p54: integrate parts of lmac_longbow.h and other parts of stlc45xx
[safe/jmp/linux-2.6] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  * C\ 2  Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
29 MODULE_DESCRIPTION("Softmac Prism54 common code");
30 MODULE_LICENSE("GPL");
31 MODULE_ALIAS("prism54common");
32
33 static struct ieee80211_rate p54_bgrates[] = {
34         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
36         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
37         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 60, .hw_value = 4, },
39         { .bitrate = 90, .hw_value = 5, },
40         { .bitrate = 120, .hw_value = 6, },
41         { .bitrate = 180, .hw_value = 7, },
42         { .bitrate = 240, .hw_value = 8, },
43         { .bitrate = 360, .hw_value = 9, },
44         { .bitrate = 480, .hw_value = 10, },
45         { .bitrate = 540, .hw_value = 11, },
46 };
47
48 static struct ieee80211_channel p54_bgchannels[] = {
49         { .center_freq = 2412, .hw_value = 1, },
50         { .center_freq = 2417, .hw_value = 2, },
51         { .center_freq = 2422, .hw_value = 3, },
52         { .center_freq = 2427, .hw_value = 4, },
53         { .center_freq = 2432, .hw_value = 5, },
54         { .center_freq = 2437, .hw_value = 6, },
55         { .center_freq = 2442, .hw_value = 7, },
56         { .center_freq = 2447, .hw_value = 8, },
57         { .center_freq = 2452, .hw_value = 9, },
58         { .center_freq = 2457, .hw_value = 10, },
59         { .center_freq = 2462, .hw_value = 11, },
60         { .center_freq = 2467, .hw_value = 12, },
61         { .center_freq = 2472, .hw_value = 13, },
62         { .center_freq = 2484, .hw_value = 14, },
63 };
64
65 static struct ieee80211_supported_band band_2GHz = {
66         .channels = p54_bgchannels,
67         .n_channels = ARRAY_SIZE(p54_bgchannels),
68         .bitrates = p54_bgrates,
69         .n_bitrates = ARRAY_SIZE(p54_bgrates),
70 };
71
72 static struct ieee80211_rate p54_arates[] = {
73         { .bitrate = 60, .hw_value = 4, },
74         { .bitrate = 90, .hw_value = 5, },
75         { .bitrate = 120, .hw_value = 6, },
76         { .bitrate = 180, .hw_value = 7, },
77         { .bitrate = 240, .hw_value = 8, },
78         { .bitrate = 360, .hw_value = 9, },
79         { .bitrate = 480, .hw_value = 10, },
80         { .bitrate = 540, .hw_value = 11, },
81 };
82
83 static struct ieee80211_channel p54_achannels[] = {
84         { .center_freq = 4920 },
85         { .center_freq = 4940 },
86         { .center_freq = 4960 },
87         { .center_freq = 4980 },
88         { .center_freq = 5040 },
89         { .center_freq = 5060 },
90         { .center_freq = 5080 },
91         { .center_freq = 5170 },
92         { .center_freq = 5180 },
93         { .center_freq = 5190 },
94         { .center_freq = 5200 },
95         { .center_freq = 5210 },
96         { .center_freq = 5220 },
97         { .center_freq = 5230 },
98         { .center_freq = 5240 },
99         { .center_freq = 5260 },
100         { .center_freq = 5280 },
101         { .center_freq = 5300 },
102         { .center_freq = 5320 },
103         { .center_freq = 5500 },
104         { .center_freq = 5520 },
105         { .center_freq = 5540 },
106         { .center_freq = 5560 },
107         { .center_freq = 5580 },
108         { .center_freq = 5600 },
109         { .center_freq = 5620 },
110         { .center_freq = 5640 },
111         { .center_freq = 5660 },
112         { .center_freq = 5680 },
113         { .center_freq = 5700 },
114         { .center_freq = 5745 },
115         { .center_freq = 5765 },
116         { .center_freq = 5785 },
117         { .center_freq = 5805 },
118         { .center_freq = 5825 },
119 };
120
121 static struct ieee80211_supported_band band_5GHz = {
122         .channels = p54_achannels,
123         .n_channels = ARRAY_SIZE(p54_achannels),
124         .bitrates = p54_arates,
125         .n_bitrates = ARRAY_SIZE(p54_arates),
126 };
127
128 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
129 {
130         struct p54_common *priv = dev->priv;
131         struct bootrec_exp_if *exp_if;
132         struct bootrec *bootrec;
133         u32 *data = (u32 *)fw->data;
134         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
135         u8 *fw_version = NULL;
136         size_t len;
137         int i;
138
139         if (priv->rx_start)
140                 return 0;
141
142         while (data < end_data && *data)
143                 data++;
144
145         while (data < end_data && !*data)
146                 data++;
147
148         bootrec = (struct bootrec *) data;
149
150         while (bootrec->data <= end_data &&
151                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
152                 u32 code = le32_to_cpu(bootrec->code);
153                 switch (code) {
154                 case BR_CODE_COMPONENT_ID:
155                         priv->fw_interface = be32_to_cpup((__be32 *)
156                                              bootrec->data);
157                         switch (priv->fw_interface) {
158                         case FW_FMAC:
159                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
160                                 break;
161                         case FW_LM20:
162                                 printk(KERN_INFO "p54: LM20 firmware\n");
163                                 break;
164                         case FW_LM86:
165                                 printk(KERN_INFO "p54: LM86 firmware\n");
166                                 break;
167                         case FW_LM87:
168                                 printk(KERN_INFO "p54: LM87 firmware\n");
169                                 break;
170                         default:
171                                 printk(KERN_INFO "p54: unknown firmware\n");
172                                 break;
173                         }
174                         break;
175                 case BR_CODE_COMPONENT_VERSION:
176                         /* 24 bytes should be enough for all firmwares */
177                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
178                                 fw_version = (unsigned char*)bootrec->data;
179                         break;
180                 case BR_CODE_DESCR: {
181                         struct bootrec_desc *desc =
182                                 (struct bootrec_desc *)bootrec->data;
183                         priv->rx_start = le32_to_cpu(desc->rx_start);
184                         /* FIXME add sanity checking */
185                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
186                         priv->headroom = desc->headroom;
187                         priv->tailroom = desc->tailroom;
188                         if (le32_to_cpu(bootrec->len) == 11)
189                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
190                         else
191                                 priv->rx_mtu = (size_t)
192                                         0x620 - priv->tx_hdr_len;
193                         break;
194                         }
195                 case BR_CODE_EXPOSED_IF:
196                         exp_if = (struct bootrec_exp_if *) bootrec->data;
197                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
198                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
199                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
200                         break;
201                 case BR_CODE_DEPENDENT_IF:
202                         break;
203                 case BR_CODE_END_OF_BRA:
204                 case LEGACY_BR_CODE_END_OF_BRA:
205                         end_data = NULL;
206                         break;
207                 default:
208                         break;
209                 }
210                 bootrec = (struct bootrec *)&bootrec->data[len];
211         }
212
213         if (fw_version)
214                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
215                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
216
217         if (priv->fw_var >= 0x300) {
218                 /* Firmware supports QoS, use it! */
219                 priv->tx_stats[4].limit = 3;
220                 priv->tx_stats[5].limit = 4;
221                 priv->tx_stats[6].limit = 3;
222                 priv->tx_stats[7].limit = 1;
223                 dev->queues = 4;
224         }
225
226         return 0;
227 }
228 EXPORT_SYMBOL_GPL(p54_parse_firmware);
229
230 static int p54_convert_rev0(struct ieee80211_hw *dev,
231                             struct pda_pa_curve_data *curve_data)
232 {
233         struct p54_common *priv = dev->priv;
234         struct p54_pa_curve_data_sample *dst;
235         struct pda_pa_curve_data_sample_rev0 *src;
236         size_t cd_len = sizeof(*curve_data) +
237                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
238                  curve_data->channels;
239         unsigned int i, j;
240         void *source, *target;
241
242         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
243         if (!priv->curve_data)
244                 return -ENOMEM;
245
246         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
247         source = curve_data->data;
248         target = priv->curve_data->data;
249         for (i = 0; i < curve_data->channels; i++) {
250                 __le16 *freq = source;
251                 source += sizeof(__le16);
252                 *((__le16 *)target) = *freq;
253                 target += sizeof(__le16);
254                 for (j = 0; j < curve_data->points_per_channel; j++) {
255                         dst = target;
256                         src = source;
257
258                         dst->rf_power = src->rf_power;
259                         dst->pa_detector = src->pa_detector;
260                         dst->data_64qam = src->pcv;
261                         /* "invent" the points for the other modulations */
262 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
263                         dst->data_16qam = SUB(src->pcv, 12);
264                         dst->data_qpsk = SUB(dst->data_16qam, 12);
265                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
266                         dst->data_barker = SUB(dst->data_bpsk, 14);
267 #undef SUB
268                         target += sizeof(*dst);
269                         source += sizeof(*src);
270                 }
271         }
272
273         return 0;
274 }
275
276 static int p54_convert_rev1(struct ieee80211_hw *dev,
277                             struct pda_pa_curve_data *curve_data)
278 {
279         struct p54_common *priv = dev->priv;
280         struct p54_pa_curve_data_sample *dst;
281         struct pda_pa_curve_data_sample_rev1 *src;
282         size_t cd_len = sizeof(*curve_data) +
283                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
284                  curve_data->channels;
285         unsigned int i, j;
286         void *source, *target;
287
288         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
289         if (!priv->curve_data)
290                 return -ENOMEM;
291
292         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
293         source = curve_data->data;
294         target = priv->curve_data->data;
295         for (i = 0; i < curve_data->channels; i++) {
296                 __le16 *freq = source;
297                 source += sizeof(__le16);
298                 *((__le16 *)target) = *freq;
299                 target += sizeof(__le16);
300                 for (j = 0; j < curve_data->points_per_channel; j++) {
301                         memcpy(target, source, sizeof(*src));
302
303                         target += sizeof(*dst);
304                         source += sizeof(*src);
305                 }
306                 source++;
307         }
308
309         return 0;
310 }
311
312 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
313                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
314 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
315
316 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
317 {
318         struct p54_common *priv = dev->priv;
319         struct eeprom_pda_wrap *wrap = NULL;
320         struct pda_entry *entry;
321         unsigned int data_len, entry_len;
322         void *tmp;
323         int err;
324         u8 *end = (u8 *)eeprom + len;
325         u16 synth = 0;
326
327         wrap = (struct eeprom_pda_wrap *) eeprom;
328         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
329
330         /* verify that at least the entry length/code fits */
331         while ((u8 *)entry <= end - sizeof(*entry)) {
332                 entry_len = le16_to_cpu(entry->len);
333                 data_len = ((entry_len - 1) << 1);
334
335                 /* abort if entry exceeds whole structure */
336                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
337                         break;
338
339                 switch (le16_to_cpu(entry->code)) {
340                 case PDR_MAC_ADDRESS:
341                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
342                         break;
343                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
344                         if (data_len < 2) {
345                                 err = -EINVAL;
346                                 goto err;
347                         }
348
349                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
350                                 err = -EINVAL;
351                                 goto err;
352                         }
353
354                         priv->output_limit = kmalloc(entry->data[1] *
355                                 sizeof(*priv->output_limit), GFP_KERNEL);
356
357                         if (!priv->output_limit) {
358                                 err = -ENOMEM;
359                                 goto err;
360                         }
361
362                         memcpy(priv->output_limit, &entry->data[2],
363                                entry->data[1]*sizeof(*priv->output_limit));
364                         priv->output_limit_len = entry->data[1];
365                         break;
366                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
367                         struct pda_pa_curve_data *curve_data =
368                                 (struct pda_pa_curve_data *)entry->data;
369                         if (data_len < sizeof(*curve_data)) {
370                                 err = -EINVAL;
371                                 goto err;
372                         }
373
374                         switch (curve_data->cal_method_rev) {
375                         case 0:
376                                 err = p54_convert_rev0(dev, curve_data);
377                                 break;
378                         case 1:
379                                 err = p54_convert_rev1(dev, curve_data);
380                                 break;
381                         default:
382                                 printk(KERN_ERR "p54: unknown curve data "
383                                                 "revision %d\n",
384                                                 curve_data->cal_method_rev);
385                                 err = -ENODEV;
386                                 break;
387                         }
388                         if (err)
389                                 goto err;
390
391                 }
392                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
393                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
394                         if (!priv->iq_autocal) {
395                                 err = -ENOMEM;
396                                 goto err;
397                         }
398
399                         memcpy(priv->iq_autocal, entry->data, data_len);
400                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
401                         break;
402                 case PDR_INTERFACE_LIST:
403                         tmp = entry->data;
404                         while ((u8 *)tmp < entry->data + data_len) {
405                                 struct bootrec_exp_if *exp_if = tmp;
406                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
407                                         synth = le16_to_cpu(exp_if->variant);
408                                 tmp += sizeof(struct bootrec_exp_if);
409                         }
410                         break;
411                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
412                         priv->version = *(u8 *)(entry->data + 1);
413                         break;
414                 case PDR_END:
415                         /* make it overrun */
416                         entry_len = len;
417                         break;
418                 default:
419                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
420                                 le16_to_cpu(entry->code));
421                         break;
422                 }
423
424                 entry = (void *)entry + (entry_len + 1)*2;
425         }
426
427         if (!synth || !priv->iq_autocal || !priv->output_limit ||
428             !priv->curve_data) {
429                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
430                 err = -EINVAL;
431                 goto err;
432         }
433
434         priv->rxhw = synth & 0x07;
435         if (priv->rxhw == 4)
436                 p54_init_xbow_synth(dev);
437         if (!(synth & 0x40))
438                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
439         if (!(synth & 0x80))
440                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
441
442         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
443                 u8 perm_addr[ETH_ALEN];
444
445                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
446                         wiphy_name(dev->wiphy));
447                 random_ether_addr(perm_addr);
448                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
449         }
450
451         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
452                 wiphy_name(dev->wiphy),
453                 dev->wiphy->perm_addr,
454                 priv->version, p54_rf_chips[priv->rxhw]);
455
456         return 0;
457
458   err:
459         if (priv->iq_autocal) {
460                 kfree(priv->iq_autocal);
461                 priv->iq_autocal = NULL;
462         }
463
464         if (priv->output_limit) {
465                 kfree(priv->output_limit);
466                 priv->output_limit = NULL;
467         }
468
469         if (priv->curve_data) {
470                 kfree(priv->curve_data);
471                 priv->curve_data = NULL;
472         }
473
474         printk(KERN_ERR "p54: eeprom parse failed!\n");
475         return err;
476 }
477
478 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
479 {
480         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
481         return ((rssi * 0x83) / 64 - 400) / 4;
482 }
483
484 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
485 {
486         struct p54_common *priv = dev->priv;
487         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
488         struct ieee80211_rx_status rx_status = {0};
489         u16 freq = le16_to_cpu(hdr->freq);
490         size_t header_len = sizeof(*hdr);
491         u32 tsf32;
492
493         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
494                 if (priv->filter_flags & FIF_FCSFAIL)
495                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
496                 else
497                         return 0;
498         }
499
500         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
501         rx_status.noise = priv->noise;
502         /* XX correct? */
503         rx_status.qual = (100 * hdr->rssi) / 127;
504         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
505                         hdr->rate : (hdr->rate - 4)) & 0xf;
506         rx_status.freq = freq;
507         rx_status.band =  dev->conf.channel->band;
508         rx_status.antenna = hdr->antenna;
509
510         tsf32 = le32_to_cpu(hdr->tsf32);
511         if (tsf32 < priv->tsf_low32)
512                 priv->tsf_high32++;
513         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
514         priv->tsf_low32 = tsf32;
515
516         rx_status.flag |= RX_FLAG_TSFT;
517
518         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
519                 header_len += hdr->align[0];
520
521         skb_pull(skb, header_len);
522         skb_trim(skb, le16_to_cpu(hdr->len));
523
524         ieee80211_rx_irqsafe(dev, skb, &rx_status);
525
526         return -1;
527 }
528
529 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
530 {
531         struct p54_common *priv = dev->priv;
532         int i;
533
534         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
535                 return ;
536
537         for (i = 0; i < dev->queues; i++)
538                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
539                         ieee80211_wake_queue(dev, i);
540 }
541
542 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
543 {
544         struct p54_common *priv = dev->priv;
545         struct ieee80211_tx_info *info;
546         struct memrecord *range;
547         unsigned long flags;
548         u32 freed = 0, last_addr = priv->rx_start;
549
550         if (!skb || !dev)
551                 return;
552
553         spin_lock_irqsave(&priv->tx_queue.lock, flags);
554         info = IEEE80211_SKB_CB(skb);
555         range = (void *)info->rate_driver_data;
556         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
557                 struct ieee80211_tx_info *ni;
558                 struct memrecord *mr;
559
560                 ni = IEEE80211_SKB_CB(skb->prev);
561                 mr = (struct memrecord *)ni->rate_driver_data;
562                 last_addr = mr->end_addr;
563         }
564         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
565                 struct ieee80211_tx_info *ni;
566                 struct memrecord *mr;
567
568                 ni = IEEE80211_SKB_CB(skb->next);
569                 mr = (struct memrecord *)ni->rate_driver_data;
570                 freed = mr->start_addr - last_addr;
571         } else
572                 freed = priv->rx_end - last_addr;
573         __skb_unlink(skb, &priv->tx_queue);
574         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
575         kfree_skb(skb);
576
577         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
578                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
579                 p54_wake_free_queues(dev);
580 }
581 EXPORT_SYMBOL_GPL(p54_free_skb);
582
583 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
584 {
585         struct p54_common *priv = dev->priv;
586         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
587         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
588         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
589         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
590         struct memrecord *range = NULL;
591         u32 freed = 0;
592         u32 last_addr = priv->rx_start;
593         unsigned long flags;
594         int count, idx;
595
596         spin_lock_irqsave(&priv->tx_queue.lock, flags);
597         while (entry != (struct sk_buff *)&priv->tx_queue) {
598                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
599                 struct p54_hdr *entry_hdr;
600                 struct p54_tx_data *entry_data;
601                 int pad = 0;
602
603                 range = (void *)info->rate_driver_data;
604                 if (range->start_addr != addr) {
605                         last_addr = range->end_addr;
606                         entry = entry->next;
607                         continue;
608                 }
609
610                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
611                         struct ieee80211_tx_info *ni;
612                         struct memrecord *mr;
613
614                         ni = IEEE80211_SKB_CB(entry->next);
615                         mr = (struct memrecord *)ni->rate_driver_data;
616                         freed = mr->start_addr - last_addr;
617                 } else
618                         freed = priv->rx_end - last_addr;
619
620                 last_addr = range->end_addr;
621                 __skb_unlink(entry, &priv->tx_queue);
622                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
623
624                 /*
625                  * Clear manually, ieee80211_tx_info_clear_status would
626                  * clear the counts too and we need them.
627                  */
628                 memset(&info->status.ampdu_ack_len, 0,
629                        sizeof(struct ieee80211_tx_info) -
630                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
631                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
632                                       status.ampdu_ack_len) != 23);
633
634                 entry_hdr = (struct p54_hdr *) entry->data;
635                 entry_data = (struct p54_tx_data *) entry_hdr->data;
636                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
637                         pad = entry_data->align[0];
638
639                 /* walk through the rates array and adjust the counts */
640                 count = payload->tries;
641                 for (idx = 0; idx < 4; idx++) {
642                         if (count >= info->status.rates[idx].count) {
643                                 count -= info->status.rates[idx].count;
644                         } else if (count > 0) {
645                                 info->status.rates[idx].count = count;
646                                 count = 0;
647                         } else {
648                                 info->status.rates[idx].idx = -1;
649                                 info->status.rates[idx].count = 0;
650                         }
651                 }
652
653                 priv->tx_stats[entry_data->hw_queue].len--;
654                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
655                      (!payload->status))
656                         info->flags |= IEEE80211_TX_STAT_ACK;
657                 if (payload->status & 0x02)
658                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
659                 info->status.ack_signal = p54_rssi_to_dbm(dev,
660                                 (int)payload->ack_rssi);
661                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
662                 ieee80211_tx_status_irqsafe(dev, entry);
663                 goto out;
664         }
665         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
666
667 out:
668         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
669                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
670                 p54_wake_free_queues(dev);
671 }
672
673 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
674                                    struct sk_buff *skb)
675 {
676         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
677         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
678         struct p54_common *priv = dev->priv;
679
680         if (!priv->eeprom)
681                 return ;
682
683         memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
684
685         complete(&priv->eeprom_comp);
686 }
687
688 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
689 {
690         struct p54_common *priv = dev->priv;
691         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
692         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
693         u32 tsf32 = le32_to_cpu(stats->tsf32);
694
695         if (tsf32 < priv->tsf_low32)
696                 priv->tsf_high32++;
697         priv->tsf_low32 = tsf32;
698
699         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
700         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
701         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
702
703         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
704         complete(&priv->stats_comp);
705
706         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
707 }
708
709 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
710 {
711         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
712
713         switch (le16_to_cpu(hdr->type)) {
714         case P54_CONTROL_TYPE_TXDONE:
715                 p54_rx_frame_sent(dev, skb);
716                 break;
717         case P54_CONTROL_TYPE_BBP:
718                 break;
719         case P54_CONTROL_TYPE_STAT_READBACK:
720                 p54_rx_stats(dev, skb);
721                 break;
722         case P54_CONTROL_TYPE_EEPROM_READBACK:
723                 p54_rx_eeprom_readback(dev, skb);
724                 break;
725         default:
726                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
727                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
728                 break;
729         }
730
731         return 0;
732 }
733
734 /* returns zero if skb can be reused */
735 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
736 {
737         u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
738
739         if (type == 0x80)
740                 return p54_rx_control(dev, skb);
741         else
742                 return p54_rx_data(dev, skb);
743 }
744 EXPORT_SYMBOL_GPL(p54_rx);
745
746 /*
747  * So, the firmware is somewhat stupid and doesn't know what places in its
748  * memory incoming data should go to. By poking around in the firmware, we
749  * can find some unused memory to upload our packets to. However, data that we
750  * want the card to TX needs to stay intact until the card has told us that
751  * it is done with it. This function finds empty places we can upload to and
752  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
753  * allocated areas.
754  */
755 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
756                                struct p54_hdr *data, u32 len)
757 {
758         struct p54_common *priv = dev->priv;
759         struct sk_buff *entry = priv->tx_queue.next;
760         struct sk_buff *target_skb = NULL;
761         struct ieee80211_tx_info *info;
762         struct memrecord *range;
763         u32 last_addr = priv->rx_start;
764         u32 largest_hole = 0;
765         u32 target_addr = priv->rx_start;
766         unsigned long flags;
767         unsigned int left;
768         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
769
770         if (!skb)
771                 return -EINVAL;
772
773         spin_lock_irqsave(&priv->tx_queue.lock, flags);
774         left = skb_queue_len(&priv->tx_queue);
775         while (left--) {
776                 u32 hole_size;
777                 info = IEEE80211_SKB_CB(entry);
778                 range = (void *)info->rate_driver_data;
779                 hole_size = range->start_addr - last_addr;
780                 if (!target_skb && hole_size >= len) {
781                         target_skb = entry->prev;
782                         hole_size -= len;
783                         target_addr = last_addr;
784                 }
785                 largest_hole = max(largest_hole, hole_size);
786                 last_addr = range->end_addr;
787                 entry = entry->next;
788         }
789         if (!target_skb && priv->rx_end - last_addr >= len) {
790                 target_skb = priv->tx_queue.prev;
791                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
792                 if (!skb_queue_empty(&priv->tx_queue)) {
793                         info = IEEE80211_SKB_CB(target_skb);
794                         range = (void *)info->rate_driver_data;
795                         target_addr = range->end_addr;
796                 }
797         } else
798                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
799
800         if (!target_skb) {
801                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
802                 ieee80211_stop_queues(dev);
803                 return -ENOMEM;
804         }
805
806         info = IEEE80211_SKB_CB(skb);
807         range = (void *)info->rate_driver_data;
808         range->start_addr = target_addr;
809         range->end_addr = target_addr + len;
810         __skb_queue_after(&priv->tx_queue, target_skb, skb);
811         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
812
813         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
814                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
815                 ieee80211_stop_queues(dev);
816
817         data->req_id = cpu_to_le32(target_addr + priv->headroom);
818         return 0;
819 }
820
821 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
822                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
823 {
824         struct p54_common *priv = dev->priv;
825         struct p54_hdr *hdr;
826         struct sk_buff *skb;
827
828         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
829         if (!skb)
830                 return NULL;
831         skb_reserve(skb, priv->tx_hdr_len);
832
833         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
834         hdr->flags = cpu_to_le16(hdr_flags);
835         hdr->len = cpu_to_le16(len - sizeof(*hdr));
836         hdr->type = cpu_to_le16(type);
837         hdr->tries = hdr->rts_tries = 0;
838
839         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
840                 kfree_skb(skb);
841                 return NULL;
842         }
843         return skb;
844 }
845
846 int p54_read_eeprom(struct ieee80211_hw *dev)
847 {
848         struct p54_common *priv = dev->priv;
849         struct p54_hdr *hdr = NULL;
850         struct p54_eeprom_lm86 *eeprom_hdr;
851         struct sk_buff *skb;
852         size_t eeprom_size = 0x2020, offset = 0, blocksize;
853         int ret = -ENOMEM;
854         void *eeprom = NULL;
855
856         skb = p54_alloc_skb(dev, 0x8000, sizeof(*hdr) + sizeof(*eeprom_hdr) +
857                             EEPROM_READBACK_LEN,
858                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
859         if (!skb)
860                 goto free;
861         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
862         if (!priv->eeprom)
863                 goto free;
864         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
865         if (!eeprom)
866                 goto free;
867
868         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
869                      sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN);
870
871         while (eeprom_size) {
872                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
873                 eeprom_hdr->offset = cpu_to_le16(offset);
874                 eeprom_hdr->len = cpu_to_le16(blocksize);
875                 priv->tx(dev, skb, 0);
876
877                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
878                         printk(KERN_ERR "%s: device does not respond!\n",
879                                 wiphy_name(dev->wiphy));
880                         ret = -EBUSY;
881                         goto free;
882                 }
883
884                 memcpy(eeprom + offset, priv->eeprom, blocksize);
885                 offset += blocksize;
886                 eeprom_size -= blocksize;
887         }
888
889         ret = p54_parse_eeprom(dev, eeprom, offset);
890 free:
891         kfree(priv->eeprom);
892         priv->eeprom = NULL;
893         p54_free_skb(dev, skb);
894         kfree(eeprom);
895
896         return ret;
897 }
898 EXPORT_SYMBOL_GPL(p54_read_eeprom);
899
900 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
901 {
902         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
903         struct ieee80211_tx_queue_stats *current_queue;
904         struct p54_common *priv = dev->priv;
905         struct p54_hdr *hdr;
906         struct p54_tx_data *txhdr;
907         size_t padding, len;
908         int i, j, ridx;
909         u8 rate;
910         u8 cts_rate = 0x20;
911         u8 rc_flags;
912         u8 calculated_tries[4];
913         u8 nrates = 0, nremaining = 8;
914
915         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
916         if (unlikely(current_queue->len > current_queue->limit))
917                 return NETDEV_TX_BUSY;
918         current_queue->len++;
919         current_queue->count++;
920         if (current_queue->len == current_queue->limit)
921                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
922
923         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
924         len = skb->len;
925
926         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
927         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
928
929         if (padding)
930                 hdr->flags = cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN);
931         else
932                 hdr->flags = cpu_to_le16(0);
933         hdr->len = cpu_to_le16(len);
934         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
935         hdr->rts_tries = info->control.rates[0].count;
936
937         /*
938          * we register the rates in perfect order, and
939          * RTS/CTS won't happen on 5 GHz
940          */
941         cts_rate = info->control.rts_cts_rate_idx;
942
943         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
944
945         /* see how many rates got used */
946         for (i = 0; i < 4; i++) {
947                 if (info->control.rates[i].idx < 0)
948                         break;
949                 nrates++;
950         }
951
952         /* limit tries to 8/nrates per rate */
953         for (i = 0; i < nrates; i++) {
954                 /*
955                  * The magic expression here is equivalent to 8/nrates for
956                  * all values that matter, but avoids division and jumps.
957                  * Note that nrates can only take the values 1 through 4.
958                  */
959                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
960                                                  info->control.rates[i].count);
961                 nremaining -= calculated_tries[i];
962         }
963
964         /* if there are tries left, distribute from back to front */
965         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
966                 int tmp = info->control.rates[i].count - calculated_tries[i];
967
968                 if (tmp <= 0)
969                         continue;
970                 /* RC requested more tries at this rate */
971
972                 tmp = min_t(int, tmp, nremaining);
973                 calculated_tries[i] += tmp;
974                 nremaining -= tmp;
975         }
976
977         ridx = 0;
978         for (i = 0; i < nrates && ridx < 8; i++) {
979                 /* we register the rates in perfect order */
980                 rate = info->control.rates[i].idx;
981                 if (info->band == IEEE80211_BAND_5GHZ)
982                         rate += 4;
983
984                 /* store the count we actually calculated for TX status */
985                 info->control.rates[i].count = calculated_tries[i];
986
987                 rc_flags = info->control.rates[i].flags;
988                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
989                         rate |= 0x10;
990                         cts_rate |= 0x10;
991                 }
992                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
993                         rate |= 0x40;
994                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
995                         rate |= 0x20;
996                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
997                         txhdr->rateset[ridx] = rate;
998                         ridx++;
999                 }
1000         }
1001         hdr->tries = ridx;
1002         txhdr->crypt_offset = 0;
1003         txhdr->rts_rate_idx = 0;
1004         txhdr->key_type = 0;
1005         txhdr->key_len = 0;
1006         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
1007         txhdr->backlog = 32;
1008         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1009         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1010                 2 : info->antenna_sel_tx - 1;
1011         txhdr->output_power = priv->output_power;
1012         txhdr->cts_rate = cts_rate;
1013         if (padding)
1014                 txhdr->align[0] = padding;
1015
1016         /* modifies skb->cb and with it info, so must be last! */
1017         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len))) {
1018                 skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1019                 return NETDEV_TX_BUSY;
1020         }
1021         priv->tx(dev, skb, 0);
1022         return 0;
1023 }
1024
1025 static int p54_setup_mac(struct ieee80211_hw *dev, u16 mode, const u8 *bssid)
1026 {
1027         struct p54_common *priv = dev->priv;
1028         struct sk_buff *skb;
1029         struct p54_setup_mac *setup;
1030
1031         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1032                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1033                             GFP_ATOMIC);
1034         if (!skb)
1035                 return -ENOMEM;
1036
1037         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1038         priv->mac_mode = mode;
1039         setup->mac_mode = cpu_to_le16(mode);
1040         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1041         if (!bssid)
1042                 memset(setup->bssid, ~0, ETH_ALEN);
1043         else
1044                 memcpy(setup->bssid, bssid, ETH_ALEN);
1045         setup->rx_antenna = priv->rx_antenna;
1046         if (priv->fw_var < 0x500) {
1047                 setup->v1.basic_rate_mask = cpu_to_le32(0x15f);
1048                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1049                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1050                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1051                 setup->v1.wakeup_timer = cpu_to_le16(500);
1052                 setup->v1.unalloc0 = cpu_to_le16(0);
1053         } else {
1054                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1055                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1056                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1057                 setup->v2.timer = cpu_to_le16(1000);
1058                 setup->v2.truncate = cpu_to_le16(48896);
1059                 setup->v2.basic_rate_mask = cpu_to_le32(0x15f);
1060                 setup->v2.sbss_offset = 0;
1061                 setup->v2.mcast_window = 0;
1062                 setup->v2.rx_rssi_threshold = 0;
1063                 setup->v2.rx_ed_threshold = 0;
1064                 setup->v2.ref_clock = cpu_to_le32(644245094);
1065                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1066                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1067         }
1068         priv->tx(dev, skb, 1);
1069         return 0;
1070 }
1071
1072 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
1073 {
1074         struct p54_common *priv = dev->priv;
1075         struct sk_buff *skb;
1076         struct p54_scan *chan;
1077         unsigned int i;
1078         void *entry;
1079
1080         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1081                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1082                             GFP_ATOMIC);
1083         if (!skb)
1084                 return -ENOMEM;
1085
1086         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1087         memset(chan->padding1, 0, sizeof(chan->padding1));
1088         chan->mode = cpu_to_le16(P54_SCAN_EXIT);
1089         chan->dwell = cpu_to_le16(0x0);
1090
1091         for (i = 0; i < priv->iq_autocal_len; i++) {
1092                 if (priv->iq_autocal[i].freq != freq)
1093                         continue;
1094
1095                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1096                        sizeof(*priv->iq_autocal));
1097                 break;
1098         }
1099         if (i == priv->iq_autocal_len)
1100                 goto err;
1101
1102         for (i = 0; i < priv->output_limit_len; i++) {
1103                 if (priv->output_limit[i].freq != freq)
1104                         continue;
1105
1106                 chan->val_barker = 0x38;
1107                 chan->val_bpsk = chan->dup_bpsk =
1108                         priv->output_limit[i].val_bpsk;
1109                 chan->val_qpsk = chan->dup_qpsk =
1110                         priv->output_limit[i].val_qpsk;
1111                 chan->val_16qam = chan->dup_16qam =
1112                         priv->output_limit[i].val_16qam;
1113                 chan->val_64qam = chan->dup_64qam =
1114                         priv->output_limit[i].val_64qam;
1115                 break;
1116         }
1117         if (i == priv->output_limit_len)
1118                 goto err;
1119
1120         entry = priv->curve_data->data;
1121         for (i = 0; i < priv->curve_data->channels; i++) {
1122                 if (*((__le16 *)entry) != freq) {
1123                         entry += sizeof(__le16);
1124                         entry += sizeof(struct p54_pa_curve_data_sample) *
1125                                  priv->curve_data->points_per_channel;
1126                         continue;
1127                 }
1128
1129                 entry += sizeof(__le16);
1130                 chan->pa_points_per_curve =
1131                         min(priv->curve_data->points_per_channel, (u8) 8);
1132
1133                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
1134                        chan->pa_points_per_curve);
1135                 break;
1136         }
1137
1138         if (priv->fw_var < 0x500) {
1139                 chan->v1.rssical_mul = cpu_to_le16(130);
1140                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1141         } else {
1142                 chan->v2.rssical_mul = cpu_to_le16(130);
1143                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1144                 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1145                 memset(chan->v2.rts_rates, 0, 8);
1146         }
1147         priv->tx(dev, skb, 1);
1148         return 0;
1149
1150  err:
1151         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1152         kfree_skb(skb);
1153         return -EINVAL;
1154 }
1155
1156 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1157 {
1158         struct p54_common *priv = dev->priv;
1159         struct sk_buff *skb;
1160         struct p54_led *led;
1161
1162         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1163                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1164                         GFP_ATOMIC);
1165         if (!skb)
1166                 return -ENOMEM;
1167
1168         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1169         led->mode = cpu_to_le16(mode);
1170         led->led_permanent = cpu_to_le16(link);
1171         led->led_temporary = cpu_to_le16(act);
1172         led->duration = cpu_to_le16(1000);
1173         priv->tx(dev, skb, 1);
1174         return 0;
1175 }
1176
1177 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1178 do {                                                            \
1179         queue.aifs = cpu_to_le16(ai_fs);                        \
1180         queue.cwmin = cpu_to_le16(cw_min);                      \
1181         queue.cwmax = cpu_to_le16(cw_max);                      \
1182         queue.txop = cpu_to_le16(_txop);                        \
1183 } while(0)
1184
1185 static int p54_set_edcf(struct ieee80211_hw *dev)
1186 {
1187         struct p54_common *priv = dev->priv;
1188         struct sk_buff *skb;
1189         struct p54_edcf *edcf;
1190
1191         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1192                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1193                         GFP_ATOMIC);
1194         if (!skb)
1195                 return -ENOMEM;
1196
1197         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1198         if (priv->use_short_slot) {
1199                 edcf->slottime = 9;
1200                 edcf->sifs = 0x10;
1201                 edcf->eofpad = 0x00;
1202         } else {
1203                 edcf->slottime = 20;
1204                 edcf->sifs = 0x0a;
1205                 edcf->eofpad = 0x06;
1206         }
1207         /* (see prism54/isl_oid.h for further details) */
1208         edcf->frameburst = cpu_to_le16(0);
1209         edcf->round_trip_delay = cpu_to_le16(0);
1210         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1211         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1212         priv->tx(dev, skb, 1);
1213         return 0;
1214 }
1215
1216 static int p54_init_stats(struct ieee80211_hw *dev)
1217 {
1218         struct p54_common *priv = dev->priv;
1219
1220         priv->cached_stats = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
1221                         sizeof(struct p54_hdr) + sizeof(struct p54_statistics),
1222                         P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1223         if (!priv->cached_stats)
1224                         return -ENOMEM;
1225
1226         mod_timer(&priv->stats_timer, jiffies + HZ);
1227         return 0;
1228 }
1229
1230 static int p54_start(struct ieee80211_hw *dev)
1231 {
1232         struct p54_common *priv = dev->priv;
1233         int err;
1234
1235         err = priv->open(dev);
1236         if (!err)
1237                 priv->mode = NL80211_IFTYPE_MONITOR;
1238         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1239         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1240         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1241         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1242         err = p54_set_edcf(dev);
1243         if (!err)
1244                 err = p54_init_stats(dev);
1245
1246         return err;
1247 }
1248
1249 static void p54_stop(struct ieee80211_hw *dev)
1250 {
1251         struct p54_common *priv = dev->priv;
1252         struct sk_buff *skb;
1253
1254         del_timer(&priv->stats_timer);
1255         p54_free_skb(dev, priv->cached_stats);
1256         priv->cached_stats = NULL;
1257         while ((skb = skb_dequeue(&priv->tx_queue)))
1258                 kfree_skb(skb);
1259
1260         priv->stop(dev);
1261         priv->tsf_high32 = priv->tsf_low32 = 0;
1262         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1263 }
1264
1265 static int p54_add_interface(struct ieee80211_hw *dev,
1266                              struct ieee80211_if_init_conf *conf)
1267 {
1268         struct p54_common *priv = dev->priv;
1269
1270         if (priv->mode != NL80211_IFTYPE_MONITOR)
1271                 return -EOPNOTSUPP;
1272
1273         switch (conf->type) {
1274         case NL80211_IFTYPE_STATION:
1275                 priv->mode = conf->type;
1276                 break;
1277         default:
1278                 return -EOPNOTSUPP;
1279         }
1280
1281         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1282
1283         p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
1284
1285         switch (conf->type) {
1286         case NL80211_IFTYPE_STATION:
1287                 p54_setup_mac(dev, P54_FILTER_TYPE_STATION, NULL);
1288                 break;
1289         default:
1290                 BUG();  /* impossible */
1291                 break;
1292         }
1293
1294         p54_set_leds(dev, 1, 0, 0);
1295
1296         return 0;
1297 }
1298
1299 static void p54_remove_interface(struct ieee80211_hw *dev,
1300                                  struct ieee80211_if_init_conf *conf)
1301 {
1302         struct p54_common *priv = dev->priv;
1303         priv->mode = NL80211_IFTYPE_MONITOR;
1304         memset(priv->mac_addr, 0, ETH_ALEN);
1305         p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
1306 }
1307
1308 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1309 {
1310         int ret;
1311         struct p54_common *priv = dev->priv;
1312         struct ieee80211_conf *conf = &dev->conf;
1313
1314         mutex_lock(&priv->conf_mutex);
1315         priv->rx_antenna = 2; /* automatic */
1316         priv->output_power = conf->power_level << 2;
1317         ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
1318         if (!ret)
1319                 ret = p54_set_edcf(dev);
1320         mutex_unlock(&priv->conf_mutex);
1321         return ret;
1322 }
1323
1324 static int p54_config_interface(struct ieee80211_hw *dev,
1325                                 struct ieee80211_vif *vif,
1326                                 struct ieee80211_if_conf *conf)
1327 {
1328         struct p54_common *priv = dev->priv;
1329
1330         mutex_lock(&priv->conf_mutex);
1331         p54_setup_mac(dev, P54_FILTER_TYPE_STATION, conf->bssid);
1332         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1333         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1334         mutex_unlock(&priv->conf_mutex);
1335         return 0;
1336 }
1337
1338 static void p54_configure_filter(struct ieee80211_hw *dev,
1339                                  unsigned int changed_flags,
1340                                  unsigned int *total_flags,
1341                                  int mc_count, struct dev_mc_list *mclist)
1342 {
1343         struct p54_common *priv = dev->priv;
1344
1345         *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1346                         FIF_PROMISC_IN_BSS |
1347                         FIF_FCSFAIL;
1348
1349         priv->filter_flags = *total_flags;
1350
1351         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1352                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1353                         p54_setup_mac(dev, priv->mac_mode, NULL);
1354                 else
1355                         p54_setup_mac(dev, priv->mac_mode, priv->bssid);
1356         }
1357
1358         if (changed_flags & FIF_PROMISC_IN_BSS) {
1359                 if (*total_flags & FIF_PROMISC_IN_BSS)
1360                         p54_setup_mac(dev, priv->mac_mode | 0x8, NULL);
1361                 else
1362                         p54_setup_mac(dev, priv->mac_mode & ~0x8, priv->bssid);
1363         }
1364 }
1365
1366 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1367                        const struct ieee80211_tx_queue_params *params)
1368 {
1369         struct p54_common *priv = dev->priv;
1370
1371         if ((params) && !(queue > 4)) {
1372                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1373                         params->cw_min, params->cw_max, params->txop);
1374         } else
1375                 return -EINVAL;
1376
1377         return p54_set_edcf(dev);
1378 }
1379
1380 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1381 {
1382         struct p54_common *priv = dev->priv;
1383         struct sk_buff *skb;
1384         struct p54_xbow_synth *xbow;
1385
1386         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1387                             sizeof(struct p54_hdr),
1388                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1389                             GFP_KERNEL);
1390         if (!skb)
1391                 return -ENOMEM;
1392
1393         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1394         xbow->magic1 = cpu_to_le16(0x1);
1395         xbow->magic2 = cpu_to_le16(0x2);
1396         xbow->freq = cpu_to_le16(5390);
1397         memset(xbow->padding, 0, sizeof(xbow->padding));
1398         priv->tx(dev, skb, 1);
1399         return 0;
1400 }
1401
1402 static void p54_statistics_timer(unsigned long data)
1403 {
1404         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1405         struct p54_common *priv = dev->priv;
1406
1407         BUG_ON(!priv->cached_stats);
1408
1409         priv->tx(dev, priv->cached_stats, 0);
1410 }
1411
1412 static int p54_get_stats(struct ieee80211_hw *dev,
1413                          struct ieee80211_low_level_stats *stats)
1414 {
1415         struct p54_common *priv = dev->priv;
1416
1417         del_timer(&priv->stats_timer);
1418         p54_statistics_timer((unsigned long)dev);
1419
1420         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1421                 printk(KERN_ERR "%s: device does not respond!\n",
1422                         wiphy_name(dev->wiphy));
1423                 return -EBUSY;
1424         }
1425
1426         memcpy(stats, &priv->stats, sizeof(*stats));
1427
1428         return 0;
1429 }
1430
1431 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1432                             struct ieee80211_tx_queue_stats *stats)
1433 {
1434         struct p54_common *priv = dev->priv;
1435
1436         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1437
1438         return 0;
1439 }
1440
1441 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1442                                  struct ieee80211_vif *vif,
1443                                  struct ieee80211_bss_conf *info,
1444                                  u32 changed)
1445 {
1446         struct p54_common *priv = dev->priv;
1447
1448         if (changed & BSS_CHANGED_ERP_SLOT) {
1449                 priv->use_short_slot = info->use_short_slot;
1450                 p54_set_edcf(dev);
1451         }
1452 }
1453
1454 static const struct ieee80211_ops p54_ops = {
1455         .tx                     = p54_tx,
1456         .start                  = p54_start,
1457         .stop                   = p54_stop,
1458         .add_interface          = p54_add_interface,
1459         .remove_interface       = p54_remove_interface,
1460         .config                 = p54_config,
1461         .config_interface       = p54_config_interface,
1462         .bss_info_changed       = p54_bss_info_changed,
1463         .configure_filter       = p54_configure_filter,
1464         .conf_tx                = p54_conf_tx,
1465         .get_stats              = p54_get_stats,
1466         .get_tx_stats           = p54_get_tx_stats
1467 };
1468
1469 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1470 {
1471         struct ieee80211_hw *dev;
1472         struct p54_common *priv;
1473
1474         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1475         if (!dev)
1476                 return NULL;
1477
1478         priv = dev->priv;
1479         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1480         skb_queue_head_init(&priv->tx_queue);
1481         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1482                      IEEE80211_HW_RX_INCLUDES_FCS |
1483                      IEEE80211_HW_SIGNAL_DBM |
1484                      IEEE80211_HW_NOISE_DBM;
1485
1486         /*
1487          * XXX: when this driver gets support for any mode that
1488          *      requires beacons (AP, MESH, IBSS) then it must
1489          *      implement IEEE80211_TX_CTL_ASSIGN_SEQ.
1490          */
1491         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1492
1493         dev->channel_change_time = 1000;        /* TODO: find actual value */
1494         priv->tx_stats[0].limit = 1;
1495         priv->tx_stats[1].limit = 1;
1496         priv->tx_stats[2].limit = 1;
1497         priv->tx_stats[3].limit = 1;
1498         priv->tx_stats[4].limit = 5;
1499         dev->queues = 1;
1500         priv->noise = -94;
1501         /*
1502          * We support at most 8 tries no matter which rate they're at,
1503          * we cannot support max_rates * max_rate_tries as we set it
1504          * here, but setting it correctly to 4/2 or so would limit us
1505          * artificially if the RC algorithm wants just two rates, so
1506          * let's say 4/7, we'll redistribute it at TX time, see the
1507          * comments there.
1508          */
1509         dev->max_rates = 4;
1510         dev->max_rate_tries = 7;
1511         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
1512                                  sizeof(struct p54_tx_data);
1513
1514         mutex_init(&priv->conf_mutex);
1515         init_completion(&priv->eeprom_comp);
1516         init_completion(&priv->stats_comp);
1517         setup_timer(&priv->stats_timer, p54_statistics_timer,
1518                 (unsigned long)dev);
1519
1520         return dev;
1521 }
1522 EXPORT_SYMBOL_GPL(p54_init_common);
1523
1524 void p54_free_common(struct ieee80211_hw *dev)
1525 {
1526         struct p54_common *priv = dev->priv;
1527         del_timer(&priv->stats_timer);
1528         kfree_skb(priv->cached_stats);
1529         kfree(priv->iq_autocal);
1530         kfree(priv->output_limit);
1531         kfree(priv->curve_data);
1532 }
1533 EXPORT_SYMBOL_GPL(p54_free_common);
1534
1535 static int __init p54_init(void)
1536 {
1537         return 0;
1538 }
1539
1540 static void __exit p54_exit(void)
1541 {
1542 }
1543
1544 module_init(p54_init);
1545 module_exit(p54_exit);