[PATCH] rt2x00: SW diversity should default to antenna B
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 /*
28  * Set enviroment defines for rt2x00.h
29  */
30 #define DRV_NAME "rt2400pci"
31
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt2400pci.h"
43
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00pci_register_read and rt2x00pci_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 static u32 rt2400pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58 {
59         u32 reg;
60         unsigned int i;
61
62         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65                         break;
66                 udelay(REGISTER_BUSY_DELAY);
67         }
68
69         return reg;
70 }
71
72 static void rt2400pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73                                 const unsigned int word, const u8 value)
74 {
75         u32 reg;
76
77         /*
78          * Wait until the BBP becomes ready.
79          */
80         reg = rt2400pci_bbp_check(rt2x00dev);
81         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83                 return;
84         }
85
86         /*
87          * Write the data into the BBP.
88          */
89         reg = 0;
90         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96 }
97
98 static void rt2400pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99                                const unsigned int word, u8 *value)
100 {
101         u32 reg;
102
103         /*
104          * Wait until the BBP becomes ready.
105          */
106         reg = rt2400pci_bbp_check(rt2x00dev);
107         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109                 return;
110         }
111
112         /*
113          * Write the request into the BBP.
114          */
115         reg = 0;
116         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122         /*
123          * Wait until the BBP becomes ready.
124          */
125         reg = rt2400pci_bbp_check(rt2x00dev);
126         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128                 *value = 0xff;
129                 return;
130         }
131
132         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133 }
134
135 static void rt2400pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136                                const unsigned int word, const u32 value)
137 {
138         u32 reg;
139         unsigned int i;
140
141         if (!word)
142                 return;
143
144         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147                         goto rf_write;
148                 udelay(REGISTER_BUSY_DELAY);
149         }
150
151         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152         return;
153
154 rf_write:
155         reg = 0;
156         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162         rt2x00_rf_write(rt2x00dev, word, value);
163 }
164
165 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166 {
167         struct rt2x00_dev *rt2x00dev = eeprom->data;
168         u32 reg;
169
170         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174         eeprom->reg_data_clock =
175             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176         eeprom->reg_chip_select =
177             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178 }
179
180 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181 {
182         struct rt2x00_dev *rt2x00dev = eeprom->data;
183         u32 reg = 0;
184
185         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188                            !!eeprom->reg_data_clock);
189         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190                            !!eeprom->reg_chip_select);
191
192         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198 static void rt2400pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, u32 *data)
200 {
201         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202 }
203
204 static void rt2400pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205                                 const unsigned int word, u32 data)
206 {
207         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208 }
209
210 static const struct rt2x00debug rt2400pci_rt2x00debug = {
211         .owner  = THIS_MODULE,
212         .csr    = {
213                 .read           = rt2400pci_read_csr,
214                 .write          = rt2400pci_write_csr,
215                 .word_size      = sizeof(u32),
216                 .word_count     = CSR_REG_SIZE / sizeof(u32),
217         },
218         .eeprom = {
219                 .read           = rt2x00_eeprom_read,
220                 .write          = rt2x00_eeprom_write,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt2400pci_bbp_read,
226                 .write          = rt2400pci_bbp_write,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt2400pci_rf_write,
233                 .word_size      = sizeof(u32),
234                 .word_count     = RF_SIZE / sizeof(u32),
235         },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 #ifdef CONFIG_RT2400PCI_RFKILL
240 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246 }
247 #else
248 #define rt2400pci_rfkill_poll   NULL
249 #endif /* CONFIG_RT2400PCI_RFKILL */
250
251 /*
252  * Configuration handlers.
253  */
254 static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255                                       __le32 *mac)
256 {
257         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258                                       (2 * sizeof(__le32)));
259 }
260
261 static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262                                    __le32 *bssid)
263 {
264         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265                                       (2 * sizeof(__le32)));
266 }
267
268 static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
269                                   const int tsf_sync)
270 {
271         u32 reg;
272
273         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275         /*
276          * Enable beacon config
277          */
278         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
280                            PREAMBLE + get_duration(IEEE80211_HEADER, 20));
281         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
282
283         /*
284          * Enable synchronisation.
285          */
286         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
287         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
288         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
289         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
290         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
291         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
292 }
293
294 static void rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
295                                       const int short_preamble,
296                                       const int ack_timeout,
297                                       const int ack_consume_time)
298 {
299         int preamble_mask;
300         u32 reg;
301
302         /*
303          * When short preamble is enabled, we should set bit 0x08
304          */
305         preamble_mask = short_preamble << 3;
306
307         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
308         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
309         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
310         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
311
312         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
313         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
314         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
315         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
316         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
317
318         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
319         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
320         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
321         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
322         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
323
324         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
325         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
326         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
327         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
328         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
329
330         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
331         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
332         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
333         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
334         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
335 }
336
337 static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
338                                      const int basic_rate_mask)
339 {
340         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
341 }
342
343 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
344                                      struct rf_channel *rf)
345 {
346         /*
347          * Switch on tuning bits.
348          */
349         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
350         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
351
352         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
353         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
354         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
355
356         /*
357          * RF2420 chipset don't need any additional actions.
358          */
359         if (rt2x00_rf(&rt2x00dev->chip, RF2420))
360                 return;
361
362         /*
363          * For the RT2421 chipsets we need to write an invalid
364          * reference clock rate to activate auto_tune.
365          * After that we set the value back to the correct channel.
366          */
367         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
368         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
369         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
370
371         msleep(1);
372
373         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
374         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
375         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
376
377         msleep(1);
378
379         /*
380          * Switch off tuning bits.
381          */
382         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
383         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
384
385         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
386         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
387
388         /*
389          * Clear false CRC during channel switch.
390          */
391         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
392 }
393
394 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
395 {
396         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
397 }
398
399 static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
400                                      struct antenna_setup *ant)
401 {
402         u8 r1;
403         u8 r4;
404
405         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
406         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
407
408         /*
409          * Configure the TX antenna.
410          */
411         switch (ant->tx) {
412         case ANTENNA_HW_DIVERSITY:
413                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
414                 break;
415         case ANTENNA_A:
416                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
417                 break;
418         case ANTENNA_SW_DIVERSITY:
419                 /*
420                  * NOTE: We should never come here because rt2x00lib is
421                  * supposed to catch this and send us the correct antenna
422                  * explicitely. However we are nog going to bug about this.
423                  * Instead, just default to antenna B.
424                  */
425         case ANTENNA_B:
426                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
427                 break;
428         }
429
430         /*
431          * Configure the RX antenna.
432          */
433         switch (ant->rx) {
434         case ANTENNA_HW_DIVERSITY:
435                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
436                 break;
437         case ANTENNA_A:
438                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
439                 break;
440         case ANTENNA_SW_DIVERSITY:
441                 /*
442                  * NOTE: We should never come here because rt2x00lib is
443                  * supposed to catch this and send us the correct antenna
444                  * explicitely. However we are nog going to bug about this.
445                  * Instead, just default to antenna B.
446                  */
447         case ANTENNA_B:
448                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
449                 break;
450         }
451
452         rt2400pci_bbp_write(rt2x00dev, 4, r4);
453         rt2400pci_bbp_write(rt2x00dev, 1, r1);
454 }
455
456 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
457                                       struct rt2x00lib_conf *libconf)
458 {
459         u32 reg;
460
461         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
462         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
463         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
464
465         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
466         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
467         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
468         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
469
470         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
471         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
472         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
473         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
474
475         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
476         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
477         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
478         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
479
480         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
481         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
482                            libconf->conf->beacon_int * 16);
483         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
484                            libconf->conf->beacon_int * 16);
485         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
486 }
487
488 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
489                              const unsigned int flags,
490                              struct rt2x00lib_conf *libconf)
491 {
492         if (flags & CONFIG_UPDATE_PHYMODE)
493                 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
494         if (flags & CONFIG_UPDATE_CHANNEL)
495                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
496         if (flags & CONFIG_UPDATE_TXPOWER)
497                 rt2400pci_config_txpower(rt2x00dev,
498                                          libconf->conf->power_level);
499         if (flags & CONFIG_UPDATE_ANTENNA)
500                 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
501         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
502                 rt2400pci_config_duration(rt2x00dev, libconf);
503 }
504
505 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
506                                 struct ieee80211_tx_queue_params *params)
507 {
508         u32 reg;
509
510         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
511         rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
512         rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
513         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
514 }
515
516 /*
517  * LED functions.
518  */
519 static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
520 {
521         u32 reg;
522
523         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
524
525         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
526         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
527
528         if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
529                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
530                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
531         } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
532                 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
533                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
534         } else {
535                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
536                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
537         }
538
539         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
540 }
541
542 static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
543 {
544         u32 reg;
545
546         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
547         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
548         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
549         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
550 }
551
552 /*
553  * Link tuning
554  */
555 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
556                                  struct link_qual *qual)
557 {
558         u32 reg;
559         u8 bbp;
560
561         /*
562          * Update FCS error count from register.
563          */
564         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
565         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
566
567         /*
568          * Update False CCA count from register.
569          */
570         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
571         qual->false_cca = bbp;
572 }
573
574 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
575 {
576         rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
577         rt2x00dev->link.vgc_level = 0x08;
578 }
579
580 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
581 {
582         u8 reg;
583
584         /*
585          * The link tuner should not run longer then 60 seconds,
586          * and should run once every 2 seconds.
587          */
588         if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
589                 return;
590
591         /*
592          * Base r13 link tuning on the false cca count.
593          */
594         rt2400pci_bbp_read(rt2x00dev, 13, &reg);
595
596         if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
597                 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
598                 rt2x00dev->link.vgc_level = reg;
599         } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
600                 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
601                 rt2x00dev->link.vgc_level = reg;
602         }
603 }
604
605 /*
606  * Initialization functions.
607  */
608 static void rt2400pci_init_rxring(struct rt2x00_dev *rt2x00dev)
609 {
610         struct data_ring *ring = rt2x00dev->rx;
611         struct data_desc *rxd;
612         unsigned int i;
613         u32 word;
614
615         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
616
617         for (i = 0; i < ring->stats.limit; i++) {
618                 rxd = ring->entry[i].priv;
619
620                 rt2x00_desc_read(rxd, 2, &word);
621                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
622                                    ring->data_size);
623                 rt2x00_desc_write(rxd, 2, word);
624
625                 rt2x00_desc_read(rxd, 1, &word);
626                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
627                                    ring->entry[i].data_dma);
628                 rt2x00_desc_write(rxd, 1, word);
629
630                 rt2x00_desc_read(rxd, 0, &word);
631                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
632                 rt2x00_desc_write(rxd, 0, word);
633         }
634
635         rt2x00_ring_index_clear(rt2x00dev->rx);
636 }
637
638 static void rt2400pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
639 {
640         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
641         struct data_desc *txd;
642         unsigned int i;
643         u32 word;
644
645         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
646
647         for (i = 0; i < ring->stats.limit; i++) {
648                 txd = ring->entry[i].priv;
649
650                 rt2x00_desc_read(txd, 1, &word);
651                 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
652                                    ring->entry[i].data_dma);
653                 rt2x00_desc_write(txd, 1, word);
654
655                 rt2x00_desc_read(txd, 2, &word);
656                 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
657                                    ring->data_size);
658                 rt2x00_desc_write(txd, 2, word);
659
660                 rt2x00_desc_read(txd, 0, &word);
661                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
662                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
663                 rt2x00_desc_write(txd, 0, word);
664         }
665
666         rt2x00_ring_index_clear(ring);
667 }
668
669 static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
670 {
671         u32 reg;
672
673         /*
674          * Initialize rings.
675          */
676         rt2400pci_init_rxring(rt2x00dev);
677         rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
678         rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
679         rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
680         rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
681
682         /*
683          * Initialize registers.
684          */
685         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
686         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
687                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
688         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
689                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
690         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
691                            rt2x00dev->bcn[1].stats.limit);
692         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
693                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
694         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
695
696         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
697         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
698                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
699         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
700
701         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
702         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
703                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
704         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
705
706         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
707         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
708                            rt2x00dev->bcn[1].data_dma);
709         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
710
711         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
712         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
713                            rt2x00dev->bcn[0].data_dma);
714         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
715
716         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
717         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
718         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
719         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
720
721         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
722         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
723                            rt2x00dev->rx->data_dma);
724         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
725
726         return 0;
727 }
728
729 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
730 {
731         u32 reg;
732
733         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
734         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
735         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
736         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
737
738         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
739         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
740         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
741         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
742         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
743
744         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
745         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
746                            (rt2x00dev->rx->data_size / 128));
747         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
748
749         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
750
751         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
752         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
753         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
754         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
755         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
756         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
757
758         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
759         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
760         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
761         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
762         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
763         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
764         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
765         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
766
767         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
768
769         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
770                 return -EBUSY;
771
772         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
773         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
774
775         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
776         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
777         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
778
779         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
780         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
781         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
782         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
783         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
784         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
785
786         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
787         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
788         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
789         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
790         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
791
792         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
793         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
794         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
795         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
796
797         /*
798          * We must clear the FCS and FIFO error count.
799          * These registers are cleared on read,
800          * so we may pass a useless variable to store the value.
801          */
802         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
803         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
804
805         return 0;
806 }
807
808 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
809 {
810         unsigned int i;
811         u16 eeprom;
812         u8 reg_id;
813         u8 value;
814
815         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
816                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
817                 if ((value != 0xff) && (value != 0x00))
818                         goto continue_csr_init;
819                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
820                 udelay(REGISTER_BUSY_DELAY);
821         }
822
823         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
824         return -EACCES;
825
826 continue_csr_init:
827         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
828         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
829         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
830         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
831         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
832         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
833         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
834         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
835         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
836         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
837         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
838         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
839         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
840         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
841
842         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
843         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
844                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
845
846                 if (eeprom != 0xffff && eeprom != 0x0000) {
847                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
848                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
849                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
850                               reg_id, value);
851                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
852                 }
853         }
854         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
855
856         return 0;
857 }
858
859 /*
860  * Device state switch handlers.
861  */
862 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
863                                 enum dev_state state)
864 {
865         u32 reg;
866
867         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
868         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
869                            state == STATE_RADIO_RX_OFF);
870         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
871 }
872
873 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
874                                  enum dev_state state)
875 {
876         int mask = (state == STATE_RADIO_IRQ_OFF);
877         u32 reg;
878
879         /*
880          * When interrupts are being enabled, the interrupt registers
881          * should clear the register to assure a clean state.
882          */
883         if (state == STATE_RADIO_IRQ_ON) {
884                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
885                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
886         }
887
888         /*
889          * Only toggle the interrupts bits we are going to use.
890          * Non-checked interrupt bits are disabled by default.
891          */
892         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
893         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
894         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
895         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
896         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
897         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
898         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
899 }
900
901 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
902 {
903         /*
904          * Initialize all registers.
905          */
906         if (rt2400pci_init_rings(rt2x00dev) ||
907             rt2400pci_init_registers(rt2x00dev) ||
908             rt2400pci_init_bbp(rt2x00dev)) {
909                 ERROR(rt2x00dev, "Register initialization failed.\n");
910                 return -EIO;
911         }
912
913         /*
914          * Enable interrupts.
915          */
916         rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
917
918         /*
919          * Enable LED
920          */
921         rt2400pci_enable_led(rt2x00dev);
922
923         return 0;
924 }
925
926 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
927 {
928         u32 reg;
929
930         /*
931          * Disable LED
932          */
933         rt2400pci_disable_led(rt2x00dev);
934
935         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
936
937         /*
938          * Disable synchronisation.
939          */
940         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
941
942         /*
943          * Cancel RX and TX.
944          */
945         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
946         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
947         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
948
949         /*
950          * Disable interrupts.
951          */
952         rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
953 }
954
955 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
956                                enum dev_state state)
957 {
958         u32 reg;
959         unsigned int i;
960         char put_to_sleep;
961         char bbp_state;
962         char rf_state;
963
964         put_to_sleep = (state != STATE_AWAKE);
965
966         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
967         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
968         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
969         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
970         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
971         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
972
973         /*
974          * Device is not guaranteed to be in the requested state yet.
975          * We must wait until the register indicates that the
976          * device has entered the correct state.
977          */
978         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
979                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
980                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
981                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
982                 if (bbp_state == state && rf_state == state)
983                         return 0;
984                 msleep(10);
985         }
986
987         NOTICE(rt2x00dev, "Device failed to enter state %d, "
988                "current device state: bbp %d and rf %d.\n",
989                state, bbp_state, rf_state);
990
991         return -EBUSY;
992 }
993
994 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
995                                       enum dev_state state)
996 {
997         int retval = 0;
998
999         switch (state) {
1000         case STATE_RADIO_ON:
1001                 retval = rt2400pci_enable_radio(rt2x00dev);
1002                 break;
1003         case STATE_RADIO_OFF:
1004                 rt2400pci_disable_radio(rt2x00dev);
1005                 break;
1006         case STATE_RADIO_RX_ON:
1007         case STATE_RADIO_RX_OFF:
1008                 rt2400pci_toggle_rx(rt2x00dev, state);
1009                 break;
1010         case STATE_DEEP_SLEEP:
1011         case STATE_SLEEP:
1012         case STATE_STANDBY:
1013         case STATE_AWAKE:
1014                 retval = rt2400pci_set_state(rt2x00dev, state);
1015                 break;
1016         default:
1017                 retval = -ENOTSUPP;
1018                 break;
1019         }
1020
1021         return retval;
1022 }
1023
1024 /*
1025  * TX descriptor initialization
1026  */
1027 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1028                                     struct data_desc *txd,
1029                                     struct txdata_entry_desc *desc,
1030                                     struct ieee80211_hdr *ieee80211hdr,
1031                                     unsigned int length,
1032                                     struct ieee80211_tx_control *control)
1033 {
1034         u32 word;
1035         u32 signal = 0;
1036         u32 service = 0;
1037         u32 length_high = 0;
1038         u32 length_low = 0;
1039
1040         /*
1041          * The PLCP values should be treated as if they
1042          * were BBP values.
1043          */
1044         rt2x00_set_field32(&signal, BBPCSR_VALUE, desc->signal);
1045         rt2x00_set_field32(&signal, BBPCSR_REGNUM, 5);
1046         rt2x00_set_field32(&signal, BBPCSR_BUSY, 1);
1047
1048         rt2x00_set_field32(&service, BBPCSR_VALUE, desc->service);
1049         rt2x00_set_field32(&service, BBPCSR_REGNUM, 6);
1050         rt2x00_set_field32(&service, BBPCSR_BUSY, 1);
1051
1052         rt2x00_set_field32(&length_high, BBPCSR_VALUE, desc->length_high);
1053         rt2x00_set_field32(&length_high, BBPCSR_REGNUM, 7);
1054         rt2x00_set_field32(&length_high, BBPCSR_BUSY, 1);
1055
1056         rt2x00_set_field32(&length_low, BBPCSR_VALUE, desc->length_low);
1057         rt2x00_set_field32(&length_low, BBPCSR_REGNUM, 8);
1058         rt2x00_set_field32(&length_low, BBPCSR_BUSY, 1);
1059
1060         /*
1061          * Start writing the descriptor words.
1062          */
1063         rt2x00_desc_read(txd, 2, &word);
1064         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, length);
1065         rt2x00_desc_write(txd, 2, word);
1066
1067         rt2x00_desc_read(txd, 3, &word);
1068         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, signal);
1069         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, service);
1070         rt2x00_desc_write(txd, 3, word);
1071
1072         rt2x00_desc_read(txd, 4, &word);
1073         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, length_low);
1074         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, length_high);
1075         rt2x00_desc_write(txd, 4, word);
1076
1077         rt2x00_desc_read(txd, 0, &word);
1078         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1079         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1080         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1081                            test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1082         rt2x00_set_field32(&word, TXD_W0_ACK,
1083                            !(control->flags & IEEE80211_TXCTL_NO_ACK));
1084         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1085                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1086         rt2x00_set_field32(&word, TXD_W0_RTS,
1087                            test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1088         rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1089         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1090                            !!(control->flags &
1091                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1092         rt2x00_desc_write(txd, 0, word);
1093 }
1094
1095 /*
1096  * TX data initialization
1097  */
1098 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1099                                     unsigned int queue)
1100 {
1101         u32 reg;
1102
1103         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1104                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1105                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1106                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1107                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1108                 }
1109                 return;
1110         }
1111
1112         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1113         if (queue == IEEE80211_TX_QUEUE_DATA0)
1114                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1115         else if (queue == IEEE80211_TX_QUEUE_DATA1)
1116                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1117         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1118                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1119         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1120 }
1121
1122 /*
1123  * RX control handlers
1124  */
1125 static void rt2400pci_fill_rxdone(struct data_entry *entry,
1126                                   struct rxdata_entry_desc *desc)
1127 {
1128         struct data_desc *rxd = entry->priv;
1129         u32 word0;
1130         u32 word2;
1131
1132         rt2x00_desc_read(rxd, 0, &word0);
1133         rt2x00_desc_read(rxd, 2, &word2);
1134
1135         desc->flags = 0;
1136         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1137                 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1138         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1139                 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1140
1141         /*
1142          * Obtain the status about this packet.
1143          */
1144         desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1145         desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1146             entry->ring->rt2x00dev->rssi_offset;
1147         desc->ofdm = 0;
1148         desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1149 }
1150
1151 /*
1152  * Interrupt functions.
1153  */
1154 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1155 {
1156         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1157         struct data_entry *entry;
1158         struct data_desc *txd;
1159         u32 word;
1160         int tx_status;
1161         int retry;
1162
1163         while (!rt2x00_ring_empty(ring)) {
1164                 entry = rt2x00_get_data_entry_done(ring);
1165                 txd = entry->priv;
1166                 rt2x00_desc_read(txd, 0, &word);
1167
1168                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1169                     !rt2x00_get_field32(word, TXD_W0_VALID))
1170                         break;
1171
1172                 /*
1173                  * Obtain the status about this packet.
1174                  */
1175                 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1176                 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1177
1178                 rt2x00lib_txdone(entry, tx_status, retry);
1179
1180                 /*
1181                  * Make this entry available for reuse.
1182                  */
1183                 entry->flags = 0;
1184                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1185                 rt2x00_desc_write(txd, 0, word);
1186                 rt2x00_ring_index_done_inc(ring);
1187         }
1188
1189         /*
1190          * If the data ring was full before the txdone handler
1191          * we must make sure the packet queue in the mac80211 stack
1192          * is reenabled when the txdone handler has finished.
1193          */
1194         entry = ring->entry;
1195         if (!rt2x00_ring_full(ring))
1196                 ieee80211_wake_queue(rt2x00dev->hw,
1197                                      entry->tx_status.control.queue);
1198 }
1199
1200 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1201 {
1202         struct rt2x00_dev *rt2x00dev = dev_instance;
1203         u32 reg;
1204
1205         /*
1206          * Get the interrupt sources & saved to local variable.
1207          * Write register value back to clear pending interrupts.
1208          */
1209         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1210         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1211
1212         if (!reg)
1213                 return IRQ_NONE;
1214
1215         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1216                 return IRQ_HANDLED;
1217
1218         /*
1219          * Handle interrupts, walk through all bits
1220          * and run the tasks, the bits are checked in order of
1221          * priority.
1222          */
1223
1224         /*
1225          * 1 - Beacon timer expired interrupt.
1226          */
1227         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1228                 rt2x00lib_beacondone(rt2x00dev);
1229
1230         /*
1231          * 2 - Rx ring done interrupt.
1232          */
1233         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1234                 rt2x00pci_rxdone(rt2x00dev);
1235
1236         /*
1237          * 3 - Atim ring transmit done interrupt.
1238          */
1239         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1240                 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1241
1242         /*
1243          * 4 - Priority ring transmit done interrupt.
1244          */
1245         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1246                 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1247
1248         /*
1249          * 5 - Tx ring transmit done interrupt.
1250          */
1251         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1252                 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1253
1254         return IRQ_HANDLED;
1255 }
1256
1257 /*
1258  * Device probe functions.
1259  */
1260 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1261 {
1262         struct eeprom_93cx6 eeprom;
1263         u32 reg;
1264         u16 word;
1265         u8 *mac;
1266
1267         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1268
1269         eeprom.data = rt2x00dev;
1270         eeprom.register_read = rt2400pci_eepromregister_read;
1271         eeprom.register_write = rt2400pci_eepromregister_write;
1272         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1273             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1274         eeprom.reg_data_in = 0;
1275         eeprom.reg_data_out = 0;
1276         eeprom.reg_data_clock = 0;
1277         eeprom.reg_chip_select = 0;
1278
1279         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1280                                EEPROM_SIZE / sizeof(u16));
1281
1282         /*
1283          * Start validation of the data that has been read.
1284          */
1285         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1286         if (!is_valid_ether_addr(mac)) {
1287                 DECLARE_MAC_BUF(macbuf);
1288
1289                 random_ether_addr(mac);
1290                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1291         }
1292
1293         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1294         if (word == 0xffff) {
1295                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1296                 return -EINVAL;
1297         }
1298
1299         return 0;
1300 }
1301
1302 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1303 {
1304         u32 reg;
1305         u16 value;
1306         u16 eeprom;
1307
1308         /*
1309          * Read EEPROM word for configuration.
1310          */
1311         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1312
1313         /*
1314          * Identify RF chipset.
1315          */
1316         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1317         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1318         rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1319
1320         if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1321             !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1322                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1323                 return -ENODEV;
1324         }
1325
1326         /*
1327          * Identify default antenna configuration.
1328          */
1329         rt2x00dev->default_ant.tx =
1330             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1331         rt2x00dev->default_ant.rx =
1332             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1333
1334         /*
1335          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1336          * I am not 100% sure about this, but the legacy drivers do not
1337          * indicate antenna swapping in software is required when
1338          * diversity is enabled.
1339          */
1340         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1341                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1342         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1343                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1344
1345         /*
1346          * Store led mode, for correct led behaviour.
1347          */
1348         rt2x00dev->led_mode =
1349             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1350
1351         /*
1352          * Detect if this device has an hardware controlled radio.
1353          */
1354 #ifdef CONFIG_RT2400PCI_RFKILL
1355         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1356                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1357 #endif /* CONFIG_RT2400PCI_RFKILL */
1358
1359         /*
1360          * Check if the BBP tuning should be enabled.
1361          */
1362         if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1363                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1364
1365         return 0;
1366 }
1367
1368 /*
1369  * RF value list for RF2420 & RF2421
1370  * Supports: 2.4 GHz
1371  */
1372 static const struct rf_channel rf_vals_bg[] = {
1373         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1374         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1375         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1376         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1377         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1378         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1379         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1380         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1381         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1382         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1383         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1384         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1385         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1386         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1387 };
1388
1389 static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1390 {
1391         struct hw_mode_spec *spec = &rt2x00dev->spec;
1392         u8 *txpower;
1393         unsigned int i;
1394
1395         /*
1396          * Initialize all hw fields.
1397          */
1398         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1399         rt2x00dev->hw->extra_tx_headroom = 0;
1400         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1401         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1402         rt2x00dev->hw->queues = 2;
1403
1404         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1405         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1406                                 rt2x00_eeprom_addr(rt2x00dev,
1407                                                    EEPROM_MAC_ADDR_0));
1408
1409         /*
1410          * Convert tx_power array in eeprom.
1411          */
1412         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1413         for (i = 0; i < 14; i++)
1414                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1415
1416         /*
1417          * Initialize hw_mode information.
1418          */
1419         spec->num_modes = 1;
1420         spec->num_rates = 4;
1421         spec->tx_power_a = NULL;
1422         spec->tx_power_bg = txpower;
1423         spec->tx_power_default = DEFAULT_TXPOWER;
1424
1425         spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1426         spec->channels = rf_vals_bg;
1427 }
1428
1429 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1430 {
1431         int retval;
1432
1433         /*
1434          * Allocate eeprom data.
1435          */
1436         retval = rt2400pci_validate_eeprom(rt2x00dev);
1437         if (retval)
1438                 return retval;
1439
1440         retval = rt2400pci_init_eeprom(rt2x00dev);
1441         if (retval)
1442                 return retval;
1443
1444         /*
1445          * Initialize hw specifications.
1446          */
1447         rt2400pci_probe_hw_mode(rt2x00dev);
1448
1449         /*
1450          * This device requires the beacon ring
1451          */
1452         __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1453
1454         /*
1455          * Set the rssi offset.
1456          */
1457         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1458
1459         return 0;
1460 }
1461
1462 /*
1463  * IEEE80211 stack callback functions.
1464  */
1465 static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1466                                        unsigned int changed_flags,
1467                                        unsigned int *total_flags,
1468                                        int mc_count,
1469                                        struct dev_addr_list *mc_list)
1470 {
1471         struct rt2x00_dev *rt2x00dev = hw->priv;
1472         struct interface *intf = &rt2x00dev->interface;
1473         u32 reg;
1474
1475         /*
1476          * Mask off any flags we are going to ignore from
1477          * the total_flags field.
1478          */
1479         *total_flags &=
1480             FIF_ALLMULTI |
1481             FIF_FCSFAIL |
1482             FIF_PLCPFAIL |
1483             FIF_CONTROL |
1484             FIF_OTHER_BSS |
1485             FIF_PROMISC_IN_BSS;
1486
1487         /*
1488          * Apply some rules to the filters:
1489          * - Some filters imply different filters to be set.
1490          * - Some things we can't filter out at all.
1491          * - Some filters are set based on interface type.
1492          */
1493         *total_flags |= FIF_ALLMULTI;
1494         if (*total_flags & FIF_OTHER_BSS ||
1495             *total_flags & FIF_PROMISC_IN_BSS)
1496                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1497         if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1498                 *total_flags |= FIF_PROMISC_IN_BSS;
1499
1500         /*
1501          * Check if there is any work left for us.
1502          */
1503         if (intf->filter == *total_flags)
1504                 return;
1505         intf->filter = *total_flags;
1506
1507         /*
1508          * Start configuration steps.
1509          * Note that the version error will always be dropped
1510          * since there is no filter for it at this time.
1511          */
1512         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1513         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1514                            !(*total_flags & FIF_FCSFAIL));
1515         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1516                            !(*total_flags & FIF_PLCPFAIL));
1517         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1518                            !(*total_flags & FIF_CONTROL));
1519         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1520                            !(*total_flags & FIF_PROMISC_IN_BSS));
1521         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1522                            !(*total_flags & FIF_PROMISC_IN_BSS));
1523         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1524         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1525 }
1526
1527 static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1528                                      u32 short_retry, u32 long_retry)
1529 {
1530         struct rt2x00_dev *rt2x00dev = hw->priv;
1531         u32 reg;
1532
1533         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1534         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1535         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1536         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1537
1538         return 0;
1539 }
1540
1541 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1542                              int queue,
1543                              const struct ieee80211_tx_queue_params *params)
1544 {
1545         struct rt2x00_dev *rt2x00dev = hw->priv;
1546
1547         /*
1548          * We don't support variating cw_min and cw_max variables
1549          * per queue. So by default we only configure the TX queue,
1550          * and ignore all other configurations.
1551          */
1552         if (queue != IEEE80211_TX_QUEUE_DATA0)
1553                 return -EINVAL;
1554
1555         if (rt2x00mac_conf_tx(hw, queue, params))
1556                 return -EINVAL;
1557
1558         /*
1559          * Write configuration to register.
1560          */
1561         rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
1562
1563         return 0;
1564 }
1565
1566 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1567 {
1568         struct rt2x00_dev *rt2x00dev = hw->priv;
1569         u64 tsf;
1570         u32 reg;
1571
1572         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1573         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1574         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1575         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1576
1577         return tsf;
1578 }
1579
1580 static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1581 {
1582         struct rt2x00_dev *rt2x00dev = hw->priv;
1583
1584         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1585         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1586 }
1587
1588 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1589 {
1590         struct rt2x00_dev *rt2x00dev = hw->priv;
1591         u32 reg;
1592
1593         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1594         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1595 }
1596
1597 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1598         .tx                     = rt2x00mac_tx,
1599         .start                  = rt2x00mac_start,
1600         .stop                   = rt2x00mac_stop,
1601         .add_interface          = rt2x00mac_add_interface,
1602         .remove_interface       = rt2x00mac_remove_interface,
1603         .config                 = rt2x00mac_config,
1604         .config_interface       = rt2x00mac_config_interface,
1605         .configure_filter       = rt2400pci_configure_filter,
1606         .get_stats              = rt2x00mac_get_stats,
1607         .set_retry_limit        = rt2400pci_set_retry_limit,
1608         .erp_ie_changed         = rt2x00mac_erp_ie_changed,
1609         .conf_tx                = rt2400pci_conf_tx,
1610         .get_tx_stats           = rt2x00mac_get_tx_stats,
1611         .get_tsf                = rt2400pci_get_tsf,
1612         .reset_tsf              = rt2400pci_reset_tsf,
1613         .beacon_update          = rt2x00pci_beacon_update,
1614         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1615 };
1616
1617 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1618         .irq_handler            = rt2400pci_interrupt,
1619         .probe_hw               = rt2400pci_probe_hw,
1620         .initialize             = rt2x00pci_initialize,
1621         .uninitialize           = rt2x00pci_uninitialize,
1622         .set_device_state       = rt2400pci_set_device_state,
1623         .rfkill_poll            = rt2400pci_rfkill_poll,
1624         .link_stats             = rt2400pci_link_stats,
1625         .reset_tuner            = rt2400pci_reset_tuner,
1626         .link_tuner             = rt2400pci_link_tuner,
1627         .write_tx_desc          = rt2400pci_write_tx_desc,
1628         .write_tx_data          = rt2x00pci_write_tx_data,
1629         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1630         .fill_rxdone            = rt2400pci_fill_rxdone,
1631         .config_mac_addr        = rt2400pci_config_mac_addr,
1632         .config_bssid           = rt2400pci_config_bssid,
1633         .config_type            = rt2400pci_config_type,
1634         .config_preamble        = rt2400pci_config_preamble,
1635         .config                 = rt2400pci_config,
1636 };
1637
1638 static const struct rt2x00_ops rt2400pci_ops = {
1639         .name           = DRV_NAME,
1640         .rxd_size       = RXD_DESC_SIZE,
1641         .txd_size       = TXD_DESC_SIZE,
1642         .eeprom_size    = EEPROM_SIZE,
1643         .rf_size        = RF_SIZE,
1644         .lib            = &rt2400pci_rt2x00_ops,
1645         .hw             = &rt2400pci_mac80211_ops,
1646 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1647         .debugfs        = &rt2400pci_rt2x00debug,
1648 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1649 };
1650
1651 /*
1652  * RT2400pci module information.
1653  */
1654 static struct pci_device_id rt2400pci_device_table[] = {
1655         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1656         { 0, }
1657 };
1658
1659 MODULE_AUTHOR(DRV_PROJECT);
1660 MODULE_VERSION(DRV_VERSION);
1661 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1662 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1663 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1664 MODULE_LICENSE("GPL");
1665
1666 static struct pci_driver rt2400pci_driver = {
1667         .name           = DRV_NAME,
1668         .id_table       = rt2400pci_device_table,
1669         .probe          = rt2x00pci_probe,
1670         .remove         = __devexit_p(rt2x00pci_remove),
1671         .suspend        = rt2x00pci_suspend,
1672         .resume         = rt2x00pci_resume,
1673 };
1674
1675 static int __init rt2400pci_init(void)
1676 {
1677         return pci_register_driver(&rt2400pci_driver);
1678 }
1679
1680 static void __exit rt2400pci_exit(void)
1681 {
1682         pci_unregister_driver(&rt2400pci_driver);
1683 }
1684
1685 module_init(rt2400pci_init);
1686 module_exit(rt2400pci_exit);