rt2x00: Let RF chipset decide the RF channel switch method to use in rt2800.
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58                                 const unsigned int word, const u8 value)
59 {
60         u32 reg;
61
62         mutex_lock(&rt2x00dev->csr_mutex);
63
64         /*
65          * Wait until the BBP becomes available, afterwards we
66          * can safely write the new data into the register.
67          */
68         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69                 reg = 0;
70                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76         }
77
78         mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82                                const unsigned int word, u8 *value)
83 {
84         u32 reg;
85
86         mutex_lock(&rt2x00dev->csr_mutex);
87
88         /*
89          * Wait until the BBP becomes available, afterwards we
90          * can safely write the read request into the register.
91          * After the data has been written, we wait until hardware
92          * returns the correct value, if at any time the register
93          * doesn't become available in time, reg will be 0xffffffff
94          * which means we return 0xff to the caller.
95          */
96         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97                 reg = 0;
98                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104                 WAIT_FOR_BBP(rt2x00dev, &reg);
105         }
106
107         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109         mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                                const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         mutex_lock(&rt2x00dev->csr_mutex);
118
119         /*
120          * Wait until the RF becomes available, afterwards we
121          * can safely write the new data into the register.
122          */
123         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124                 reg = 0;
125                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131                 rt2x00_rf_write(rt2x00dev, word, value);
132         }
133
134         mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139         struct rt2x00_dev *rt2x00dev = eeprom->data;
140         u32 reg;
141
142         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146         eeprom->reg_data_clock =
147             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148         eeprom->reg_chip_select =
149             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154         struct rt2x00_dev *rt2x00dev = eeprom->data;
155         u32 reg = 0;
156
157         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160                            !!eeprom->reg_data_clock);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162                            !!eeprom->reg_chip_select);
163
164         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2400pci_rt2x00debug = {
169         .owner  = THIS_MODULE,
170         .csr    = {
171                 .read           = rt2x00pci_register_read,
172                 .write          = rt2x00pci_register_write,
173                 .flags          = RT2X00DEBUGFS_OFFSET,
174                 .word_base      = CSR_REG_BASE,
175                 .word_size      = sizeof(u32),
176                 .word_count     = CSR_REG_SIZE / sizeof(u32),
177         },
178         .eeprom = {
179                 .read           = rt2x00_eeprom_read,
180                 .write          = rt2x00_eeprom_write,
181                 .word_base      = EEPROM_BASE,
182                 .word_size      = sizeof(u16),
183                 .word_count     = EEPROM_SIZE / sizeof(u16),
184         },
185         .bbp    = {
186                 .read           = rt2400pci_bbp_read,
187                 .write          = rt2400pci_bbp_write,
188                 .word_base      = BBP_BASE,
189                 .word_size      = sizeof(u8),
190                 .word_count     = BBP_SIZE / sizeof(u8),
191         },
192         .rf     = {
193                 .read           = rt2x00_rf_read,
194                 .write          = rt2400pci_rf_write,
195                 .word_base      = RF_BASE,
196                 .word_size      = sizeof(u32),
197                 .word_count     = RF_SIZE / sizeof(u32),
198         },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
203 {
204         u32 reg;
205
206         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
208 }
209
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
212                                      enum led_brightness brightness)
213 {
214         struct rt2x00_led *led =
215             container_of(led_cdev, struct rt2x00_led, led_dev);
216         unsigned int enabled = brightness != LED_OFF;
217         u32 reg;
218
219         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
220
221         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223         else if (led->type == LED_TYPE_ACTIVITY)
224                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
225
226         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
227 }
228
229 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
230                                unsigned long *delay_on,
231                                unsigned long *delay_off)
232 {
233         struct rt2x00_led *led =
234             container_of(led_cdev, struct rt2x00_led, led_dev);
235         u32 reg;
236
237         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
241
242         return 0;
243 }
244
245 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
246                                struct rt2x00_led *led,
247                                enum led_type type)
248 {
249         led->rt2x00dev = rt2x00dev;
250         led->type = type;
251         led->led_dev.brightness_set = rt2400pci_brightness_set;
252         led->led_dev.blink_set = rt2400pci_blink_set;
253         led->flags = LED_INITIALIZED;
254 }
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
256
257 /*
258  * Configuration handlers.
259  */
260 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
261                                     const unsigned int filter_flags)
262 {
263         u32 reg;
264
265         /*
266          * Start configuration steps.
267          * Note that the version error will always be dropped
268          * since there is no filter for it at this time.
269          */
270         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
271         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272                            !(filter_flags & FIF_FCSFAIL));
273         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274                            !(filter_flags & FIF_PLCPFAIL));
275         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276                            !(filter_flags & FIF_CONTROL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
278                            !(filter_flags & FIF_PROMISC_IN_BSS));
279         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
281                            !rt2x00dev->intf_ap_count);
282         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
283         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
284 }
285
286 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
287                                   struct rt2x00_intf *intf,
288                                   struct rt2x00intf_conf *conf,
289                                   const unsigned int flags)
290 {
291         unsigned int bcn_preload;
292         u32 reg;
293
294         if (flags & CONFIG_UPDATE_TYPE) {
295                 /*
296                  * Enable beacon config
297                  */
298                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
299                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
300                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
301                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
302
303                 /*
304                  * Enable synchronisation.
305                  */
306                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
307                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
308                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
310                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
311         }
312
313         if (flags & CONFIG_UPDATE_MAC)
314                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
315                                               conf->mac, sizeof(conf->mac));
316
317         if (flags & CONFIG_UPDATE_BSSID)
318                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
319                                               conf->bssid, sizeof(conf->bssid));
320 }
321
322 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
323                                  struct rt2x00lib_erp *erp)
324 {
325         int preamble_mask;
326         u32 reg;
327
328         /*
329          * When short preamble is enabled, we should set bit 0x08
330          */
331         preamble_mask = erp->short_preamble << 3;
332
333         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
334         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
335         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
336         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
337         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
338         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
339
340         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
341         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
342         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
343         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
344         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
345
346         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
347         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
348         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
349         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
350         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
351
352         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
353         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
354         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
355         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
356         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
357
358         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
359         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
362         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
363
364         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
365
366         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
367         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
368         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
369
370         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
371         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
372         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
373         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
374
375         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
376         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
377         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
378         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
379
380         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
381         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
382         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
383         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
384 }
385
386 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
387                                  struct antenna_setup *ant)
388 {
389         u8 r1;
390         u8 r4;
391
392         /*
393          * We should never come here because rt2x00lib is supposed
394          * to catch this and send us the correct antenna explicitely.
395          */
396         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
397                ant->tx == ANTENNA_SW_DIVERSITY);
398
399         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
400         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
401
402         /*
403          * Configure the TX antenna.
404          */
405         switch (ant->tx) {
406         case ANTENNA_HW_DIVERSITY:
407                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
408                 break;
409         case ANTENNA_A:
410                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
411                 break;
412         case ANTENNA_B:
413         default:
414                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
415                 break;
416         }
417
418         /*
419          * Configure the RX antenna.
420          */
421         switch (ant->rx) {
422         case ANTENNA_HW_DIVERSITY:
423                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
424                 break;
425         case ANTENNA_A:
426                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
427                 break;
428         case ANTENNA_B:
429         default:
430                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
431                 break;
432         }
433
434         rt2400pci_bbp_write(rt2x00dev, 4, r4);
435         rt2400pci_bbp_write(rt2x00dev, 1, r1);
436 }
437
438 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
439                                      struct rf_channel *rf)
440 {
441         /*
442          * Switch on tuning bits.
443          */
444         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
445         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
446
447         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
448         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
449         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
450
451         /*
452          * RF2420 chipset don't need any additional actions.
453          */
454         if (rt2x00_rf(rt2x00dev, RF2420))
455                 return;
456
457         /*
458          * For the RT2421 chipsets we need to write an invalid
459          * reference clock rate to activate auto_tune.
460          * After that we set the value back to the correct channel.
461          */
462         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
464         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466         msleep(1);
467
468         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
469         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
470         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
471
472         msleep(1);
473
474         /*
475          * Switch off tuning bits.
476          */
477         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
478         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
479
480         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
481         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
482
483         /*
484          * Clear false CRC during channel switch.
485          */
486         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
487 }
488
489 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
490 {
491         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
492 }
493
494 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
495                                          struct rt2x00lib_conf *libconf)
496 {
497         u32 reg;
498
499         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
500         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
501                            libconf->conf->long_frame_max_tx_count);
502         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
503                            libconf->conf->short_frame_max_tx_count);
504         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
505 }
506
507 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
508                                 struct rt2x00lib_conf *libconf)
509 {
510         enum dev_state state =
511             (libconf->conf->flags & IEEE80211_CONF_PS) ?
512                 STATE_SLEEP : STATE_AWAKE;
513         u32 reg;
514
515         if (state == STATE_SLEEP) {
516                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
517                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
518                                    (rt2x00dev->beacon_int - 20) * 16);
519                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
520                                    libconf->conf->listen_interval - 1);
521
522                 /* We must first disable autowake before it can be enabled */
523                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
524                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
525
526                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
527                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
528         } else {
529                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
530                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
531                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
532         }
533
534         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
535 }
536
537 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
538                              struct rt2x00lib_conf *libconf,
539                              const unsigned int flags)
540 {
541         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
542                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
543         if (flags & IEEE80211_CONF_CHANGE_POWER)
544                 rt2400pci_config_txpower(rt2x00dev,
545                                          libconf->conf->power_level);
546         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
547                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
548         if (flags & IEEE80211_CONF_CHANGE_PS)
549                 rt2400pci_config_ps(rt2x00dev, libconf);
550 }
551
552 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
553                                 const int cw_min, const int cw_max)
554 {
555         u32 reg;
556
557         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
558         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
559         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
560         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
561 }
562
563 /*
564  * Link tuning
565  */
566 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
567                                  struct link_qual *qual)
568 {
569         u32 reg;
570         u8 bbp;
571
572         /*
573          * Update FCS error count from register.
574          */
575         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
576         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
577
578         /*
579          * Update False CCA count from register.
580          */
581         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
582         qual->false_cca = bbp;
583 }
584
585 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
586                                      struct link_qual *qual, u8 vgc_level)
587 {
588         rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
589         qual->vgc_level = vgc_level;
590         qual->vgc_level_reg = vgc_level;
591 }
592
593 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
594                                   struct link_qual *qual)
595 {
596         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
597 }
598
599 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
600                                  struct link_qual *qual, const u32 count)
601 {
602         /*
603          * The link tuner should not run longer then 60 seconds,
604          * and should run once every 2 seconds.
605          */
606         if (count > 60 || !(count & 1))
607                 return;
608
609         /*
610          * Base r13 link tuning on the false cca count.
611          */
612         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
613                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
614         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
615                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
616 }
617
618 /*
619  * Initialization functions.
620  */
621 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
622 {
623         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
624         u32 word;
625
626         if (entry->queue->qid == QID_RX) {
627                 rt2x00_desc_read(entry_priv->desc, 0, &word);
628
629                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
630         } else {
631                 rt2x00_desc_read(entry_priv->desc, 0, &word);
632
633                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
634                         rt2x00_get_field32(word, TXD_W0_VALID));
635         }
636 }
637
638 static void rt2400pci_clear_entry(struct queue_entry *entry)
639 {
640         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
641         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
642         u32 word;
643
644         if (entry->queue->qid == QID_RX) {
645                 rt2x00_desc_read(entry_priv->desc, 2, &word);
646                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
647                 rt2x00_desc_write(entry_priv->desc, 2, word);
648
649                 rt2x00_desc_read(entry_priv->desc, 1, &word);
650                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
651                 rt2x00_desc_write(entry_priv->desc, 1, word);
652
653                 rt2x00_desc_read(entry_priv->desc, 0, &word);
654                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
655                 rt2x00_desc_write(entry_priv->desc, 0, word);
656         } else {
657                 rt2x00_desc_read(entry_priv->desc, 0, &word);
658                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
659                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
660                 rt2x00_desc_write(entry_priv->desc, 0, word);
661         }
662 }
663
664 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
665 {
666         struct queue_entry_priv_pci *entry_priv;
667         u32 reg;
668
669         /*
670          * Initialize registers.
671          */
672         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
673         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
674         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
675         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
676         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
677         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
678
679         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
680         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
681         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
682                            entry_priv->desc_dma);
683         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
684
685         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
686         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
687         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
688                            entry_priv->desc_dma);
689         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
690
691         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
692         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
693         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
694                            entry_priv->desc_dma);
695         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
696
697         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
698         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
699         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
700                            entry_priv->desc_dma);
701         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
702
703         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
704         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
705         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
706         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
707
708         entry_priv = rt2x00dev->rx->entries[0].priv_data;
709         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
710         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
711                            entry_priv->desc_dma);
712         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
713
714         return 0;
715 }
716
717 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
718 {
719         u32 reg;
720
721         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
722         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
723         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
724         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
725
726         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
727         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
728         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
729         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
730         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
731
732         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
733         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
734                            (rt2x00dev->rx->data_size / 128));
735         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
736
737         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
738         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
739         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
740         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
741         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
742         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
743         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
744         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
745         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
746         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
747
748         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
749
750         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
751         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
752         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
753         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
754         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
755         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
756
757         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
758         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
759         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
760         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
761         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
762         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
763         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
764         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
765
766         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
767
768         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
769                 return -EBUSY;
770
771         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
772         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
773
774         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
775         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
776         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
777
778         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
779         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
780         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
781         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
782         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
783         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
784
785         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
786         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
787         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
788         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
789         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
790
791         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
792         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
793         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
794         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
795
796         /*
797          * We must clear the FCS and FIFO error count.
798          * These registers are cleared on read,
799          * so we may pass a useless variable to store the value.
800          */
801         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
802         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
803
804         return 0;
805 }
806
807 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
808 {
809         unsigned int i;
810         u8 value;
811
812         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
813                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
814                 if ((value != 0xff) && (value != 0x00))
815                         return 0;
816                 udelay(REGISTER_BUSY_DELAY);
817         }
818
819         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
820         return -EACCES;
821 }
822
823 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
824 {
825         unsigned int i;
826         u16 eeprom;
827         u8 reg_id;
828         u8 value;
829
830         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
831                 return -EACCES;
832
833         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
834         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
835         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
836         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
837         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
838         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
839         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
840         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
841         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
842         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
843         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
844         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
845         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
846         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
847
848         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
849                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
850
851                 if (eeprom != 0xffff && eeprom != 0x0000) {
852                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
853                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
854                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
855                 }
856         }
857
858         return 0;
859 }
860
861 /*
862  * Device state switch handlers.
863  */
864 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
865                                 enum dev_state state)
866 {
867         u32 reg;
868
869         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
870         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
871                            (state == STATE_RADIO_RX_OFF) ||
872                            (state == STATE_RADIO_RX_OFF_LINK));
873         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
874 }
875
876 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
877                                  enum dev_state state)
878 {
879         int mask = (state == STATE_RADIO_IRQ_OFF);
880         u32 reg;
881
882         /*
883          * When interrupts are being enabled, the interrupt registers
884          * should clear the register to assure a clean state.
885          */
886         if (state == STATE_RADIO_IRQ_ON) {
887                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
888                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
889         }
890
891         /*
892          * Only toggle the interrupts bits we are going to use.
893          * Non-checked interrupt bits are disabled by default.
894          */
895         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
896         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
897         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
898         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
899         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
900         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
901         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
902 }
903
904 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
905 {
906         /*
907          * Initialize all registers.
908          */
909         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
910                      rt2400pci_init_registers(rt2x00dev) ||
911                      rt2400pci_init_bbp(rt2x00dev)))
912                 return -EIO;
913
914         return 0;
915 }
916
917 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
918 {
919         /*
920          * Disable power
921          */
922         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
923 }
924
925 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
926                                enum dev_state state)
927 {
928         u32 reg;
929         unsigned int i;
930         char put_to_sleep;
931         char bbp_state;
932         char rf_state;
933
934         put_to_sleep = (state != STATE_AWAKE);
935
936         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
937         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
938         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
939         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
940         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
941         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
942
943         /*
944          * Device is not guaranteed to be in the requested state yet.
945          * We must wait until the register indicates that the
946          * device has entered the correct state.
947          */
948         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
949                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
950                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
951                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
952                 if (bbp_state == state && rf_state == state)
953                         return 0;
954                 msleep(10);
955         }
956
957         return -EBUSY;
958 }
959
960 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
961                                       enum dev_state state)
962 {
963         int retval = 0;
964
965         switch (state) {
966         case STATE_RADIO_ON:
967                 retval = rt2400pci_enable_radio(rt2x00dev);
968                 break;
969         case STATE_RADIO_OFF:
970                 rt2400pci_disable_radio(rt2x00dev);
971                 break;
972         case STATE_RADIO_RX_ON:
973         case STATE_RADIO_RX_ON_LINK:
974         case STATE_RADIO_RX_OFF:
975         case STATE_RADIO_RX_OFF_LINK:
976                 rt2400pci_toggle_rx(rt2x00dev, state);
977                 break;
978         case STATE_RADIO_IRQ_ON:
979         case STATE_RADIO_IRQ_OFF:
980                 rt2400pci_toggle_irq(rt2x00dev, state);
981                 break;
982         case STATE_DEEP_SLEEP:
983         case STATE_SLEEP:
984         case STATE_STANDBY:
985         case STATE_AWAKE:
986                 retval = rt2400pci_set_state(rt2x00dev, state);
987                 break;
988         default:
989                 retval = -ENOTSUPP;
990                 break;
991         }
992
993         if (unlikely(retval))
994                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
995                       state, retval);
996
997         return retval;
998 }
999
1000 /*
1001  * TX descriptor initialization
1002  */
1003 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1004                                     struct sk_buff *skb,
1005                                     struct txentry_desc *txdesc)
1006 {
1007         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1008         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1009         __le32 *txd = skbdesc->desc;
1010         u32 word;
1011
1012         /*
1013          * Start writing the descriptor words.
1014          */
1015         rt2x00_desc_read(entry_priv->desc, 1, &word);
1016         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1017         rt2x00_desc_write(entry_priv->desc, 1, word);
1018
1019         rt2x00_desc_read(txd, 2, &word);
1020         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1021         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1022         rt2x00_desc_write(txd, 2, word);
1023
1024         rt2x00_desc_read(txd, 3, &word);
1025         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1026         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1027         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1028         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1029         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1030         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1031         rt2x00_desc_write(txd, 3, word);
1032
1033         rt2x00_desc_read(txd, 4, &word);
1034         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1035         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1036         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1037         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1038         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1039         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1040         rt2x00_desc_write(txd, 4, word);
1041
1042         rt2x00_desc_read(txd, 0, &word);
1043         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1044         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1045         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1046                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1047         rt2x00_set_field32(&word, TXD_W0_ACK,
1048                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1049         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1050                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1051         rt2x00_set_field32(&word, TXD_W0_RTS,
1052                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1053         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1054         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1055                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1056         rt2x00_desc_write(txd, 0, word);
1057 }
1058
1059 /*
1060  * TX data initialization
1061  */
1062 static void rt2400pci_write_beacon(struct queue_entry *entry)
1063 {
1064         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1065         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1066         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1067         u32 word;
1068         u32 reg;
1069
1070         /*
1071          * Disable beaconing while we are reloading the beacon data,
1072          * otherwise we might be sending out invalid data.
1073          */
1074         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1075         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1076         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1077
1078         /*
1079          * Replace rt2x00lib allocated descriptor with the
1080          * pointer to the _real_ hardware descriptor.
1081          * After that, map the beacon to DMA and update the
1082          * descriptor.
1083          */
1084         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1085         skbdesc->desc = entry_priv->desc;
1086
1087         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1088
1089         rt2x00_desc_read(entry_priv->desc, 1, &word);
1090         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1091         rt2x00_desc_write(entry_priv->desc, 1, word);
1092 }
1093
1094 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1095                                     const enum data_queue_qid queue)
1096 {
1097         u32 reg;
1098
1099         if (queue == QID_BEACON) {
1100                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1101                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1102                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1103                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1104                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1105                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1106                 }
1107                 return;
1108         }
1109
1110         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1111         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1112         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1113         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1114         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1115 }
1116
1117 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1118                                     const enum data_queue_qid qid)
1119 {
1120         u32 reg;
1121
1122         if (qid == QID_BEACON) {
1123                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1124         } else {
1125                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1126                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1127                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1128         }
1129 }
1130
1131 /*
1132  * RX control handlers
1133  */
1134 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1135                                   struct rxdone_entry_desc *rxdesc)
1136 {
1137         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1138         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1139         u32 word0;
1140         u32 word2;
1141         u32 word3;
1142         u32 word4;
1143         u64 tsf;
1144         u32 rx_low;
1145         u32 rx_high;
1146
1147         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1148         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1149         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1150         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1151
1152         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1153                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1154         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1155                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1156
1157         /*
1158          * We only get the lower 32bits from the timestamp,
1159          * to get the full 64bits we must complement it with
1160          * the timestamp from get_tsf().
1161          * Note that when a wraparound of the lower 32bits
1162          * has occurred between the frame arrival and the get_tsf()
1163          * call, we must decrease the higher 32bits with 1 to get
1164          * to correct value.
1165          */
1166         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1167         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1168         rx_high = upper_32_bits(tsf);
1169
1170         if ((u32)tsf <= rx_low)
1171                 rx_high--;
1172
1173         /*
1174          * Obtain the status about this packet.
1175          * The signal is the PLCP value, and needs to be stripped
1176          * of the preamble bit (0x08).
1177          */
1178         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1179         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1180         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1181             entry->queue->rt2x00dev->rssi_offset;
1182         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1183
1184         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1185         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1186                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1187 }
1188
1189 /*
1190  * Interrupt functions.
1191  */
1192 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1193                              const enum data_queue_qid queue_idx)
1194 {
1195         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1196         struct queue_entry_priv_pci *entry_priv;
1197         struct queue_entry *entry;
1198         struct txdone_entry_desc txdesc;
1199         u32 word;
1200
1201         while (!rt2x00queue_empty(queue)) {
1202                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1203                 entry_priv = entry->priv_data;
1204                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1205
1206                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1207                     !rt2x00_get_field32(word, TXD_W0_VALID))
1208                         break;
1209
1210                 /*
1211                  * Obtain the status about this packet.
1212                  */
1213                 txdesc.flags = 0;
1214                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1215                 case 0: /* Success */
1216                 case 1: /* Success with retry */
1217                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1218                         break;
1219                 case 2: /* Failure, excessive retries */
1220                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1221                         /* Don't break, this is a failed frame! */
1222                 default: /* Failure */
1223                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1224                 }
1225                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1226
1227                 rt2x00lib_txdone(entry, &txdesc);
1228         }
1229 }
1230
1231 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1232 {
1233         struct rt2x00_dev *rt2x00dev = dev_instance;
1234         u32 reg;
1235
1236         /*
1237          * Get the interrupt sources & saved to local variable.
1238          * Write register value back to clear pending interrupts.
1239          */
1240         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1241         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1242
1243         if (!reg)
1244                 return IRQ_NONE;
1245
1246         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1247                 return IRQ_HANDLED;
1248
1249         /*
1250          * Handle interrupts, walk through all bits
1251          * and run the tasks, the bits are checked in order of
1252          * priority.
1253          */
1254
1255         /*
1256          * 1 - Beacon timer expired interrupt.
1257          */
1258         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1259                 rt2x00lib_beacondone(rt2x00dev);
1260
1261         /*
1262          * 2 - Rx ring done interrupt.
1263          */
1264         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1265                 rt2x00pci_rxdone(rt2x00dev);
1266
1267         /*
1268          * 3 - Atim ring transmit done interrupt.
1269          */
1270         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1271                 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1272
1273         /*
1274          * 4 - Priority ring transmit done interrupt.
1275          */
1276         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1277                 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1278
1279         /*
1280          * 5 - Tx ring transmit done interrupt.
1281          */
1282         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1283                 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1284
1285         return IRQ_HANDLED;
1286 }
1287
1288 /*
1289  * Device probe functions.
1290  */
1291 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1292 {
1293         struct eeprom_93cx6 eeprom;
1294         u32 reg;
1295         u16 word;
1296         u8 *mac;
1297
1298         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1299
1300         eeprom.data = rt2x00dev;
1301         eeprom.register_read = rt2400pci_eepromregister_read;
1302         eeprom.register_write = rt2400pci_eepromregister_write;
1303         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1304             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1305         eeprom.reg_data_in = 0;
1306         eeprom.reg_data_out = 0;
1307         eeprom.reg_data_clock = 0;
1308         eeprom.reg_chip_select = 0;
1309
1310         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1311                                EEPROM_SIZE / sizeof(u16));
1312
1313         /*
1314          * Start validation of the data that has been read.
1315          */
1316         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1317         if (!is_valid_ether_addr(mac)) {
1318                 random_ether_addr(mac);
1319                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1320         }
1321
1322         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1323         if (word == 0xffff) {
1324                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1325                 return -EINVAL;
1326         }
1327
1328         return 0;
1329 }
1330
1331 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1332 {
1333         u32 reg;
1334         u16 value;
1335         u16 eeprom;
1336
1337         /*
1338          * Read EEPROM word for configuration.
1339          */
1340         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1341
1342         /*
1343          * Identify RF chipset.
1344          */
1345         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1346         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1347         rt2x00_set_chip(rt2x00dev, RT2460, value,
1348                         rt2x00_get_field32(reg, CSR0_REVISION));
1349
1350         if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1351                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1352                 return -ENODEV;
1353         }
1354
1355         /*
1356          * Identify default antenna configuration.
1357          */
1358         rt2x00dev->default_ant.tx =
1359             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1360         rt2x00dev->default_ant.rx =
1361             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1362
1363         /*
1364          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1365          * I am not 100% sure about this, but the legacy drivers do not
1366          * indicate antenna swapping in software is required when
1367          * diversity is enabled.
1368          */
1369         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1370                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1371         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1372                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1373
1374         /*
1375          * Store led mode, for correct led behaviour.
1376          */
1377 #ifdef CONFIG_RT2X00_LIB_LEDS
1378         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1379
1380         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1381         if (value == LED_MODE_TXRX_ACTIVITY ||
1382             value == LED_MODE_DEFAULT ||
1383             value == LED_MODE_ASUS)
1384                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1385                                    LED_TYPE_ACTIVITY);
1386 #endif /* CONFIG_RT2X00_LIB_LEDS */
1387
1388         /*
1389          * Detect if this device has an hardware controlled radio.
1390          */
1391         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1392                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1393
1394         /*
1395          * Check if the BBP tuning should be enabled.
1396          */
1397         if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1398                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1399
1400         return 0;
1401 }
1402
1403 /*
1404  * RF value list for RF2420 & RF2421
1405  * Supports: 2.4 GHz
1406  */
1407 static const struct rf_channel rf_vals_b[] = {
1408         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1409         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1410         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1411         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1412         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1413         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1414         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1415         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1416         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1417         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1418         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1419         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1420         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1421         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1422 };
1423
1424 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1425 {
1426         struct hw_mode_spec *spec = &rt2x00dev->spec;
1427         struct channel_info *info;
1428         char *tx_power;
1429         unsigned int i;
1430
1431         /*
1432          * Initialize all hw fields.
1433          */
1434         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1435                                IEEE80211_HW_SIGNAL_DBM |
1436                                IEEE80211_HW_SUPPORTS_PS |
1437                                IEEE80211_HW_PS_NULLFUNC_STACK;
1438
1439         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1440         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1441                                 rt2x00_eeprom_addr(rt2x00dev,
1442                                                    EEPROM_MAC_ADDR_0));
1443
1444         /*
1445          * Initialize hw_mode information.
1446          */
1447         spec->supported_bands = SUPPORT_BAND_2GHZ;
1448         spec->supported_rates = SUPPORT_RATE_CCK;
1449
1450         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1451         spec->channels = rf_vals_b;
1452
1453         /*
1454          * Create channel information array
1455          */
1456         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1457         if (!info)
1458                 return -ENOMEM;
1459
1460         spec->channels_info = info;
1461
1462         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1463         for (i = 0; i < 14; i++)
1464                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1465
1466         return 0;
1467 }
1468
1469 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1470 {
1471         int retval;
1472
1473         /*
1474          * Allocate eeprom data.
1475          */
1476         retval = rt2400pci_validate_eeprom(rt2x00dev);
1477         if (retval)
1478                 return retval;
1479
1480         retval = rt2400pci_init_eeprom(rt2x00dev);
1481         if (retval)
1482                 return retval;
1483
1484         /*
1485          * Initialize hw specifications.
1486          */
1487         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1488         if (retval)
1489                 return retval;
1490
1491         /*
1492          * This device requires the atim queue and DMA-mapped skbs.
1493          */
1494         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1495         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1496
1497         /*
1498          * Set the rssi offset.
1499          */
1500         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1501
1502         return 0;
1503 }
1504
1505 /*
1506  * IEEE80211 stack callback functions.
1507  */
1508 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1509                              const struct ieee80211_tx_queue_params *params)
1510 {
1511         struct rt2x00_dev *rt2x00dev = hw->priv;
1512
1513         /*
1514          * We don't support variating cw_min and cw_max variables
1515          * per queue. So by default we only configure the TX queue,
1516          * and ignore all other configurations.
1517          */
1518         if (queue != 0)
1519                 return -EINVAL;
1520
1521         if (rt2x00mac_conf_tx(hw, queue, params))
1522                 return -EINVAL;
1523
1524         /*
1525          * Write configuration to register.
1526          */
1527         rt2400pci_config_cw(rt2x00dev,
1528                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1529
1530         return 0;
1531 }
1532
1533 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1534 {
1535         struct rt2x00_dev *rt2x00dev = hw->priv;
1536         u64 tsf;
1537         u32 reg;
1538
1539         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1540         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1541         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1542         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1543
1544         return tsf;
1545 }
1546
1547 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1548 {
1549         struct rt2x00_dev *rt2x00dev = hw->priv;
1550         u32 reg;
1551
1552         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1553         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1554 }
1555
1556 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1557         .tx                     = rt2x00mac_tx,
1558         .start                  = rt2x00mac_start,
1559         .stop                   = rt2x00mac_stop,
1560         .add_interface          = rt2x00mac_add_interface,
1561         .remove_interface       = rt2x00mac_remove_interface,
1562         .config                 = rt2x00mac_config,
1563         .configure_filter       = rt2x00mac_configure_filter,
1564         .set_tim                = rt2x00mac_set_tim,
1565         .get_stats              = rt2x00mac_get_stats,
1566         .bss_info_changed       = rt2x00mac_bss_info_changed,
1567         .conf_tx                = rt2400pci_conf_tx,
1568         .get_tsf                = rt2400pci_get_tsf,
1569         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1570         .rfkill_poll            = rt2x00mac_rfkill_poll,
1571 };
1572
1573 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1574         .irq_handler            = rt2400pci_interrupt,
1575         .probe_hw               = rt2400pci_probe_hw,
1576         .initialize             = rt2x00pci_initialize,
1577         .uninitialize           = rt2x00pci_uninitialize,
1578         .get_entry_state        = rt2400pci_get_entry_state,
1579         .clear_entry            = rt2400pci_clear_entry,
1580         .set_device_state       = rt2400pci_set_device_state,
1581         .rfkill_poll            = rt2400pci_rfkill_poll,
1582         .link_stats             = rt2400pci_link_stats,
1583         .reset_tuner            = rt2400pci_reset_tuner,
1584         .link_tuner             = rt2400pci_link_tuner,
1585         .write_tx_desc          = rt2400pci_write_tx_desc,
1586         .write_tx_data          = rt2x00pci_write_tx_data,
1587         .write_beacon           = rt2400pci_write_beacon,
1588         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1589         .kill_tx_queue          = rt2400pci_kill_tx_queue,
1590         .fill_rxdone            = rt2400pci_fill_rxdone,
1591         .config_filter          = rt2400pci_config_filter,
1592         .config_intf            = rt2400pci_config_intf,
1593         .config_erp             = rt2400pci_config_erp,
1594         .config_ant             = rt2400pci_config_ant,
1595         .config                 = rt2400pci_config,
1596 };
1597
1598 static const struct data_queue_desc rt2400pci_queue_rx = {
1599         .entry_num              = RX_ENTRIES,
1600         .data_size              = DATA_FRAME_SIZE,
1601         .desc_size              = RXD_DESC_SIZE,
1602         .priv_size              = sizeof(struct queue_entry_priv_pci),
1603 };
1604
1605 static const struct data_queue_desc rt2400pci_queue_tx = {
1606         .entry_num              = TX_ENTRIES,
1607         .data_size              = DATA_FRAME_SIZE,
1608         .desc_size              = TXD_DESC_SIZE,
1609         .priv_size              = sizeof(struct queue_entry_priv_pci),
1610 };
1611
1612 static const struct data_queue_desc rt2400pci_queue_bcn = {
1613         .entry_num              = BEACON_ENTRIES,
1614         .data_size              = MGMT_FRAME_SIZE,
1615         .desc_size              = TXD_DESC_SIZE,
1616         .priv_size              = sizeof(struct queue_entry_priv_pci),
1617 };
1618
1619 static const struct data_queue_desc rt2400pci_queue_atim = {
1620         .entry_num              = ATIM_ENTRIES,
1621         .data_size              = DATA_FRAME_SIZE,
1622         .desc_size              = TXD_DESC_SIZE,
1623         .priv_size              = sizeof(struct queue_entry_priv_pci),
1624 };
1625
1626 static const struct rt2x00_ops rt2400pci_ops = {
1627         .name                   = KBUILD_MODNAME,
1628         .max_sta_intf           = 1,
1629         .max_ap_intf            = 1,
1630         .eeprom_size            = EEPROM_SIZE,
1631         .rf_size                = RF_SIZE,
1632         .tx_queues              = NUM_TX_QUEUES,
1633         .extra_tx_headroom      = 0,
1634         .rx                     = &rt2400pci_queue_rx,
1635         .tx                     = &rt2400pci_queue_tx,
1636         .bcn                    = &rt2400pci_queue_bcn,
1637         .atim                   = &rt2400pci_queue_atim,
1638         .lib                    = &rt2400pci_rt2x00_ops,
1639         .hw                     = &rt2400pci_mac80211_ops,
1640 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1641         .debugfs                = &rt2400pci_rt2x00debug,
1642 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1643 };
1644
1645 /*
1646  * RT2400pci module information.
1647  */
1648 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1649         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1650         { 0, }
1651 };
1652
1653 MODULE_AUTHOR(DRV_PROJECT);
1654 MODULE_VERSION(DRV_VERSION);
1655 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1656 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1657 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1658 MODULE_LICENSE("GPL");
1659
1660 static struct pci_driver rt2400pci_driver = {
1661         .name           = KBUILD_MODNAME,
1662         .id_table       = rt2400pci_device_table,
1663         .probe          = rt2x00pci_probe,
1664         .remove         = __devexit_p(rt2x00pci_remove),
1665         .suspend        = rt2x00pci_suspend,
1666         .resume         = rt2x00pci_resume,
1667 };
1668
1669 static int __init rt2400pci_init(void)
1670 {
1671         return pci_register_driver(&rt2400pci_driver);
1672 }
1673
1674 static void __exit rt2400pci_exit(void)
1675 {
1676         pci_unregister_driver(&rt2400pci_driver);
1677 }
1678
1679 module_init(rt2400pci_init);
1680 module_exit(rt2400pci_exit);