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1111
1112         /*
1113          * Enable LED
1114          */
1115         rt2500pci_enable_led(rt2x00dev);
1116
1117         return 0;
1118 }
1119
1120 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1121 {
1122         u32 reg;
1123
1124         /*
1125          * Disable LED
1126          */
1127         rt2500pci_disable_led(rt2x00dev);
1128
1129         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1130
1131         /*
1132          * Disable synchronisation.
1133          */
1134         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1135
1136         /*
1137          * Cancel RX and TX.
1138          */
1139         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1140         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1141         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1142
1143         /*
1144          * Disable interrupts.
1145          */
1146         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1147 }
1148
1149 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1150                                enum dev_state state)
1151 {
1152         u32 reg;
1153         unsigned int i;
1154         char put_to_sleep;
1155         char bbp_state;
1156         char rf_state;
1157
1158         put_to_sleep = (state != STATE_AWAKE);
1159
1160         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1161         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1162         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1163         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1164         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1165         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1166
1167         /*
1168          * Device is not guaranteed to be in the requested state yet.
1169          * We must wait until the register indicates that the
1170          * device has entered the correct state.
1171          */
1172         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1173                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1174                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1175                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1176                 if (bbp_state == state && rf_state == state)
1177                         return 0;
1178                 msleep(10);
1179         }
1180
1181         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1182                "current device state: bbp %d and rf %d.\n",
1183                state, bbp_state, rf_state);
1184
1185         return -EBUSY;
1186 }
1187
1188 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1189                                       enum dev_state state)
1190 {
1191         int retval = 0;
1192
1193         switch (state) {
1194         case STATE_RADIO_ON:
1195                 retval = rt2500pci_enable_radio(rt2x00dev);
1196                 break;
1197         case STATE_RADIO_OFF:
1198                 rt2500pci_disable_radio(rt2x00dev);
1199                 break;
1200         case STATE_RADIO_RX_ON:
1201         case STATE_RADIO_RX_OFF:
1202                 rt2500pci_toggle_rx(rt2x00dev, state);
1203                 break;
1204         case STATE_DEEP_SLEEP:
1205         case STATE_SLEEP:
1206         case STATE_STANDBY:
1207         case STATE_AWAKE:
1208                 retval = rt2500pci_set_state(rt2x00dev, state);
1209                 break;
1210         default:
1211                 retval = -ENOTSUPP;
1212                 break;
1213         }
1214
1215         return retval;
1216 }
1217
1218 /*
1219  * TX descriptor initialization
1220  */
1221 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1222                                     struct data_desc *txd,
1223                                     struct txdata_entry_desc *desc,
1224                                     struct ieee80211_hdr *ieee80211hdr,
1225                                     unsigned int length,
1226                                     struct ieee80211_tx_control *control)
1227 {
1228         u32 word;
1229
1230         /*
1231          * Start writing the descriptor words.
1232          */
1233         rt2x00_desc_read(txd, 2, &word);
1234         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1235         rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1236         rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1237         rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1238         rt2x00_desc_write(txd, 2, word);
1239
1240         rt2x00_desc_read(txd, 3, &word);
1241         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1242         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1243         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1244         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1245         rt2x00_desc_write(txd, 3, word);
1246
1247         rt2x00_desc_read(txd, 10, &word);
1248         rt2x00_set_field32(&word, TXD_W10_RTS,
1249                            test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1250         rt2x00_desc_write(txd, 10, word);
1251
1252         rt2x00_desc_read(txd, 0, &word);
1253         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1254         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1255         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1256                            test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1257         rt2x00_set_field32(&word, TXD_W0_ACK,
1258                            !(control->flags & IEEE80211_TXCTL_NO_ACK));
1259         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1260                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1261         rt2x00_set_field32(&word, TXD_W0_OFDM,
1262                            test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1263         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1264         rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1265         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1266                            !!(control->flags &
1267                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1268         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1269         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1270         rt2x00_desc_write(txd, 0, word);
1271 }
1272
1273 /*
1274  * TX data initialization
1275  */
1276 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1277                                     unsigned int queue)
1278 {
1279         u32 reg;
1280
1281         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1282                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1283                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1284                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1285                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1286                 }
1287                 return;
1288         }
1289
1290         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1291         if (queue == IEEE80211_TX_QUEUE_DATA0)
1292                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1293         else if (queue == IEEE80211_TX_QUEUE_DATA1)
1294                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1295         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1296                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1297         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1298 }
1299
1300 /*
1301  * RX control handlers
1302  */
1303 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1304                                   struct rxdata_entry_desc *desc)
1305 {
1306         struct data_desc *rxd = entry->priv;
1307         u32 word0;
1308         u32 word2;
1309
1310         rt2x00_desc_read(rxd, 0, &word0);
1311         rt2x00_desc_read(rxd, 2, &word2);
1312
1313         desc->flags = 0;
1314         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1315                 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1316         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1317                 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1318
1319         desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1320         desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1321             entry->ring->rt2x00dev->rssi_offset;
1322         desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1323         desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1324 }
1325
1326 /*
1327  * Interrupt functions.
1328  */
1329 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1330 {
1331         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1332         struct data_entry *entry;
1333         struct data_desc *txd;
1334         u32 word;
1335         int tx_status;
1336         int retry;
1337
1338         while (!rt2x00_ring_empty(ring)) {
1339                 entry = rt2x00_get_data_entry_done(ring);
1340                 txd = entry->priv;
1341                 rt2x00_desc_read(txd, 0, &word);
1342
1343                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1344                     !rt2x00_get_field32(word, TXD_W0_VALID))
1345                         break;
1346
1347                 /*
1348                  * Obtain the status about this packet.
1349                  */
1350                 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1351                 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1352
1353                 rt2x00lib_txdone(entry, tx_status, retry);
1354
1355                 /*
1356                  * Make this entry available for reuse.
1357                  */
1358                 entry->flags = 0;
1359                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1360                 rt2x00_desc_write(txd, 0, word);
1361                 rt2x00_ring_index_done_inc(ring);
1362         }
1363
1364         /*
1365          * If the data ring was full before the txdone handler
1366          * we must make sure the packet queue in the mac80211 stack
1367          * is reenabled when the txdone handler has finished.
1368          */
1369         entry = ring->entry;
1370         if (!rt2x00_ring_full(ring))
1371                 ieee80211_wake_queue(rt2x00dev->hw,
1372                                      entry->tx_status.control.queue);
1373 }
1374
1375 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1376 {
1377         struct rt2x00_dev *rt2x00dev = dev_instance;
1378         u32 reg;
1379
1380         /*
1381          * Get the interrupt sources & saved to local variable.
1382          * Write register value back to clear pending interrupts.
1383          */
1384         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1385         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1386
1387         if (!reg)
1388                 return IRQ_NONE;
1389
1390         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1391                 return IRQ_HANDLED;
1392
1393         /*
1394          * Handle interrupts, walk through all bits
1395          * and run the tasks, the bits are checked in order of
1396          * priority.
1397          */
1398
1399         /*
1400          * 1 - Beacon timer expired interrupt.
1401          */
1402         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1403                 rt2x00lib_beacondone(rt2x00dev);
1404
1405         /*
1406          * 2 - Rx ring done interrupt.
1407          */
1408         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1409                 rt2x00pci_rxdone(rt2x00dev);
1410
1411         /*
1412          * 3 - Atim ring transmit done interrupt.
1413          */
1414         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1415                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1416
1417         /*
1418          * 4 - Priority ring transmit done interrupt.
1419          */
1420         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1421                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1422
1423         /*
1424          * 5 - Tx ring transmit done interrupt.
1425          */
1426         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1427                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1428
1429         return IRQ_HANDLED;
1430 }
1431
1432 /*
1433  * Device probe functions.
1434  */
1435 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1436 {
1437         struct eeprom_93cx6 eeprom;
1438         u32 reg;
1439         u16 word;
1440         u8 *mac;
1441
1442         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1443
1444         eeprom.data = rt2x00dev;
1445         eeprom.register_read = rt2500pci_eepromregister_read;
1446         eeprom.register_write = rt2500pci_eepromregister_write;
1447         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1448             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1449         eeprom.reg_data_in = 0;
1450         eeprom.reg_data_out = 0;
1451         eeprom.reg_data_clock = 0;
1452         eeprom.reg_chip_select = 0;
1453
1454         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1455                                EEPROM_SIZE / sizeof(u16));
1456
1457         /*
1458          * Start validation of the data that has been read.
1459          */
1460         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1461         if (!is_valid_ether_addr(mac)) {
1462                 DECLARE_MAC_BUF(macbuf);
1463
1464                 random_ether_addr(mac);
1465                 EEPROM(rt2x00dev, "MAC: %s\n",
1466                        print_mac(macbuf, mac));
1467         }
1468
1469         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1470         if (word == 0xffff) {
1471                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1472                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
1473                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
1474                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
1475                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1476                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1477                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1478                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1479                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1480         }
1481
1482         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1483         if (word == 0xffff) {
1484                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1485                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1486                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1487                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1488                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1489         }
1490
1491         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1492         if (word == 0xffff) {
1493                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1494                                    DEFAULT_RSSI_OFFSET);
1495                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1496                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1497         }
1498
1499         return 0;
1500 }
1501
1502 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1503 {
1504         u32 reg;
1505         u16 value;
1506         u16 eeprom;
1507
1508         /*
1509          * Read EEPROM word for configuration.
1510          */
1511         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1512
1513         /*
1514          * Identify RF chipset.
1515          */
1516         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1517         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1518         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1519
1520         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1521             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1522             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1523             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1524             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1525             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1526                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1527                 return -ENODEV;
1528         }
1529
1530         /*
1531          * Identify default antenna configuration.
1532          */
1533         rt2x00dev->hw->conf.antenna_sel_tx =
1534             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1535         rt2x00dev->hw->conf.antenna_sel_rx =
1536             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1537
1538         /*
1539          * Store led mode, for correct led behaviour.
1540          */
1541         rt2x00dev->led_mode =
1542             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1543
1544         /*
1545          * Detect if this device has an hardware controlled radio.
1546          */
1547         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1548                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1549
1550         /*
1551          * Check if the BBP tuning should be enabled.
1552          */
1553         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1554
1555         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1556                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1557
1558         /*
1559          * Read the RSSI <-> dBm offset information.
1560          */
1561         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1562         rt2x00dev->rssi_offset =
1563             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1564
1565         return 0;
1566 }
1567
1568 /*
1569  * RF value list for RF2522
1570  * Supports: 2.4 GHz
1571  */
1572 static const struct rf_channel rf_vals_bg_2522[] = {
1573         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1574         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1575         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1576         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1577         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1578         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1579         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1580         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1581         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1582         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1583         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1584         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1585         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1586         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1587 };
1588
1589 /*
1590  * RF value list for RF2523
1591  * Supports: 2.4 GHz
1592  */
1593 static const struct rf_channel rf_vals_bg_2523[] = {
1594         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1595         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1596         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1597         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1598         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1599         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1600         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1601         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1602         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1603         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1604         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1605         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1606         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1607         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1608 };
1609
1610 /*
1611  * RF value list for RF2524
1612  * Supports: 2.4 GHz
1613  */
1614 static const struct rf_channel rf_vals_bg_2524[] = {
1615         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1616         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1617         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1618         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1619         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1620         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1621         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1622         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1623         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1624         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1625         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1626         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1627         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1628         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1629 };
1630
1631 /*
1632  * RF value list for RF2525
1633  * Supports: 2.4 GHz
1634  */
1635 static const struct rf_channel rf_vals_bg_2525[] = {
1636         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1637         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1638         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1639         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1640         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1641         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1642         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1643         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1644         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1645         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1646         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1647         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1648         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1649         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1650 };
1651
1652 /*
1653  * RF value list for RF2525e
1654  * Supports: 2.4 GHz
1655  */
1656 static const struct rf_channel rf_vals_bg_2525e[] = {
1657         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1658         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1659         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1660         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1661         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1662         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1663         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1664         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1665         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1666         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1667         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1668         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1669         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1670         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1671 };
1672
1673 /*
1674  * RF value list for RF5222
1675  * Supports: 2.4 GHz & 5.2 GHz
1676  */
1677 static const struct rf_channel rf_vals_5222[] = {
1678         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1679         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1680         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1681         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1682         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1683         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1684         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1685         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1686         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1687         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1688         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1689         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1690         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1691         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1692
1693         /* 802.11 UNI / HyperLan 2 */
1694         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1695         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1696         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1697         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1698         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1699         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1700         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1701         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1702
1703         /* 802.11 HyperLan 2 */
1704         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1705         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1706         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1707         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1708         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1709         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1710         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1711         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1712         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1713         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1714
1715         /* 802.11 UNII */
1716         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1717         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1718         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1719         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1720         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1721 };
1722
1723 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1724 {
1725         struct hw_mode_spec *spec = &rt2x00dev->spec;
1726         u8 *txpower;
1727         unsigned int i;
1728
1729         /*
1730          * Initialize all hw fields.
1731          */
1732         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1733         rt2x00dev->hw->extra_tx_headroom = 0;
1734         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1735         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1736         rt2x00dev->hw->queues = 2;
1737
1738         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1739         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1740                                 rt2x00_eeprom_addr(rt2x00dev,
1741                                                    EEPROM_MAC_ADDR_0));
1742
1743         /*
1744          * Convert tx_power array in eeprom.
1745          */
1746         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1747         for (i = 0; i < 14; i++)
1748                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1749
1750         /*
1751          * Initialize hw_mode information.
1752          */
1753         spec->num_modes = 2;
1754         spec->num_rates = 12;
1755         spec->tx_power_a = NULL;
1756         spec->tx_power_bg = txpower;
1757         spec->tx_power_default = DEFAULT_TXPOWER;
1758
1759         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1760                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1761                 spec->channels = rf_vals_bg_2522;
1762         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1763                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1764                 spec->channels = rf_vals_bg_2523;
1765         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1766                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1767                 spec->channels = rf_vals_bg_2524;
1768         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1769                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1770                 spec->channels = rf_vals_bg_2525;
1771         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1772                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1773                 spec->channels = rf_vals_bg_2525e;
1774         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1775                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1776                 spec->channels = rf_vals_5222;
1777                 spec->num_modes = 3;
1778         }
1779 }
1780
1781 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1782 {
1783         int retval;
1784
1785         /*
1786          * Allocate eeprom data.
1787          */
1788         retval = rt2500pci_validate_eeprom(rt2x00dev);
1789         if (retval)
1790                 return retval;
1791
1792         retval = rt2500pci_init_eeprom(rt2x00dev);
1793         if (retval)
1794                 return retval;
1795
1796         /*
1797          * Initialize hw specifications.
1798          */
1799         rt2500pci_probe_hw_mode(rt2x00dev);
1800
1801         /*
1802          * This device requires the beacon ring
1803          */
1804         __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1805
1806         /*
1807          * Set the rssi offset.
1808          */
1809         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1810
1811         return 0;
1812 }
1813
1814 /*
1815  * IEEE80211 stack callback functions.
1816  */
1817 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1818                                        unsigned int changed_flags,
1819                                        unsigned int *total_flags,
1820                                        int mc_count,
1821                                        struct dev_addr_list *mc_list)
1822 {
1823         struct rt2x00_dev *rt2x00dev = hw->priv;
1824         struct interface *intf = &rt2x00dev->interface;
1825         u32 reg;
1826
1827         /*
1828          * Mask off any flags we are going to ignore from
1829          * the total_flags field.
1830          */
1831         *total_flags &=
1832             FIF_ALLMULTI |
1833             FIF_FCSFAIL |
1834             FIF_PLCPFAIL |
1835             FIF_CONTROL |
1836             FIF_OTHER_BSS |
1837             FIF_PROMISC_IN_BSS;
1838
1839         /*
1840          * Apply some rules to the filters:
1841          * - Some filters imply different filters to be set.
1842          * - Some things we can't filter out at all.
1843          * - Some filters are set based on interface type.
1844          */
1845         if (mc_count)
1846                 *total_flags |= FIF_ALLMULTI;
1847         if (changed_flags & FIF_OTHER_BSS ||
1848             changed_flags & FIF_PROMISC_IN_BSS)
1849                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1850         if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1851                 *total_flags |= FIF_PROMISC_IN_BSS;
1852
1853         /*
1854          * Check if there is any work left for us.
1855          */
1856         if (intf->filter == *total_flags)
1857                 return;
1858         intf->filter = *total_flags;
1859
1860         /*
1861          * Start configuration steps.
1862          * Note that the version error will always be dropped
1863          * and broadcast frames will always be accepted since
1864          * there is no filter for it at this time.
1865          */
1866         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1867         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1868                            !(*total_flags & FIF_FCSFAIL));
1869         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1870                            !(*total_flags & FIF_PLCPFAIL));
1871         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1872                            !(*total_flags & FIF_CONTROL));
1873         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1874                            !(*total_flags & FIF_PROMISC_IN_BSS));
1875         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1876                            !(*total_flags & FIF_PROMISC_IN_BSS));
1877         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1878         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1879                            !(*total_flags & FIF_ALLMULTI));
1880         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1881         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1882 }
1883
1884 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1885                                      u32 short_retry, u32 long_retry)
1886 {
1887         struct rt2x00_dev *rt2x00dev = hw->priv;
1888         u32 reg;
1889
1890         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1891         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1892         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1893         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1894
1895         return 0;
1896 }
1897
1898 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1899 {
1900         struct rt2x00_dev *rt2x00dev = hw->priv;
1901         u64 tsf;
1902         u32 reg;
1903
1904         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1905         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1906         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1907         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1908
1909         return tsf;
1910 }
1911
1912 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1913 {
1914         struct rt2x00_dev *rt2x00dev = hw->priv;
1915
1916         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1917         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1918 }
1919
1920 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1921 {
1922         struct rt2x00_dev *rt2x00dev = hw->priv;
1923         u32 reg;
1924
1925         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1926         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1927 }
1928
1929 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1930         .tx                     = rt2x00mac_tx,
1931         .start                  = rt2x00mac_start,
1932         .stop                   = rt2x00mac_stop,
1933         .add_interface          = rt2x00mac_add_interface,
1934         .remove_interface       = rt2x00mac_remove_interface,
1935         .config                 = rt2x00mac_config,
1936         .config_interface       = rt2x00mac_config_interface,
1937         .configure_filter       = rt2500pci_configure_filter,
1938         .get_stats              = rt2x00mac_get_stats,
1939         .set_retry_limit        = rt2500pci_set_retry_limit,
1940         .conf_tx                = rt2x00mac_conf_tx,
1941         .get_tx_stats           = rt2x00mac_get_tx_stats,
1942         .get_tsf                = rt2500pci_get_tsf,
1943         .reset_tsf              = rt2500pci_reset_tsf,
1944         .beacon_update          = rt2x00pci_beacon_update,
1945         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1946 };
1947
1948 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1949         .irq_handler            = rt2500pci_interrupt,
1950         .probe_hw               = rt2500pci_probe_hw,
1951         .initialize             = rt2x00pci_initialize,
1952         .uninitialize           = rt2x00pci_uninitialize,
1953         .set_device_state       = rt2500pci_set_device_state,
1954 #ifdef CONFIG_RT2500PCI_RFKILL
1955         .rfkill_poll            = rt2500pci_rfkill_poll,
1956 #endif /* CONFIG_RT2500PCI_RFKILL */
1957         .link_stats             = rt2500pci_link_stats,
1958         .reset_tuner            = rt2500pci_reset_tuner,
1959         .link_tuner             = rt2500pci_link_tuner,
1960         .write_tx_desc          = rt2500pci_write_tx_desc,
1961         .write_tx_data          = rt2x00pci_write_tx_data,
1962         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1963         .fill_rxdone            = rt2500pci_fill_rxdone,
1964         .config_mac_addr        = rt2500pci_config_mac_addr,
1965         .config_bssid           = rt2500pci_config_bssid,
1966         .config_type            = rt2500pci_config_type,
1967         .config                 = rt2500pci_config,
1968 };
1969
1970 static const struct rt2x00_ops rt2500pci_ops = {
1971         .name           = DRV_NAME,
1972         .rxd_size       = RXD_DESC_SIZE,
1973         .txd_size       = TXD_DESC_SIZE,
1974         .eeprom_size    = EEPROM_SIZE,
1975         .rf_size        = RF_SIZE,
1976         .lib            = &rt2500pci_rt2x00_ops,
1977         .hw             = &rt2500pci_mac80211_ops,
1978 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1979         .debugfs        = &rt2500pci_rt2x00debug,
1980 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1981 };
1982
1983 /*
1984  * RT2500pci module information.
1985  */
1986 static struct pci_device_id rt2500pci_device_table[] = {
1987         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1988         { 0, }
1989 };
1990
1991 MODULE_AUTHOR(DRV_PROJECT);
1992 MODULE_VERSION(DRV_VERSION);
1993 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1994 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1995 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1996 MODULE_LICENSE("GPL");
1997
1998 static struct pci_driver rt2500pci_driver = {
1999         .name           = DRV_NAME,
2000         .id_table       = rt2500pci_device_table,
2001         .probe          = rt2x00pci_probe,
2002         .remove         = __devexit_p(rt2x00pci_remove),
2003         .suspend        = rt2x00pci_suspend,
2004         .resume         = rt2x00pci_resume,
2005 };
2006
2007 static int __init rt2500pci_init(void)
2008 {
2009         return pci_register_driver(&rt2500pci_driver);
2010 }
2011
2012 static void __exit rt2500pci_exit(void)
2013 {
2014         pci_unregister_driver(&rt2500pci_driver);
2015 }
2016
2017 module_init(rt2500pci_init);
2018 module_exit(rt2500pci_exit);