Fixed is_network_packet() to include checking for broadcast packets.
[safe/jmp/linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35 #define IPW2200_VERSION "1.0.5"
36 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
38 #define DRV_VERSION     IPW2200_VERSION
39
40 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
41
42 MODULE_DESCRIPTION(DRV_DESCRIPTION);
43 MODULE_VERSION(DRV_VERSION);
44 MODULE_AUTHOR(DRV_COPYRIGHT);
45 MODULE_LICENSE("GPL");
46
47 static int cmdlog = 0;
48 static int debug = 0;
49 static int channel = 0;
50 static int mode = 0;
51
52 static u32 ipw_debug_level;
53 static int associate = 1;
54 static int auto_create = 1;
55 static int led = 0;
56 static int disable = 0;
57 static int hwcrypto = 1;
58 static const char ipw_modes[] = {
59         'a', 'b', 'g', '?'
60 };
61
62 #ifdef CONFIG_IPW_QOS
63 static int qos_enable = 0;
64 static int qos_burst_enable = 0;
65 static int qos_no_ack_mask = 0;
66 static int burst_duration_CCK = 0;
67 static int burst_duration_OFDM = 0;
68
69 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
70         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
71          QOS_TX3_CW_MIN_OFDM},
72         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
73          QOS_TX3_CW_MAX_OFDM},
74         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
75         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
76         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
77          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
78 };
79
80 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
81         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
82          QOS_TX3_CW_MIN_CCK},
83         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
84          QOS_TX3_CW_MAX_CCK},
85         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
86         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
87         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
88          QOS_TX3_TXOP_LIMIT_CCK}
89 };
90
91 static struct ieee80211_qos_parameters def_parameters_OFDM = {
92         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
93          DEF_TX3_CW_MIN_OFDM},
94         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
95          DEF_TX3_CW_MAX_OFDM},
96         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
97         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
98         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
99          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
100 };
101
102 static struct ieee80211_qos_parameters def_parameters_CCK = {
103         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
104          DEF_TX3_CW_MIN_CCK},
105         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
106          DEF_TX3_CW_MAX_CCK},
107         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
108         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
109         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
110          DEF_TX3_TXOP_LIMIT_CCK}
111 };
112
113 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
114
115 static int from_priority_to_tx_queue[] = {
116         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
117         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
118 };
119
120 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
121
122 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
123                                        *qos_param);
124 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
125                                      *qos_param);
126 #endif                          /* CONFIG_IPW_QOS */
127
128 static void ipw_remove_current_network(struct ipw_priv *priv);
129 static void ipw_rx(struct ipw_priv *priv);
130 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
131                                 struct clx2_tx_queue *txq, int qindex);
132 static int ipw_queue_reset(struct ipw_priv *priv);
133
134 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
135                              int len, int sync);
136
137 static void ipw_tx_queue_free(struct ipw_priv *);
138
139 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
140 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
141 static void ipw_rx_queue_replenish(void *);
142 static int ipw_up(struct ipw_priv *);
143 static void ipw_bg_up(void *);
144 static void ipw_down(struct ipw_priv *);
145 static void ipw_bg_down(void *);
146 static int ipw_config(struct ipw_priv *);
147 static int init_supported_rates(struct ipw_priv *priv,
148                                 struct ipw_supported_rates *prates);
149 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
150 static void ipw_send_wep_keys(struct ipw_priv *, int);
151
152 static int ipw_is_valid_channel(struct ieee80211_device *, u8);
153 static int ipw_channel_to_index(struct ieee80211_device *, u8);
154 static u8 ipw_freq_to_channel(struct ieee80211_device *, u32);
155 static int ipw_set_geo(struct ieee80211_device *, const struct ieee80211_geo *);
156 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *);
157
158 static int snprint_line(char *buf, size_t count,
159                         const u8 * data, u32 len, u32 ofs)
160 {
161         int out, i, j, l;
162         char c;
163
164         out = snprintf(buf, count, "%08X", ofs);
165
166         for (l = 0, i = 0; i < 2; i++) {
167                 out += snprintf(buf + out, count - out, " ");
168                 for (j = 0; j < 8 && l < len; j++, l++)
169                         out += snprintf(buf + out, count - out, "%02X ",
170                                         data[(i * 8 + j)]);
171                 for (; j < 8; j++)
172                         out += snprintf(buf + out, count - out, "   ");
173         }
174
175         out += snprintf(buf + out, count - out, " ");
176         for (l = 0, i = 0; i < 2; i++) {
177                 out += snprintf(buf + out, count - out, " ");
178                 for (j = 0; j < 8 && l < len; j++, l++) {
179                         c = data[(i * 8 + j)];
180                         if (!isascii(c) || !isprint(c))
181                                 c = '.';
182
183                         out += snprintf(buf + out, count - out, "%c", c);
184                 }
185
186                 for (; j < 8; j++)
187                         out += snprintf(buf + out, count - out, " ");
188         }
189
190         return out;
191 }
192
193 static void printk_buf(int level, const u8 * data, u32 len)
194 {
195         char line[81];
196         u32 ofs = 0;
197         if (!(ipw_debug_level & level))
198                 return;
199
200         while (len) {
201                 snprint_line(line, sizeof(line), &data[ofs],
202                              min(len, 16U), ofs);
203                 printk(KERN_DEBUG "%s\n", line);
204                 ofs += 16;
205                 len -= min(len, 16U);
206         }
207 }
208
209 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
210 {
211         size_t out = size;
212         u32 ofs = 0;
213         int total = 0;
214
215         while (size && len) {
216                 out = snprint_line(output, size, &data[ofs],
217                                    min_t(size_t, len, 16U), ofs);
218
219                 ofs += 16;
220                 output += out;
221                 size -= out;
222                 len -= min_t(size_t, len, 16U);
223                 total += out;
224         }
225         return total;
226 }
227
228 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
229 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
230
231 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
232 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
233
234 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
235 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
236 {
237         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
238                      __LINE__, (u32) (b), (u32) (c));
239         _ipw_write_reg8(a, b, c);
240 }
241
242 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
243 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
244 {
245         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
246                      __LINE__, (u32) (b), (u32) (c));
247         _ipw_write_reg16(a, b, c);
248 }
249
250 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
251 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
252 {
253         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
254                      __LINE__, (u32) (b), (u32) (c));
255         _ipw_write_reg32(a, b, c);
256 }
257
258 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
259 #define ipw_write8(ipw, ofs, val) \
260  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
261  _ipw_write8(ipw, ofs, val)
262
263 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
264 #define ipw_write16(ipw, ofs, val) \
265  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
266  _ipw_write16(ipw, ofs, val)
267
268 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
269 #define ipw_write32(ipw, ofs, val) \
270  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
271  _ipw_write32(ipw, ofs, val)
272
273 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
274 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
275 {
276         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
277         return _ipw_read8(ipw, ofs);
278 }
279
280 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
281
282 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
283 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
284 {
285         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
286         return _ipw_read16(ipw, ofs);
287 }
288
289 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
290
291 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
292 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
293 {
294         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
295         return _ipw_read32(ipw, ofs);
296 }
297
298 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
299
300 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
301 static inline void __ipw_read_indirect(const char *f, int l,
302                                        struct ipw_priv *a, u32 b, u8 * c, int d)
303 {
304         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
305                      d);
306         _ipw_read_indirect(a, b, c, d);
307 }
308
309 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
310
311 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
312                                 int num);
313 #define ipw_write_indirect(a, b, c, d) \
314         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
315         _ipw_write_indirect(a, b, c, d)
316
317 /* indirect write s */
318 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
319 {
320         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
321         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
322         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
323 }
324
325 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
326 {
327         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
328         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
329         _ipw_write8(priv, IPW_INDIRECT_DATA, value);
330 }
331
332 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
333 {
334         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
335         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
336         _ipw_write16(priv, IPW_INDIRECT_DATA, value);
337 }
338
339 /* indirect read s */
340
341 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
342 {
343         u32 word;
344         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
345         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
346         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
347         return (word >> ((reg & 0x3) * 8)) & 0xff;
348 }
349
350 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
351 {
352         u32 value;
353
354         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
355
356         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
357         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
358         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
359         return value;
360 }
361
362 /* iterative/auto-increment 32 bit reads and writes */
363 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
364                                int num)
365 {
366         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
367         u32 dif_len = addr - aligned_addr;
368         u32 i;
369
370         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
371
372         if (num <= 0) {
373                 return;
374         }
375
376         /* Read the first nibble byte by byte */
377         if (unlikely(dif_len)) {
378                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
379                 /* Start reading at aligned_addr + dif_len */
380                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
381                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
382                 aligned_addr += 4;
383         }
384
385         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
386         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
387                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
388
389         /* Copy the last nibble */
390         if (unlikely(num)) {
391                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
392                 for (i = 0; num > 0; i++, num--)
393                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
394         }
395 }
396
397 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
398                                 int num)
399 {
400         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
401         u32 dif_len = addr - aligned_addr;
402         u32 i;
403
404         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
405
406         if (num <= 0) {
407                 return;
408         }
409
410         /* Write the first nibble byte by byte */
411         if (unlikely(dif_len)) {
412                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
413                 /* Start reading at aligned_addr + dif_len */
414                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
415                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
416                 aligned_addr += 4;
417         }
418
419         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
420         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
421                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
422
423         /* Copy the last nibble */
424         if (unlikely(num)) {
425                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
426                 for (i = 0; num > 0; i++, num--, buf++)
427                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
428         }
429 }
430
431 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
432                              int num)
433 {
434         memcpy_toio((priv->hw_base + addr), buf, num);
435 }
436
437 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
438 {
439         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
440 }
441
442 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
443 {
444         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
445 }
446
447 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
448 {
449         if (priv->status & STATUS_INT_ENABLED)
450                 return;
451         priv->status |= STATUS_INT_ENABLED;
452         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
453 }
454
455 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
456 {
457         if (!(priv->status & STATUS_INT_ENABLED))
458                 return;
459         priv->status &= ~STATUS_INT_ENABLED;
460         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
461 }
462
463 #ifdef CONFIG_IPW_DEBUG
464 static char *ipw_error_desc(u32 val)
465 {
466         switch (val) {
467         case IPW_FW_ERROR_OK:
468                 return "ERROR_OK";
469         case IPW_FW_ERROR_FAIL:
470                 return "ERROR_FAIL";
471         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
472                 return "MEMORY_UNDERFLOW";
473         case IPW_FW_ERROR_MEMORY_OVERFLOW:
474                 return "MEMORY_OVERFLOW";
475         case IPW_FW_ERROR_BAD_PARAM:
476                 return "BAD_PARAM";
477         case IPW_FW_ERROR_BAD_CHECKSUM:
478                 return "BAD_CHECKSUM";
479         case IPW_FW_ERROR_NMI_INTERRUPT:
480                 return "NMI_INTERRUPT";
481         case IPW_FW_ERROR_BAD_DATABASE:
482                 return "BAD_DATABASE";
483         case IPW_FW_ERROR_ALLOC_FAIL:
484                 return "ALLOC_FAIL";
485         case IPW_FW_ERROR_DMA_UNDERRUN:
486                 return "DMA_UNDERRUN";
487         case IPW_FW_ERROR_DMA_STATUS:
488                 return "DMA_STATUS";
489         case IPW_FW_ERROR_DINO_ERROR:
490                 return "DINO_ERROR";
491         case IPW_FW_ERROR_EEPROM_ERROR:
492                 return "EEPROM_ERROR";
493         case IPW_FW_ERROR_SYSASSERT:
494                 return "SYSASSERT";
495         case IPW_FW_ERROR_FATAL_ERROR:
496                 return "FATAL_ERROR";
497         default:
498                 return "UNKNOWN_ERROR";
499         }
500 }
501
502 static void ipw_dump_error_log(struct ipw_priv *priv,
503                                struct ipw_fw_error *error)
504 {
505         u32 i;
506
507         if (!error) {
508                 IPW_ERROR("Error allocating and capturing error log.  "
509                           "Nothing to dump.\n");
510                 return;
511         }
512
513         IPW_ERROR("Start IPW Error Log Dump:\n");
514         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
515                   error->status, error->config);
516
517         for (i = 0; i < error->elem_len; i++)
518                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
519                           ipw_error_desc(error->elem[i].desc),
520                           error->elem[i].time,
521                           error->elem[i].blink1,
522                           error->elem[i].blink2,
523                           error->elem[i].link1,
524                           error->elem[i].link2, error->elem[i].data);
525         for (i = 0; i < error->log_len; i++)
526                 IPW_ERROR("%i\t0x%08x\t%i\n",
527                           error->log[i].time,
528                           error->log[i].event, error->log[i].data);
529 }
530 #endif
531
532 static inline int ipw_is_init(struct ipw_priv *priv)
533 {
534         return (priv->status & STATUS_INIT) ? 1 : 0;
535 }
536
537 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
538 {
539         u32 addr, field_info, field_len, field_count, total_len;
540
541         IPW_DEBUG_ORD("ordinal = %i\n", ord);
542
543         if (!priv || !val || !len) {
544                 IPW_DEBUG_ORD("Invalid argument\n");
545                 return -EINVAL;
546         }
547
548         /* verify device ordinal tables have been initialized */
549         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
550                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
551                 return -EINVAL;
552         }
553
554         switch (IPW_ORD_TABLE_ID_MASK & ord) {
555         case IPW_ORD_TABLE_0_MASK:
556                 /*
557                  * TABLE 0: Direct access to a table of 32 bit values
558                  *
559                  * This is a very simple table with the data directly
560                  * read from the table
561                  */
562
563                 /* remove the table id from the ordinal */
564                 ord &= IPW_ORD_TABLE_VALUE_MASK;
565
566                 /* boundary check */
567                 if (ord > priv->table0_len) {
568                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
569                                       "max (%i)\n", ord, priv->table0_len);
570                         return -EINVAL;
571                 }
572
573                 /* verify we have enough room to store the value */
574                 if (*len < sizeof(u32)) {
575                         IPW_DEBUG_ORD("ordinal buffer length too small, "
576                                       "need %zd\n", sizeof(u32));
577                         return -EINVAL;
578                 }
579
580                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
581                               ord, priv->table0_addr + (ord << 2));
582
583                 *len = sizeof(u32);
584                 ord <<= 2;
585                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
586                 break;
587
588         case IPW_ORD_TABLE_1_MASK:
589                 /*
590                  * TABLE 1: Indirect access to a table of 32 bit values
591                  *
592                  * This is a fairly large table of u32 values each
593                  * representing starting addr for the data (which is
594                  * also a u32)
595                  */
596
597                 /* remove the table id from the ordinal */
598                 ord &= IPW_ORD_TABLE_VALUE_MASK;
599
600                 /* boundary check */
601                 if (ord > priv->table1_len) {
602                         IPW_DEBUG_ORD("ordinal value too long\n");
603                         return -EINVAL;
604                 }
605
606                 /* verify we have enough room to store the value */
607                 if (*len < sizeof(u32)) {
608                         IPW_DEBUG_ORD("ordinal buffer length too small, "
609                                       "need %zd\n", sizeof(u32));
610                         return -EINVAL;
611                 }
612
613                 *((u32 *) val) =
614                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
615                 *len = sizeof(u32);
616                 break;
617
618         case IPW_ORD_TABLE_2_MASK:
619                 /*
620                  * TABLE 2: Indirect access to a table of variable sized values
621                  *
622                  * This table consist of six values, each containing
623                  *     - dword containing the starting offset of the data
624                  *     - dword containing the lengh in the first 16bits
625                  *       and the count in the second 16bits
626                  */
627
628                 /* remove the table id from the ordinal */
629                 ord &= IPW_ORD_TABLE_VALUE_MASK;
630
631                 /* boundary check */
632                 if (ord > priv->table2_len) {
633                         IPW_DEBUG_ORD("ordinal value too long\n");
634                         return -EINVAL;
635                 }
636
637                 /* get the address of statistic */
638                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
639
640                 /* get the second DW of statistics ;
641                  * two 16-bit words - first is length, second is count */
642                 field_info =
643                     ipw_read_reg32(priv,
644                                    priv->table2_addr + (ord << 3) +
645                                    sizeof(u32));
646
647                 /* get each entry length */
648                 field_len = *((u16 *) & field_info);
649
650                 /* get number of entries */
651                 field_count = *(((u16 *) & field_info) + 1);
652
653                 /* abort if not enought memory */
654                 total_len = field_len * field_count;
655                 if (total_len > *len) {
656                         *len = total_len;
657                         return -EINVAL;
658                 }
659
660                 *len = total_len;
661                 if (!total_len)
662                         return 0;
663
664                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
665                               "field_info = 0x%08x\n",
666                               addr, total_len, field_info);
667                 ipw_read_indirect(priv, addr, val, total_len);
668                 break;
669
670         default:
671                 IPW_DEBUG_ORD("Invalid ordinal!\n");
672                 return -EINVAL;
673
674         }
675
676         return 0;
677 }
678
679 static void ipw_init_ordinals(struct ipw_priv *priv)
680 {
681         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
682         priv->table0_len = ipw_read32(priv, priv->table0_addr);
683
684         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
685                       priv->table0_addr, priv->table0_len);
686
687         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
688         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
689
690         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
691                       priv->table1_addr, priv->table1_len);
692
693         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
694         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
695         priv->table2_len &= 0x0000ffff; /* use first two bytes */
696
697         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
698                       priv->table2_addr, priv->table2_len);
699
700 }
701
702 u32 ipw_register_toggle(u32 reg)
703 {
704         reg &= ~IPW_START_STANDBY;
705         if (reg & IPW_GATE_ODMA)
706                 reg &= ~IPW_GATE_ODMA;
707         if (reg & IPW_GATE_IDMA)
708                 reg &= ~IPW_GATE_IDMA;
709         if (reg & IPW_GATE_ADMA)
710                 reg &= ~IPW_GATE_ADMA;
711         return reg;
712 }
713
714 /*
715  * LED behavior:
716  * - On radio ON, turn on any LEDs that require to be on during start
717  * - On initialization, start unassociated blink
718  * - On association, disable unassociated blink
719  * - On disassociation, start unassociated blink
720  * - On radio OFF, turn off any LEDs started during radio on
721  *
722  */
723 #define LD_TIME_LINK_ON 300
724 #define LD_TIME_LINK_OFF 2700
725 #define LD_TIME_ACT_ON 250
726
727 void ipw_led_link_on(struct ipw_priv *priv)
728 {
729         unsigned long flags;
730         u32 led;
731
732         /* If configured to not use LEDs, or nic_type is 1,
733          * then we don't toggle a LINK led */
734         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
735                 return;
736
737         spin_lock_irqsave(&priv->lock, flags);
738
739         if (!(priv->status & STATUS_RF_KILL_MASK) &&
740             !(priv->status & STATUS_LED_LINK_ON)) {
741                 IPW_DEBUG_LED("Link LED On\n");
742                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
743                 led |= priv->led_association_on;
744
745                 led = ipw_register_toggle(led);
746
747                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
748                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
749
750                 priv->status |= STATUS_LED_LINK_ON;
751
752                 /* If we aren't associated, schedule turning the LED off */
753                 if (!(priv->status & STATUS_ASSOCIATED))
754                         queue_delayed_work(priv->workqueue,
755                                            &priv->led_link_off,
756                                            LD_TIME_LINK_ON);
757         }
758
759         spin_unlock_irqrestore(&priv->lock, flags);
760 }
761
762 static void ipw_bg_led_link_on(void *data)
763 {
764         struct ipw_priv *priv = data;
765         down(&priv->sem);
766         ipw_led_link_on(data);
767         up(&priv->sem);
768 }
769
770 void ipw_led_link_off(struct ipw_priv *priv)
771 {
772         unsigned long flags;
773         u32 led;
774
775         /* If configured not to use LEDs, or nic type is 1,
776          * then we don't goggle the LINK led. */
777         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
778                 return;
779
780         spin_lock_irqsave(&priv->lock, flags);
781
782         if (priv->status & STATUS_LED_LINK_ON) {
783                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
784                 led &= priv->led_association_off;
785                 led = ipw_register_toggle(led);
786
787                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
788                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
789
790                 IPW_DEBUG_LED("Link LED Off\n");
791
792                 priv->status &= ~STATUS_LED_LINK_ON;
793
794                 /* If we aren't associated and the radio is on, schedule
795                  * turning the LED on (blink while unassociated) */
796                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
797                     !(priv->status & STATUS_ASSOCIATED))
798                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
799                                            LD_TIME_LINK_OFF);
800
801         }
802
803         spin_unlock_irqrestore(&priv->lock, flags);
804 }
805
806 static void ipw_bg_led_link_off(void *data)
807 {
808         struct ipw_priv *priv = data;
809         down(&priv->sem);
810         ipw_led_link_off(data);
811         up(&priv->sem);
812 }
813
814 static inline void __ipw_led_activity_on(struct ipw_priv *priv)
815 {
816         u32 led;
817
818         if (priv->config & CFG_NO_LED)
819                 return;
820
821         if (priv->status & STATUS_RF_KILL_MASK)
822                 return;
823
824         if (!(priv->status & STATUS_LED_ACT_ON)) {
825                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
826                 led |= priv->led_activity_on;
827
828                 led = ipw_register_toggle(led);
829
830                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
831                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
832
833                 IPW_DEBUG_LED("Activity LED On\n");
834
835                 priv->status |= STATUS_LED_ACT_ON;
836
837                 cancel_delayed_work(&priv->led_act_off);
838                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
839                                    LD_TIME_ACT_ON);
840         } else {
841                 /* Reschedule LED off for full time period */
842                 cancel_delayed_work(&priv->led_act_off);
843                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
844                                    LD_TIME_ACT_ON);
845         }
846 }
847
848 void ipw_led_activity_on(struct ipw_priv *priv)
849 {
850         unsigned long flags;
851         spin_lock_irqsave(&priv->lock, flags);
852         __ipw_led_activity_on(priv);
853         spin_unlock_irqrestore(&priv->lock, flags);
854 }
855
856 void ipw_led_activity_off(struct ipw_priv *priv)
857 {
858         unsigned long flags;
859         u32 led;
860
861         if (priv->config & CFG_NO_LED)
862                 return;
863
864         spin_lock_irqsave(&priv->lock, flags);
865
866         if (priv->status & STATUS_LED_ACT_ON) {
867                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
868                 led &= priv->led_activity_off;
869
870                 led = ipw_register_toggle(led);
871
872                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
873                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
874
875                 IPW_DEBUG_LED("Activity LED Off\n");
876
877                 priv->status &= ~STATUS_LED_ACT_ON;
878         }
879
880         spin_unlock_irqrestore(&priv->lock, flags);
881 }
882
883 static void ipw_bg_led_activity_off(void *data)
884 {
885         struct ipw_priv *priv = data;
886         down(&priv->sem);
887         ipw_led_activity_off(data);
888         up(&priv->sem);
889 }
890
891 void ipw_led_band_on(struct ipw_priv *priv)
892 {
893         unsigned long flags;
894         u32 led;
895
896         /* Only nic type 1 supports mode LEDs */
897         if (priv->config & CFG_NO_LED ||
898             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
899                 return;
900
901         spin_lock_irqsave(&priv->lock, flags);
902
903         led = ipw_read_reg32(priv, IPW_EVENT_REG);
904         if (priv->assoc_network->mode == IEEE_A) {
905                 led |= priv->led_ofdm_on;
906                 led &= priv->led_association_off;
907                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
908         } else if (priv->assoc_network->mode == IEEE_G) {
909                 led |= priv->led_ofdm_on;
910                 led |= priv->led_association_on;
911                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
912         } else {
913                 led &= priv->led_ofdm_off;
914                 led |= priv->led_association_on;
915                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
916         }
917
918         led = ipw_register_toggle(led);
919
920         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
921         ipw_write_reg32(priv, IPW_EVENT_REG, led);
922
923         spin_unlock_irqrestore(&priv->lock, flags);
924 }
925
926 void ipw_led_band_off(struct ipw_priv *priv)
927 {
928         unsigned long flags;
929         u32 led;
930
931         /* Only nic type 1 supports mode LEDs */
932         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
933                 return;
934
935         spin_lock_irqsave(&priv->lock, flags);
936
937         led = ipw_read_reg32(priv, IPW_EVENT_REG);
938         led &= priv->led_ofdm_off;
939         led &= priv->led_association_off;
940
941         led = ipw_register_toggle(led);
942
943         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
944         ipw_write_reg32(priv, IPW_EVENT_REG, led);
945
946         spin_unlock_irqrestore(&priv->lock, flags);
947 }
948
949 void ipw_led_radio_on(struct ipw_priv *priv)
950 {
951         ipw_led_link_on(priv);
952 }
953
954 void ipw_led_radio_off(struct ipw_priv *priv)
955 {
956         ipw_led_activity_off(priv);
957         ipw_led_link_off(priv);
958 }
959
960 void ipw_led_link_up(struct ipw_priv *priv)
961 {
962         /* Set the Link Led on for all nic types */
963         ipw_led_link_on(priv);
964 }
965
966 void ipw_led_link_down(struct ipw_priv *priv)
967 {
968         ipw_led_activity_off(priv);
969         ipw_led_link_off(priv);
970
971         if (priv->status & STATUS_RF_KILL_MASK)
972                 ipw_led_radio_off(priv);
973 }
974
975 void ipw_led_init(struct ipw_priv *priv)
976 {
977         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
978
979         /* Set the default PINs for the link and activity leds */
980         priv->led_activity_on = IPW_ACTIVITY_LED;
981         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
982
983         priv->led_association_on = IPW_ASSOCIATED_LED;
984         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
985
986         /* Set the default PINs for the OFDM leds */
987         priv->led_ofdm_on = IPW_OFDM_LED;
988         priv->led_ofdm_off = ~(IPW_OFDM_LED);
989
990         switch (priv->nic_type) {
991         case EEPROM_NIC_TYPE_1:
992                 /* In this NIC type, the LEDs are reversed.... */
993                 priv->led_activity_on = IPW_ASSOCIATED_LED;
994                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
995                 priv->led_association_on = IPW_ACTIVITY_LED;
996                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
997
998                 if (!(priv->config & CFG_NO_LED))
999                         ipw_led_band_on(priv);
1000
1001                 /* And we don't blink link LEDs for this nic, so
1002                  * just return here */
1003                 return;
1004
1005         case EEPROM_NIC_TYPE_3:
1006         case EEPROM_NIC_TYPE_2:
1007         case EEPROM_NIC_TYPE_4:
1008         case EEPROM_NIC_TYPE_0:
1009                 break;
1010
1011         default:
1012                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1013                                priv->nic_type);
1014                 priv->nic_type = EEPROM_NIC_TYPE_0;
1015                 break;
1016         }
1017
1018         if (!(priv->config & CFG_NO_LED)) {
1019                 if (priv->status & STATUS_ASSOCIATED)
1020                         ipw_led_link_on(priv);
1021                 else
1022                         ipw_led_link_off(priv);
1023         }
1024 }
1025
1026 void ipw_led_shutdown(struct ipw_priv *priv)
1027 {
1028         ipw_led_activity_off(priv);
1029         ipw_led_link_off(priv);
1030         ipw_led_band_off(priv);
1031         cancel_delayed_work(&priv->led_link_on);
1032         cancel_delayed_work(&priv->led_link_off);
1033         cancel_delayed_work(&priv->led_act_off);
1034 }
1035
1036 /*
1037  * The following adds a new attribute to the sysfs representation
1038  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1039  * used for controling the debug level.
1040  *
1041  * See the level definitions in ipw for details.
1042  */
1043 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1044 {
1045         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1046 }
1047
1048 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1049                                  size_t count)
1050 {
1051         char *p = (char *)buf;
1052         u32 val;
1053
1054         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1055                 p++;
1056                 if (p[0] == 'x' || p[0] == 'X')
1057                         p++;
1058                 val = simple_strtoul(p, &p, 16);
1059         } else
1060                 val = simple_strtoul(p, &p, 10);
1061         if (p == buf)
1062                 printk(KERN_INFO DRV_NAME
1063                        ": %s is not in hex or decimal form.\n", buf);
1064         else
1065                 ipw_debug_level = val;
1066
1067         return strnlen(buf, count);
1068 }
1069
1070 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1071                    show_debug_level, store_debug_level);
1072
1073 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1074 {
1075         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1076 }
1077
1078 static void ipw_capture_event_log(struct ipw_priv *priv,
1079                                   u32 log_len, struct ipw_event *log)
1080 {
1081         u32 base;
1082
1083         if (log_len) {
1084                 base = ipw_read32(priv, IPW_EVENT_LOG);
1085                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1086                                   (u8 *) log, sizeof(*log) * log_len);
1087         }
1088 }
1089
1090 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1091 {
1092         struct ipw_fw_error *error;
1093         u32 log_len = ipw_get_event_log_len(priv);
1094         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1095         u32 elem_len = ipw_read_reg32(priv, base);
1096
1097         error = kmalloc(sizeof(*error) +
1098                         sizeof(*error->elem) * elem_len +
1099                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1100         if (!error) {
1101                 IPW_ERROR("Memory allocation for firmware error log "
1102                           "failed.\n");
1103                 return NULL;
1104         }
1105         error->jiffies = jiffies;
1106         error->status = priv->status;
1107         error->config = priv->config;
1108         error->elem_len = elem_len;
1109         error->log_len = log_len;
1110         error->elem = (struct ipw_error_elem *)error->payload;
1111         error->log = (struct ipw_event *)(error->elem +
1112                                           (sizeof(*error->elem) * elem_len));
1113
1114         ipw_capture_event_log(priv, log_len, error->log);
1115
1116         if (elem_len)
1117                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1118                                   sizeof(*error->elem) * elem_len);
1119
1120         return error;
1121 }
1122
1123 static void ipw_free_error_log(struct ipw_fw_error *error)
1124 {
1125         if (error)
1126                 kfree(error);
1127 }
1128
1129 static ssize_t show_event_log(struct device *d,
1130                               struct device_attribute *attr, char *buf)
1131 {
1132         struct ipw_priv *priv = dev_get_drvdata(d);
1133         u32 log_len = ipw_get_event_log_len(priv);
1134         struct ipw_event log[log_len];
1135         u32 len = 0, i;
1136
1137         ipw_capture_event_log(priv, log_len, log);
1138
1139         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1140         for (i = 0; i < log_len; i++)
1141                 len += snprintf(buf + len, PAGE_SIZE - len,
1142                                 "\n%08X%08X%08X",
1143                                 log[i].time, log[i].event, log[i].data);
1144         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1145         return len;
1146 }
1147
1148 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1149
1150 static ssize_t show_error(struct device *d,
1151                           struct device_attribute *attr, char *buf)
1152 {
1153         struct ipw_priv *priv = dev_get_drvdata(d);
1154         u32 len = 0, i;
1155         if (!priv->error)
1156                 return 0;
1157         len += snprintf(buf + len, PAGE_SIZE - len,
1158                         "%08lX%08X%08X%08X",
1159                         priv->error->jiffies,
1160                         priv->error->status,
1161                         priv->error->config, priv->error->elem_len);
1162         for (i = 0; i < priv->error->elem_len; i++)
1163                 len += snprintf(buf + len, PAGE_SIZE - len,
1164                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1165                                 priv->error->elem[i].time,
1166                                 priv->error->elem[i].desc,
1167                                 priv->error->elem[i].blink1,
1168                                 priv->error->elem[i].blink2,
1169                                 priv->error->elem[i].link1,
1170                                 priv->error->elem[i].link2,
1171                                 priv->error->elem[i].data);
1172
1173         len += snprintf(buf + len, PAGE_SIZE - len,
1174                         "\n%08X", priv->error->log_len);
1175         for (i = 0; i < priv->error->log_len; i++)
1176                 len += snprintf(buf + len, PAGE_SIZE - len,
1177                                 "\n%08X%08X%08X",
1178                                 priv->error->log[i].time,
1179                                 priv->error->log[i].event,
1180                                 priv->error->log[i].data);
1181         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1182         return len;
1183 }
1184
1185 static ssize_t clear_error(struct device *d,
1186                            struct device_attribute *attr,
1187                            const char *buf, size_t count)
1188 {
1189         struct ipw_priv *priv = dev_get_drvdata(d);
1190         if (priv->error) {
1191                 ipw_free_error_log(priv->error);
1192                 priv->error = NULL;
1193         }
1194         return count;
1195 }
1196
1197 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1198
1199 static ssize_t show_cmd_log(struct device *d,
1200                             struct device_attribute *attr, char *buf)
1201 {
1202         struct ipw_priv *priv = dev_get_drvdata(d);
1203         u32 len = 0, i;
1204         if (!priv->cmdlog)
1205                 return 0;
1206         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1207              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1208              i = (i + 1) % priv->cmdlog_len) {
1209                 len +=
1210                     snprintf(buf + len, PAGE_SIZE - len,
1211                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1212                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1213                              priv->cmdlog[i].cmd.len);
1214                 len +=
1215                     snprintk_buf(buf + len, PAGE_SIZE - len,
1216                                  (u8 *) priv->cmdlog[i].cmd.param,
1217                                  priv->cmdlog[i].cmd.len);
1218                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1219         }
1220         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1221         return len;
1222 }
1223
1224 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1225
1226 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1227                              char *buf)
1228 {
1229         struct ipw_priv *priv = dev_get_drvdata(d);
1230         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1231 }
1232
1233 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1234                               const char *buf, size_t count)
1235 {
1236         struct ipw_priv *priv = dev_get_drvdata(d);
1237 #ifdef CONFIG_IPW_DEBUG
1238         struct net_device *dev = priv->net_dev;
1239 #endif
1240         char buffer[] = "00000000";
1241         unsigned long len =
1242             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1243         unsigned long val;
1244         char *p = buffer;
1245
1246         IPW_DEBUG_INFO("enter\n");
1247
1248         strncpy(buffer, buf, len);
1249         buffer[len] = 0;
1250
1251         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1252                 p++;
1253                 if (p[0] == 'x' || p[0] == 'X')
1254                         p++;
1255                 val = simple_strtoul(p, &p, 16);
1256         } else
1257                 val = simple_strtoul(p, &p, 10);
1258         if (p == buffer) {
1259                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1260         } else {
1261                 priv->ieee->scan_age = val;
1262                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1263         }
1264
1265         IPW_DEBUG_INFO("exit\n");
1266         return len;
1267 }
1268
1269 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1270
1271 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1272                         char *buf)
1273 {
1274         struct ipw_priv *priv = dev_get_drvdata(d);
1275         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1276 }
1277
1278 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1279                          const char *buf, size_t count)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282
1283         IPW_DEBUG_INFO("enter\n");
1284
1285         if (count == 0)
1286                 return 0;
1287
1288         if (*buf == 0) {
1289                 IPW_DEBUG_LED("Disabling LED control.\n");
1290                 priv->config |= CFG_NO_LED;
1291                 ipw_led_shutdown(priv);
1292         } else {
1293                 IPW_DEBUG_LED("Enabling LED control.\n");
1294                 priv->config &= ~CFG_NO_LED;
1295                 ipw_led_init(priv);
1296         }
1297
1298         IPW_DEBUG_INFO("exit\n");
1299         return count;
1300 }
1301
1302 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1303
1304 static ssize_t show_status(struct device *d,
1305                            struct device_attribute *attr, char *buf)
1306 {
1307         struct ipw_priv *p = d->driver_data;
1308         return sprintf(buf, "0x%08x\n", (int)p->status);
1309 }
1310
1311 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1312
1313 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1314                         char *buf)
1315 {
1316         struct ipw_priv *p = d->driver_data;
1317         return sprintf(buf, "0x%08x\n", (int)p->config);
1318 }
1319
1320 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1321
1322 static ssize_t show_nic_type(struct device *d,
1323                              struct device_attribute *attr, char *buf)
1324 {
1325         struct ipw_priv *priv = d->driver_data;
1326         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1327 }
1328
1329 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1330
1331 static ssize_t show_ucode_version(struct device *d,
1332                                   struct device_attribute *attr, char *buf)
1333 {
1334         u32 len = sizeof(u32), tmp = 0;
1335         struct ipw_priv *p = d->driver_data;
1336
1337         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1338                 return 0;
1339
1340         return sprintf(buf, "0x%08x\n", tmp);
1341 }
1342
1343 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1344
1345 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1346                         char *buf)
1347 {
1348         u32 len = sizeof(u32), tmp = 0;
1349         struct ipw_priv *p = d->driver_data;
1350
1351         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1352                 return 0;
1353
1354         return sprintf(buf, "0x%08x\n", tmp);
1355 }
1356
1357 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1358
1359 /*
1360  * Add a device attribute to view/control the delay between eeprom
1361  * operations.
1362  */
1363 static ssize_t show_eeprom_delay(struct device *d,
1364                                  struct device_attribute *attr, char *buf)
1365 {
1366         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1367         return sprintf(buf, "%i\n", n);
1368 }
1369 static ssize_t store_eeprom_delay(struct device *d,
1370                                   struct device_attribute *attr,
1371                                   const char *buf, size_t count)
1372 {
1373         struct ipw_priv *p = d->driver_data;
1374         sscanf(buf, "%i", &p->eeprom_delay);
1375         return strnlen(buf, count);
1376 }
1377
1378 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1379                    show_eeprom_delay, store_eeprom_delay);
1380
1381 static ssize_t show_command_event_reg(struct device *d,
1382                                       struct device_attribute *attr, char *buf)
1383 {
1384         u32 reg = 0;
1385         struct ipw_priv *p = d->driver_data;
1386
1387         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1388         return sprintf(buf, "0x%08x\n", reg);
1389 }
1390 static ssize_t store_command_event_reg(struct device *d,
1391                                        struct device_attribute *attr,
1392                                        const char *buf, size_t count)
1393 {
1394         u32 reg;
1395         struct ipw_priv *p = d->driver_data;
1396
1397         sscanf(buf, "%x", &reg);
1398         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1399         return strnlen(buf, count);
1400 }
1401
1402 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1403                    show_command_event_reg, store_command_event_reg);
1404
1405 static ssize_t show_mem_gpio_reg(struct device *d,
1406                                  struct device_attribute *attr, char *buf)
1407 {
1408         u32 reg = 0;
1409         struct ipw_priv *p = d->driver_data;
1410
1411         reg = ipw_read_reg32(p, 0x301100);
1412         return sprintf(buf, "0x%08x\n", reg);
1413 }
1414 static ssize_t store_mem_gpio_reg(struct device *d,
1415                                   struct device_attribute *attr,
1416                                   const char *buf, size_t count)
1417 {
1418         u32 reg;
1419         struct ipw_priv *p = d->driver_data;
1420
1421         sscanf(buf, "%x", &reg);
1422         ipw_write_reg32(p, 0x301100, reg);
1423         return strnlen(buf, count);
1424 }
1425
1426 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1427                    show_mem_gpio_reg, store_mem_gpio_reg);
1428
1429 static ssize_t show_indirect_dword(struct device *d,
1430                                    struct device_attribute *attr, char *buf)
1431 {
1432         u32 reg = 0;
1433         struct ipw_priv *priv = d->driver_data;
1434
1435         if (priv->status & STATUS_INDIRECT_DWORD)
1436                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1437         else
1438                 reg = 0;
1439
1440         return sprintf(buf, "0x%08x\n", reg);
1441 }
1442 static ssize_t store_indirect_dword(struct device *d,
1443                                     struct device_attribute *attr,
1444                                     const char *buf, size_t count)
1445 {
1446         struct ipw_priv *priv = d->driver_data;
1447
1448         sscanf(buf, "%x", &priv->indirect_dword);
1449         priv->status |= STATUS_INDIRECT_DWORD;
1450         return strnlen(buf, count);
1451 }
1452
1453 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1454                    show_indirect_dword, store_indirect_dword);
1455
1456 static ssize_t show_indirect_byte(struct device *d,
1457                                   struct device_attribute *attr, char *buf)
1458 {
1459         u8 reg = 0;
1460         struct ipw_priv *priv = d->driver_data;
1461
1462         if (priv->status & STATUS_INDIRECT_BYTE)
1463                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1464         else
1465                 reg = 0;
1466
1467         return sprintf(buf, "0x%02x\n", reg);
1468 }
1469 static ssize_t store_indirect_byte(struct device *d,
1470                                    struct device_attribute *attr,
1471                                    const char *buf, size_t count)
1472 {
1473         struct ipw_priv *priv = d->driver_data;
1474
1475         sscanf(buf, "%x", &priv->indirect_byte);
1476         priv->status |= STATUS_INDIRECT_BYTE;
1477         return strnlen(buf, count);
1478 }
1479
1480 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1481                    show_indirect_byte, store_indirect_byte);
1482
1483 static ssize_t show_direct_dword(struct device *d,
1484                                  struct device_attribute *attr, char *buf)
1485 {
1486         u32 reg = 0;
1487         struct ipw_priv *priv = d->driver_data;
1488
1489         if (priv->status & STATUS_DIRECT_DWORD)
1490                 reg = ipw_read32(priv, priv->direct_dword);
1491         else
1492                 reg = 0;
1493
1494         return sprintf(buf, "0x%08x\n", reg);
1495 }
1496 static ssize_t store_direct_dword(struct device *d,
1497                                   struct device_attribute *attr,
1498                                   const char *buf, size_t count)
1499 {
1500         struct ipw_priv *priv = d->driver_data;
1501
1502         sscanf(buf, "%x", &priv->direct_dword);
1503         priv->status |= STATUS_DIRECT_DWORD;
1504         return strnlen(buf, count);
1505 }
1506
1507 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1508                    show_direct_dword, store_direct_dword);
1509
1510 static inline int rf_kill_active(struct ipw_priv *priv)
1511 {
1512         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1513                 priv->status |= STATUS_RF_KILL_HW;
1514         else
1515                 priv->status &= ~STATUS_RF_KILL_HW;
1516
1517         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1518 }
1519
1520 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1521                             char *buf)
1522 {
1523         /* 0 - RF kill not enabled
1524            1 - SW based RF kill active (sysfs)
1525            2 - HW based RF kill active
1526            3 - Both HW and SW baed RF kill active */
1527         struct ipw_priv *priv = d->driver_data;
1528         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1529             (rf_kill_active(priv) ? 0x2 : 0x0);
1530         return sprintf(buf, "%i\n", val);
1531 }
1532
1533 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1534 {
1535         if ((disable_radio ? 1 : 0) ==
1536             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1537                 return 0;
1538
1539         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1540                           disable_radio ? "OFF" : "ON");
1541
1542         if (disable_radio) {
1543                 priv->status |= STATUS_RF_KILL_SW;
1544
1545                 if (priv->workqueue)
1546                         cancel_delayed_work(&priv->request_scan);
1547                 queue_work(priv->workqueue, &priv->down);
1548         } else {
1549                 priv->status &= ~STATUS_RF_KILL_SW;
1550                 if (rf_kill_active(priv)) {
1551                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1552                                           "disabled by HW switch\n");
1553                         /* Make sure the RF_KILL check timer is running */
1554                         cancel_delayed_work(&priv->rf_kill);
1555                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1556                                            2 * HZ);
1557                 } else
1558                         queue_work(priv->workqueue, &priv->up);
1559         }
1560
1561         return 1;
1562 }
1563
1564 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1565                              const char *buf, size_t count)
1566 {
1567         struct ipw_priv *priv = d->driver_data;
1568
1569         ipw_radio_kill_sw(priv, buf[0] == '1');
1570
1571         return count;
1572 }
1573
1574 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1575
1576 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1577                                char *buf)
1578 {
1579         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1580         int pos = 0, len = 0;
1581         if (priv->config & CFG_SPEED_SCAN) {
1582                 while (priv->speed_scan[pos] != 0)
1583                         len += sprintf(&buf[len], "%d ",
1584                                        priv->speed_scan[pos++]);
1585                 return len + sprintf(&buf[len], "\n");
1586         }
1587
1588         return sprintf(buf, "0\n");
1589 }
1590
1591 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1592                                 const char *buf, size_t count)
1593 {
1594         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1595         int channel, pos = 0;
1596         const char *p = buf;
1597
1598         /* list of space separated channels to scan, optionally ending with 0 */
1599         while ((channel = simple_strtol(p, NULL, 0))) {
1600                 if (pos == MAX_SPEED_SCAN - 1) {
1601                         priv->speed_scan[pos] = 0;
1602                         break;
1603                 }
1604
1605                 if (ipw_is_valid_channel(priv->ieee, channel))
1606                         priv->speed_scan[pos++] = channel;
1607                 else
1608                         IPW_WARNING("Skipping invalid channel request: %d\n",
1609                                     channel);
1610                 p = strchr(p, ' ');
1611                 if (!p)
1612                         break;
1613                 while (*p == ' ' || *p == '\t')
1614                         p++;
1615         }
1616
1617         if (pos == 0)
1618                 priv->config &= ~CFG_SPEED_SCAN;
1619         else {
1620                 priv->speed_scan_pos = 0;
1621                 priv->config |= CFG_SPEED_SCAN;
1622         }
1623
1624         return count;
1625 }
1626
1627 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1628                    store_speed_scan);
1629
1630 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1631                               char *buf)
1632 {
1633         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1634         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1635 }
1636
1637 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1638                                const char *buf, size_t count)
1639 {
1640         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1641         if (buf[0] == '1')
1642                 priv->config |= CFG_NET_STATS;
1643         else
1644                 priv->config &= ~CFG_NET_STATS;
1645
1646         return count;
1647 }
1648
1649 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1650                    show_net_stats, store_net_stats);
1651
1652 static void notify_wx_assoc_event(struct ipw_priv *priv)
1653 {
1654         union iwreq_data wrqu;
1655         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1656         if (priv->status & STATUS_ASSOCIATED)
1657                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1658         else
1659                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1660         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1661 }
1662
1663 static void ipw_irq_tasklet(struct ipw_priv *priv)
1664 {
1665         u32 inta, inta_mask, handled = 0;
1666         unsigned long flags;
1667         int rc = 0;
1668
1669         spin_lock_irqsave(&priv->lock, flags);
1670
1671         inta = ipw_read32(priv, IPW_INTA_RW);
1672         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1673         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1674
1675         /* Add any cached INTA values that need to be handled */
1676         inta |= priv->isr_inta;
1677
1678         /* handle all the justifications for the interrupt */
1679         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1680                 ipw_rx(priv);
1681                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1682         }
1683
1684         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1685                 IPW_DEBUG_HC("Command completed.\n");
1686                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1687                 priv->status &= ~STATUS_HCMD_ACTIVE;
1688                 wake_up_interruptible(&priv->wait_command_queue);
1689                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1690         }
1691
1692         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1693                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1694                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1695                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1696         }
1697
1698         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1699                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1700                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1701                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1702         }
1703
1704         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1705                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1706                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1707                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1708         }
1709
1710         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1711                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1712                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1713                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1714         }
1715
1716         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1717                 IPW_WARNING("STATUS_CHANGE\n");
1718                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1719         }
1720
1721         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1722                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1723                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1724         }
1725
1726         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1727                 IPW_WARNING("HOST_CMD_DONE\n");
1728                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1729         }
1730
1731         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1732                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1733                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1734         }
1735
1736         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1737                 IPW_WARNING("PHY_OFF_DONE\n");
1738                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1739         }
1740
1741         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1742                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1743                 priv->status |= STATUS_RF_KILL_HW;
1744                 wake_up_interruptible(&priv->wait_command_queue);
1745                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1746                 cancel_delayed_work(&priv->request_scan);
1747                 schedule_work(&priv->link_down);
1748                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1749                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1750         }
1751
1752         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1753                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1754                 if (priv->error) {
1755                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1756 #ifdef CONFIG_IPW_DEBUG
1757                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1758                                 struct ipw_fw_error *error =
1759                                     ipw_alloc_error_log(priv);
1760                                 ipw_dump_error_log(priv, error);
1761                                 if (error)
1762                                         ipw_free_error_log(error);
1763                         }
1764 #endif
1765                 } else {
1766                         priv->error = ipw_alloc_error_log(priv);
1767                         if (priv->error)
1768                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1769                         else
1770                                 IPW_ERROR("Error allocating sysfs 'error' "
1771                                           "log.\n");
1772 #ifdef CONFIG_IPW_DEBUG
1773                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1774                                 ipw_dump_error_log(priv, priv->error);
1775 #endif
1776                 }
1777
1778                 /* XXX: If hardware encryption is for WPA/WPA2,
1779                  * we have to notify the supplicant. */
1780                 if (priv->ieee->sec.encrypt) {
1781                         priv->status &= ~STATUS_ASSOCIATED;
1782                         notify_wx_assoc_event(priv);
1783                 }
1784
1785                 /* Keep the restart process from trying to send host
1786                  * commands by clearing the INIT status bit */
1787                 priv->status &= ~STATUS_INIT;
1788
1789                 /* Cancel currently queued command. */
1790                 priv->status &= ~STATUS_HCMD_ACTIVE;
1791                 wake_up_interruptible(&priv->wait_command_queue);
1792
1793                 queue_work(priv->workqueue, &priv->adapter_restart);
1794                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1795         }
1796
1797         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1798                 IPW_ERROR("Parity error\n");
1799                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1800         }
1801
1802         if (handled != inta) {
1803                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1804         }
1805
1806         /* enable all interrupts */
1807         ipw_enable_interrupts(priv);
1808
1809         spin_unlock_irqrestore(&priv->lock, flags);
1810 }
1811
1812 #ifdef CONFIG_IPW_DEBUG
1813 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1814 static char *get_cmd_string(u8 cmd)
1815 {
1816         switch (cmd) {
1817                 IPW_CMD(HOST_COMPLETE);
1818                 IPW_CMD(POWER_DOWN);
1819                 IPW_CMD(SYSTEM_CONFIG);
1820                 IPW_CMD(MULTICAST_ADDRESS);
1821                 IPW_CMD(SSID);
1822                 IPW_CMD(ADAPTER_ADDRESS);
1823                 IPW_CMD(PORT_TYPE);
1824                 IPW_CMD(RTS_THRESHOLD);
1825                 IPW_CMD(FRAG_THRESHOLD);
1826                 IPW_CMD(POWER_MODE);
1827                 IPW_CMD(WEP_KEY);
1828                 IPW_CMD(TGI_TX_KEY);
1829                 IPW_CMD(SCAN_REQUEST);
1830                 IPW_CMD(SCAN_REQUEST_EXT);
1831                 IPW_CMD(ASSOCIATE);
1832                 IPW_CMD(SUPPORTED_RATES);
1833                 IPW_CMD(SCAN_ABORT);
1834                 IPW_CMD(TX_FLUSH);
1835                 IPW_CMD(QOS_PARAMETERS);
1836                 IPW_CMD(DINO_CONFIG);
1837                 IPW_CMD(RSN_CAPABILITIES);
1838                 IPW_CMD(RX_KEY);
1839                 IPW_CMD(CARD_DISABLE);
1840                 IPW_CMD(SEED_NUMBER);
1841                 IPW_CMD(TX_POWER);
1842                 IPW_CMD(COUNTRY_INFO);
1843                 IPW_CMD(AIRONET_INFO);
1844                 IPW_CMD(AP_TX_POWER);
1845                 IPW_CMD(CCKM_INFO);
1846                 IPW_CMD(CCX_VER_INFO);
1847                 IPW_CMD(SET_CALIBRATION);
1848                 IPW_CMD(SENSITIVITY_CALIB);
1849                 IPW_CMD(RETRY_LIMIT);
1850                 IPW_CMD(IPW_PRE_POWER_DOWN);
1851                 IPW_CMD(VAP_BEACON_TEMPLATE);
1852                 IPW_CMD(VAP_DTIM_PERIOD);
1853                 IPW_CMD(EXT_SUPPORTED_RATES);
1854                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1855                 IPW_CMD(VAP_QUIET_INTERVALS);
1856                 IPW_CMD(VAP_CHANNEL_SWITCH);
1857                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1858                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1859                 IPW_CMD(VAP_CF_PARAM_SET);
1860                 IPW_CMD(VAP_SET_BEACONING_STATE);
1861                 IPW_CMD(MEASUREMENT);
1862                 IPW_CMD(POWER_CAPABILITY);
1863                 IPW_CMD(SUPPORTED_CHANNELS);
1864                 IPW_CMD(TPC_REPORT);
1865                 IPW_CMD(WME_INFO);
1866                 IPW_CMD(PRODUCTION_COMMAND);
1867         default:
1868                 return "UNKNOWN";
1869         }
1870 }
1871 #endif
1872
1873 #define HOST_COMPLETE_TIMEOUT HZ
1874 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1875 {
1876         int rc = 0;
1877         unsigned long flags;
1878
1879         spin_lock_irqsave(&priv->lock, flags);
1880         if (priv->status & STATUS_HCMD_ACTIVE) {
1881                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1882                           get_cmd_string(cmd->cmd));
1883                 spin_unlock_irqrestore(&priv->lock, flags);
1884                 return -EAGAIN;
1885         }
1886
1887         if (priv->status & STATUS_ASSOCIATING) {
1888                 IPW_DEBUG_HC("abandon a command while associating\n");
1889                 spin_unlock_irqrestore(&priv->lock, flags);
1890                 return -1;
1891         }
1892
1893         if (priv->status & STATUS_DISASSOCIATING) {
1894                 IPW_DEBUG_HC("abandon a command while disassociating\n");
1895                 spin_unlock_irqrestore(&priv->lock, flags);
1896                 return -1;
1897         }
1898
1899         priv->status |= STATUS_HCMD_ACTIVE;
1900
1901         if (priv->cmdlog) {
1902                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1903                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1904                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1905                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1906                        cmd->len);
1907                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1908         }
1909
1910         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1911                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1912                      priv->status);
1913         printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1914
1915         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1916         if (rc) {
1917                 priv->status &= ~STATUS_HCMD_ACTIVE;
1918                 IPW_ERROR("Failed to send %s: Reason %d\n",
1919                           get_cmd_string(cmd->cmd), rc);
1920                 spin_unlock_irqrestore(&priv->lock, flags);
1921                 goto exit;
1922         }
1923         spin_unlock_irqrestore(&priv->lock, flags);
1924
1925         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1926                                               !(priv->
1927                                                 status & STATUS_HCMD_ACTIVE),
1928                                               HOST_COMPLETE_TIMEOUT);
1929         if (rc == 0) {
1930                 spin_lock_irqsave(&priv->lock, flags);
1931                 if (priv->status & STATUS_HCMD_ACTIVE) {
1932                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1933                                   get_cmd_string(cmd->cmd));
1934                         priv->status &= ~STATUS_HCMD_ACTIVE;
1935                         spin_unlock_irqrestore(&priv->lock, flags);
1936                         rc = -EIO;
1937                         goto exit;
1938                 }
1939                 spin_unlock_irqrestore(&priv->lock, flags);
1940         } else
1941                 rc = 0;
1942
1943         if (priv->status & STATUS_RF_KILL_HW) {
1944                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1945                           get_cmd_string(cmd->cmd));
1946                 rc = -EIO;
1947                 goto exit;
1948         }
1949
1950       exit:
1951         if (priv->cmdlog) {
1952                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1953                 priv->cmdlog_pos %= priv->cmdlog_len;
1954         }
1955         return rc;
1956 }
1957
1958 static int ipw_send_host_complete(struct ipw_priv *priv)
1959 {
1960         struct host_cmd cmd = {
1961                 .cmd = IPW_CMD_HOST_COMPLETE,
1962                 .len = 0
1963         };
1964
1965         if (!priv) {
1966                 IPW_ERROR("Invalid args\n");
1967                 return -1;
1968         }
1969
1970         return ipw_send_cmd(priv, &cmd);
1971 }
1972
1973 static int ipw_send_system_config(struct ipw_priv *priv,
1974                                   struct ipw_sys_config *config)
1975 {
1976         struct host_cmd cmd = {
1977                 .cmd = IPW_CMD_SYSTEM_CONFIG,
1978                 .len = sizeof(*config)
1979         };
1980
1981         if (!priv || !config) {
1982                 IPW_ERROR("Invalid args\n");
1983                 return -1;
1984         }
1985
1986         memcpy(cmd.param, config, sizeof(*config));
1987         return ipw_send_cmd(priv, &cmd);
1988 }
1989
1990 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1991 {
1992         struct host_cmd cmd = {
1993                 .cmd = IPW_CMD_SSID,
1994                 .len = min(len, IW_ESSID_MAX_SIZE)
1995         };
1996
1997         if (!priv || !ssid) {
1998                 IPW_ERROR("Invalid args\n");
1999                 return -1;
2000         }
2001
2002         memcpy(cmd.param, ssid, cmd.len);
2003         return ipw_send_cmd(priv, &cmd);
2004 }
2005
2006 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2007 {
2008         struct host_cmd cmd = {
2009                 .cmd = IPW_CMD_ADAPTER_ADDRESS,
2010                 .len = ETH_ALEN
2011         };
2012
2013         if (!priv || !mac) {
2014                 IPW_ERROR("Invalid args\n");
2015                 return -1;
2016         }
2017
2018         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2019                        priv->net_dev->name, MAC_ARG(mac));
2020
2021         memcpy(cmd.param, mac, ETH_ALEN);
2022         return ipw_send_cmd(priv, &cmd);
2023 }
2024
2025 /*
2026  * NOTE: This must be executed from our workqueue as it results in udelay
2027  * being called which may corrupt the keyboard if executed on default
2028  * workqueue
2029  */
2030 static void ipw_adapter_restart(void *adapter)
2031 {
2032         struct ipw_priv *priv = adapter;
2033
2034         if (priv->status & STATUS_RF_KILL_MASK)
2035                 return;
2036
2037         ipw_down(priv);
2038
2039         if (priv->assoc_network &&
2040             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2041                 ipw_remove_current_network(priv);
2042
2043         if (ipw_up(priv)) {
2044                 IPW_ERROR("Failed to up device\n");
2045                 return;
2046         }
2047 }
2048
2049 static void ipw_bg_adapter_restart(void *data)
2050 {
2051         struct ipw_priv *priv = data;
2052         down(&priv->sem);
2053         ipw_adapter_restart(data);
2054         up(&priv->sem);
2055 }
2056
2057 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2058
2059 static void ipw_scan_check(void *data)
2060 {
2061         struct ipw_priv *priv = data;
2062         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2063                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2064                                "adapter (%dms).\n",
2065                                IPW_SCAN_CHECK_WATCHDOG / 100);
2066                 queue_work(priv->workqueue, &priv->adapter_restart);
2067         }
2068 }
2069
2070 static void ipw_bg_scan_check(void *data)
2071 {
2072         struct ipw_priv *priv = data;
2073         down(&priv->sem);
2074         ipw_scan_check(data);
2075         up(&priv->sem);
2076 }
2077
2078 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2079                                      struct ipw_scan_request_ext *request)
2080 {
2081         struct host_cmd cmd = {
2082                 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
2083                 .len = sizeof(*request)
2084         };
2085
2086         memcpy(cmd.param, request, sizeof(*request));
2087         return ipw_send_cmd(priv, &cmd);
2088 }
2089
2090 static int ipw_send_scan_abort(struct ipw_priv *priv)
2091 {
2092         struct host_cmd cmd = {
2093                 .cmd = IPW_CMD_SCAN_ABORT,
2094                 .len = 0
2095         };
2096
2097         if (!priv) {
2098                 IPW_ERROR("Invalid args\n");
2099                 return -1;
2100         }
2101
2102         return ipw_send_cmd(priv, &cmd);
2103 }
2104
2105 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2106 {
2107         struct host_cmd cmd = {
2108                 .cmd = IPW_CMD_SENSITIVITY_CALIB,
2109                 .len = sizeof(struct ipw_sensitivity_calib)
2110         };
2111         struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
2112             &cmd.param;
2113         calib->beacon_rssi_raw = sens;
2114         return ipw_send_cmd(priv, &cmd);
2115 }
2116
2117 static int ipw_send_associate(struct ipw_priv *priv,
2118                               struct ipw_associate *associate)
2119 {
2120         struct host_cmd cmd = {
2121                 .cmd = IPW_CMD_ASSOCIATE,
2122                 .len = sizeof(*associate)
2123         };
2124
2125         struct ipw_associate tmp_associate;
2126         memcpy(&tmp_associate, associate, sizeof(*associate));
2127         tmp_associate.policy_support =
2128             cpu_to_le16(tmp_associate.policy_support);
2129         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2130         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2131         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2132         tmp_associate.listen_interval =
2133             cpu_to_le16(tmp_associate.listen_interval);
2134         tmp_associate.beacon_interval =
2135             cpu_to_le16(tmp_associate.beacon_interval);
2136         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2137
2138         if (!priv || !associate) {
2139                 IPW_ERROR("Invalid args\n");
2140                 return -1;
2141         }
2142
2143         memcpy(cmd.param, &tmp_associate, sizeof(*associate));
2144         return ipw_send_cmd(priv, &cmd);
2145 }
2146
2147 static int ipw_send_supported_rates(struct ipw_priv *priv,
2148                                     struct ipw_supported_rates *rates)
2149 {
2150         struct host_cmd cmd = {
2151                 .cmd = IPW_CMD_SUPPORTED_RATES,
2152                 .len = sizeof(*rates)
2153         };
2154
2155         if (!priv || !rates) {
2156                 IPW_ERROR("Invalid args\n");
2157                 return -1;
2158         }
2159
2160         memcpy(cmd.param, rates, sizeof(*rates));
2161         return ipw_send_cmd(priv, &cmd);
2162 }
2163
2164 static int ipw_set_random_seed(struct ipw_priv *priv)
2165 {
2166         struct host_cmd cmd = {
2167                 .cmd = IPW_CMD_SEED_NUMBER,
2168                 .len = sizeof(u32)
2169         };
2170
2171         if (!priv) {
2172                 IPW_ERROR("Invalid args\n");
2173                 return -1;
2174         }
2175
2176         get_random_bytes(&cmd.param, sizeof(u32));
2177
2178         return ipw_send_cmd(priv, &cmd);
2179 }
2180
2181 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2182 {
2183         struct host_cmd cmd = {
2184                 .cmd = IPW_CMD_CARD_DISABLE,
2185                 .len = sizeof(u32)
2186         };
2187
2188         if (!priv) {
2189                 IPW_ERROR("Invalid args\n");
2190                 return -1;
2191         }
2192
2193         *((u32 *) & cmd.param) = phy_off;
2194
2195         return ipw_send_cmd(priv, &cmd);
2196 }
2197
2198 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2199 {
2200         struct host_cmd cmd = {
2201                 .cmd = IPW_CMD_TX_POWER,
2202                 .len = sizeof(*power)
2203         };
2204
2205         if (!priv || !power) {
2206                 IPW_ERROR("Invalid args\n");
2207                 return -1;
2208         }
2209
2210         memcpy(cmd.param, power, sizeof(*power));
2211         return ipw_send_cmd(priv, &cmd);
2212 }
2213
2214 static int ipw_set_tx_power(struct ipw_priv *priv)
2215 {
2216         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
2217         struct ipw_tx_power tx_power;
2218         s8 max_power;
2219         int i;
2220
2221         memset(&tx_power, 0, sizeof(tx_power));
2222
2223         /* configure device for 'G' band */
2224         tx_power.ieee_mode = IPW_G_MODE;
2225         tx_power.num_channels = geo->bg_channels;
2226         for (i = 0; i < geo->bg_channels; i++) {
2227                 max_power = geo->bg[i].max_power;
2228                 tx_power.channels_tx_power[i].channel_number =
2229                     geo->bg[i].channel;
2230                 tx_power.channels_tx_power[i].tx_power = max_power ?
2231                     min(max_power, priv->tx_power) : priv->tx_power;
2232         }
2233         if (ipw_send_tx_power(priv, &tx_power))
2234                 return -EIO;
2235
2236         /* configure device to also handle 'B' band */
2237         tx_power.ieee_mode = IPW_B_MODE;
2238         if (ipw_send_tx_power(priv, &tx_power))
2239                 return -EIO;
2240
2241         /* configure device to also handle 'A' band */
2242         if (priv->ieee->abg_true) {
2243                 tx_power.ieee_mode = IPW_A_MODE;
2244                 tx_power.num_channels = geo->a_channels;
2245                 for (i = 0; i < tx_power.num_channels; i++) {
2246                         max_power = geo->a[i].max_power;
2247                         tx_power.channels_tx_power[i].channel_number =
2248                             geo->a[i].channel;
2249                         tx_power.channels_tx_power[i].tx_power = max_power ?
2250                             min(max_power, priv->tx_power) : priv->tx_power;
2251                 }
2252                 if (ipw_send_tx_power(priv, &tx_power))
2253                         return -EIO;
2254         }
2255         return 0;
2256 }
2257
2258 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2259 {
2260         struct ipw_rts_threshold rts_threshold = {
2261                 .rts_threshold = rts,
2262         };
2263         struct host_cmd cmd = {
2264                 .cmd = IPW_CMD_RTS_THRESHOLD,
2265                 .len = sizeof(rts_threshold)
2266         };
2267
2268         if (!priv) {
2269                 IPW_ERROR("Invalid args\n");
2270                 return -1;
2271         }
2272
2273         memcpy(cmd.param, &rts_threshold, sizeof(rts_threshold));
2274         return ipw_send_cmd(priv, &cmd);
2275 }
2276
2277 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2278 {
2279         struct ipw_frag_threshold frag_threshold = {
2280                 .frag_threshold = frag,
2281         };
2282         struct host_cmd cmd = {
2283                 .cmd = IPW_CMD_FRAG_THRESHOLD,
2284                 .len = sizeof(frag_threshold)
2285         };
2286
2287         if (!priv) {
2288                 IPW_ERROR("Invalid args\n");
2289                 return -1;
2290         }
2291
2292         memcpy(cmd.param, &frag_threshold, sizeof(frag_threshold));
2293         return ipw_send_cmd(priv, &cmd);
2294 }
2295
2296 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2297 {
2298         struct host_cmd cmd = {
2299                 .cmd = IPW_CMD_POWER_MODE,
2300                 .len = sizeof(u32)
2301         };
2302         u32 *param = (u32 *) (&cmd.param);
2303
2304         if (!priv) {
2305                 IPW_ERROR("Invalid args\n");
2306                 return -1;
2307         }
2308
2309         /* If on battery, set to 3, if AC set to CAM, else user
2310          * level */
2311         switch (mode) {
2312         case IPW_POWER_BATTERY:
2313                 *param = IPW_POWER_INDEX_3;
2314                 break;
2315         case IPW_POWER_AC:
2316                 *param = IPW_POWER_MODE_CAM;
2317                 break;
2318         default:
2319                 *param = mode;
2320                 break;
2321         }
2322
2323         return ipw_send_cmd(priv, &cmd);
2324 }
2325
2326 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2327 {
2328         struct ipw_retry_limit retry_limit = {
2329                 .short_retry_limit = slimit,
2330                 .long_retry_limit = llimit
2331         };
2332         struct host_cmd cmd = {
2333                 .cmd = IPW_CMD_RETRY_LIMIT,
2334                 .len = sizeof(retry_limit)
2335         };
2336
2337         if (!priv) {
2338                 IPW_ERROR("Invalid args\n");
2339                 return -1;
2340         }
2341
2342         memcpy(cmd.param, &retry_limit, sizeof(retry_limit));
2343         return ipw_send_cmd(priv, &cmd);
2344 }
2345
2346 /*
2347  * The IPW device contains a Microwire compatible EEPROM that stores
2348  * various data like the MAC address.  Usually the firmware has exclusive
2349  * access to the eeprom, but during device initialization (before the
2350  * device driver has sent the HostComplete command to the firmware) the
2351  * device driver has read access to the EEPROM by way of indirect addressing
2352  * through a couple of memory mapped registers.
2353  *
2354  * The following is a simplified implementation for pulling data out of the
2355  * the eeprom, along with some helper functions to find information in
2356  * the per device private data's copy of the eeprom.
2357  *
2358  * NOTE: To better understand how these functions work (i.e what is a chip
2359  *       select and why do have to keep driving the eeprom clock?), read
2360  *       just about any data sheet for a Microwire compatible EEPROM.
2361  */
2362
2363 /* write a 32 bit value into the indirect accessor register */
2364 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2365 {
2366         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2367
2368         /* the eeprom requires some time to complete the operation */
2369         udelay(p->eeprom_delay);
2370
2371         return;
2372 }
2373
2374 /* perform a chip select operation */
2375 static inline void eeprom_cs(struct ipw_priv *priv)
2376 {
2377         eeprom_write_reg(priv, 0);
2378         eeprom_write_reg(priv, EEPROM_BIT_CS);
2379         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2380         eeprom_write_reg(priv, EEPROM_BIT_CS);
2381 }
2382
2383 /* perform a chip select operation */
2384 static inline void eeprom_disable_cs(struct ipw_priv *priv)
2385 {
2386         eeprom_write_reg(priv, EEPROM_BIT_CS);
2387         eeprom_write_reg(priv, 0);
2388         eeprom_write_reg(priv, EEPROM_BIT_SK);
2389 }
2390
2391 /* push a single bit down to the eeprom */
2392 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2393 {
2394         int d = (bit ? EEPROM_BIT_DI : 0);
2395         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2396         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2397 }
2398
2399 /* push an opcode followed by an address down to the eeprom */
2400 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2401 {
2402         int i;
2403
2404         eeprom_cs(priv);
2405         eeprom_write_bit(priv, 1);
2406         eeprom_write_bit(priv, op & 2);
2407         eeprom_write_bit(priv, op & 1);
2408         for (i = 7; i >= 0; i--) {
2409                 eeprom_write_bit(priv, addr & (1 << i));
2410         }
2411 }
2412
2413 /* pull 16 bits off the eeprom, one bit at a time */
2414 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2415 {
2416         int i;
2417         u16 r = 0;
2418
2419         /* Send READ Opcode */
2420         eeprom_op(priv, EEPROM_CMD_READ, addr);
2421
2422         /* Send dummy bit */
2423         eeprom_write_reg(priv, EEPROM_BIT_CS);
2424
2425         /* Read the byte off the eeprom one bit at a time */
2426         for (i = 0; i < 16; i++) {
2427                 u32 data = 0;
2428                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2429                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2430                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2431                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2432         }
2433
2434         /* Send another dummy bit */
2435         eeprom_write_reg(priv, 0);
2436         eeprom_disable_cs(priv);
2437
2438         return r;
2439 }
2440
2441 /* helper function for pulling the mac address out of the private */
2442 /* data's copy of the eeprom data                                 */
2443 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2444 {
2445         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2446 }
2447
2448 /*
2449  * Either the device driver (i.e. the host) or the firmware can
2450  * load eeprom data into the designated region in SRAM.  If neither
2451  * happens then the FW will shutdown with a fatal error.
2452  *
2453  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2454  * bit needs region of shared SRAM needs to be non-zero.
2455  */
2456 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2457 {
2458         int i;
2459         u16 *eeprom = (u16 *) priv->eeprom;
2460
2461         IPW_DEBUG_TRACE(">>\n");
2462
2463         /* read entire contents of eeprom into private buffer */
2464         for (i = 0; i < 128; i++)
2465                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2466
2467         /*
2468            If the data looks correct, then copy it to our private
2469            copy.  Otherwise let the firmware know to perform the operation
2470            on it's own
2471          */
2472         if ((priv->eeprom + EEPROM_VERSION) != 0) {
2473                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2474
2475                 /* write the eeprom data to sram */
2476                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2477                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2478
2479                 /* Do not load eeprom data on fatal error or suspend */
2480                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2481         } else {
2482                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2483
2484                 /* Load eeprom data on fatal error or suspend */
2485                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2486         }
2487
2488         IPW_DEBUG_TRACE("<<\n");
2489 }
2490
2491 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2492 {
2493         count >>= 2;
2494         if (!count)
2495                 return;
2496         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2497         while (count--)
2498                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2499 }
2500
2501 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2502 {
2503         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2504                         CB_NUMBER_OF_ELEMENTS_SMALL *
2505                         sizeof(struct command_block));
2506 }
2507
2508 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2509 {                               /* start dma engine but no transfers yet */
2510
2511         IPW_DEBUG_FW(">> : \n");
2512
2513         /* Start the dma */
2514         ipw_fw_dma_reset_command_blocks(priv);
2515
2516         /* Write CB base address */
2517         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2518
2519         IPW_DEBUG_FW("<< : \n");
2520         return 0;
2521 }
2522
2523 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2524 {
2525         u32 control = 0;
2526
2527         IPW_DEBUG_FW(">> :\n");
2528
2529         //set the Stop and Abort bit
2530         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2531         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2532         priv->sram_desc.last_cb_index = 0;
2533
2534         IPW_DEBUG_FW("<< \n");
2535 }
2536
2537 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2538                                           struct command_block *cb)
2539 {
2540         u32 address =
2541             IPW_SHARED_SRAM_DMA_CONTROL +
2542             (sizeof(struct command_block) * index);
2543         IPW_DEBUG_FW(">> :\n");
2544
2545         ipw_write_indirect(priv, address, (u8 *) cb,
2546                            (int)sizeof(struct command_block));
2547
2548         IPW_DEBUG_FW("<< :\n");
2549         return 0;
2550
2551 }
2552
2553 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2554 {
2555         u32 control = 0;
2556         u32 index = 0;
2557
2558         IPW_DEBUG_FW(">> :\n");
2559
2560         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2561                 ipw_fw_dma_write_command_block(priv, index,
2562                                                &priv->sram_desc.cb_list[index]);
2563
2564         /* Enable the DMA in the CSR register */
2565         ipw_clear_bit(priv, IPW_RESET_REG,
2566                       IPW_RESET_REG_MASTER_DISABLED |
2567                       IPW_RESET_REG_STOP_MASTER);
2568
2569         /* Set the Start bit. */
2570         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2571         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2572
2573         IPW_DEBUG_FW("<< :\n");
2574         return 0;
2575 }
2576
2577 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2578 {
2579         u32 address;
2580         u32 register_value = 0;
2581         u32 cb_fields_address = 0;
2582
2583         IPW_DEBUG_FW(">> :\n");
2584         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2585         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2586
2587         /* Read the DMA Controlor register */
2588         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2589         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2590
2591         /* Print the CB values */
2592         cb_fields_address = address;
2593         register_value = ipw_read_reg32(priv, cb_fields_address);
2594         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2595
2596         cb_fields_address += sizeof(u32);
2597         register_value = ipw_read_reg32(priv, cb_fields_address);
2598         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2599
2600         cb_fields_address += sizeof(u32);
2601         register_value = ipw_read_reg32(priv, cb_fields_address);
2602         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2603                           register_value);
2604
2605         cb_fields_address += sizeof(u32);
2606         register_value = ipw_read_reg32(priv, cb_fields_address);
2607         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2608
2609         IPW_DEBUG_FW(">> :\n");
2610 }
2611
2612 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2613 {
2614         u32 current_cb_address = 0;
2615         u32 current_cb_index = 0;
2616
2617         IPW_DEBUG_FW("<< :\n");
2618         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2619
2620         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2621             sizeof(struct command_block);
2622
2623         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2624                           current_cb_index, current_cb_address);
2625
2626         IPW_DEBUG_FW(">> :\n");
2627         return current_cb_index;
2628
2629 }
2630
2631 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2632                                         u32 src_address,
2633                                         u32 dest_address,
2634                                         u32 length,
2635                                         int interrupt_enabled, int is_last)
2636 {
2637
2638         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2639             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2640             CB_DEST_SIZE_LONG;
2641         struct command_block *cb;
2642         u32 last_cb_element = 0;
2643
2644         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2645                           src_address, dest_address, length);
2646
2647         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2648                 return -1;
2649
2650         last_cb_element = priv->sram_desc.last_cb_index;
2651         cb = &priv->sram_desc.cb_list[last_cb_element];
2652         priv->sram_desc.last_cb_index++;
2653
2654         /* Calculate the new CB control word */
2655         if (interrupt_enabled)
2656                 control |= CB_INT_ENABLED;
2657
2658         if (is_last)
2659                 control |= CB_LAST_VALID;
2660
2661         control |= length;
2662
2663         /* Calculate the CB Element's checksum value */
2664         cb->status = control ^ src_address ^ dest_address;
2665
2666         /* Copy the Source and Destination addresses */
2667         cb->dest_addr = dest_address;
2668         cb->source_addr = src_address;
2669
2670         /* Copy the Control Word last */
2671         cb->control = control;
2672
2673         return 0;
2674 }
2675
2676 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2677                                  u32 src_phys, u32 dest_address, u32 length)
2678 {
2679         u32 bytes_left = length;
2680         u32 src_offset = 0;
2681         u32 dest_offset = 0;
2682         int status = 0;
2683         IPW_DEBUG_FW(">> \n");
2684         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2685                           src_phys, dest_address, length);
2686         while (bytes_left > CB_MAX_LENGTH) {
2687                 status = ipw_fw_dma_add_command_block(priv,
2688                                                       src_phys + src_offset,
2689                                                       dest_address +
2690                                                       dest_offset,
2691                                                       CB_MAX_LENGTH, 0, 0);
2692                 if (status) {
2693                         IPW_DEBUG_FW_INFO(": Failed\n");
2694                         return -1;
2695                 } else
2696                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2697
2698                 src_offset += CB_MAX_LENGTH;
2699                 dest_offset += CB_MAX_LENGTH;
2700                 bytes_left -= CB_MAX_LENGTH;
2701         }
2702
2703         /* add the buffer tail */
2704         if (bytes_left > 0) {
2705                 status =
2706                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2707                                                  dest_address + dest_offset,
2708                                                  bytes_left, 0, 0);
2709                 if (status) {
2710                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2711                         return -1;
2712                 } else
2713                         IPW_DEBUG_FW_INFO
2714                             (": Adding new cb - the buffer tail\n");
2715         }
2716
2717         IPW_DEBUG_FW("<< \n");
2718         return 0;
2719 }
2720
2721 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2722 {
2723         u32 current_index = 0;
2724         u32 watchdog = 0;
2725
2726         IPW_DEBUG_FW(">> : \n");
2727
2728         current_index = ipw_fw_dma_command_block_index(priv);
2729         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2730                           (int)priv->sram_desc.last_cb_index);
2731
2732         while (current_index < priv->sram_desc.last_cb_index) {
2733                 udelay(50);
2734                 current_index = ipw_fw_dma_command_block_index(priv);
2735
2736                 watchdog++;
2737
2738                 if (watchdog > 400) {
2739                         IPW_DEBUG_FW_INFO("Timeout\n");
2740                         ipw_fw_dma_dump_command_block(priv);
2741                         ipw_fw_dma_abort(priv);
2742                         return -1;
2743                 }
2744         }
2745
2746         ipw_fw_dma_abort(priv);
2747
2748         /*Disable the DMA in the CSR register */
2749         ipw_set_bit(priv, IPW_RESET_REG,
2750                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2751
2752         IPW_DEBUG_FW("<< dmaWaitSync \n");
2753         return 0;
2754 }
2755
2756 static void ipw_remove_current_network(struct ipw_priv *priv)
2757 {
2758         struct list_head *element, *safe;
2759         struct ieee80211_network *network = NULL;
2760         unsigned long flags;
2761
2762         spin_lock_irqsave(&priv->ieee->lock, flags);
2763         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2764                 network = list_entry(element, struct ieee80211_network, list);
2765                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2766                         list_del(element);
2767                         list_add_tail(&network->list,
2768                                       &priv->ieee->network_free_list);
2769                 }
2770         }
2771         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2772 }
2773
2774 /**
2775  * Check that card is still alive.
2776  * Reads debug register from domain0.
2777  * If card is present, pre-defined value should
2778  * be found there.
2779  *
2780  * @param priv
2781  * @return 1 if card is present, 0 otherwise
2782  */
2783 static inline int ipw_alive(struct ipw_priv *priv)
2784 {
2785         return ipw_read32(priv, 0x90) == 0xd55555d5;
2786 }
2787
2788 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2789                                int timeout)
2790 {
2791         int i = 0;
2792
2793         do {
2794                 if ((ipw_read32(priv, addr) & mask) == mask)
2795                         return i;
2796                 mdelay(10);
2797                 i += 10;
2798         } while (i < timeout);
2799
2800         return -ETIME;
2801 }
2802
2803 /* These functions load the firmware and micro code for the operation of
2804  * the ipw hardware.  It assumes the buffer has all the bits for the
2805  * image and the caller is handling the memory allocation and clean up.
2806  */
2807
2808 static int ipw_stop_master(struct ipw_priv *priv)
2809 {
2810         int rc;
2811
2812         IPW_DEBUG_TRACE(">> \n");
2813         /* stop master. typical delay - 0 */
2814         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2815
2816         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2817                           IPW_RESET_REG_MASTER_DISABLED, 100);
2818         if (rc < 0) {
2819                 IPW_ERROR("stop master failed in 10ms\n");
2820                 return -1;
2821         }
2822
2823         IPW_DEBUG_INFO("stop master %dms\n", rc);
2824
2825         return rc;
2826 }
2827
2828 static void ipw_arc_release(struct ipw_priv *priv)
2829 {
2830         IPW_DEBUG_TRACE(">> \n");
2831         mdelay(5);
2832
2833         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2834
2835         /* no one knows timing, for safety add some delay */
2836         mdelay(5);
2837 }
2838
2839 struct fw_header {
2840         u32 version;
2841         u32 mode;
2842 };
2843
2844 struct fw_chunk {
2845         u32 address;
2846         u32 length;
2847 };
2848
2849 #define IPW_FW_MAJOR_VERSION 2
2850 #define IPW_FW_MINOR_VERSION 3
2851
2852 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2853 #define IPW_FW_MAJOR(x) (x & 0xff)
2854
2855 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2856
2857 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2858 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2859
2860 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2861 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2862 #else
2863 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2864 #endif
2865
2866 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2867 {
2868         int rc = 0, i, addr;
2869         u8 cr = 0;
2870         u16 *image;
2871
2872         image = (u16 *) data;
2873
2874         IPW_DEBUG_TRACE(">> \n");
2875
2876         rc = ipw_stop_master(priv);
2877
2878         if (rc < 0)
2879                 return rc;
2880
2881 //      spin_lock_irqsave(&priv->lock, flags);
2882
2883         for (addr = IPW_SHARED_LOWER_BOUND;
2884              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2885                 ipw_write32(priv, addr, 0);
2886         }
2887
2888         /* no ucode (yet) */
2889         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2890         /* destroy DMA queues */
2891         /* reset sequence */
2892
2893         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2894         ipw_arc_release(priv);
2895         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2896         mdelay(1);
2897
2898         /* reset PHY */
2899         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2900         mdelay(1);
2901
2902         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2903         mdelay(1);
2904
2905         /* enable ucode store */
2906         ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2907         ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2908         mdelay(1);
2909
2910         /* write ucode */
2911         /**
2912          * @bug
2913          * Do NOT set indirect address register once and then
2914          * store data to indirect data register in the loop.
2915          * It seems very reasonable, but in this case DINO do not
2916          * accept ucode. It is essential to set address each time.
2917          */
2918         /* load new ipw uCode */
2919         for (i = 0; i < len / 2; i++)
2920                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2921                                 cpu_to_le16(image[i]));
2922
2923         /* enable DINO */
2924         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2925         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2926
2927         /* this is where the igx / win driver deveates from the VAP driver. */
2928
2929         /* wait for alive response */
2930         for (i = 0; i < 100; i++) {
2931                 /* poll for incoming data */
2932                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2933                 if (cr & DINO_RXFIFO_DATA)
2934                         break;
2935                 mdelay(1);
2936         }
2937
2938         if (cr & DINO_RXFIFO_DATA) {
2939                 /* alive_command_responce size is NOT multiple of 4 */
2940                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2941
2942                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2943                         response_buffer[i] =
2944                             le32_to_cpu(ipw_read_reg32(priv,
2945                                                        IPW_BASEBAND_RX_FIFO_READ));
2946                 memcpy(&priv->dino_alive, response_buffer,
2947                        sizeof(priv->dino_alive));
2948                 if (priv->dino_alive.alive_command == 1
2949                     && priv->dino_alive.ucode_valid == 1) {
2950                         rc = 0;
2951                         IPW_DEBUG_INFO
2952                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2953                              "of %02d/%02d/%02d %02d:%02d\n",
2954                              priv->dino_alive.software_revision,
2955                              priv->dino_alive.software_revision,
2956                              priv->dino_alive.device_identifier,
2957                              priv->dino_alive.device_identifier,
2958                              priv->dino_alive.time_stamp[0],
2959                              priv->dino_alive.time_stamp[1],
2960                              priv->dino_alive.time_stamp[2],
2961                              priv->dino_alive.time_stamp[3],
2962                              priv->dino_alive.time_stamp[4]);
2963                 } else {
2964                         IPW_DEBUG_INFO("Microcode is not alive\n");
2965                         rc = -EINVAL;
2966                 }
2967         } else {
2968                 IPW_DEBUG_INFO("No alive response from DINO\n");
2969                 rc = -ETIME;
2970         }
2971
2972         /* disable DINO, otherwise for some reason
2973            firmware have problem getting alive resp. */
2974         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2975
2976 //      spin_unlock_irqrestore(&priv->lock, flags);
2977
2978         return rc;
2979 }
2980
2981 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2982 {
2983         int rc = -1;
2984         int offset = 0;
2985         struct fw_chunk *chunk;
2986         dma_addr_t shared_phys;
2987         u8 *shared_virt;
2988
2989         IPW_DEBUG_TRACE("<< : \n");
2990         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2991
2992         if (!shared_virt)
2993                 return -ENOMEM;
2994
2995         memmove(shared_virt, data, len);
2996
2997         /* Start the Dma */
2998         rc = ipw_fw_dma_enable(priv);
2999
3000         if (priv->sram_desc.last_cb_index > 0) {
3001                 /* the DMA is already ready this would be a bug. */
3002                 BUG();
3003                 goto out;
3004         }
3005
3006         do {
3007                 chunk = (struct fw_chunk *)(data + offset);
3008                 offset += sizeof(struct fw_chunk);
3009                 /* build DMA packet and queue up for sending */
3010                 /* dma to chunk->address, the chunk->length bytes from data +
3011                  * offeset*/
3012                 /* Dma loading */
3013                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3014                                            le32_to_cpu(chunk->address),
3015                                            le32_to_cpu(chunk->length));
3016                 if (rc) {
3017                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3018                         goto out;
3019                 }
3020
3021                 offset += le32_to_cpu(chunk->length);
3022         } while (offset < len);
3023
3024         /* Run the DMA and wait for the answer */
3025         rc = ipw_fw_dma_kick(priv);
3026         if (rc) {
3027                 IPW_ERROR("dmaKick Failed\n");
3028                 goto out;
3029         }
3030
3031         rc = ipw_fw_dma_wait(priv);
3032         if (rc) {
3033                 IPW_ERROR("dmaWaitSync Failed\n");
3034                 goto out;
3035         }
3036       out:
3037         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3038         return rc;
3039 }
3040
3041 /* stop nic */
3042 static int ipw_stop_nic(struct ipw_priv *priv)
3043 {
3044         int rc = 0;
3045
3046         /* stop */
3047         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3048
3049         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3050                           IPW_RESET_REG_MASTER_DISABLED, 500);
3051         if (rc < 0) {
3052                 IPW_ERROR("wait for reg master disabled failed\n");
3053                 return rc;
3054         }
3055
3056         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3057
3058         return rc;
3059 }
3060
3061 static void ipw_start_nic(struct ipw_priv *priv)
3062 {
3063         IPW_DEBUG_TRACE(">>\n");
3064
3065         /* prvHwStartNic  release ARC */
3066         ipw_clear_bit(priv, IPW_RESET_REG,
3067                       IPW_RESET_REG_MASTER_DISABLED |
3068                       IPW_RESET_REG_STOP_MASTER |
3069                       CBD_RESET_REG_PRINCETON_RESET);
3070
3071         /* enable power management */
3072         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3073                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3074
3075         IPW_DEBUG_TRACE("<<\n");
3076 }
3077
3078 static int ipw_init_nic(struct ipw_priv *priv)
3079 {
3080         int rc;
3081
3082         IPW_DEBUG_TRACE(">>\n");
3083         /* reset */
3084         /*prvHwInitNic */
3085         /* set "initialization complete" bit to move adapter to D0 state */
3086         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3087
3088         /* low-level PLL activation */
3089         ipw_write32(priv, IPW_READ_INT_REGISTER,
3090                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3091
3092         /* wait for clock stabilization */
3093         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3094                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3095         if (rc < 0)
3096                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3097
3098         /* assert SW reset */
3099         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3100
3101         udelay(10);
3102
3103         /* set "initialization complete" bit to move adapter to D0 state */
3104         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3105
3106         IPW_DEBUG_TRACE(">>\n");
3107         return 0;
3108 }
3109
3110 /* Call this function from process context, it will sleep in request_firmware.
3111  * Probe is an ok place to call this from.
3112  */
3113 static int ipw_reset_nic(struct ipw_priv *priv)
3114 {
3115         int rc = 0;
3116         unsigned long flags;
3117
3118         IPW_DEBUG_TRACE(">>\n");
3119
3120         rc = ipw_init_nic(priv);
3121
3122         spin_lock_irqsave(&priv->lock, flags);
3123         /* Clear the 'host command active' bit... */
3124         priv->status &= ~STATUS_HCMD_ACTIVE;
3125         wake_up_interruptible(&priv->wait_command_queue);
3126         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3127         wake_up_interruptible(&priv->wait_state);
3128         spin_unlock_irqrestore(&priv->lock, flags);
3129
3130         IPW_DEBUG_TRACE("<<\n");
3131         return rc;
3132 }
3133
3134 static int ipw_get_fw(struct ipw_priv *priv,
3135                       const struct firmware **fw, const char *name)
3136 {
3137         struct fw_header *header;
3138         int rc;
3139
3140         /* ask firmware_class module to get the boot firmware off disk */
3141         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3142         if (rc < 0) {
3143                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3144                 return rc;
3145         }
3146
3147         header = (struct fw_header *)(*fw)->data;
3148         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3149                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3150                           name,
3151                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3152                           IPW_FW_MAJOR_VERSION);
3153                 return -EINVAL;
3154         }
3155
3156         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3157                        name,
3158                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3159                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3160                        (*fw)->size - sizeof(struct fw_header));
3161         return 0;
3162 }
3163
3164 #define IPW_RX_BUF_SIZE (3000)
3165
3166 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
3167                                       struct ipw_rx_queue *rxq)
3168 {
3169         unsigned long flags;
3170         int i;
3171
3172         spin_lock_irqsave(&rxq->lock, flags);
3173
3174         INIT_LIST_HEAD(&rxq->rx_free);
3175         INIT_LIST_HEAD(&rxq->rx_used);
3176
3177         /* Fill the rx_used queue with _all_ of the Rx buffers */
3178         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3179                 /* In the reset function, these buffers may have been allocated
3180                  * to an SKB, so we need to unmap and free potential storage */
3181                 if (rxq->pool[i].skb != NULL) {
3182                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3183                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3184                         dev_kfree_skb(rxq->pool[i].skb);
3185                         rxq->pool[i].skb = NULL;
3186                 }
3187                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3188         }
3189
3190         /* Set us so that we have processed and used all buffers, but have
3191          * not restocked the Rx queue with fresh buffers */
3192         rxq->read = rxq->write = 0;
3193         rxq->processed = RX_QUEUE_SIZE - 1;
3194         rxq->free_count = 0;
3195         spin_unlock_irqrestore(&rxq->lock, flags);
3196 }
3197
3198 #ifdef CONFIG_PM
3199 static int fw_loaded = 0;
3200 static const struct firmware *bootfw = NULL;
3201 static const struct firmware *firmware = NULL;
3202 static const struct firmware *ucode = NULL;
3203
3204 static void free_firmware(void)
3205 {
3206         if (fw_loaded) {
3207                 release_firmware(bootfw);
3208                 release_firmware(ucode);
3209                 release_firmware(firmware);
3210                 bootfw = ucode = firmware = NULL;
3211                 fw_loaded = 0;
3212         }
3213 }
3214 #else
3215 #define free_firmware() do {} while (0)
3216 #endif
3217
3218 static int ipw_load(struct ipw_priv *priv)
3219 {
3220 #ifndef CONFIG_PM
3221         const struct firmware *bootfw = NULL;
3222         const struct firmware *firmware = NULL;
3223         const struct firmware *ucode = NULL;
3224 #endif
3225         int rc = 0, retries = 3;
3226
3227 #ifdef CONFIG_PM
3228         if (!fw_loaded) {
3229 #endif
3230                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3231                 if (rc)
3232                         goto error;
3233
3234                 switch (priv->ieee->iw_mode) {
3235                 case IW_MODE_ADHOC:
3236                         rc = ipw_get_fw(priv, &ucode,
3237                                         IPW_FW_NAME("ibss_ucode"));
3238                         if (rc)
3239                                 goto error;
3240
3241                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
3242                         break;
3243
3244 #ifdef CONFIG_IPW2200_MONITOR
3245                 case IW_MODE_MONITOR:
3246                         rc = ipw_get_fw(priv, &ucode,
3247                                         IPW_FW_NAME("sniffer_ucode"));
3248                         if (rc)
3249                                 goto error;
3250
3251                         rc = ipw_get_fw(priv, &firmware,
3252                                         IPW_FW_NAME("sniffer"));
3253                         break;
3254 #endif
3255                 case IW_MODE_INFRA:
3256                         rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
3257                         if (rc)
3258                                 goto error;
3259
3260                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
3261                         break;
3262
3263                 default:
3264                         rc = -EINVAL;
3265                 }
3266
3267                 if (rc)
3268                         goto error;
3269
3270 #ifdef CONFIG_PM
3271                 fw_loaded = 1;
3272         }
3273 #endif
3274
3275         if (!priv->rxq)
3276                 priv->rxq = ipw_rx_queue_alloc(priv);
3277         else
3278                 ipw_rx_queue_reset(priv, priv->rxq);
3279         if (!priv->rxq) {
3280                 IPW_ERROR("Unable to initialize Rx queue\n");
3281                 goto error;
3282         }
3283
3284       retry:
3285         /* Ensure interrupts are disabled */
3286         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3287         priv->status &= ~STATUS_INT_ENABLED;
3288
3289         /* ack pending interrupts */
3290         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3291
3292         ipw_stop_nic(priv);
3293
3294         rc = ipw_reset_nic(priv);
3295         if (rc) {
3296                 IPW_ERROR("Unable to reset NIC\n");
3297                 goto error;
3298         }
3299
3300         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3301                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3302
3303         /* DMA the initial boot firmware into the device */
3304         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3305                                bootfw->size - sizeof(struct fw_header));
3306         if (rc < 0) {
3307                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3308                 goto error;
3309         }
3310
3311         /* kick start the device */
3312         ipw_start_nic(priv);
3313
3314         /* wait for the device to finish it's initial startup sequence */
3315         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3316                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3317         if (rc < 0) {
3318                 IPW_ERROR("device failed to boot initial fw image\n");
3319                 goto error;
3320         }
3321         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3322
3323         /* ack fw init done interrupt */
3324         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3325
3326         /* DMA the ucode into the device */
3327         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3328                             ucode->size - sizeof(struct fw_header));
3329         if (rc < 0) {
3330                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3331                 goto error;
3332         }
3333
3334         /* stop nic */
3335         ipw_stop_nic(priv);
3336
3337         /* DMA bss firmware into the device */
3338         rc = ipw_load_firmware(priv, firmware->data +
3339                                sizeof(struct fw_header),
3340                                firmware->size - sizeof(struct fw_header));
3341         if (rc < 0) {
3342                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3343                 goto error;
3344         }
3345
3346         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3347
3348         rc = ipw_queue_reset(priv);
3349         if (rc) {
3350                 IPW_ERROR("Unable to initialize queues\n");
3351                 goto error;
3352         }
3353
3354         /* Ensure interrupts are disabled */
3355         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3356         /* ack pending interrupts */
3357         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3358
3359         /* kick start the device */
3360         ipw_start_nic(priv);
3361
3362         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3363                 if (retries > 0) {
3364                         IPW_WARNING("Parity error.  Retrying init.\n");
3365                         retries--;
3366                         goto retry;
3367                 }
3368
3369                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3370                 rc = -EIO;
3371                 goto error;
3372         }
3373
3374         /* wait for the device */
3375         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3376                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3377         if (rc < 0) {
3378                 IPW_ERROR("device failed to start after 500ms\n");
3379                 goto error;
3380         }
3381         IPW_DEBUG_INFO("device response after %dms\n", rc);
3382
3383         /* ack fw init done interrupt */
3384         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3385
3386         /* read eeprom data and initialize the eeprom region of sram */
3387         priv->eeprom_delay = 1;
3388         ipw_eeprom_init_sram(priv);
3389
3390         /* enable interrupts */
3391         ipw_enable_interrupts(priv);
3392
3393         /* Ensure our queue has valid packets */
3394         ipw_rx_queue_replenish(priv);
3395
3396         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3397
3398         /* ack pending interrupts */
3399         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3400
3401 #ifndef CONFIG_PM
3402         release_firmware(bootfw);
3403         release_firmware(ucode);
3404         release_firmware(firmware);
3405 #endif
3406         return 0;
3407
3408       error:
3409         if (priv->rxq) {
3410                 ipw_rx_queue_free(priv, priv->rxq);
3411                 priv->rxq = NULL;
3412         }
3413         ipw_tx_queue_free(priv);
3414         if (bootfw)
3415                 release_firmware(bootfw);
3416         if (ucode)
3417                 release_firmware(ucode);
3418         if (firmware)
3419                 release_firmware(firmware);
3420 #ifdef CONFIG_PM
3421         fw_loaded = 0;
3422         bootfw = ucode = firmware = NULL;
3423 #endif
3424
3425         return rc;
3426 }
3427
3428 /**
3429  * DMA services
3430  *
3431  * Theory of operation
3432  *
3433  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3434  * 2 empty entries always kept in the buffer to protect from overflow.
3435  *
3436  * For Tx queue, there are low mark and high mark limits. If, after queuing
3437  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3438  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3439  * Tx queue resumed.
3440  *
3441  * The IPW operates with six queues, one receive queue in the device's
3442  * sram, one transmit queue for sending commands to the device firmware,
3443  * and four transmit queues for data.
3444  *
3445  * The four transmit queues allow for performing quality of service (qos)
3446  * transmissions as per the 802.11 protocol.  Currently Linux does not
3447  * provide a mechanism to the user for utilizing prioritized queues, so
3448  * we only utilize the first data transmit queue (queue1).
3449  */
3450
3451 /**
3452  * Driver allocates buffers of this size for Rx
3453  */
3454
3455 static inline int ipw_queue_space(const struct clx2_queue *q)
3456 {
3457         int s = q->last_used - q->first_empty;
3458         if (s <= 0)
3459                 s += q->n_bd;
3460         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3461         if (s < 0)
3462                 s = 0;
3463         return s;
3464 }
3465
3466 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3467 {
3468         return (++index == n_bd) ? 0 : index;
3469 }
3470
3471 /**
3472  * Initialize common DMA queue structure
3473  *
3474  * @param q                queue to init
3475  * @param count            Number of BD's to allocate. Should be power of 2
3476  * @param read_register    Address for 'read' register
3477  *                         (not offset within BAR, full address)
3478  * @param write_register   Address for 'write' register
3479  *                         (not offset within BAR, full address)
3480  * @param base_register    Address for 'base' register
3481  *                         (not offset within BAR, full address)
3482  * @param size             Address for 'size' register
3483  *                         (not offset within BAR, full address)
3484  */
3485 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3486                            int count, u32 read, u32 write, u32 base, u32 size)
3487 {
3488         q->n_bd = count;
3489
3490         q->low_mark = q->n_bd / 4;
3491         if (q->low_mark < 4)
3492                 q->low_mark = 4;
3493
3494         q->high_mark = q->n_bd / 8;
3495         if (q->high_mark < 2)
3496                 q->high_mark = 2;
3497
3498         q->first_empty = q->last_used = 0;
3499         q->reg_r = read;
3500         q->reg_w = write;
3501
3502         ipw_write32(priv, base, q->dma_addr);
3503         ipw_write32(priv, size, count);
3504         ipw_write32(priv, read, 0);
3505         ipw_write32(priv, write, 0);
3506
3507         _ipw_read32(priv, 0x90);
3508 }
3509
3510 static int ipw_queue_tx_init(struct ipw_priv *priv,
3511                              struct clx2_tx_queue *q,
3512                              int count, u32 read, u32 write, u32 base, u32 size)
3513 {
3514         struct pci_dev *dev = priv->pci_dev;
3515
3516         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3517         if (!q->txb) {
3518                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3519                 return -ENOMEM;
3520         }
3521
3522         q->bd =
3523             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3524         if (!q->bd) {
3525                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3526                           sizeof(q->bd[0]) * count);
3527                 kfree(q->txb);
3528                 q->txb = NULL;
3529                 return -ENOMEM;
3530         }
3531
3532         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3533         return 0;
3534 }
3535
3536 /**
3537  * Free one TFD, those at index [txq->q.last_used].
3538  * Do NOT advance any indexes
3539  *
3540  * @param dev
3541  * @param txq
3542  */
3543 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3544                                   struct clx2_tx_queue *txq)
3545 {
3546         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3547         struct pci_dev *dev = priv->pci_dev;
3548         int i;
3549
3550         /* classify bd */
3551         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3552                 /* nothing to cleanup after for host commands */
3553                 return;
3554
3555         /* sanity check */
3556         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3557                 IPW_ERROR("Too many chunks: %i\n",
3558                           le32_to_cpu(bd->u.data.num_chunks));
3559                 /** @todo issue fatal error, it is quite serious situation */
3560                 return;
3561         }
3562
3563         /* unmap chunks if any */
3564         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3565                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3566                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3567                                  PCI_DMA_TODEVICE);
3568                 if (txq->txb[txq->q.last_used]) {
3569                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3570                         txq->txb[txq->q.last_used] = NULL;
3571                 }
3572         }
3573 }
3574
3575 /**
3576  * Deallocate DMA queue.
3577  *
3578  * Empty queue by removing and destroying all BD's.
3579  * Free all buffers.
3580  *
3581  * @param dev
3582  * @param q
3583  */
3584 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3585 {
3586         struct clx2_queue *q = &txq->q;
3587         struct pci_dev *dev = priv->pci_dev;
3588
3589         if (q->n_bd == 0)
3590                 return;
3591
3592         /* first, empty all BD's */
3593         for (; q->first_empty != q->last_used;
3594              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3595                 ipw_queue_tx_free_tfd(priv, txq);
3596         }
3597
3598         /* free buffers belonging to queue itself */
3599         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3600                             q->dma_addr);
3601         kfree(txq->txb);
3602
3603         /* 0 fill whole structure */
3604         memset(txq, 0, sizeof(*txq));
3605 }
3606
3607 /**
3608  * Destroy all DMA queues and structures
3609  *
3610  * @param priv
3611  */
3612 static void ipw_tx_queue_free(struct ipw_priv *priv)
3613 {
3614         /* Tx CMD queue */
3615         ipw_queue_tx_free(priv, &priv->txq_cmd);
3616
3617         /* Tx queues */
3618         ipw_queue_tx_free(priv, &priv->txq[0]);
3619         ipw_queue_tx_free(priv, &priv->txq[1]);
3620         ipw_queue_tx_free(priv, &priv->txq[2]);
3621         ipw_queue_tx_free(priv, &priv->txq[3]);
3622 }
3623
3624 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3625 {
3626         /* First 3 bytes are manufacturer */
3627         bssid[0] = priv->mac_addr[0];
3628         bssid[1] = priv->mac_addr[1];
3629         bssid[2] = priv->mac_addr[2];
3630
3631         /* Last bytes are random */
3632         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3633
3634         bssid[0] &= 0xfe;       /* clear multicast bit */
3635         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3636 }
3637
3638 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3639 {
3640         struct ipw_station_entry entry;
3641         int i;
3642
3643         for (i = 0; i < priv->num_stations; i++) {
3644                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3645                         /* Another node is active in network */
3646                         priv->missed_adhoc_beacons = 0;
3647                         if (!(priv->config & CFG_STATIC_CHANNEL))
3648                                 /* when other nodes drop out, we drop out */
3649                                 priv->config &= ~CFG_ADHOC_PERSIST;
3650
3651                         return i;
3652                 }
3653         }
3654
3655         if (i == MAX_STATIONS)
3656                 return IPW_INVALID_STATION;
3657
3658         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3659
3660         entry.reserved = 0;
3661         entry.support_mode = 0;
3662         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3663         memcpy(priv->stations[i], bssid, ETH_ALEN);
3664         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3665                          &entry, sizeof(entry));
3666         priv->num_stations++;
3667
3668         return i;
3669 }
3670
3671 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3672 {
3673         int i;
3674
3675         for (i = 0; i < priv->num_stations; i++)
3676                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3677                         return i;
3678
3679         return IPW_INVALID_STATION;
3680 }
3681
3682 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3683 {
3684         int err;
3685
3686         if (priv->status & STATUS_ASSOCIATING) {
3687                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3688                 queue_work(priv->workqueue, &priv->disassociate);
3689                 return;
3690         }
3691
3692         if (!(priv->status & STATUS_ASSOCIATED)) {
3693                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3694                 return;
3695         }
3696
3697         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3698                         "on channel %d.\n",
3699                         MAC_ARG(priv->assoc_request.bssid),
3700                         priv->assoc_request.channel);
3701
3702         if (quiet)
3703                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3704         else
3705                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3706         err = ipw_send_associate(priv, &priv->assoc_request);
3707         if (err) {
3708                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3709                              "failed.\n");
3710                 return;
3711         }
3712
3713         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3714         priv->status |= STATUS_DISASSOCIATING;
3715
3716 }
3717
3718 static int ipw_disassociate(void *data)
3719 {
3720         struct ipw_priv *priv = data;
3721         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3722                 return 0;
3723         ipw_send_disassociate(data, 0);
3724         return 1;
3725 }
3726
3727 static void ipw_bg_disassociate(void *data)
3728 {
3729         struct ipw_priv *priv = data;
3730         down(&priv->sem);
3731         ipw_disassociate(data);
3732         up(&priv->sem);
3733 }
3734
3735 static void ipw_system_config(void *data)
3736 {
3737         struct ipw_priv *priv = data;
3738         ipw_send_system_config(priv, &priv->sys_config);
3739 }
3740
3741 struct ipw_status_code {
3742         u16 status;
3743         const char *reason;
3744 };
3745
3746 static const struct ipw_status_code ipw_status_codes[] = {
3747         {0x00, "Successful"},
3748         {0x01, "Unspecified failure"},
3749         {0x0A, "Cannot support all requested capabilities in the "
3750          "Capability information field"},
3751         {0x0B, "Reassociation denied due to inability to confirm that "
3752          "association exists"},
3753         {0x0C, "Association denied due to reason outside the scope of this "
3754          "standard"},
3755         {0x0D,
3756          "Responding station does not support the specified authentication "
3757          "algorithm"},
3758         {0x0E,
3759          "Received an Authentication frame with authentication sequence "
3760          "transaction sequence number out of expected sequence"},
3761         {0x0F, "Authentication rejected because of challenge failure"},
3762         {0x10, "Authentication rejected due to timeout waiting for next "
3763          "frame in sequence"},
3764         {0x11, "Association denied because AP is unable to handle additional "
3765          "associated stations"},
3766         {0x12,
3767          "Association denied due to requesting station not supporting all "
3768          "of the datarates in the BSSBasicServiceSet Parameter"},
3769         {0x13,
3770          "Association denied due to requesting station not supporting "
3771          "short preamble operation"},
3772         {0x14,
3773          "Association denied due to requesting station not supporting "
3774          "PBCC encoding"},
3775         {0x15,
3776          "Association denied due to requesting station not supporting "
3777          "channel agility"},
3778         {0x19,
3779          "Association denied due to requesting station not supporting "
3780          "short slot operation"},
3781         {0x1A,
3782          "Association denied due to requesting station not supporting "
3783          "DSSS-OFDM operation"},
3784         {0x28, "Invalid Information Element"},
3785         {0x29, "Group Cipher is not valid"},
3786         {0x2A, "Pairwise Cipher is not valid"},
3787         {0x2B, "AKMP is not valid"},
3788         {0x2C, "Unsupported RSN IE version"},
3789         {0x2D, "Invalid RSN IE Capabilities"},
3790         {0x2E, "Cipher suite is rejected per security policy"},
3791 };
3792
3793 #ifdef CONFIG_IPW_DEBUG
3794 static const char *ipw_get_status_code(u16 status)
3795 {
3796         int i;
3797         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3798                 if (ipw_status_codes[i].status == (status & 0xff))
3799                         return ipw_status_codes[i].reason;
3800         return "Unknown status value.";
3801 }
3802 #endif
3803
3804 static void inline average_init(struct average *avg)
3805 {
3806         memset(avg, 0, sizeof(*avg));
3807 }
3808
3809 static void inline average_add(struct average *avg, s16 val)
3810 {
3811         avg->sum -= avg->entries[avg->pos];
3812         avg->sum += val;
3813         avg->entries[avg->pos++] = val;
3814         if (unlikely(avg->pos == AVG_ENTRIES)) {
3815                 avg->init = 1;
3816                 avg->pos = 0;
3817         }
3818 }
3819
3820 static s16 inline average_value(struct average *avg)
3821 {
3822         if (!unlikely(avg->init)) {
3823                 if (avg->pos)
3824                         return avg->sum / avg->pos;
3825                 return 0;
3826         }
3827
3828         return avg->sum / AVG_ENTRIES;
3829 }
3830
3831 static void ipw_reset_stats(struct ipw_priv *priv)
3832 {
3833         u32 len = sizeof(u32);
3834
3835         priv->quality = 0;
3836
3837         average_init(&priv->average_missed_beacons);
3838         average_init(&priv->average_rssi);
3839         average_init(&priv->average_noise);
3840
3841         priv->last_rate = 0;
3842         priv->last_missed_beacons = 0;
3843         priv->last_rx_packets = 0;
3844         priv->last_tx_packets = 0;
3845         priv->last_tx_failures = 0;
3846
3847         /* Firmware managed, reset only when NIC is restarted, so we have to
3848          * normalize on the current value */
3849         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3850                         &priv->last_rx_err, &len);
3851         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3852                         &priv->last_tx_failures, &len);
3853
3854         /* Driver managed, reset with each association */
3855         priv->missed_adhoc_beacons = 0;
3856         priv->missed_beacons = 0;
3857         priv->tx_packets = 0;
3858         priv->rx_packets = 0;
3859
3860 }
3861
3862 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3863 {
3864         u32 i = 0x80000000;
3865         u32 mask = priv->rates_mask;
3866         /* If currently associated in B mode, restrict the maximum
3867          * rate match to B rates */
3868         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3869                 mask &= IEEE80211_CCK_RATES_MASK;
3870
3871         /* TODO: Verify that the rate is supported by the current rates
3872          * list. */
3873
3874         while (i && !(mask & i))
3875                 i >>= 1;
3876         switch (i) {
3877         case IEEE80211_CCK_RATE_1MB_MASK:
3878                 return 1000000;
3879         case IEEE80211_CCK_RATE_2MB_MASK:
3880                 return 2000000;
3881         case IEEE80211_CCK_RATE_5MB_MASK:
3882                 return 5500000;
3883         case IEEE80211_OFDM_RATE_6MB_MASK:
3884                 return 6000000;
3885         case IEEE80211_OFDM_RATE_9MB_MASK:
3886                 return 9000000;
3887         case IEEE80211_CCK_RATE_11MB_MASK:
3888                 return 11000000;
3889         case IEEE80211_OFDM_RATE_12MB_MASK:
3890                 return 12000000;
3891         case IEEE80211_OFDM_RATE_18MB_MASK:
3892                 return 18000000;
3893         case IEEE80211_OFDM_RATE_24MB_MASK:
3894                 return 24000000;
3895         case IEEE80211_OFDM_RATE_36MB_MASK:
3896                 return 36000000;
3897         case IEEE80211_OFDM_RATE_48MB_MASK:
3898                 return 48000000;
3899         case IEEE80211_OFDM_RATE_54MB_MASK:
3900                 return 54000000;
3901         }
3902
3903         if (priv->ieee->mode == IEEE_B)
3904                 return 11000000;
3905         else
3906                 return 54000000;
3907 }
3908
3909 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3910 {
3911         u32 rate, len = sizeof(rate);
3912         int err;
3913
3914         if (!(priv->status & STATUS_ASSOCIATED))
3915                 return 0;
3916
3917         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3918                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3919                                       &len);
3920                 if (err) {
3921                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3922                         return 0;
3923                 }
3924         } else
3925                 return ipw_get_max_rate(priv);
3926
3927         switch (rate) {
3928         case IPW_TX_RATE_1MB:
3929                 return 1000000;
3930         case IPW_TX_RATE_2MB:
3931                 return 2000000;
3932         case IPW_TX_RATE_5MB:
3933                 return 5500000;
3934         case IPW_TX_RATE_6MB:
3935                 return 6000000;
3936         case IPW_TX_RATE_9MB:
3937                 return 9000000;
3938         case IPW_TX_RATE_11MB:
3939                 return 11000000;
3940         case IPW_TX_RATE_12MB:
3941                 return 12000000;
3942         case IPW_TX_RATE_18MB:
3943                 return 18000000;
3944         case IPW_TX_RATE_24MB:
3945                 return 24000000;
3946         case IPW_TX_RATE_36MB:
3947                 return 36000000;
3948         case IPW_TX_RATE_48MB:
3949                 return 48000000;
3950         case IPW_TX_RATE_54MB:
3951                 return 54000000;
3952         }
3953
3954         return 0;
3955 }
3956
3957 #define IPW_STATS_INTERVAL (2 * HZ)
3958 static void ipw_gather_stats(struct ipw_priv *priv)
3959 {
3960         u32 rx_err, rx_err_delta, rx_packets_delta;
3961         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3962         u32 missed_beacons_percent, missed_beacons_delta;
3963         u32 quality = 0;
3964         u32 len = sizeof(u32);
3965         s16 rssi;
3966         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3967             rate_quality;
3968         u32 max_rate;
3969
3970         if (!(priv->status & STATUS_ASSOCIATED)) {
3971                 priv->quality = 0;
3972                 return;
3973         }
3974
3975         /* Update the statistics */
3976         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3977                         &priv->missed_beacons, &len);
3978         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3979         priv->last_missed_beacons = priv->missed_beacons;
3980         if (priv->assoc_request.beacon_interval) {
3981                 missed_beacons_percent = missed_beacons_delta *
3982                     (HZ * priv->assoc_request.beacon_interval) /
3983                     (IPW_STATS_INTERVAL * 10);
3984         } else {
3985                 missed_beacons_percent = 0;
3986         }
3987         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3988
3989         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3990         rx_err_delta = rx_err - priv->last_rx_err;
3991         priv->last_rx_err = rx_err;
3992
3993         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3994         tx_failures_delta = tx_failures - priv->last_tx_failures;
3995         priv->last_tx_failures = tx_failures;
3996
3997         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3998         priv->last_rx_packets = priv->rx_packets;
3999
4000         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4001         priv->last_tx_packets = priv->tx_packets;
4002
4003         /* Calculate quality based on the following:
4004          *
4005          * Missed beacon: 100% = 0, 0% = 70% missed
4006          * Rate: 60% = 1Mbs, 100% = Max
4007          * Rx and Tx errors represent a straight % of total Rx/Tx
4008          * RSSI: 100% = > -50,  0% = < -80
4009          * Rx errors: 100% = 0, 0% = 50% missed
4010          *
4011          * The lowest computed quality is used.
4012          *
4013          */
4014 #define BEACON_THRESHOLD 5
4015         beacon_quality = 100 - missed_beacons_percent;
4016         if (beacon_quality < BEACON_THRESHOLD)
4017                 beacon_quality = 0;
4018         else
4019                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4020                     (100 - BEACON_THRESHOLD);
4021         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4022                         beacon_quality, missed_beacons_percent);
4023
4024         priv->last_rate = ipw_get_current_rate(priv);
4025         max_rate = ipw_get_max_rate(priv);
4026         rate_quality = priv->last_rate * 40 / max_rate + 60;
4027         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4028                         rate_quality, priv->last_rate / 1000000);
4029
4030         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4031                 rx_quality = 100 - (rx_err_delta * 100) /
4032                     (rx_packets_delta + rx_err_delta);
4033         else
4034                 rx_quality = 100;
4035         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4036                         rx_quality, rx_err_delta, rx_packets_delta);
4037
4038         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4039                 tx_quality = 100 - (tx_failures_delta * 100) /
4040                     (tx_packets_delta + tx_failures_delta);
4041         else
4042                 tx_quality = 100;
4043         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4044                         tx_quality, tx_failures_delta, tx_packets_delta);
4045
4046         rssi = average_value(&priv->average_rssi);
4047         signal_quality =
4048             (100 *
4049              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4050              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4051              (priv->ieee->perfect_rssi - rssi) *
4052              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4053               62 * (priv->ieee->perfect_rssi - rssi))) /
4054             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4055              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4056         if (signal_quality > 100)
4057                 signal_quality = 100;
4058         else if (signal_quality < 1)
4059                 signal_quality = 0;
4060
4061         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4062                         signal_quality, rssi);
4063
4064         quality = min(beacon_quality,
4065                       min(rate_quality,
4066                           min(tx_quality, min(rx_quality, signal_quality))));
4067         if (quality == beacon_quality)
4068                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4069                                 quality);
4070         if (quality == rate_quality)
4071                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4072                                 quality);
4073         if (quality == tx_quality)
4074                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4075                                 quality);
4076         if (quality == rx_quality)
4077                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4078                                 quality);
4079         if (quality == signal_quality)
4080                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4081                                 quality);
4082
4083         priv->quality = quality;
4084
4085         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4086                            IPW_STATS_INTERVAL);
4087 }
4088
4089 static void ipw_bg_gather_stats(void *data)
4090 {
4091         struct ipw_priv *priv = data;
4092         down(&priv->sem);
4093         ipw_gather_stats(data);
4094         up(&priv->sem);
4095 }
4096
4097 static inline void ipw_handle_missed_beacon(struct ipw_priv *priv,
4098                                             int missed_count)
4099 {
4100         priv->notif_missed_beacons = missed_count;
4101
4102         if (missed_count > priv->disassociate_threshold &&
4103             priv->status & STATUS_ASSOCIATED) {
4104                 /* If associated and we've hit the missed
4105                  * beacon threshold, disassociate, turn
4106                  * off roaming, and abort any active scans */
4107                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4108                           IPW_DL_STATE | IPW_DL_ASSOC,
4109                           "Missed beacon: %d - disassociate\n", missed_count);
4110                 priv->status &= ~STATUS_ROAMING;
4111                 if (priv->status & STATUS_SCANNING) {
4112                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4113                                   IPW_DL_STATE,
4114                                   "Aborting scan with missed beacon.\n");
4115                         queue_work(priv->workqueue, &priv->abort_scan);
4116                 }
4117
4118                 queue_work(priv->workqueue, &priv->disassociate);
4119                 return;
4120         }
4121
4122         if (priv->status & STATUS_ROAMING) {
4123                 /* If we are currently roaming, then just
4124                  * print a debug statement... */
4125                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4126                           "Missed beacon: %d - roam in progress\n",
4127                           missed_count);
4128                 return;
4129         }
4130
4131         if (missed_count > priv->roaming_threshold) {
4132                 /* If we are not already roaming, set the ROAM
4133                  * bit in the status and kick off a scan */
4134                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4135                           "Missed beacon: %d - initiate "
4136                           "roaming\n", missed_count);
4137                 if (!(priv->status & STATUS_ROAMING)) {
4138                         priv->status |= STATUS_ROAMING;
4139                         if (!(priv->status & STATUS_SCANNING))
4140                                 queue_work(priv->workqueue,
4141                                            &priv->request_scan);
4142                 }
4143                 return;
4144         }
4145
4146         if (priv->status & STATUS_SCANNING) {
4147                 /* Stop scan to keep fw from getting
4148                  * stuck (only if we aren't roaming --
4149                  * otherwise we'll never scan more than 2 or 3
4150                  * channels..) */
4151                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4152                           "Aborting scan with missed beacon.\n");
4153                 queue_work(priv->workqueue, &priv->abort_scan);
4154         }
4155
4156         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4157
4158 }
4159
4160 /**
4161  * Handle host notification packet.
4162  * Called from interrupt routine
4163  */
4164 static inline void ipw_rx_notification(struct ipw_priv *priv,
4165                                        struct ipw_rx_notification *notif)
4166 {
4167         notif->size = le16_to_cpu(notif->size);
4168
4169         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4170
4171         switch (notif->subtype) {
4172         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4173                         struct notif_association *assoc = &notif->u.assoc;
4174
4175                         switch (assoc->state) {
4176                         case CMAS_ASSOCIATED:{
4177                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4178                                                   IPW_DL_ASSOC,
4179                                                   "associated: '%s' " MAC_FMT
4180                                                   " \n",
4181                                                   escape_essid(priv->essid,
4182                                                                priv->essid_len),
4183                                                   MAC_ARG(priv->bssid));
4184
4185                                         switch (priv->ieee->iw_mode) {
4186                                         case IW_MODE_INFRA:
4187                                                 memcpy(priv->ieee->bssid,
4188                                                        priv->bssid, ETH_ALEN);
4189                                                 break;
4190
4191                                         case IW_MODE_ADHOC:
4192                                                 memcpy(priv->ieee->bssid,
4193                                                        priv->bssid, ETH_ALEN);
4194
4195                                                 /* clear out the station table */
4196                                                 priv->num_stations = 0;
4197
4198                                                 IPW_DEBUG_ASSOC
4199                                                     ("queueing adhoc check\n");
4200                                                 queue_delayed_work(priv->
4201                                                                    workqueue,
4202                                                                    &priv->
4203                                                                    adhoc_check,
4204                                                                    priv->
4205                                                                    assoc_request.
4206                                                                    beacon_interval);
4207                                                 break;
4208                                         }
4209
4210                                         priv->status &= ~STATUS_ASSOCIATING;
4211                                         priv->status |= STATUS_ASSOCIATED;
4212                                         queue_work(priv->workqueue,
4213                                                    &priv->system_config);
4214
4215 #ifdef CONFIG_IPW_QOS
4216 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4217                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4218                                         if ((priv->status & STATUS_AUTH) &&
4219                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4220                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4221                                                 if ((sizeof
4222                                                      (struct
4223                                                       ieee80211_assoc_response)
4224                                                      <= notif->size)
4225                                                     && (notif->size <= 2314)) {
4226                                                         struct
4227                                                         ieee80211_rx_stats
4228                                                             stats = {
4229                                                                 .len =
4230                                                                     notif->
4231                                                                     size - 1,
4232                                                         };
4233
4234                                                         IPW_DEBUG_QOS
4235                                                             ("QoS Associate "
4236                                                              "size %d\n",
4237                                                              notif->size);
4238                                                         ieee80211_rx_mgt(priv->
4239                                                                          ieee,
4240                                                                          (struct
4241                                                                           ieee80211_hdr_4addr
4242                                                                           *)
4243                                                                          &notif->u.raw, &stats);
4244                                                 }
4245                                         }
4246 #endif
4247
4248                                         schedule_work(&priv->link_up);
4249
4250                                         break;
4251                                 }
4252
4253                         case CMAS_AUTHENTICATED:{
4254                                         if (priv->
4255                                             status & (STATUS_ASSOCIATED |
4256                                                       STATUS_AUTH)) {
4257 #ifdef CONFIG_IPW_DEBUG
4258                                                 struct notif_authenticate *auth
4259                                                     = &notif->u.auth;
4260                                                 IPW_DEBUG(IPW_DL_NOTIF |
4261                                                           IPW_DL_STATE |
4262                                                           IPW_DL_ASSOC,
4263                                                           "deauthenticated: '%s' "
4264                                                           MAC_FMT
4265                                                           ": (0x%04X) - %s \n",
4266                                                           escape_essid(priv->
4267                                                                        essid,
4268                                                                        priv->
4269                                                                        essid_len),
4270                                                           MAC_ARG(priv->bssid),
4271                                                           ntohs(auth->status),
4272                                                           ipw_get_status_code
4273                                                           (ntohs
4274                                                            (auth->status)));
4275 #endif
4276
4277                                                 priv->status &=
4278                                                     ~(STATUS_ASSOCIATING |
4279                                                       STATUS_AUTH |
4280                                                       STATUS_ASSOCIATED);
4281
4282                                                 schedule_work(&priv->link_down);
4283                                                 break;
4284                                         }
4285
4286                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4287                                                   IPW_DL_ASSOC,
4288                                                   "authenticated: '%s' " MAC_FMT
4289                                                   "\n",
4290                                                   escape_essid(priv->essid,
4291                                                                priv->essid_len),
4292                                                   MAC_ARG(priv->bssid));
4293                                         break;
4294                                 }
4295
4296                         case CMAS_INIT:{
4297                                         if (priv->status & STATUS_AUTH) {
4298                                                 struct
4299                                                     ieee80211_assoc_response
4300                                                 *resp;
4301                                                 resp =
4302                                                     (struct
4303                                                      ieee80211_assoc_response
4304                                                      *)&notif->u.raw;
4305                                                 IPW_DEBUG(IPW_DL_NOTIF |
4306                                                           IPW_DL_STATE |
4307                                                           IPW_DL_ASSOC,
4308                                                           "association failed (0x%04X): %s\n",
4309                                                           ntohs(resp->status),
4310                                                           ipw_get_status_code
4311                                                           (ntohs
4312                                                            (resp->status)));
4313                                         }
4314
4315                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4316                                                   IPW_DL_ASSOC,
4317                                                   "disassociated: '%s' " MAC_FMT
4318                                                   " \n",
4319                                                   escape_essid(priv->essid,
4320                                                                priv->essid_len),
4321                                                   MAC_ARG(priv->bssid));
4322
4323                                         priv->status &=
4324                                             ~(STATUS_DISASSOCIATING |
4325                                               STATUS_ASSOCIATING |
4326                                               STATUS_ASSOCIATED | STATUS_AUTH);
4327                                         if (priv->assoc_network
4328                                             && (priv->assoc_network->
4329                                                 capability &
4330                                                 WLAN_CAPABILITY_IBSS))
4331                                                 ipw_remove_current_network
4332                                                     (priv);
4333
4334                                         schedule_work(&priv->link_down);
4335
4336                                         break;
4337                                 }
4338
4339                         case CMAS_RX_ASSOC_RESP:
4340                                 break;
4341
4342                         default:
4343                                 IPW_ERROR("assoc: unknown (%d)\n",
4344                                           assoc->state);
4345                                 break;
4346                         }
4347
4348                         break;
4349                 }
4350
4351         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4352                         struct notif_authenticate *auth = &notif->u.auth;
4353                         switch (auth->state) {
4354                         case CMAS_AUTHENTICATED:
4355                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4356                                           "authenticated: '%s' " MAC_FMT " \n",
4357                                           escape_essid(priv->essid,
4358                                                        priv->essid_len),
4359                                           MAC_ARG(priv->bssid));
4360                                 priv->status |= STATUS_AUTH;
4361                                 break;
4362
4363                         case CMAS_INIT:
4364                                 if (priv->status & STATUS_AUTH) {
4365                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4366                                                   IPW_DL_ASSOC,
4367                                                   "authentication failed (0x%04X): %s\n",
4368                                                   ntohs(auth->status),
4369                                                   ipw_get_status_code(ntohs
4370                                                                       (auth->
4371                                                                        status)));
4372                                 }
4373                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4374                                           IPW_DL_ASSOC,
4375                                           "deauthenticated: '%s' " MAC_FMT "\n",
4376                                           escape_essid(priv->essid,
4377                                                        priv->essid_len),
4378                                           MAC_ARG(priv->bssid));
4379
4380                                 priv->status &= ~(STATUS_ASSOCIATING |
4381                                                   STATUS_AUTH |
4382                                                   STATUS_ASSOCIATED);
4383
4384                                 schedule_work(&priv->link_down);
4385                                 break;
4386
4387                         case CMAS_TX_AUTH_SEQ_1:
4388                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4389                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4390                                 break;
4391                         case CMAS_RX_AUTH_SEQ_2:
4392                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4393                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4394                                 break;
4395                         case CMAS_AUTH_SEQ_1_PASS:
4396                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4397                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4398                                 break;
4399                         case CMAS_AUTH_SEQ_1_FAIL:
4400                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4401                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4402                                 break;
4403                         case CMAS_TX_AUTH_SEQ_3:
4404                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4405                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4406                                 break;
4407                         case CMAS_RX_AUTH_SEQ_4:
4408                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4410                                 break;
4411                         case CMAS_AUTH_SEQ_2_PASS:
4412                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4414                                 break;
4415                         case CMAS_AUTH_SEQ_2_FAIL:
4416                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4418                                 break;
4419                         case CMAS_TX_ASSOC:
4420                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4421                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4422                                 break;
4423                         case CMAS_RX_ASSOC_RESP:
4424                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4426
4427                                 break;
4428                         case CMAS_ASSOCIATED:
4429                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4430                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4431                                 break;
4432                         default:
4433                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4434                                                 auth->state);
4435                                 break;
4436                         }
4437                         break;
4438                 }
4439
4440         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4441                         struct notif_channel_result *x =
4442                             &notif->u.channel_result;
4443
4444                         if (notif->size == sizeof(*x)) {
4445                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4446                                                x->channel_num);
4447                         } else {
4448                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4449                                                "(should be %zd)\n",
4450                                                notif->size, sizeof(*x));
4451                         }
4452                         break;
4453                 }
4454
4455         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4456                         struct notif_scan_complete *x = &notif->u.scan_complete;
4457                         if (notif->size == sizeof(*x)) {
4458                                 IPW_DEBUG_SCAN
4459                                     ("Scan completed: type %d, %d channels, "
4460                                      "%d status\n", x->scan_type,
4461                                      x->num_channels, x->status);
4462                         } else {
4463                                 IPW_ERROR("Scan completed of wrong size %d "
4464                                           "(should be %zd)\n",
4465                                           notif->size, sizeof(*x));
4466                         }
4467
4468                         priv->status &=
4469                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4470
4471                         wake_up_interruptible(&priv->wait_state);
4472                         cancel_delayed_work(&priv->scan_check);
4473
4474                         if (priv->status & STATUS_EXIT_PENDING)
4475                                 break;
4476
4477                         priv->ieee->scans++;
4478
4479 #ifdef CONFIG_IPW2200_MONITOR
4480                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4481                                 priv->status |= STATUS_SCAN_FORCED;
4482                                 queue_work(priv->workqueue,
4483                                            &priv->request_scan);
4484                                 break;
4485                         }
4486                         priv->status &= ~STATUS_SCAN_FORCED;
4487 #endif                          /* CONFIG_IPW2200_MONITOR */
4488
4489                         if (!(priv->status & (STATUS_ASSOCIATED |
4490                                               STATUS_ASSOCIATING |
4491                                               STATUS_ROAMING |
4492                                               STATUS_DISASSOCIATING)))
4493                                 queue_work(priv->workqueue, &priv->associate);
4494                         else if (priv->status & STATUS_ROAMING) {
4495                                 /* If a scan completed and we are in roam mode, then
4496                                  * the scan that completed was the one requested as a
4497                                  * result of entering roam... so, schedule the
4498                                  * roam work */
4499                                 queue_work(priv->workqueue, &priv->roam);
4500                         } else if (priv->status & STATUS_SCAN_PENDING)
4501                                 queue_work(priv->workqueue,
4502                                            &priv->request_scan);
4503                         else if (priv->config & CFG_BACKGROUND_SCAN
4504                                  && priv->status & STATUS_ASSOCIATED)
4505                                 queue_delayed_work(priv->workqueue,
4506                                                    &priv->request_scan, HZ);
4507                         break;
4508                 }
4509
4510         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4511                         struct notif_frag_length *x = &notif->u.frag_len;
4512
4513                         if (notif->size == sizeof(*x))
4514                                 IPW_ERROR("Frag length: %d\n",
4515                                           le16_to_cpu(x->frag_length));
4516                         else
4517                                 IPW_ERROR("Frag length of wrong size %d "
4518                                           "(should be %zd)\n",
4519                                           notif->size, sizeof(*x));
4520                         break;
4521                 }
4522
4523         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4524                         struct notif_link_deterioration *x =
4525                             &notif->u.link_deterioration;
4526
4527                         if (notif->size == sizeof(*x)) {
4528                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4529                                           "link deterioration: '%s' " MAC_FMT
4530                                           " \n", escape_essid(priv->essid,
4531                                                               priv->essid_len),
4532                                           MAC_ARG(priv->bssid));
4533                                 memcpy(&priv->last_link_deterioration, x,
4534                                        sizeof(*x));
4535                         } else {
4536                                 IPW_ERROR("Link Deterioration of wrong size %d "
4537                                           "(should be %zd)\n",
4538                                           notif->size, sizeof(*x));
4539                         }
4540                         break;
4541                 }
4542
4543         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4544                         IPW_ERROR("Dino config\n");
4545                         if (priv->hcmd
4546                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4547                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4548
4549                         break;
4550                 }
4551
4552         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4553                         struct notif_beacon_state *x = &notif->u.beacon_state;
4554                         if (notif->size != sizeof(*x)) {
4555                                 IPW_ERROR
4556                                     ("Beacon state of wrong size %d (should "
4557                                      "be %zd)\n", notif->size, sizeof(*x));
4558                                 break;
4559                         }
4560
4561                         if (le32_to_cpu(x->state) ==
4562                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4563                                 ipw_handle_missed_beacon(priv,
4564                                                          le32_to_cpu(x->
4565                                                                      number));
4566
4567                         break;
4568                 }
4569
4570         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4571                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4572                         if (notif->size == sizeof(*x)) {
4573                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4574                                           "0x%02x station %d\n",
4575                                           x->key_state, x->security_type,
4576                                           x->station_index);
4577                                 break;
4578                         }
4579
4580                         IPW_ERROR
4581                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4582                              notif->size, sizeof(*x));
4583                         break;
4584                 }
4585
4586         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4587                         struct notif_calibration *x = &notif->u.calibration;
4588
4589                         if (notif->size == sizeof(*x)) {
4590                                 memcpy(&priv->calib, x, sizeof(*x));
4591                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4592                                 break;
4593                         }
4594
4595                         IPW_ERROR
4596                             ("Calibration of wrong size %d (should be %zd)\n",
4597                              notif->size, sizeof(*x));
4598                         break;
4599                 }
4600
4601         case HOST_NOTIFICATION_NOISE_STATS:{
4602                         if (notif->size == sizeof(u32)) {
4603                                 priv->last_noise =
4604                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4605                                           0xff);
4606                                 average_add(&priv->average_noise,
4607                                             priv->last_noise);
4608                                 break;
4609                         }
4610
4611                         IPW_ERROR
4612                             ("Noise stat is wrong size %d (should be %zd)\n",
4613                              notif->size, sizeof(u32));
4614                         break;
4615                 }
4616
4617         default:
4618                 IPW_ERROR("Unknown notification: "
4619                           "subtype=%d,flags=0x%2x,size=%d\n",
4620                           notif->subtype, notif->flags, notif->size);
4621         }
4622 }
4623
4624 /**
4625  * Destroys all DMA structures and initialise them again
4626  *
4627  * @param priv
4628  * @return error code
4629  */
4630 static int ipw_queue_reset(struct ipw_priv *priv)
4631 {
4632         int rc = 0;
4633         /** @todo customize queue sizes */
4634         int nTx = 64, nTxCmd = 8;
4635         ipw_tx_queue_free(priv);
4636         /* Tx CMD queue */
4637         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4638                                IPW_TX_CMD_QUEUE_READ_INDEX,
4639                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4640                                IPW_TX_CMD_QUEUE_BD_BASE,
4641                                IPW_TX_CMD_QUEUE_BD_SIZE);
4642         if (rc) {
4643                 IPW_ERROR("Tx Cmd queue init failed\n");
4644                 goto error;
4645         }
4646         /* Tx queue(s) */
4647         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4648                                IPW_TX_QUEUE_0_READ_INDEX,
4649                                IPW_TX_QUEUE_0_WRITE_INDEX,
4650                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4651         if (rc) {
4652                 IPW_ERROR("Tx 0 queue init failed\n");
4653                 goto error;
4654         }
4655         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4656                                IPW_TX_QUEUE_1_READ_INDEX,
4657                                IPW_TX_QUEUE_1_WRITE_INDEX,
4658                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4659         if (rc) {
4660                 IPW_ERROR("Tx 1 queue init failed\n");
4661                 goto error;
4662         }
4663         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4664                                IPW_TX_QUEUE_2_READ_INDEX,
4665                                IPW_TX_QUEUE_2_WRITE_INDEX,
4666                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4667         if (rc) {
4668                 IPW_ERROR("Tx 2 queue init failed\n");
4669                 goto error;
4670         }
4671         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4672                                IPW_TX_QUEUE_3_READ_INDEX,
4673                                IPW_TX_QUEUE_3_WRITE_INDEX,
4674                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4675         if (rc) {
4676                 IPW_ERROR("Tx 3 queue init failed\n");
4677                 goto error;
4678         }
4679         /* statistics */
4680         priv->rx_bufs_min = 0;
4681         priv->rx_pend_max = 0;
4682         return rc;
4683
4684       error:
4685         ipw_tx_queue_free(priv);
4686         return rc;
4687 }
4688
4689 /**
4690  * Reclaim Tx queue entries no more used by NIC.
4691  *
4692  * When FW adwances 'R' index, all entries between old and
4693  * new 'R' index need to be reclaimed. As result, some free space
4694  * forms. If there is enough free space (> low mark), wake Tx queue.
4695  *
4696  * @note Need to protect against garbage in 'R' index
4697  * @param priv
4698  * @param txq
4699  * @param qindex
4700  * @return Number of used entries remains in the queue
4701  */
4702 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4703                                 struct clx2_tx_queue *txq, int qindex)
4704 {
4705         u32 hw_tail;
4706         int used;
4707         struct clx2_queue *q = &txq->q;
4708
4709         hw_tail = ipw_read32(priv, q->reg_r);
4710         if (hw_tail >= q->n_bd) {
4711                 IPW_ERROR
4712                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4713                      hw_tail, q->n_bd);
4714                 goto done;
4715         }
4716         for (; q->last_used != hw_tail;
4717              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4718                 ipw_queue_tx_free_tfd(priv, txq);
4719                 priv->tx_packets++;
4720         }
4721       done:
4722         if ((ipw_queue_space(q) > q->low_mark) &&
4723             (qindex >= 0) &&
4724             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4725                 netif_wake_queue(priv->net_dev);
4726         used = q->first_empty - q->last_used;
4727         if (used < 0)
4728                 used += q->n_bd;
4729
4730         return used;
4731 }
4732
4733 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4734                              int len, int sync)
4735 {
4736         struct clx2_tx_queue *txq = &priv->txq_cmd;
4737         struct clx2_queue *q = &txq->q;
4738         struct tfd_frame *tfd;
4739
4740         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4741                 IPW_ERROR("No space for Tx\n");
4742                 return -EBUSY;
4743         }
4744
4745         tfd = &txq->bd[q->first_empty];
4746         txq->txb[q->first_empty] = NULL;
4747
4748         memset(tfd, 0, sizeof(*tfd));
4749         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4750         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4751         priv->hcmd_seq++;
4752         tfd->u.cmd.index = hcmd;
4753         tfd->u.cmd.length = len;
4754         memcpy(tfd->u.cmd.payload, buf, len);
4755         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4756         ipw_write32(priv, q->reg_w, q->first_empty);
4757         _ipw_read32(priv, 0x90);
4758
4759         return 0;
4760 }
4761
4762 /*
4763  * Rx theory of operation
4764  *
4765  * The host allocates 32 DMA target addresses and passes the host address
4766  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4767  * 0 to 31
4768  *
4769  * Rx Queue Indexes
4770  * The host/firmware share two index registers for managing the Rx buffers.
4771  *
4772  * The READ index maps to the first position that the firmware may be writing
4773  * to -- the driver can read up to (but not including) this position and get
4774  * good data.
4775  * The READ index is managed by the firmware once the card is enabled.
4776  *
4777  * The WRITE index maps to the last position the driver has read from -- the
4778  * position preceding WRITE is the last slot the firmware can place a packet.
4779  *
4780  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4781  * WRITE = READ.
4782  *
4783  * During initialization the host sets up the READ queue position to the first
4784  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4785  *
4786  * When the firmware places a packet in a buffer it will advance the READ index
4787  * and fire the RX interrupt.  The driver can then query the READ index and
4788  * process as many packets as possible, moving the WRITE index forward as it
4789  * resets the Rx queue buffers with new memory.
4790  *
4791  * The management in the driver is as follows:
4792  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4793  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4794  *   to replensish the ipw->rxq->rx_free.
4795  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4796  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4797  *   'processed' and 'read' driver indexes as well)
4798  * + A received packet is processed and handed to the kernel network stack,
4799  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4800  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4801  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4802  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4803  *   were enough free buffers and RX_STALLED is set it is cleared.
4804  *
4805  *
4806  * Driver sequence:
4807  *
4808  * ipw_rx_queue_alloc()       Allocates rx_free
4809  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4810  *                            ipw_rx_queue_restock
4811  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4812  *                            queue, updates firmware pointers, and updates
4813  *                            the WRITE index.  If insufficient rx_free buffers
4814  *                            are available, schedules ipw_rx_queue_replenish
4815  *
4816  * -- enable interrupts --
4817  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4818  *                            READ INDEX, detaching the SKB from the pool.
4819  *                            Moves the packet buffer from queue to rx_used.
4820  *                            Calls ipw_rx_queue_restock to refill any empty
4821  *                            slots.
4822  * ...
4823  *
4824  */
4825
4826 /*
4827  * If there are slots in the RX queue that  need to be restocked,
4828  * and we have free pre-allocated buffers, fill the ranks as much
4829  * as we can pulling from rx_free.
4830  *
4831  * This moves the 'write' index forward to catch up with 'processed', and
4832  * also updates the memory address in the firmware to reference the new
4833  * target buffer.
4834  */
4835 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4836 {
4837         struct ipw_rx_queue *rxq = priv->rxq;
4838         struct list_head *element;
4839         struct ipw_rx_mem_buffer *rxb;
4840         unsigned long flags;
4841         int write;
4842
4843         spin_lock_irqsave(&rxq->lock, flags);
4844         write = rxq->write;
4845         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4846                 element = rxq->rx_free.next;
4847                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4848                 list_del(element);
4849
4850                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4851                             rxb->dma_addr);
4852                 rxq->queue[rxq->write] = rxb;
4853                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4854                 rxq->free_count--;
4855         }
4856         spin_unlock_irqrestore(&rxq->lock, flags);
4857
4858         /* If the pre-allocated buffer pool is dropping low, schedule to
4859          * refill it */
4860         if (rxq->free_count <= RX_LOW_WATERMARK)
4861                 queue_work(priv->workqueue, &priv->rx_replenish);
4862
4863         /* If we've added more space for the firmware to place data, tell it */
4864         if (write != rxq->write)
4865                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4866 }
4867
4868 /*
4869  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4870  * Also restock the Rx queue via ipw_rx_queue_restock.
4871  *
4872  * This is called as a scheduled work item (except for during intialization)
4873  */
4874 static void ipw_rx_queue_replenish(void *data)
4875 {
4876         struct ipw_priv *priv = data;
4877         struct ipw_rx_queue *rxq = priv->rxq;
4878         struct list_head *element;
4879         struct ipw_rx_mem_buffer *rxb;
4880         unsigned long flags;
4881
4882         spin_lock_irqsave(&rxq->lock, flags);
4883         while (!list_empty(&rxq->rx_used)) {
4884                 element = rxq->rx_used.next;
4885                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4886                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4887                 if (!rxb->skb) {
4888                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4889                                priv->net_dev->name);
4890                         /* We don't reschedule replenish work here -- we will
4891                          * call the restock method and if it still needs
4892                          * more buffers it will schedule replenish */
4893                         break;
4894                 }
4895                 list_del(element);
4896
4897                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4898                 rxb->dma_addr =
4899                     pci_map_single(priv->pci_dev, rxb->skb->data,
4900                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4901
4902                 list_add_tail(&rxb->list, &rxq->rx_free);
4903                 rxq->free_count++;
4904         }
4905         spin_unlock_irqrestore(&rxq->lock, flags);
4906
4907         ipw_rx_queue_restock(priv);
4908 }
4909
4910 static void ipw_bg_rx_queue_replenish(void *data)
4911 {
4912         struct ipw_priv *priv = data;
4913         down(&priv->sem);
4914         ipw_rx_queue_replenish(data);
4915         up(&priv->sem);
4916 }
4917
4918 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4919  * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4920  * This free routine walks the list of POOL entries and if SKB is set to
4921  * non NULL it is unmapped and freed
4922  */
4923 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4924 {
4925         int i;
4926
4927         if (!rxq)
4928                 return;
4929
4930         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4931                 if (rxq->pool[i].skb != NULL) {
4932                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4933                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4934                         dev_kfree_skb(rxq->pool[i].skb);
4935                 }
4936         }
4937
4938         kfree(rxq);
4939 }
4940
4941 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4942 {
4943         struct ipw_rx_queue *rxq;
4944         int i;
4945
4946         rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4947         if (unlikely(!rxq)) {
4948                 IPW_ERROR("memory allocation failed\n");
4949                 return NULL;
4950         }
4951         memset(rxq, 0, sizeof(*rxq));
4952         spin_lock_init(&rxq->lock);
4953         INIT_LIST_HEAD(&rxq->rx_free);
4954         INIT_LIST_HEAD(&rxq->rx_used);
4955
4956         /* Fill the rx_used queue with _all_ of the Rx buffers */
4957         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4958                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4959
4960         /* Set us so that we have processed and used all buffers, but have
4961          * not restocked the Rx queue with fresh buffers */
4962         rxq->read = rxq->write = 0;
4963         rxq->processed = RX_QUEUE_SIZE - 1;
4964         rxq->free_count = 0;
4965
4966         return rxq;
4967 }
4968
4969 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4970 {
4971         rate &= ~IEEE80211_BASIC_RATE_MASK;
4972         if (ieee_mode == IEEE_A) {
4973                 switch (rate) {
4974                 case IEEE80211_OFDM_RATE_6MB:
4975                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4976                             1 : 0;
4977                 case IEEE80211_OFDM_RATE_9MB:
4978                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4979                             1 : 0;
4980                 case IEEE80211_OFDM_RATE_12MB:
4981                         return priv->
4982                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4983                 case IEEE80211_OFDM_RATE_18MB:
4984                         return priv->
4985                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4986                 case IEEE80211_OFDM_RATE_24MB:
4987                         return priv->
4988                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4989                 case IEEE80211_OFDM_RATE_36MB:
4990                         return priv->
4991                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4992                 case IEEE80211_OFDM_RATE_48MB:
4993                         return priv->
4994                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4995                 case IEEE80211_OFDM_RATE_54MB:
4996                         return priv->
4997                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4998                 default:
4999                         return 0;
5000                 }
5001         }
5002
5003         /* B and G mixed */
5004         switch (rate) {
5005         case IEEE80211_CCK_RATE_1MB:
5006                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5007         case IEEE80211_CCK_RATE_2MB:
5008                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5009         case IEEE80211_CCK_RATE_5MB:
5010                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5011         case IEEE80211_CCK_RATE_11MB:
5012                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5013         }
5014
5015         /* If we are limited to B modulations, bail at this point */
5016         if (ieee_mode == IEEE_B)
5017                 return 0;
5018
5019         /* G */
5020         switch (rate) {
5021         case IEEE80211_OFDM_RATE_6MB:
5022                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5023         case IEEE80211_OFDM_RATE_9MB:
5024                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5025         case IEEE80211_OFDM_RATE_12MB:
5026                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5027         case IEEE80211_OFDM_RATE_18MB:
5028                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5029         case IEEE80211_OFDM_RATE_24MB:
5030                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5031         case IEEE80211_OFDM_RATE_36MB:
5032                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5033         case IEEE80211_OFDM_RATE_48MB:
5034                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5035         case IEEE80211_OFDM_RATE_54MB:
5036                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5037         }
5038
5039         return 0;
5040 }
5041
5042 static int ipw_compatible_rates(struct ipw_priv *priv,
5043                                 const struct ieee80211_network *network,
5044                                 struct ipw_supported_rates *rates)
5045 {
5046         int num_rates, i;
5047
5048         memset(rates, 0, sizeof(*rates));
5049         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5050         rates->num_rates = 0;
5051         for (i = 0; i < num_rates; i++) {
5052                 if (!ipw_is_rate_in_mask(priv, network->mode,
5053                                          network->rates[i])) {
5054
5055                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5056                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5057                                                "rate %02X\n",
5058                                                network->rates[i]);
5059                                 rates->supported_rates[rates->num_rates++] =
5060                                     network->rates[i];
5061                                 continue;
5062                         }
5063
5064                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5065                                        network->rates[i], priv->rates_mask);
5066                         continue;
5067                 }
5068
5069                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5070         }
5071
5072         num_rates = min(network->rates_ex_len,
5073                         (u8) (IPW_MAX_RATES - num_rates));
5074         for (i = 0; i < num_rates; i++) {
5075                 if (!ipw_is_rate_in_mask(priv, network->mode,
5076                                          network->rates_ex[i])) {
5077                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5078                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5079                                                "rate %02X\n",
5080                                                network->rates_ex[i]);
5081                                 rates->supported_rates[rates->num_rates++] =
5082                                     network->rates[i];
5083                                 continue;
5084                         }
5085
5086                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5087                                        network->rates_ex[i], priv->rates_mask);
5088                         continue;
5089                 }
5090
5091                 rates->supported_rates[rates->num_rates++] =
5092                     network->rates_ex[i];
5093         }
5094
5095         return 1;
5096 }
5097
5098 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
5099                                   const struct ipw_supported_rates *src)
5100 {
5101         u8 i;
5102         for (i = 0; i < src->num_rates; i++)
5103                 dest->supported_rates[i] = src->supported_rates[i];
5104         dest->num_rates = src->num_rates;
5105 }
5106
5107 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5108  * mask should ever be used -- right now all callers to add the scan rates are
5109  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5110 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5111                                    u8 modulation, u32 rate_mask)
5112 {
5113         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5114             IEEE80211_BASIC_RATE_MASK : 0;
5115
5116         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5117                 rates->supported_rates[rates->num_rates++] =
5118                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5119
5120         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5121                 rates->supported_rates[rates->num_rates++] =
5122                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5123
5124         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5125                 rates->supported_rates[rates->num_rates++] = basic_mask |
5126                     IEEE80211_CCK_RATE_5MB;
5127
5128         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5129                 rates->supported_rates[rates->num_rates++] = basic_mask |
5130                     IEEE80211_CCK_RATE_11MB;
5131 }
5132
5133 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5134                                     u8 modulation, u32 rate_mask)
5135 {
5136         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5137             IEEE80211_BASIC_RATE_MASK : 0;
5138
5139         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5140                 rates->supported_rates[rates->num_rates++] = basic_mask |
5141                     IEEE80211_OFDM_RATE_6MB;
5142
5143         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5144                 rates->supported_rates[rates->num_rates++] =
5145                     IEEE80211_OFDM_RATE_9MB;
5146
5147         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5148                 rates->supported_rates[rates->num_rates++] = basic_mask |
5149                     IEEE80211_OFDM_RATE_12MB;
5150
5151         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5152                 rates->supported_rates[rates->num_rates++] =
5153                     IEEE80211_OFDM_RATE_18MB;
5154
5155         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5156                 rates->supported_rates[rates->num_rates++] = basic_mask |
5157                     IEEE80211_OFDM_RATE_24MB;
5158
5159         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5160                 rates->supported_rates[rates->num_rates++] =
5161                     IEEE80211_OFDM_RATE_36MB;
5162
5163         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5164                 rates->supported_rates[rates->num_rates++] =
5165                     IEEE80211_OFDM_RATE_48MB;
5166
5167         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5168                 rates->supported_rates[rates->num_rates++] =
5169                     IEEE80211_OFDM_RATE_54MB;
5170 }
5171
5172 struct ipw_network_match {
5173         struct ieee80211_network *network;
5174         struct ipw_supported_rates rates;
5175 };
5176
5177 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5178                                   struct ipw_network_match *match,
5179                                   struct ieee80211_network *network,
5180                                   int roaming)
5181 {
5182         struct ipw_supported_rates rates;
5183
5184         /* Verify that this network's capability is compatible with the
5185          * current mode (AdHoc or Infrastructure) */
5186         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5187              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5188                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5189                                 "capability mismatch.\n",
5190                                 escape_essid(network->ssid, network->ssid_len),
5191                                 MAC_ARG(network->bssid));
5192                 return 0;
5193         }
5194
5195         /* If we do not have an ESSID for this AP, we can not associate with
5196          * it */
5197         if (network->flags & NETWORK_EMPTY_ESSID) {
5198                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5199                                 "because of hidden ESSID.\n",
5200                                 escape_essid(network->ssid, network->ssid_len),
5201                                 MAC_ARG(network->bssid));
5202                 return 0;
5203         }
5204
5205         if (unlikely(roaming)) {
5206                 /* If we are roaming, then ensure check if this is a valid
5207                  * network to try and roam to */
5208                 if ((network->ssid_len != match->network->ssid_len) ||
5209                     memcmp(network->ssid, match->network->ssid,
5210                            network->ssid_len)) {
5211                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5212                                         "because of non-network ESSID.\n",
5213                                         escape_essid(network->ssid,
5214                                                      network->ssid_len),
5215                                         MAC_ARG(network->bssid));
5216                         return 0;
5217                 }
5218         } else {
5219                 /* If an ESSID has been configured then compare the broadcast
5220                  * ESSID to ours */
5221                 if ((priv->config & CFG_STATIC_ESSID) &&
5222                     ((network->ssid_len != priv->essid_len) ||
5223                      memcmp(network->ssid, priv->essid,
5224                             min(network->ssid_len, priv->essid_len)))) {
5225                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5226
5227                         strncpy(escaped,
5228                                 escape_essid(network->ssid, network->ssid_len),
5229                                 sizeof(escaped));
5230                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5231                                         "because of ESSID mismatch: '%s'.\n",
5232                                         escaped, MAC_ARG(network->bssid),
5233                                         escape_essid(priv->essid,
5234                                                      priv->essid_len));
5235                         return 0;
5236                 }
5237         }
5238
5239         /* If the old network rate is better than this one, don't bother
5240          * testing everything else. */
5241
5242         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5243                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5244                                 "current network.\n",
5245                                 escape_essid(match->network->ssid,
5246                                              match->network->ssid_len));
5247                 return 0;
5248         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5249                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5250                                 "current network.\n",
5251                                 escape_essid(match->network->ssid,
5252                                              match->network->ssid_len));
5253                 return 0;
5254         }
5255
5256         /* Now go through and see if the requested network is valid... */
5257         if (priv->ieee->scan_age != 0 &&
5258             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5259                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5260                                 "because of age: %lums.\n",
5261                                 escape_essid(network->ssid, network->ssid_len),
5262                                 MAC_ARG(network->bssid),
5263                                 1000 * (jiffies - network->last_scanned) / HZ);
5264                 return 0;
5265         }
5266
5267         if ((priv->config & CFG_STATIC_CHANNEL) &&
5268             (network->channel != priv->channel)) {
5269                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5270                                 "because of channel mismatch: %d != %d.\n",
5271                                 escape_essid(network->ssid, network->ssid_len),
5272                                 MAC_ARG(network->bssid),
5273                                 network->channel, priv->channel);
5274                 return 0;
5275         }
5276
5277         /* Verify privacy compatability */
5278         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5279             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5280                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5281                                 "because of privacy mismatch: %s != %s.\n",
5282                                 escape_essid(network->ssid, network->ssid_len),
5283                                 MAC_ARG(network->bssid),
5284                                 priv->
5285                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5286                                 network->
5287                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5288                                 "off");
5289                 return 0;
5290         }
5291
5292         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5293                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5294                                 "because of the same BSSID match: " MAC_FMT
5295                                 ".\n", escape_essid(network->ssid,
5296                                                     network->ssid_len),
5297                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5298                 return 0;
5299         }
5300
5301         /* Filter out any incompatible freq / mode combinations */
5302         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5303                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5304                                 "because of invalid frequency/mode "
5305                                 "combination.\n",
5306                                 escape_essid(network->ssid, network->ssid_len),
5307                                 MAC_ARG(network->bssid));
5308                 return 0;
5309         }
5310
5311         /* Ensure that the rates supported by the driver are compatible with
5312          * this AP, including verification of basic rates (mandatory) */
5313         if (!ipw_compatible_rates(priv, network, &rates)) {
5314                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5315                                 "because configured rate mask excludes "
5316                                 "AP mandatory rate.\n",
5317                                 escape_essid(network->ssid, network->ssid_len),
5318                                 MAC_ARG(network->bssid));
5319                 return 0;
5320         }
5321
5322         if (rates.num_rates == 0) {
5323                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5324                                 "because of no compatible rates.\n",
5325                                 escape_essid(network->ssid, network->ssid_len),
5326                                 MAC_ARG(network->bssid));
5327                 return 0;
5328         }
5329
5330         /* TODO: Perform any further minimal comparititive tests.  We do not
5331          * want to put too much policy logic here; intelligent scan selection
5332          * should occur within a generic IEEE 802.11 user space tool.  */
5333
5334         /* Set up 'new' AP to this network */
5335         ipw_copy_rates(&match->rates, &rates);
5336         match->network = network;
5337         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5338                         escape_essid(network->ssid, network->ssid_len),
5339                         MAC_ARG(network->bssid));
5340
5341         return 1;
5342 }
5343
5344 static void ipw_merge_adhoc_network(void *data)
5345 {
5346         struct ipw_priv *priv = data;
5347         struct ieee80211_network *network = NULL;
5348         struct ipw_network_match match = {
5349                 .network = priv->assoc_network
5350         };
5351
5352         if ((priv->status & STATUS_ASSOCIATED) &&
5353             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5354                 /* First pass through ROAM process -- look for a better
5355                  * network */
5356                 unsigned long flags;
5357
5358                 spin_lock_irqsave(&priv->ieee->lock, flags);
5359                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5360                         if (network != priv->assoc_network)
5361                                 ipw_find_adhoc_network(priv, &match, network,
5362                                                        1);
5363                 }
5364                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5365
5366                 if (match.network == priv->assoc_network) {
5367                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5368                                         "merge to.\n");
5369                         return;
5370                 }
5371
5372                 down(&priv->sem);
5373                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5374                         IPW_DEBUG_MERGE("remove network %s\n",
5375                                         escape_essid(priv->essid,
5376                                                      priv->essid_len));
5377                         ipw_remove_current_network(priv);
5378                 }
5379
5380                 ipw_disassociate(priv);
5381                 priv->assoc_network = match.network;
5382                 up(&priv->sem);
5383                 return;
5384         }
5385 }
5386
5387 static int ipw_best_network(struct ipw_priv *priv,
5388                             struct ipw_network_match *match,
5389                             struct ieee80211_network *network, int roaming)
5390 {
5391         struct ipw_supported_rates rates;
5392
5393         /* Verify that this network's capability is compatible with the
5394          * current mode (AdHoc or Infrastructure) */
5395         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5396              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5397             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5398              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5399                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5400                                 "capability mismatch.\n",
5401                                 escape_essid(network->ssid, network->ssid_len),
5402                                 MAC_ARG(network->bssid));
5403                 return 0;
5404         }
5405
5406         /* If we do not have an ESSID for this AP, we can not associate with
5407          * it */
5408         if (network->flags & NETWORK_EMPTY_ESSID) {
5409                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5410                                 "because of hidden ESSID.\n",
5411                                 escape_essid(network->ssid, network->ssid_len),
5412                                 MAC_ARG(network->bssid));
5413                 return 0;
5414         }
5415
5416         if (unlikely(roaming)) {
5417                 /* If we are roaming, then ensure check if this is a valid
5418                  * network to try and roam to */
5419                 if ((network->ssid_len != match->network->ssid_len) ||
5420                     memcmp(network->ssid, match->network->ssid,
5421                            network->ssid_len)) {
5422                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5423                                         "because of non-network ESSID.\n",
5424                                         escape_essid(network->ssid,
5425                                                      network->ssid_len),
5426                                         MAC_ARG(network->bssid));
5427                         return 0;
5428                 }
5429         } else {
5430                 /* If an ESSID has been configured then compare the broadcast
5431                  * ESSID to ours */
5432                 if ((priv->config & CFG_STATIC_ESSID) &&
5433                     ((network->ssid_len != priv->essid_len) ||
5434                      memcmp(network->ssid, priv->essid,
5435                             min(network->ssid_len, priv->essid_len)))) {
5436                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5437                         strncpy(escaped,
5438                                 escape_essid(network->ssid, network->ssid_len),
5439                                 sizeof(escaped));
5440                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5441                                         "because of ESSID mismatch: '%s'.\n",
5442                                         escaped, MAC_ARG(network->bssid),
5443                                         escape_essid(priv->essid,
5444                                                      priv->essid_len));
5445                         return 0;
5446                 }
5447         }
5448
5449         /* If the old network rate is better than this one, don't bother
5450          * testing everything else. */
5451         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5452                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5453                 strncpy(escaped,
5454                         escape_essid(network->ssid, network->ssid_len),
5455                         sizeof(escaped));
5456                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5457                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5458                                 escaped, MAC_ARG(network->bssid),
5459                                 escape_essid(match->network->ssid,
5460                                              match->network->ssid_len),
5461                                 MAC_ARG(match->network->bssid));
5462                 return 0;
5463         }
5464
5465         /* If this network has already had an association attempt within the
5466          * last 3 seconds, do not try and associate again... */
5467         if (network->last_associate &&
5468             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5469                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5470                                 "because of storming (%lus since last "
5471                                 "assoc attempt).\n",
5472                                 escape_essid(network->ssid, network->ssid_len),
5473                                 MAC_ARG(network->bssid),
5474                                 (jiffies - network->last_associate) / HZ);
5475                 return 0;
5476         }
5477
5478         /* Now go through and see if the requested network is valid... */
5479         if (priv->ieee->scan_age != 0 &&
5480             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5481                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5482                                 "because of age: %lums.\n",
5483                                 escape_essid(network->ssid, network->ssid_len),
5484                                 MAC_ARG(network->bssid),
5485                                 1000 * (jiffies - network->last_scanned) / HZ);
5486                 return 0;
5487         }
5488
5489         if ((priv->config & CFG_STATIC_CHANNEL) &&
5490             (network->channel != priv->channel)) {
5491                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5492                                 "because of channel mismatch: %d != %d.\n",
5493                                 escape_essid(network->ssid, network->ssid_len),
5494                                 MAC_ARG(network->bssid),
5495                                 network->channel, priv->channel);
5496                 return 0;
5497         }
5498
5499         /* Verify privacy compatability */
5500         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5501             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5502                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5503                                 "because of privacy mismatch: %s != %s.\n",
5504                                 escape_essid(network->ssid, network->ssid_len),
5505                                 MAC_ARG(network->bssid),
5506                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5507                                 "off",
5508                                 network->capability &
5509                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5510                 return 0;
5511         }
5512
5513         if ((priv->config & CFG_STATIC_BSSID) &&
5514             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5515                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5516                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5517                                 escape_essid(network->ssid, network->ssid_len),
5518                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5519                 return 0;
5520         }
5521
5522         /* Filter out any incompatible freq / mode combinations */
5523         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5524                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5525                                 "because of invalid frequency/mode "
5526                                 "combination.\n",
5527                                 escape_essid(network->ssid, network->ssid_len),
5528                                 MAC_ARG(network->bssid));
5529                 return 0;
5530         }
5531
5532         /* Filter out invalid channel in current GEO */
5533         if (!ipw_is_valid_channel(priv->ieee, network->channel)) {
5534                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5535                                 "because of invalid channel in current GEO\n",
5536                                 escape_essid(network->ssid, network->ssid_len),
5537                                 MAC_ARG(network->bssid));
5538                 return 0;
5539         }
5540
5541         /* Ensure that the rates supported by the driver are compatible with
5542          * this AP, including verification of basic rates (mandatory) */
5543         if (!ipw_compatible_rates(priv, network, &rates)) {
5544                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5545                                 "because configured rate mask excludes "
5546                                 "AP mandatory rate.\n",
5547                                 escape_essid(network->ssid, network->ssid_len),
5548                                 MAC_ARG(network->bssid));
5549                 return 0;
5550         }
5551
5552         if (rates.num_rates == 0) {
5553                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5554                                 "because of no compatible rates.\n",
5555                                 escape_essid(network->ssid, network->ssid_len),
5556                                 MAC_ARG(network->bssid));
5557                 return 0;
5558         }
5559
5560         /* TODO: Perform any further minimal comparititive tests.  We do not
5561          * want to put too much policy logic here; intelligent scan selection
5562          * should occur within a generic IEEE 802.11 user space tool.  */
5563
5564         /* Set up 'new' AP to this network */
5565         ipw_copy_rates(&match->rates, &rates);
5566         match->network = network;
5567
5568         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5569                         escape_essid(network->ssid, network->ssid_len),
5570                         MAC_ARG(network->bssid));
5571
5572         return 1;
5573 }
5574
5575 static void ipw_adhoc_create(struct ipw_priv *priv,
5576                              struct ieee80211_network *network)
5577 {
5578         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
5579         int i;
5580
5581         /*
5582          * For the purposes of scanning, we can set our wireless mode
5583          * to trigger scans across combinations of bands, but when it
5584          * comes to creating a new ad-hoc network, we have tell the FW
5585          * exactly which band to use.
5586          *
5587          * We also have the possibility of an invalid channel for the
5588          * chossen band.  Attempting to create a new ad-hoc network
5589          * with an invalid channel for wireless mode will trigger a
5590          * FW fatal error.
5591          *
5592          */
5593         switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
5594         case IEEE80211_52GHZ_BAND:
5595                 network->mode = IEEE_A;
5596                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5597                 if (i == -1)
5598                         BUG();
5599                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5600                         IPW_WARNING("Overriding invalid channel\n");
5601                         priv->channel = geo->a[0].channel;
5602                 }
5603                 break;
5604
5605         case IEEE80211_24GHZ_BAND:
5606                 if (priv->ieee->mode & IEEE_G)
5607                         network->mode = IEEE_G;
5608                 else
5609                         network->mode = IEEE_B;
5610                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5611                 if (i == -1)
5612                         BUG();
5613                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5614                         IPW_WARNING("Overriding invalid channel\n");
5615                         priv->channel = geo->bg[0].channel;
5616                 }
5617                 break;
5618
5619         default:
5620                 IPW_WARNING("Overriding invalid channel\n");
5621                 if (priv->ieee->mode & IEEE_A) {
5622                         network->mode = IEEE_A;
5623                         priv->channel = geo->a[0].channel;
5624                 } else if (priv->ieee->mode & IEEE_G) {
5625                         network->mode = IEEE_G;
5626                         priv->channel = geo->bg[0].channel;
5627                 } else {
5628                         network->mode = IEEE_B;
5629                         priv->channel = geo->bg[0].channel;
5630                 }
5631                 break;
5632         }
5633
5634         network->channel = priv->channel;
5635         priv->config |= CFG_ADHOC_PERSIST;
5636         ipw_create_bssid(priv, network->bssid);
5637         network->ssid_len = priv->essid_len;
5638         memcpy(network->ssid, priv->essid, priv->essid_len);
5639         memset(&network->stats, 0, sizeof(network->stats));
5640         network->capability = WLAN_CAPABILITY_IBSS;
5641         if (!(priv->config & CFG_PREAMBLE_LONG))
5642                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5643         if (priv->capability & CAP_PRIVACY_ON)
5644                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5645         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5646         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5647         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5648         memcpy(network->rates_ex,
5649                &priv->rates.supported_rates[network->rates_len],
5650                network->rates_ex_len);
5651         network->last_scanned = 0;
5652         network->flags = 0;
5653         network->last_associate = 0;
5654         network->time_stamp[0] = 0;
5655         network->time_stamp[1] = 0;
5656         network->beacon_interval = 100; /* Default */
5657         network->listen_interval = 10;  /* Default */
5658         network->atim_window = 0;       /* Default */
5659         network->wpa_ie_len = 0;
5660         network->rsn_ie_len = 0;
5661 }
5662
5663 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5664 {
5665         struct ipw_tgi_tx_key *key;
5666         struct host_cmd cmd = {
5667                 .cmd = IPW_CMD_TGI_TX_KEY,
5668                 .len = sizeof(*key)
5669         };
5670
5671         if (!(priv->ieee->sec.flags & (1 << index)))
5672                 return;
5673
5674         key = (struct ipw_tgi_tx_key *)&cmd.param;
5675         key->key_id = index;
5676         memcpy(key->key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5677         key->security_type = type;
5678         key->station_index = 0; /* always 0 for BSS */
5679         key->flags = 0;
5680         /* 0 for new key; previous value of counter (after fatal error) */
5681         key->tx_counter[0] = 0;
5682         key->tx_counter[1] = 0;
5683
5684         ipw_send_cmd(priv, &cmd);
5685 }
5686
5687 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5688 {
5689         struct ipw_wep_key *key;
5690         int i;
5691         struct host_cmd cmd = {
5692                 .cmd = IPW_CMD_WEP_KEY,
5693                 .len = sizeof(*key)
5694         };
5695
5696         key = (struct ipw_wep_key *)&cmd.param;
5697         key->cmd_id = DINO_CMD_WEP_KEY;
5698         key->seq_num = 0;
5699
5700         /* Note: AES keys cannot be set for multiple times.
5701          * Only set it at the first time. */
5702         for (i = 0; i < 4; i++) {
5703                 key->key_index = i | type;
5704                 if (!(priv->ieee->sec.flags & (1 << i))) {
5705                         key->key_size = 0;
5706                         continue;
5707                 }
5708
5709                 key->key_size = priv->ieee->sec.key_sizes[i];
5710                 memcpy(key->key, priv->ieee->sec.keys[i], key->key_size);
5711
5712                 ipw_send_cmd(priv, &cmd);
5713         }
5714 }
5715
5716 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5717 {
5718         if (priv->ieee->host_encrypt)
5719                 return;
5720
5721         switch (level) {
5722         case SEC_LEVEL_3:
5723                 priv->sys_config.disable_unicast_decryption = 0;
5724                 priv->ieee->host_decrypt = 0;
5725                 break;
5726         case SEC_LEVEL_2:
5727                 priv->sys_config.disable_unicast_decryption = 1;
5728                 priv->ieee->host_decrypt = 1;
5729                 break;
5730         case SEC_LEVEL_1:
5731                 priv->sys_config.disable_unicast_decryption = 0;
5732                 priv->ieee->host_decrypt = 0;
5733                 break;
5734         case SEC_LEVEL_0:
5735                 priv->sys_config.disable_unicast_decryption = 1;
5736                 break;
5737         default:
5738                 break;
5739         }
5740 }
5741
5742 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5743 {
5744         if (priv->ieee->host_encrypt)
5745                 return;
5746
5747         switch (level) {
5748         case SEC_LEVEL_3:
5749                 priv->sys_config.disable_multicast_decryption = 0;
5750                 break;
5751         case SEC_LEVEL_2:
5752                 priv->sys_config.disable_multicast_decryption = 1;
5753                 break;
5754         case SEC_LEVEL_1:
5755                 priv->sys_config.disable_multicast_decryption = 0;
5756                 break;
5757         case SEC_LEVEL_0:
5758                 priv->sys_config.disable_multicast_decryption = 1;
5759                 break;
5760         default:
5761                 break;
5762         }
5763 }
5764
5765 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5766 {
5767         switch (priv->ieee->sec.level) {
5768         case SEC_LEVEL_3:
5769                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5770                         ipw_send_tgi_tx_key(priv,
5771                                             DCT_FLAG_EXT_SECURITY_CCM,
5772                                             priv->ieee->sec.active_key);
5773
5774                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5775                 break;
5776         case SEC_LEVEL_2:
5777                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5778                         ipw_send_tgi_tx_key(priv,
5779                                             DCT_FLAG_EXT_SECURITY_TKIP,
5780                                             priv->ieee->sec.active_key);
5781                 break;
5782         case SEC_LEVEL_1:
5783                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5784                 break;
5785         case SEC_LEVEL_0:
5786         default:
5787                 break;
5788         }
5789
5790         ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5791         ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5792 }
5793
5794 static void ipw_adhoc_check(void *data)
5795 {
5796         struct ipw_priv *priv = data;
5797
5798         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5799             !(priv->config & CFG_ADHOC_PERSIST)) {
5800                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5801                           IPW_DL_STATE | IPW_DL_ASSOC,
5802                           "Missed beacon: %d - disassociate\n",
5803                           priv->missed_adhoc_beacons);
5804                 ipw_remove_current_network(priv);
5805                 ipw_disassociate(priv);
5806                 return;
5807         }
5808
5809         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5810                            priv->assoc_request.beacon_interval);
5811 }
5812
5813 static void ipw_bg_adhoc_check(void *data)
5814 {
5815         struct ipw_priv *priv = data;
5816         down(&priv->sem);
5817         ipw_adhoc_check(data);
5818         up(&priv->sem);
5819 }
5820
5821 #ifdef CONFIG_IPW_DEBUG
5822 static void ipw_debug_config(struct ipw_priv *priv)
5823 {
5824         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5825                        "[CFG 0x%08X]\n", priv->config);
5826         if (priv->config & CFG_STATIC_CHANNEL)
5827                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5828         else
5829                 IPW_DEBUG_INFO("Channel unlocked.\n");
5830         if (priv->config & CFG_STATIC_ESSID)
5831                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5832                                escape_essid(priv->essid, priv->essid_len));
5833         else
5834                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5835         if (priv->config & CFG_STATIC_BSSID)
5836                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5837                                MAC_ARG(priv->bssid));
5838         else
5839                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5840         if (priv->capability & CAP_PRIVACY_ON)
5841                 IPW_DEBUG_INFO("PRIVACY on\n");
5842         else
5843                 IPW_DEBUG_INFO("PRIVACY off\n");
5844         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5845 }
5846 #else
5847 #define ipw_debug_config(x) do {} while (0)
5848 #endif
5849
5850 static inline void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5851 {
5852         /* TODO: Verify that this works... */
5853         struct ipw_fixed_rate fr = {
5854                 .tx_rates = priv->rates_mask
5855         };
5856         u32 reg;
5857         u16 mask = 0;
5858
5859         /* Identify 'current FW band' and match it with the fixed
5860          * Tx rates */
5861
5862         switch (priv->ieee->freq_band) {
5863         case IEEE80211_52GHZ_BAND:      /* A only */
5864                 /* IEEE_A */
5865                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5866                         /* Invalid fixed rate mask */
5867                         IPW_DEBUG_WX
5868                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5869                         fr.tx_rates = 0;
5870                         break;
5871                 }
5872
5873                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5874                 break;
5875
5876         default:                /* 2.4Ghz or Mixed */
5877                 /* IEEE_B */
5878                 if (mode == IEEE_B) {
5879                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5880                                 /* Invalid fixed rate mask */
5881                                 IPW_DEBUG_WX
5882                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5883                                 fr.tx_rates = 0;
5884                         }
5885                         break;
5886                 }
5887
5888                 /* IEEE_G */
5889                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5890                                     IEEE80211_OFDM_RATES_MASK)) {
5891                         /* Invalid fixed rate mask */
5892                         IPW_DEBUG_WX
5893                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5894                         fr.tx_rates = 0;
5895                         break;
5896                 }
5897
5898                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5899                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5900                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5901                 }
5902
5903                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5904                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5905                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5906                 }
5907
5908                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5909                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5910                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5911                 }
5912
5913                 fr.tx_rates |= mask;
5914                 break;
5915         }
5916
5917         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5918         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5919 }
5920
5921 static void ipw_abort_scan(struct ipw_priv *priv)
5922 {
5923         int err;
5924
5925         if (priv->status & STATUS_SCAN_ABORTING) {
5926                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5927                 return;
5928         }
5929         priv->status |= STATUS_SCAN_ABORTING;
5930
5931         err = ipw_send_scan_abort(priv);
5932         if (err)
5933                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5934 }
5935
5936 static void ipw_add_scan_channels(struct ipw_priv *priv,
5937                                   struct ipw_scan_request_ext *scan,
5938                                   int scan_type)
5939 {
5940         int channel_index = 0;
5941         const struct ieee80211_geo *geo;
5942         int i;
5943
5944         geo = ipw_get_geo(priv->ieee);
5945
5946         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5947                 int start = channel_index;
5948                 for (i = 0; i < geo->a_channels; i++) {
5949                         if ((priv->status & STATUS_ASSOCIATED) &&
5950                             geo->a[i].channel == priv->channel)
5951                                 continue;
5952                         channel_index++;
5953                         scan->channels_list[channel_index] = geo->a[i].channel;
5954                         ipw_set_scan_type(scan, channel_index,
5955                                           geo->a[i].
5956                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5957                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5958                                           scan_type);
5959                 }
5960
5961                 if (start != channel_index) {
5962                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5963                             (channel_index - start);
5964                         channel_index++;
5965                 }
5966         }
5967
5968         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5969                 int start = channel_index;
5970                 if (priv->config & CFG_SPEED_SCAN) {
5971                         int index;
5972                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5973                                 /* nop out the list */
5974                                 [0] = 0
5975                         };
5976
5977                         u8 channel;
5978                         while (channel_index < IPW_SCAN_CHANNELS) {
5979                                 channel =
5980                                     priv->speed_scan[priv->speed_scan_pos];
5981                                 if (channel == 0) {
5982                                         priv->speed_scan_pos = 0;
5983                                         channel = priv->speed_scan[0];
5984                                 }
5985                                 if ((priv->status & STATUS_ASSOCIATED) &&
5986                                     channel == priv->channel) {
5987                                         priv->speed_scan_pos++;
5988                                         continue;
5989                                 }
5990
5991                                 /* If this channel has already been
5992                                  * added in scan, break from loop
5993                                  * and this will be the first channel
5994                                  * in the next scan.
5995                                  */
5996                                 if (channels[channel - 1] != 0)
5997                                         break;
5998
5999                                 channels[channel - 1] = 1;
6000                                 priv->speed_scan_pos++;
6001                                 channel_index++;
6002                                 scan->channels_list[channel_index] = channel;
6003                                 index =
6004                                     ipw_channel_to_index(priv->ieee, channel);
6005                                 ipw_set_scan_type(scan, channel_index,
6006                                                   geo->bg[index].
6007                                                   flags &
6008                                                   IEEE80211_CH_PASSIVE_ONLY ?
6009                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6010                                                   : scan_type);
6011                         }
6012                 } else {
6013                         for (i = 0; i < geo->bg_channels; i++) {
6014                                 if ((priv->status & STATUS_ASSOCIATED) &&
6015                                     geo->bg[i].channel == priv->channel)
6016                                         continue;
6017                                 channel_index++;
6018                                 scan->channels_list[channel_index] =
6019                                     geo->bg[i].channel;
6020                                 ipw_set_scan_type(scan, channel_index,
6021                                                   geo->bg[i].
6022                                                   flags &
6023                                                   IEEE80211_CH_PASSIVE_ONLY ?
6024                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6025                                                   : scan_type);
6026                         }
6027                 }
6028
6029                 if (start != channel_index) {
6030                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6031                             (channel_index - start);
6032                 }
6033         }
6034 }
6035
6036 static int ipw_request_scan(struct ipw_priv *priv)
6037 {
6038         struct ipw_scan_request_ext scan;
6039         int err = 0, scan_type;
6040
6041         if (!(priv->status & STATUS_INIT) ||
6042             (priv->status & STATUS_EXIT_PENDING))
6043                 return 0;
6044
6045         down(&priv->sem);
6046
6047         if (priv->status & STATUS_SCANNING) {
6048                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6049                 priv->status |= STATUS_SCAN_PENDING;
6050                 goto done;
6051         }
6052
6053         if (!(priv->status & STATUS_SCAN_FORCED) &&
6054             priv->status & STATUS_SCAN_ABORTING) {
6055                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6056                 priv->status |= STATUS_SCAN_PENDING;
6057                 goto done;
6058         }
6059
6060         if (priv->status & STATUS_RF_KILL_MASK) {
6061                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6062                 priv->status |= STATUS_SCAN_PENDING;
6063                 goto done;
6064         }
6065
6066         memset(&scan, 0, sizeof(scan));
6067
6068         if (priv->config & CFG_SPEED_SCAN)
6069                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6070                     cpu_to_le16(30);
6071         else
6072                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6073                     cpu_to_le16(20);
6074
6075         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6076             cpu_to_le16(20);
6077         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6078
6079         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6080
6081 #ifdef CONFIG_IPW2200_MONITOR
6082         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6083                 u8 channel;
6084                 u8 band = 0;
6085
6086                 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
6087                 case IEEE80211_52GHZ_BAND:
6088                         band = (u8) (IPW_A_MODE << 6) | 1;
6089                         channel = priv->channel;
6090                         break;
6091
6092                 case IEEE80211_24GHZ_BAND:
6093                         band = (u8) (IPW_B_MODE << 6) | 1;
6094                         channel = priv->channel;
6095                         break;
6096
6097                 default:
6098                         band = (u8) (IPW_B_MODE << 6) | 1;
6099                         channel = 9;
6100                         break;
6101                 }
6102
6103                 scan.channels_list[0] = band;
6104                 scan.channels_list[1] = channel;
6105                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6106
6107                 /* NOTE:  The card will sit on this channel for this time
6108                  * period.  Scan aborts are timing sensitive and frequently
6109                  * result in firmware restarts.  As such, it is best to
6110                  * set a small dwell_time here and just keep re-issuing
6111                  * scans.  Otherwise fast channel hopping will not actually
6112                  * hop channels.
6113                  *
6114                  * TODO: Move SPEED SCAN support to all modes and bands */
6115                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6116                     cpu_to_le16(2000);
6117         } else {
6118 #endif                          /* CONFIG_IPW2200_MONITOR */
6119                 /* If we are roaming, then make this a directed scan for the
6120                  * current network.  Otherwise, ensure that every other scan
6121                  * is a fast channel hop scan */
6122                 if ((priv->status & STATUS_ROAMING)
6123                     || (!(priv->status & STATUS_ASSOCIATED)
6124                         && (priv->config & CFG_STATIC_ESSID)
6125                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6126                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6127                         if (err) {
6128                                 IPW_DEBUG_HC("Attempt to send SSID command "
6129                                              "failed.\n");
6130                                 goto done;
6131                         }
6132
6133                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6134                 } else
6135                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6136
6137                 ipw_add_scan_channels(priv, &scan, scan_type);
6138 #ifdef CONFIG_IPW2200_MONITOR
6139         }
6140 #endif
6141
6142         err = ipw_send_scan_request_ext(priv, &scan);
6143         if (err) {
6144                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6145                 goto done;
6146         }
6147
6148         priv->status |= STATUS_SCANNING;
6149         priv->status &= ~STATUS_SCAN_PENDING;
6150         queue_delayed_work(priv->workqueue, &priv->scan_check,
6151                            IPW_SCAN_CHECK_WATCHDOG);
6152       done:
6153         up(&priv->sem);
6154         return err;
6155 }
6156
6157 static void ipw_bg_abort_scan(void *data)
6158 {
6159         struct ipw_priv *priv = data;
6160         down(&priv->sem);
6161         ipw_abort_scan(data);
6162         up(&priv->sem);
6163 }
6164
6165 #if WIRELESS_EXT < 18
6166 /* Support for wpa_supplicant before WE-18, deprecated. */
6167
6168 /* following definitions must match definitions in driver_ipw.c */
6169
6170 #define IPW_IOCTL_WPA_SUPPLICANT                SIOCIWFIRSTPRIV+30
6171
6172 #define IPW_CMD_SET_WPA_PARAM                   1
6173 #define IPW_CMD_SET_WPA_IE                      2
6174 #define IPW_CMD_SET_ENCRYPTION                  3
6175 #define IPW_CMD_MLME                            4
6176
6177 #define IPW_PARAM_WPA_ENABLED                   1
6178 #define IPW_PARAM_TKIP_COUNTERMEASURES          2
6179 #define IPW_PARAM_DROP_UNENCRYPTED              3
6180 #define IPW_PARAM_PRIVACY_INVOKED               4
6181 #define IPW_PARAM_AUTH_ALGS                     5
6182 #define IPW_PARAM_IEEE_802_1X                   6
6183
6184 #define IPW_MLME_STA_DEAUTH                     1
6185 #define IPW_MLME_STA_DISASSOC                   2
6186
6187 #define IPW_CRYPT_ERR_UNKNOWN_ALG               2
6188 #define IPW_CRYPT_ERR_UNKNOWN_ADDR              3
6189 #define IPW_CRYPT_ERR_CRYPT_INIT_FAILED         4
6190 #define IPW_CRYPT_ERR_KEY_SET_FAILED            5
6191 #define IPW_CRYPT_ERR_TX_KEY_SET_FAILED         6
6192 #define IPW_CRYPT_ERR_CARD_CONF_FAILED          7
6193
6194 #define IPW_CRYPT_ALG_NAME_LEN                  16
6195
6196 struct ipw_param {
6197         u32 cmd;
6198         u8 sta_addr[ETH_ALEN];
6199         union {
6200                 struct {
6201                         u8 name;
6202                         u32 value;
6203                 } wpa_param;
6204                 struct {
6205                         u32 len;
6206                         u8 reserved[32];
6207                         u8 data[0];
6208                 } wpa_ie;
6209                 struct {
6210                         u32 command;
6211                         u32 reason_code;
6212                 } mlme;
6213                 struct {
6214                         u8 alg[IPW_CRYPT_ALG_NAME_LEN];
6215                         u8 set_tx;
6216                         u32 err;
6217                         u8 idx;
6218                         u8 seq[8];      /* sequence counter (set: RX, get: TX) */
6219                         u16 key_len;
6220                         u8 key[0];
6221                 } crypt;
6222
6223         } u;
6224 };
6225
6226 /* end of driver_ipw.c code */
6227 #endif
6228
6229 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6230 {
6231         /* This is called when wpa_supplicant loads and closes the driver
6232          * interface. */
6233         return 0;
6234 }
6235
6236 #if WIRELESS_EXT < 18
6237 #define IW_AUTH_ALG_OPEN_SYSTEM                 0x1
6238 #define IW_AUTH_ALG_SHARED_KEY                  0x2
6239 #endif
6240
6241 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6242 {
6243         struct ieee80211_device *ieee = priv->ieee;
6244         struct ieee80211_security sec = {
6245                 .flags = SEC_AUTH_MODE,
6246         };
6247         int ret = 0;
6248
6249         if (value & IW_AUTH_ALG_SHARED_KEY) {
6250                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6251                 ieee->open_wep = 0;
6252         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6253                 sec.auth_mode = WLAN_AUTH_OPEN;
6254                 ieee->open_wep = 1;
6255         } else
6256                 return -EINVAL;
6257
6258         if (ieee->set_security)
6259                 ieee->set_security(ieee->dev, &sec);
6260         else
6261                 ret = -EOPNOTSUPP;
6262
6263         return ret;
6264 }
6265
6266 void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, int wpa_ie_len)
6267 {
6268         /* make sure WPA is enabled */
6269         ipw_wpa_enable(priv, 1);
6270
6271         ipw_disassociate(priv);
6272 }
6273
6274 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6275                             char *capabilities, int length)
6276 {
6277         struct host_cmd cmd = {
6278                 .cmd = IPW_CMD_RSN_CAPABILITIES,
6279                 .len = length,
6280         };
6281
6282         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6283
6284         memcpy(cmd.param, capabilities, length);
6285         return ipw_send_cmd(priv, &cmd);
6286 }
6287
6288 #if WIRELESS_EXT < 18
6289 static int ipw_wpa_set_param(struct net_device *dev, u8 name, u32 value)
6290 {
6291         struct ipw_priv *priv = ieee80211_priv(dev);
6292         struct ieee80211_crypt_data *crypt;
6293         unsigned long flags;
6294         int ret = 0;
6295
6296         switch (name) {
6297         case IPW_PARAM_WPA_ENABLED:
6298                 ret = ipw_wpa_enable(priv, value);
6299                 break;
6300
6301         case IPW_PARAM_TKIP_COUNTERMEASURES:
6302                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6303                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6304                         IPW_WARNING("Can't set TKIP countermeasures: "
6305                                     "crypt not set!\n");
6306                         break;
6307                 }
6308
6309                 flags = crypt->ops->get_flags(crypt->priv);
6310
6311                 if (value)
6312                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6313                 else
6314                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6315
6316                 crypt->ops->set_flags(flags, crypt->priv);
6317
6318                 break;
6319
6320         case IPW_PARAM_DROP_UNENCRYPTED:{
6321                         /* HACK:
6322                          *
6323                          * wpa_supplicant calls set_wpa_enabled when the driver
6324                          * is loaded and unloaded, regardless of if WPA is being
6325                          * used.  No other calls are made which can be used to
6326                          * determine if encryption will be used or not prior to
6327                          * association being expected.  If encryption is not being
6328                          * used, drop_unencrypted is set to false, else true -- we
6329                          * can use this to determine if the CAP_PRIVACY_ON bit should
6330                          * be set.
6331                          */
6332                         struct ieee80211_security sec = {
6333                                 .flags = SEC_ENABLED,
6334                                 .enabled = value,
6335                         };
6336                         priv->ieee->drop_unencrypted = value;
6337                         /* We only change SEC_LEVEL for open mode. Others
6338                          * are set by ipw_wpa_set_encryption.
6339                          */
6340                         if (!value) {
6341                                 sec.flags |= SEC_LEVEL;
6342                                 sec.level = SEC_LEVEL_0;
6343                         } else {
6344                                 sec.flags |= SEC_LEVEL;
6345                                 sec.level = SEC_LEVEL_1;
6346                         }
6347                         if (priv->ieee->set_security)
6348                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6349                         break;
6350                 }
6351
6352         case IPW_PARAM_PRIVACY_INVOKED:
6353                 priv->ieee->privacy_invoked = value;
6354                 break;
6355
6356         case IPW_PARAM_AUTH_ALGS:
6357                 ret = ipw_wpa_set_auth_algs(priv, value);
6358                 break;
6359
6360         case IPW_PARAM_IEEE_802_1X:
6361                 priv->ieee->ieee802_1x = value;
6362                 break;
6363
6364         default:
6365                 IPW_ERROR("%s: Unknown WPA param: %d\n", dev->name, name);
6366                 ret = -EOPNOTSUPP;
6367         }
6368
6369         return ret;
6370 }
6371
6372 static int ipw_wpa_mlme(struct net_device *dev, int command, int reason)
6373 {
6374         struct ipw_priv *priv = ieee80211_priv(dev);
6375         int ret = 0;
6376
6377         switch (command) {
6378         case IPW_MLME_STA_DEAUTH:
6379                 // silently ignore
6380                 break;
6381
6382         case IPW_MLME_STA_DISASSOC:
6383                 ipw_disassociate(priv);
6384                 break;
6385
6386         default:
6387                 IPW_ERROR("%s: Unknown MLME request: %d\n", dev->name, command);
6388                 ret = -EOPNOTSUPP;
6389         }
6390
6391         return ret;
6392 }
6393
6394 static int ipw_wpa_ie_cipher2level(u8 cipher)
6395 {
6396         switch (cipher) {
6397         case 4:         /* CCMP */
6398                 return SEC_LEVEL_3;
6399         case 2:         /* TKIP */
6400                 return SEC_LEVEL_2;
6401         case 5:         /* WEP104 */
6402         case 1:         /* WEP40 */
6403                 return SEC_LEVEL_1;
6404         case 0:         /* NONE */
6405                 return SEC_LEVEL_0;
6406         default:
6407                 return -1;
6408         }
6409 }
6410
6411 static int ipw_wpa_set_wpa_ie(struct net_device *dev,
6412                               struct ipw_param *param, int plen)
6413 {
6414         struct ipw_priv *priv = ieee80211_priv(dev);
6415         struct ieee80211_device *ieee = priv->ieee;
6416         u8 *buf;
6417         u8 *ptk, *gtk;
6418         int level;
6419
6420         if (param->u.wpa_ie.len > MAX_WPA_IE_LEN ||
6421             (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL))
6422                 return -EINVAL;
6423
6424         if (param->u.wpa_ie.len) {
6425                 buf = kmalloc(param->u.wpa_ie.len, GFP_KERNEL);
6426                 if (buf == NULL)
6427                         return -ENOMEM;
6428
6429                 memcpy(buf, param->u.wpa_ie.data, param->u.wpa_ie.len);
6430                 kfree(ieee->wpa_ie);
6431                 ieee->wpa_ie = buf;
6432                 ieee->wpa_ie_len = param->u.wpa_ie.len;
6433         } else {
6434                 kfree(ieee->wpa_ie);
6435                 ieee->wpa_ie = NULL;
6436                 ieee->wpa_ie_len = 0;
6437                 goto done;
6438         }
6439
6440         if (priv->ieee->host_encrypt)
6441                 goto done;
6442
6443         /* HACK: Parse wpa_ie here to get pairwise suite, otherwise
6444          * we need to change driver_ipw.c from wpa_supplicant. This
6445          * is OK since -Dipw is deprecated. The -Dwext driver has a
6446          * clean way to handle this. */
6447         gtk = ptk = (u8 *) ieee->wpa_ie;
6448         if (ieee->wpa_ie[0] == 0x30) {  /* RSN IE */
6449                 gtk += 4 + 3;
6450                 ptk += 4 + 4 + 2 + 3;
6451         } else {                /* WPA IE */
6452                 gtk += 8 + 3;
6453                 ptk += 8 + 4 + 2 + 3;
6454         }
6455
6456         if (ptk - (u8 *) ieee->wpa_ie > ieee->wpa_ie_len)
6457                 return -EINVAL;
6458
6459         level = ipw_wpa_ie_cipher2level(*gtk);
6460         ipw_set_hw_decrypt_multicast(priv, level);
6461
6462         level = ipw_wpa_ie_cipher2level(*ptk);
6463         ipw_set_hw_decrypt_unicast(priv, level);
6464
6465       done:
6466         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6467         return 0;
6468 }
6469
6470 /* implementation borrowed from hostap driver */
6471
6472 static int ipw_wpa_set_encryption(struct net_device *dev,
6473                                   struct ipw_param *param, int param_len)
6474 {
6475         int ret = 0;
6476         struct ipw_priv *priv = ieee80211_priv(dev);
6477         struct ieee80211_device *ieee = priv->ieee;
6478         struct ieee80211_crypto_ops *ops;
6479         struct ieee80211_crypt_data **crypt;
6480
6481         struct ieee80211_security sec = {
6482                 .flags = 0,
6483         };
6484
6485         param->u.crypt.err = 0;
6486         param->u.crypt.alg[IPW_CRYPT_ALG_NAME_LEN - 1] = '\0';
6487
6488         if (param_len !=
6489             (int)((char *)param->u.crypt.key - (char *)param) +
6490             param->u.crypt.key_len) {
6491                 IPW_DEBUG_INFO("Len mismatch %d, %d\n", param_len,
6492                                param->u.crypt.key_len);
6493                 return -EINVAL;
6494         }
6495         if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
6496             param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
6497             param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
6498                 if (param->u.crypt.idx >= WEP_KEYS)
6499                         return -EINVAL;
6500                 crypt = &ieee->crypt[param->u.crypt.idx];
6501         } else {
6502                 return -EINVAL;
6503         }
6504
6505         sec.flags |= SEC_ENABLED | SEC_ENCRYPT;
6506         if (strcmp(param->u.crypt.alg, "none") == 0) {
6507                 if (crypt) {
6508                         sec.enabled = 0;
6509                         sec.encrypt = 0;
6510                         sec.level = SEC_LEVEL_0;
6511                         sec.flags |= SEC_LEVEL;
6512                         ieee80211_crypt_delayed_deinit(ieee, crypt);
6513                 }
6514                 goto done;
6515         }
6516         sec.enabled = 1;
6517         sec.encrypt = 1;
6518
6519         /* IPW HW cannot build TKIP MIC, host decryption still needed. */
6520         if (strcmp(param->u.crypt.alg, "TKIP") == 0)
6521                 ieee->host_encrypt_msdu = 1;
6522
6523         if (!(ieee->host_encrypt || ieee->host_encrypt_msdu ||
6524               ieee->host_decrypt))
6525                 goto skip_host_crypt;
6526
6527         ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6528         if (ops == NULL && strcmp(param->u.crypt.alg, "WEP") == 0) {
6529                 request_module("ieee80211_crypt_wep");
6530                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6531         } else if (ops == NULL && strcmp(param->u.crypt.alg, "TKIP") == 0) {
6532                 request_module("ieee80211_crypt_tkip");
6533                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6534         } else if (ops == NULL && strcmp(param->u.crypt.alg, "CCMP") == 0) {
6535                 request_module("ieee80211_crypt_ccmp");
6536                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6537         }
6538         if (ops == NULL) {
6539                 IPW_DEBUG_INFO("%s: unknown crypto alg '%s'\n",
6540                                dev->name, param->u.crypt.alg);
6541                 param->u.crypt.err = IPW_CRYPT_ERR_UNKNOWN_ALG;
6542                 ret = -EINVAL;
6543                 goto done;
6544         }
6545
6546         if (*crypt == NULL || (*crypt)->ops != ops) {
6547                 struct ieee80211_crypt_data *new_crypt;
6548
6549                 ieee80211_crypt_delayed_deinit(ieee, crypt);
6550
6551                 new_crypt = (struct ieee80211_crypt_data *)
6552                     kmalloc(sizeof(*new_crypt), GFP_KERNEL);
6553                 if (new_crypt == NULL) {
6554                         ret = -ENOMEM;
6555                         goto done;
6556                 }
6557                 memset(new_crypt, 0, sizeof(struct ieee80211_crypt_data));
6558                 new_crypt->ops = ops;
6559                 if (new_crypt->ops && try_module_get(new_crypt->ops->owner))
6560                         new_crypt->priv =
6561                             new_crypt->ops->init(param->u.crypt.idx);
6562
6563                 if (new_crypt->priv == NULL) {
6564                         kfree(new_crypt);
6565                         param->u.crypt.err = IPW_CRYPT_ERR_CRYPT_INIT_FAILED;
6566                         ret = -EINVAL;
6567                         goto done;
6568                 }
6569
6570                 *crypt = new_crypt;
6571         }
6572
6573         if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key &&
6574             (*crypt)->ops->set_key(param->u.crypt.key,
6575                                    param->u.crypt.key_len, param->u.crypt.seq,
6576                                    (*crypt)->priv) < 0) {
6577                 IPW_DEBUG_INFO("%s: key setting failed\n", dev->name);
6578                 param->u.crypt.err = IPW_CRYPT_ERR_KEY_SET_FAILED;
6579                 ret = -EINVAL;
6580                 goto done;
6581         }
6582
6583       skip_host_crypt:
6584         if (param->u.crypt.set_tx) {
6585                 ieee->tx_keyidx = param->u.crypt.idx;
6586                 sec.active_key = param->u.crypt.idx;
6587                 sec.flags |= SEC_ACTIVE_KEY;
6588         } else
6589                 sec.flags &= ~SEC_ACTIVE_KEY;
6590
6591         if (param->u.crypt.alg != NULL) {
6592                 memcpy(sec.keys[param->u.crypt.idx],
6593                        param->u.crypt.key, param->u.crypt.key_len);
6594                 sec.key_sizes[param->u.crypt.idx] = param->u.crypt.key_len;
6595                 sec.flags |= (1 << param->u.crypt.idx);
6596
6597                 if (strcmp(param->u.crypt.alg, "WEP") == 0) {
6598                         sec.flags |= SEC_LEVEL;
6599                         sec.level = SEC_LEVEL_1;
6600                 } else if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
6601                         sec.flags |= SEC_LEVEL;
6602                         sec.level = SEC_LEVEL_2;
6603                 } else if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
6604                         sec.flags |= SEC_LEVEL;
6605                         sec.level = SEC_LEVEL_3;
6606                 }
6607         }
6608       done:
6609         if (ieee->set_security)
6610                 ieee->set_security(ieee->dev, &sec);
6611
6612         /* Do not reset port if card is in Managed mode since resetting will
6613          * generate new IEEE 802.11 authentication which may end up in looping
6614          * with IEEE 802.1X.  If your hardware requires a reset after WEP
6615          * configuration (for example... Prism2), implement the reset_port in
6616          * the callbacks structures used to initialize the 802.11 stack. */
6617         if (ieee->reset_on_keychange &&
6618             ieee->iw_mode != IW_MODE_INFRA &&
6619             ieee->reset_port && ieee->reset_port(dev)) {
6620                 IPW_DEBUG_INFO("%s: reset_port failed\n", dev->name);
6621                 param->u.crypt.err = IPW_CRYPT_ERR_CARD_CONF_FAILED;
6622                 return -EINVAL;
6623         }
6624
6625         return ret;
6626 }
6627
6628 static int ipw_wpa_supplicant(struct net_device *dev, struct iw_point *p)
6629 {
6630         struct ipw_param *param;
6631         struct ipw_priv *priv = ieee80211_priv(dev);
6632         int ret = 0;
6633
6634         IPW_DEBUG_INFO("wpa_supplicant: len=%d\n", p->length);
6635
6636         if (p->length < sizeof(struct ipw_param) || !p->pointer)
6637                 return -EINVAL;
6638
6639         param = (struct ipw_param *)kmalloc(p->length, GFP_KERNEL);
6640         if (param == NULL)
6641                 return -ENOMEM;
6642
6643         if (copy_from_user(param, p->pointer, p->length)) {
6644                 kfree(param);
6645                 return -EFAULT;
6646         }
6647
6648         down(&priv->sem);
6649         switch (param->cmd) {
6650
6651         case IPW_CMD_SET_WPA_PARAM:
6652                 ret = ipw_wpa_set_param(dev, param->u.wpa_param.name,
6653                                         param->u.wpa_param.value);
6654                 break;
6655
6656         case IPW_CMD_SET_WPA_IE:
6657                 ret = ipw_wpa_set_wpa_ie(dev, param, p->length);
6658                 break;
6659
6660         case IPW_CMD_SET_ENCRYPTION:
6661                 ret = ipw_wpa_set_encryption(dev, param, p->length);
6662                 break;
6663
6664         case IPW_CMD_MLME:
6665                 ret = ipw_wpa_mlme(dev, param->u.mlme.command,
6666                                    param->u.mlme.reason_code);
6667                 break;
6668
6669         default:
6670                 IPW_ERROR("%s: Unknown WPA supplicant request: %d\n",
6671                           dev->name, param->cmd);
6672                 ret = -EOPNOTSUPP;
6673         }
6674
6675         up(&priv->sem);
6676         if (ret == 0 && copy_to_user(p->pointer, param, p->length))
6677                 ret = -EFAULT;
6678
6679         kfree(param);
6680         return ret;
6681 }
6682 #else
6683 /*
6684  * WE-18 support
6685  */
6686
6687 /* SIOCSIWGENIE */
6688 static int ipw_wx_set_genie(struct net_device *dev,
6689                             struct iw_request_info *info,
6690                             union iwreq_data *wrqu, char *extra)
6691 {
6692         struct ipw_priv *priv = ieee80211_priv(dev);
6693         struct ieee80211_device *ieee = priv->ieee;
6694         u8 *buf;
6695         int err = 0;
6696
6697         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6698             (wrqu->data.length && extra == NULL))
6699                 return -EINVAL;
6700
6701         //down(&priv->sem);
6702
6703         //if (!ieee->wpa_enabled) {
6704         //      err = -EOPNOTSUPP;
6705         //      goto out;
6706         //}
6707
6708         if (wrqu->data.length) {
6709                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6710                 if (buf == NULL) {
6711                         err = -ENOMEM;
6712                         goto out;
6713                 }
6714
6715                 memcpy(buf, extra, wrqu->data.length);
6716                 kfree(ieee->wpa_ie);
6717                 ieee->wpa_ie = buf;
6718                 ieee->wpa_ie_len = wrqu->data.length;
6719         } else {
6720                 kfree(ieee->wpa_ie);
6721                 ieee->wpa_ie = NULL;
6722                 ieee->wpa_ie_len = 0;
6723         }
6724
6725         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6726       out:
6727         //up(&priv->sem);
6728         return err;
6729 }
6730
6731 /* SIOCGIWGENIE */
6732 static int ipw_wx_get_genie(struct net_device *dev,
6733                             struct iw_request_info *info,
6734                             union iwreq_data *wrqu, char *extra)
6735 {
6736         struct ipw_priv *priv = ieee80211_priv(dev);
6737         struct ieee80211_device *ieee = priv->ieee;
6738         int err = 0;
6739
6740         //down(&priv->sem);
6741
6742         //if (!ieee->wpa_enabled) {
6743         //      err = -EOPNOTSUPP;
6744         //      goto out;
6745         //}
6746
6747         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6748                 wrqu->data.length = 0;
6749                 goto out;
6750         }
6751
6752         if (wrqu->data.length < ieee->wpa_ie_len) {
6753                 err = -E2BIG;
6754                 goto out;
6755         }
6756
6757         wrqu->data.length = ieee->wpa_ie_len;
6758         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6759
6760       out:
6761         //up(&priv->sem);
6762         return err;
6763 }
6764
6765 static int wext_cipher2level(int cipher)
6766 {
6767         switch (cipher) {
6768         case IW_AUTH_CIPHER_NONE:
6769                 return SEC_LEVEL_0;
6770         case IW_AUTH_CIPHER_WEP40:
6771         case IW_AUTH_CIPHER_WEP104:
6772                 return SEC_LEVEL_1;
6773         case IW_AUTH_CIPHER_TKIP:
6774                 return SEC_LEVEL_2;
6775         case IW_AUTH_CIPHER_CCMP:
6776                 return SEC_LEVEL_3;
6777         default:
6778                 return -1;
6779         }
6780 }
6781
6782 /* SIOCSIWAUTH */
6783 static int ipw_wx_set_auth(struct net_device *dev,
6784                            struct iw_request_info *info,
6785                            union iwreq_data *wrqu, char *extra)
6786 {
6787         struct ipw_priv *priv = ieee80211_priv(dev);
6788         struct ieee80211_device *ieee = priv->ieee;
6789         struct iw_param *param = &wrqu->param;
6790         struct ieee80211_crypt_data *crypt;
6791         unsigned long flags;
6792         int ret = 0;
6793
6794         switch (param->flags & IW_AUTH_INDEX) {
6795         case IW_AUTH_WPA_VERSION:
6796                 break;
6797         case IW_AUTH_CIPHER_PAIRWISE:
6798                 ipw_set_hw_decrypt_unicast(priv,
6799                                            wext_cipher2level(param->value));
6800                 break;
6801         case IW_AUTH_CIPHER_GROUP:
6802                 ipw_set_hw_decrypt_multicast(priv,
6803                                              wext_cipher2level(param->value));
6804                 break;
6805         case IW_AUTH_KEY_MGMT:
6806                 /*
6807                  * ipw2200 does not use these parameters
6808                  */
6809                 break;
6810
6811         case IW_AUTH_TKIP_COUNTERMEASURES:
6812                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6813                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6814                         IPW_WARNING("Can't set TKIP countermeasures: "
6815                                     "crypt not set!\n");
6816                         break;
6817                 }
6818
6819                 flags = crypt->ops->get_flags(crypt->priv);
6820
6821                 if (param->value)
6822                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6823                 else
6824                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6825
6826                 crypt->ops->set_flags(flags, crypt->priv);
6827
6828                 break;
6829
6830         case IW_AUTH_DROP_UNENCRYPTED:{
6831                         /* HACK:
6832                          *
6833                          * wpa_supplicant calls set_wpa_enabled when the driver
6834                          * is loaded and unloaded, regardless of if WPA is being
6835                          * used.  No other calls are made which can be used to
6836                          * determine if encryption will be used or not prior to
6837                          * association being expected.  If encryption is not being
6838                          * used, drop_unencrypted is set to false, else true -- we
6839                          * can use this to determine if the CAP_PRIVACY_ON bit should
6840                          * be set.
6841                          */
6842                         struct ieee80211_security sec = {
6843                                 .flags = SEC_ENABLED,
6844                                 .enabled = param->value,
6845                         };
6846                         priv->ieee->drop_unencrypted = param->value;
6847                         /* We only change SEC_LEVEL for open mode. Others
6848                          * are set by ipw_wpa_set_encryption.
6849                          */
6850                         if (!param->value) {
6851                                 sec.flags |= SEC_LEVEL;
6852                                 sec.level = SEC_LEVEL_0;
6853                         } else {
6854                                 sec.flags |= SEC_LEVEL;
6855                                 sec.level = SEC_LEVEL_1;
6856                         }
6857                         if (priv->ieee->set_security)
6858                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6859                         break;
6860                 }
6861
6862         case IW_AUTH_80211_AUTH_ALG:
6863                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6864                 break;
6865
6866         case IW_AUTH_WPA_ENABLED:
6867                 ret = ipw_wpa_enable(priv, param->value);
6868                 break;
6869
6870         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6871                 ieee->ieee802_1x = param->value;
6872                 break;
6873
6874                 //case IW_AUTH_ROAMING_CONTROL:
6875         case IW_AUTH_PRIVACY_INVOKED:
6876                 ieee->privacy_invoked = param->value;
6877                 break;
6878
6879         default:
6880                 return -EOPNOTSUPP;
6881         }
6882         return ret;
6883 }
6884
6885 /* SIOCGIWAUTH */
6886 static int ipw_wx_get_auth(struct net_device *dev,
6887                            struct iw_request_info *info,
6888                            union iwreq_data *wrqu, char *extra)
6889 {
6890         struct ipw_priv *priv = ieee80211_priv(dev);
6891         struct ieee80211_device *ieee = priv->ieee;
6892         struct ieee80211_crypt_data *crypt;
6893         struct iw_param *param = &wrqu->param;
6894         int ret = 0;
6895
6896         switch (param->flags & IW_AUTH_INDEX) {
6897         case IW_AUTH_WPA_VERSION:
6898         case IW_AUTH_CIPHER_PAIRWISE:
6899         case IW_AUTH_CIPHER_GROUP:
6900         case IW_AUTH_KEY_MGMT:
6901                 /*
6902                  * wpa_supplicant will control these internally
6903                  */
6904                 ret = -EOPNOTSUPP;
6905                 break;
6906
6907         case IW_AUTH_TKIP_COUNTERMEASURES:
6908                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6909                 if (!crypt || !crypt->ops->get_flags) {
6910                         IPW_WARNING("Can't get TKIP countermeasures: "
6911                                     "crypt not set!\n");
6912                         break;
6913                 }
6914
6915                 param->value = (crypt->ops->get_flags(crypt->priv) &
6916                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6917
6918                 break;
6919
6920         case IW_AUTH_DROP_UNENCRYPTED:
6921                 param->value = ieee->drop_unencrypted;
6922                 break;
6923
6924         case IW_AUTH_80211_AUTH_ALG:
6925                 param->value = ieee->sec.auth_mode;
6926                 break;
6927
6928         case IW_AUTH_WPA_ENABLED:
6929                 param->value = ieee->wpa_enabled;
6930                 break;
6931
6932         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6933                 param->value = ieee->ieee802_1x;
6934                 break;
6935
6936         case IW_AUTH_ROAMING_CONTROL:
6937         case IW_AUTH_PRIVACY_INVOKED:
6938                 param->value = ieee->privacy_invoked;
6939                 break;
6940
6941         default:
6942                 return -EOPNOTSUPP;
6943         }
6944         return 0;
6945 }
6946
6947 /* SIOCSIWENCODEEXT */
6948 static int ipw_wx_set_encodeext(struct net_device *dev,
6949                                 struct iw_request_info *info,
6950                                 union iwreq_data *wrqu, char *extra)
6951 {
6952         struct ipw_priv *priv = ieee80211_priv(dev);
6953         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6954
6955         if (hwcrypto) {
6956                 /* IPW HW can't build TKIP MIC, host decryption still needed */
6957                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6958                         priv->ieee->host_encrypt = 0;
6959                         priv->ieee->host_encrypt_msdu = 1;
6960                         priv->ieee->host_decrypt = 1;
6961                 } else {
6962                         priv->ieee->host_encrypt = 0;
6963                         priv->ieee->host_encrypt_msdu = 0;
6964                         priv->ieee->host_decrypt = 0;
6965                 }
6966         }
6967
6968         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6969 }
6970
6971 /* SIOCGIWENCODEEXT */
6972 static int ipw_wx_get_encodeext(struct net_device *dev,
6973                                 struct iw_request_info *info,
6974                                 union iwreq_data *wrqu, char *extra)
6975 {
6976         struct ipw_priv *priv = ieee80211_priv(dev);
6977         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6978 }
6979
6980 /* SIOCSIWMLME */
6981 static int ipw_wx_set_mlme(struct net_device *dev,
6982                            struct iw_request_info *info,
6983                            union iwreq_data *wrqu, char *extra)
6984 {
6985         struct ipw_priv *priv = ieee80211_priv(dev);
6986         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6987         u16 reason;
6988
6989         reason = cpu_to_le16(mlme->reason_code);
6990
6991         switch (mlme->cmd) {
6992         case IW_MLME_DEAUTH:
6993                 // silently ignore
6994                 break;
6995
6996         case IW_MLME_DISASSOC:
6997                 ipw_disassociate(priv);
6998                 break;
6999
7000         default:
7001                 return -EOPNOTSUPP;
7002         }
7003         return 0;
7004 }
7005 #endif
7006
7007 #ifdef CONFIG_IPW_QOS
7008
7009 /* QoS */
7010 /*
7011 * get the modulation type of the current network or
7012 * the card current mode
7013 */
7014 u8 ipw_qos_current_mode(struct ipw_priv * priv)
7015 {
7016         u8 mode = 0;
7017
7018         if (priv->status & STATUS_ASSOCIATED) {
7019                 unsigned long flags;
7020
7021                 spin_lock_irqsave(&priv->ieee->lock, flags);
7022                 mode = priv->assoc_network->mode;
7023                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7024         } else {
7025                 mode = priv->ieee->mode;
7026         }
7027         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
7028         return mode;
7029 }
7030
7031 /*
7032 * Handle management frame beacon and probe response
7033 */
7034 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
7035                                          int active_network,
7036                                          struct ieee80211_network *network)
7037 {
7038         u32 size = sizeof(struct ieee80211_qos_parameters);
7039
7040         if (network->capability & WLAN_CAPABILITY_IBSS)
7041                 network->qos_data.active = network->qos_data.supported;
7042
7043         if (network->flags & NETWORK_HAS_QOS_MASK) {
7044                 if (active_network &&
7045                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
7046                         network->qos_data.active = network->qos_data.supported;
7047
7048                 if ((network->qos_data.active == 1) && (active_network == 1) &&
7049                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
7050                     (network->qos_data.old_param_count !=
7051                      network->qos_data.param_count)) {
7052                         network->qos_data.old_param_count =
7053                             network->qos_data.param_count;
7054                         schedule_work(&priv->qos_activate);
7055                         IPW_DEBUG_QOS("QoS parameters change call "
7056                                       "qos_activate\n");
7057                 }
7058         } else {
7059                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
7060                         memcpy(&network->qos_data.parameters,
7061                                &def_parameters_CCK, size);
7062                 else
7063                         memcpy(&network->qos_data.parameters,
7064                                &def_parameters_OFDM, size);
7065
7066                 if ((network->qos_data.active == 1) && (active_network == 1)) {
7067                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
7068                         schedule_work(&priv->qos_activate);
7069                 }
7070
7071                 network->qos_data.active = 0;
7072                 network->qos_data.supported = 0;
7073         }
7074         if ((priv->status & STATUS_ASSOCIATED) &&
7075             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
7076                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
7077                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
7078                             !(network->flags & NETWORK_EMPTY_ESSID))
7079                                 if ((network->ssid_len ==
7080                                      priv->assoc_network->ssid_len) &&
7081                                     !memcmp(network->ssid,
7082                                             priv->assoc_network->ssid,
7083                                             network->ssid_len)) {
7084                                         queue_work(priv->workqueue,
7085                                                    &priv->merge_networks);
7086                                 }
7087         }
7088
7089         return 0;
7090 }
7091
7092 /*
7093 * This function set up the firmware to support QoS. It sends
7094 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7095 */
7096 static int ipw_qos_activate(struct ipw_priv *priv,
7097                             struct ieee80211_qos_data *qos_network_data)
7098 {
7099         int err;
7100         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
7101         struct ieee80211_qos_parameters *active_one = NULL;
7102         u32 size = sizeof(struct ieee80211_qos_parameters);
7103         u32 burst_duration;
7104         int i;
7105         u8 type;
7106
7107         type = ipw_qos_current_mode(priv);
7108
7109         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7110         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7111         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7112         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7113
7114         if (qos_network_data == NULL) {
7115                 if (type == IEEE_B) {
7116                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7117                         active_one = &def_parameters_CCK;
7118                 } else
7119                         active_one = &def_parameters_OFDM;
7120
7121                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7122                 burst_duration = ipw_qos_get_burst_duration(priv);
7123                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7124                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7125                             (u16) burst_duration;
7126         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7127                 if (type == IEEE_B) {
7128                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7129                                       type);
7130                         if (priv->qos_data.qos_enable == 0)
7131                                 active_one = &def_parameters_CCK;
7132                         else
7133                                 active_one = priv->qos_data.def_qos_parm_CCK;
7134                 } else {
7135                         if (priv->qos_data.qos_enable == 0)
7136                                 active_one = &def_parameters_OFDM;
7137                         else
7138                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7139                 }
7140                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7141         } else {
7142                 unsigned long flags;
7143                 int active;
7144
7145                 spin_lock_irqsave(&priv->ieee->lock, flags);
7146                 active_one = &(qos_network_data->parameters);
7147                 qos_network_data->old_param_count =
7148                     qos_network_data->param_count;
7149                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7150                 active = qos_network_data->supported;
7151                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7152
7153                 if (active == 0) {
7154                         burst_duration = ipw_qos_get_burst_duration(priv);
7155                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7156                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7157                                     tx_op_limit[i] = (u16) burst_duration;
7158                 }
7159         }
7160
7161         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7162         err = ipw_send_qos_params_command(priv,
7163                                           (struct ieee80211_qos_parameters *)
7164                                           &(qos_parameters[0]));
7165         if (err)
7166                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7167
7168         return err;
7169 }
7170
7171 /*
7172 * send IPW_CMD_WME_INFO to the firmware
7173 */
7174 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7175 {
7176         int ret = 0;
7177         struct ieee80211_qos_information_element qos_info;
7178
7179         if (priv == NULL)
7180                 return -1;
7181
7182         qos_info.elementID = QOS_ELEMENT_ID;
7183         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7184
7185         qos_info.version = QOS_VERSION_1;
7186         qos_info.ac_info = 0;
7187
7188         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7189         qos_info.qui_type = QOS_OUI_TYPE;
7190         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7191
7192         ret = ipw_send_qos_info_command(priv, &qos_info);
7193         if (ret != 0) {
7194                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7195         }
7196         return ret;
7197 }
7198
7199 /*
7200 * Set the QoS parameter with the association request structure
7201 */
7202 static int ipw_qos_association(struct ipw_priv *priv,
7203                                struct ieee80211_network *network)
7204 {
7205         int err = 0;
7206         struct ieee80211_qos_data *qos_data = NULL;
7207         struct ieee80211_qos_data ibss_data = {
7208                 .supported = 1,
7209                 .active = 1,
7210         };
7211
7212         switch (priv->ieee->iw_mode) {
7213         case IW_MODE_ADHOC:
7214                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
7215                         BUG();
7216
7217                 qos_data = &ibss_data;
7218                 break;
7219
7220         case IW_MODE_INFRA:
7221                 qos_data = &network->qos_data;
7222                 break;
7223
7224         default:
7225                 BUG();
7226                 break;
7227         }
7228
7229         err = ipw_qos_activate(priv, qos_data);
7230         if (err) {
7231                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7232                 return err;
7233         }
7234
7235         if (priv->qos_data.qos_enable && qos_data->supported) {
7236                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7237                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7238                 return ipw_qos_set_info_element(priv);
7239         }
7240
7241         return 0;
7242 }
7243
7244 /*
7245 * handling the beaconing responces. if we get different QoS setting
7246 * of the network from the the associated setting adjust the QoS
7247 * setting
7248 */
7249 static int ipw_qos_association_resp(struct ipw_priv *priv,
7250                                     struct ieee80211_network *network)
7251 {
7252         int ret = 0;
7253         unsigned long flags;
7254         u32 size = sizeof(struct ieee80211_qos_parameters);
7255         int set_qos_param = 0;
7256
7257         if ((priv == NULL) || (network == NULL) ||
7258             (priv->assoc_network == NULL))
7259                 return ret;
7260
7261         if (!(priv->status & STATUS_ASSOCIATED))
7262                 return ret;
7263
7264         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7265                 return ret;
7266
7267         spin_lock_irqsave(&priv->ieee->lock, flags);
7268         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7269                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7270                        sizeof(struct ieee80211_qos_data));
7271                 priv->assoc_network->qos_data.active = 1;
7272                 if ((network->qos_data.old_param_count !=
7273                      network->qos_data.param_count)) {
7274                         set_qos_param = 1;
7275                         network->qos_data.old_param_count =
7276                             network->qos_data.param_count;
7277                 }
7278
7279         } else {
7280                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7281                         memcpy(&priv->assoc_network->qos_data.parameters,
7282                                &def_parameters_CCK, size);
7283                 else
7284                         memcpy(&priv->assoc_network->qos_data.parameters,
7285                                &def_parameters_OFDM, size);
7286                 priv->assoc_network->qos_data.active = 0;
7287                 priv->assoc_network->qos_data.supported = 0;
7288                 set_qos_param = 1;
7289         }
7290
7291         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7292
7293         if (set_qos_param == 1)
7294                 schedule_work(&priv->qos_activate);
7295
7296         return ret;
7297 }
7298
7299 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7300 {
7301         u32 ret = 0;
7302
7303         if ((priv == NULL))
7304                 return 0;
7305
7306         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7307                 ret = priv->qos_data.burst_duration_CCK;
7308         else
7309                 ret = priv->qos_data.burst_duration_OFDM;
7310
7311         return ret;
7312 }
7313
7314 /*
7315 * Initialize the setting of QoS global
7316 */
7317 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7318                          int burst_enable, u32 burst_duration_CCK,
7319                          u32 burst_duration_OFDM)
7320 {
7321         priv->qos_data.qos_enable = enable;
7322
7323         if (priv->qos_data.qos_enable) {
7324                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7325                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7326                 IPW_DEBUG_QOS("QoS is enabled\n");
7327         } else {
7328                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7329                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7330                 IPW_DEBUG_QOS("QoS is not enabled\n");
7331         }
7332
7333         priv->qos_data.burst_enable = burst_enable;
7334
7335         if (burst_enable) {
7336                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7337                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7338         } else {
7339                 priv->qos_data.burst_duration_CCK = 0;
7340                 priv->qos_data.burst_duration_OFDM = 0;
7341         }
7342 }
7343
7344 /*
7345 * map the packet priority to the right TX Queue
7346 */
7347 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7348 {
7349         if (priority > 7 || !priv->qos_data.qos_enable)
7350                 priority = 0;
7351
7352         return from_priority_to_tx_queue[priority] - 1;
7353 }
7354
7355 /*
7356 * add QoS parameter to the TX command
7357 */
7358 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7359                                         u16 priority,
7360                                         struct tfd_data *tfd, u8 unicast)
7361 {
7362         int ret = 0;
7363         int tx_queue_id = 0;
7364         struct ieee80211_qos_data *qos_data = NULL;
7365         int active, supported;
7366         unsigned long flags;
7367
7368         if (!(priv->status & STATUS_ASSOCIATED))
7369                 return 0;
7370
7371         qos_data = &priv->assoc_network->qos_data;
7372
7373         spin_lock_irqsave(&priv->ieee->lock, flags);
7374
7375         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7376                 if (unicast == 0)
7377                         qos_data->active = 0;
7378                 else
7379                         qos_data->active = qos_data->supported;
7380         }
7381
7382         active = qos_data->active;
7383         supported = qos_data->supported;
7384
7385         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7386
7387         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7388                       "unicast %d\n",
7389                       priv->qos_data.qos_enable, active, supported, unicast);
7390         if (active && priv->qos_data.qos_enable) {
7391                 ret = from_priority_to_tx_queue[priority];
7392                 tx_queue_id = ret - 1;
7393                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
7394                 if (priority <= 7) {
7395                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7396                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
7397                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
7398                             IEEE80211_STYPE_QOS_DATA;
7399
7400                         if (priv->qos_data.qos_no_ack_mask &
7401                             (1UL << tx_queue_id)) {
7402                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7403                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
7404                                     CTRL_QOS_NO_ACK;
7405                         }
7406                 }
7407         }
7408
7409         return ret;
7410 }
7411
7412 /*
7413 * background support to run QoS activate functionality
7414 */
7415 static void ipw_bg_qos_activate(void *data)
7416 {
7417         struct ipw_priv *priv = data;
7418
7419         if (priv == NULL)
7420                 return;
7421
7422         down(&priv->sem);
7423
7424         if (priv->status & STATUS_ASSOCIATED)
7425                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7426
7427         up(&priv->sem);
7428 }
7429
7430 static int ipw_handle_probe_response(struct net_device *dev,
7431                                      struct ieee80211_probe_response *resp,
7432                                      struct ieee80211_network *network)
7433 {
7434         struct ipw_priv *priv = ieee80211_priv(dev);
7435         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7436                               (network == priv->assoc_network));
7437
7438         ipw_qos_handle_probe_response(priv, active_network, network);
7439
7440         return 0;
7441 }
7442
7443 static int ipw_handle_beacon(struct net_device *dev,
7444                              struct ieee80211_beacon *resp,
7445                              struct ieee80211_network *network)
7446 {
7447         struct ipw_priv *priv = ieee80211_priv(dev);
7448         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7449                               (network == priv->assoc_network));
7450
7451         ipw_qos_handle_probe_response(priv, active_network, network);
7452
7453         return 0;
7454 }
7455
7456 static int ipw_handle_assoc_response(struct net_device *dev,
7457                                      struct ieee80211_assoc_response *resp,
7458                                      struct ieee80211_network *network)
7459 {
7460         struct ipw_priv *priv = ieee80211_priv(dev);
7461         ipw_qos_association_resp(priv, network);
7462         return 0;
7463 }
7464
7465 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7466                                        *qos_param)
7467 {
7468         struct host_cmd cmd = {
7469                 .cmd = IPW_CMD_QOS_PARAMETERS,
7470                 .len = (sizeof(struct ieee80211_qos_parameters) * 3)
7471         };
7472
7473         memcpy(cmd.param, qos_param, sizeof(*qos_param) * 3);
7474         return ipw_send_cmd(priv, &cmd);
7475 }
7476
7477 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7478                                      *qos_param)
7479 {
7480         struct host_cmd cmd = {
7481                 .cmd = IPW_CMD_WME_INFO,
7482                 .len = sizeof(*qos_param)
7483         };
7484
7485         memcpy(cmd.param, qos_param, sizeof(*qos_param));
7486         return ipw_send_cmd(priv, &cmd);
7487 }
7488
7489 #endif                          /* CONFIG_IPW_QOS */
7490
7491 static int ipw_associate_network(struct ipw_priv *priv,
7492                                  struct ieee80211_network *network,
7493                                  struct ipw_supported_rates *rates, int roaming)
7494 {
7495         int err;
7496
7497         if (priv->config & CFG_FIXED_RATE)
7498                 ipw_set_fixed_rate(priv, network->mode);
7499
7500         if (!(priv->config & CFG_STATIC_ESSID)) {
7501                 priv->essid_len = min(network->ssid_len,
7502                                       (u8) IW_ESSID_MAX_SIZE);
7503                 memcpy(priv->essid, network->ssid, priv->essid_len);
7504         }
7505
7506         network->last_associate = jiffies;
7507
7508         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7509         priv->assoc_request.channel = network->channel;
7510         if ((priv->capability & CAP_PRIVACY_ON) &&
7511             (priv->capability & CAP_SHARED_KEY)) {
7512                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7513                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7514
7515                 if ((priv->capability & CAP_PRIVACY_ON) &&
7516                     (priv->ieee->sec.level == SEC_LEVEL_1) &&
7517                     !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
7518                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7519         } else {
7520                 priv->assoc_request.auth_type = AUTH_OPEN;
7521                 priv->assoc_request.auth_key = 0;
7522         }
7523
7524         if (priv->ieee->wpa_ie_len) {
7525                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7526                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7527                                  priv->ieee->wpa_ie_len);
7528         }
7529
7530         /*
7531          * It is valid for our ieee device to support multiple modes, but
7532          * when it comes to associating to a given network we have to choose
7533          * just one mode.
7534          */
7535         if (network->mode & priv->ieee->mode & IEEE_A)
7536                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7537         else if (network->mode & priv->ieee->mode & IEEE_G)
7538                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7539         else if (network->mode & priv->ieee->mode & IEEE_B)
7540                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7541
7542         priv->assoc_request.capability = network->capability;
7543         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7544             && !(priv->config & CFG_PREAMBLE_LONG)) {
7545                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7546         } else {
7547                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7548
7549                 /* Clear the short preamble if we won't be supporting it */
7550                 priv->assoc_request.capability &=
7551                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7552         }
7553
7554         /* Clear capability bits that aren't used in Ad Hoc */
7555         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7556                 priv->assoc_request.capability &=
7557                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7558
7559         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7560                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7561                         roaming ? "Rea" : "A",
7562                         escape_essid(priv->essid, priv->essid_len),
7563                         network->channel,
7564                         ipw_modes[priv->assoc_request.ieee_mode],
7565                         rates->num_rates,
7566                         (priv->assoc_request.preamble_length ==
7567                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7568                         network->capability &
7569                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7570                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7571                         priv->capability & CAP_PRIVACY_ON ?
7572                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7573                          "(open)") : "",
7574                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7575                         priv->capability & CAP_PRIVACY_ON ?
7576                         '1' + priv->ieee->sec.active_key : '.',
7577                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7578
7579         priv->assoc_request.beacon_interval = network->beacon_interval;
7580         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7581             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7582                 priv->assoc_request.assoc_type = HC_IBSS_START;
7583                 priv->assoc_request.assoc_tsf_msw = 0;
7584                 priv->assoc_request.assoc_tsf_lsw = 0;
7585         } else {
7586                 if (unlikely(roaming))
7587                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7588                 else
7589                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7590                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7591                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7592         }
7593
7594         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7595
7596         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7597                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7598                 priv->assoc_request.atim_window = network->atim_window;
7599         } else {
7600                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7601                 priv->assoc_request.atim_window = 0;
7602         }
7603
7604         priv->assoc_request.listen_interval = network->listen_interval;
7605
7606         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7607         if (err) {
7608                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7609                 return err;
7610         }
7611
7612         rates->ieee_mode = priv->assoc_request.ieee_mode;
7613         rates->purpose = IPW_RATE_CONNECT;
7614         ipw_send_supported_rates(priv, rates);
7615
7616         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7617                 priv->sys_config.dot11g_auto_detection = 1;
7618         else
7619                 priv->sys_config.dot11g_auto_detection = 0;
7620
7621         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7622                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7623         else
7624                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7625
7626         err = ipw_send_system_config(priv, &priv->sys_config);
7627         if (err) {
7628                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7629                 return err;
7630         }
7631
7632         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7633         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7634         if (err) {
7635                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7636                 return err;
7637         }
7638
7639         /*
7640          * If preemption is enabled, it is possible for the association
7641          * to complete before we return from ipw_send_associate.  Therefore
7642          * we have to be sure and update our priviate data first.
7643          */
7644         priv->channel = network->channel;
7645         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7646
7647         priv->assoc_network = network;
7648
7649 #ifdef CONFIG_IPW_QOS
7650         ipw_qos_association(priv, network);
7651 #endif
7652
7653         err = ipw_send_associate(priv, &priv->assoc_request);
7654         if (err) {
7655                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7656                 return err;
7657         }
7658
7659         priv->status |= STATUS_ASSOCIATING;
7660         priv->status &= ~STATUS_SECURITY_UPDATED;
7661
7662         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7663                   escape_essid(priv->essid, priv->essid_len),
7664                   MAC_ARG(priv->bssid));
7665
7666         return 0;
7667 }
7668
7669 static void ipw_roam(void *data)
7670 {
7671         struct ipw_priv *priv = data;
7672         struct ieee80211_network *network = NULL;
7673         struct ipw_network_match match = {
7674                 .network = priv->assoc_network
7675         };
7676
7677         /* The roaming process is as follows:
7678          *
7679          * 1.  Missed beacon threshold triggers the roaming process by
7680          *     setting the status ROAM bit and requesting a scan.
7681          * 2.  When the scan completes, it schedules the ROAM work
7682          * 3.  The ROAM work looks at all of the known networks for one that
7683          *     is a better network than the currently associated.  If none
7684          *     found, the ROAM process is over (ROAM bit cleared)
7685          * 4.  If a better network is found, a disassociation request is
7686          *     sent.
7687          * 5.  When the disassociation completes, the roam work is again
7688          *     scheduled.  The second time through, the driver is no longer
7689          *     associated, and the newly selected network is sent an
7690          *     association request.
7691          * 6.  At this point ,the roaming process is complete and the ROAM
7692          *     status bit is cleared.
7693          */
7694
7695         /* If we are no longer associated, and the roaming bit is no longer
7696          * set, then we are not actively roaming, so just return */
7697         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7698                 return;
7699
7700         if (priv->status & STATUS_ASSOCIATED) {
7701                 /* First pass through ROAM process -- look for a better
7702                  * network */
7703                 unsigned long flags;
7704                 u8 rssi = priv->assoc_network->stats.rssi;
7705                 priv->assoc_network->stats.rssi = -128;
7706                 spin_lock_irqsave(&priv->ieee->lock, flags);
7707                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7708                         if (network != priv->assoc_network)
7709                                 ipw_best_network(priv, &match, network, 1);
7710                 }
7711                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7712                 priv->assoc_network->stats.rssi = rssi;
7713
7714                 if (match.network == priv->assoc_network) {
7715                         IPW_DEBUG_ASSOC("No better APs in this network to "
7716                                         "roam to.\n");
7717                         priv->status &= ~STATUS_ROAMING;
7718                         ipw_debug_config(priv);
7719                         return;
7720                 }
7721
7722                 ipw_send_disassociate(priv, 1);
7723                 priv->assoc_network = match.network;
7724
7725                 return;
7726         }
7727
7728         /* Second pass through ROAM process -- request association */
7729         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7730         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7731         priv->status &= ~STATUS_ROAMING;
7732 }
7733
7734 static void ipw_bg_roam(void *data)
7735 {
7736         struct ipw_priv *priv = data;
7737         down(&priv->sem);
7738         ipw_roam(data);
7739         up(&priv->sem);
7740 }
7741
7742 static int ipw_associate(void *data)
7743 {
7744         struct ipw_priv *priv = data;
7745
7746         struct ieee80211_network *network = NULL;
7747         struct ipw_network_match match = {
7748                 .network = NULL
7749         };
7750         struct ipw_supported_rates *rates;
7751         struct list_head *element;
7752         unsigned long flags;
7753
7754         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7755                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7756                 return 0;
7757         }
7758
7759         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7760                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7761                                 "progress)\n");
7762                 return 0;
7763         }
7764
7765         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7766                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7767                                 "initialized)\n");
7768                 return 0;
7769         }
7770
7771         if (!(priv->config & CFG_ASSOCIATE) &&
7772             !(priv->config & (CFG_STATIC_ESSID |
7773                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7774                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7775                 return 0;
7776         }
7777
7778         /* Protect our use of the network_list */
7779         spin_lock_irqsave(&priv->ieee->lock, flags);
7780         list_for_each_entry(network, &priv->ieee->network_list, list)
7781             ipw_best_network(priv, &match, network, 0);
7782
7783         network = match.network;
7784         rates = &match.rates;
7785
7786         if (network == NULL &&
7787             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7788             priv->config & CFG_ADHOC_CREATE &&
7789             priv->config & CFG_STATIC_ESSID &&
7790             priv->config & CFG_STATIC_CHANNEL &&
7791             !list_empty(&priv->ieee->network_free_list)) {
7792                 element = priv->ieee->network_free_list.next;
7793                 network = list_entry(element, struct ieee80211_network, list);
7794                 ipw_adhoc_create(priv, network);
7795                 rates = &priv->rates;
7796                 list_del(element);
7797                 list_add_tail(&network->list, &priv->ieee->network_list);
7798         }
7799         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7800
7801         /* If we reached the end of the list, then we don't have any valid
7802          * matching APs */
7803         if (!network) {
7804                 ipw_debug_config(priv);
7805
7806                 if (!(priv->status & STATUS_SCANNING)) {
7807                         if (!(priv->config & CFG_SPEED_SCAN))
7808                                 queue_delayed_work(priv->workqueue,
7809                                                    &priv->request_scan,
7810                                                    SCAN_INTERVAL);
7811                         else
7812                                 queue_work(priv->workqueue,
7813                                            &priv->request_scan);
7814                 }
7815
7816                 return 0;
7817         }
7818
7819         ipw_associate_network(priv, network, rates, 0);
7820
7821         return 1;
7822 }
7823
7824 static void ipw_bg_associate(void *data)
7825 {
7826         struct ipw_priv *priv = data;
7827         down(&priv->sem);
7828         ipw_associate(data);
7829         up(&priv->sem);
7830 }
7831
7832 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7833                                       struct sk_buff *skb)
7834 {
7835         struct ieee80211_hdr *hdr;
7836         u16 fc;
7837
7838         hdr = (struct ieee80211_hdr *)skb->data;
7839         fc = le16_to_cpu(hdr->frame_ctl);
7840         if (!(fc & IEEE80211_FCTL_PROTECTED))
7841                 return;
7842
7843         fc &= ~IEEE80211_FCTL_PROTECTED;
7844         hdr->frame_ctl = cpu_to_le16(fc);
7845         switch (priv->ieee->sec.level) {
7846         case SEC_LEVEL_3:
7847                 /* Remove CCMP HDR */
7848                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7849                         skb->data + IEEE80211_3ADDR_LEN + 8,
7850                         skb->len - IEEE80211_3ADDR_LEN - 8);
7851                 if (fc & IEEE80211_FCTL_MOREFRAGS)
7852                         skb_trim(skb, skb->len - 16);   /* 2*MIC */
7853                 else
7854                         skb_trim(skb, skb->len - 8);    /* MIC */
7855                 break;
7856         case SEC_LEVEL_2:
7857                 break;
7858         case SEC_LEVEL_1:
7859                 /* Remove IV */
7860                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7861                         skb->data + IEEE80211_3ADDR_LEN + 4,
7862                         skb->len - IEEE80211_3ADDR_LEN - 4);
7863                 if (fc & IEEE80211_FCTL_MOREFRAGS)
7864                         skb_trim(skb, skb->len - 8);    /* 2*ICV */
7865                 else
7866                         skb_trim(skb, skb->len - 4);    /* ICV */
7867                 break;
7868         case SEC_LEVEL_0:
7869                 break;
7870         default:
7871                 printk(KERN_ERR "Unknow security level %d\n",
7872                        priv->ieee->sec.level);
7873                 break;
7874         }
7875 }
7876
7877 static void ipw_handle_data_packet(struct ipw_priv *priv,
7878                                    struct ipw_rx_mem_buffer *rxb,
7879                                    struct ieee80211_rx_stats *stats)
7880 {
7881         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7882
7883         /* We received data from the HW, so stop the watchdog */
7884         priv->net_dev->trans_start = jiffies;
7885
7886         /* We only process data packets if the
7887          * interface is open */
7888         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7889                      skb_tailroom(rxb->skb))) {
7890                 priv->ieee->stats.rx_errors++;
7891                 priv->wstats.discard.misc++;
7892                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7893                 return;
7894         } else if (unlikely(!netif_running(priv->net_dev))) {
7895                 priv->ieee->stats.rx_dropped++;
7896                 priv->wstats.discard.misc++;
7897                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7898                 return;
7899         }
7900
7901         /* Advance skb->data to the start of the actual payload */
7902         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7903
7904         /* Set the size of the skb to the size of the frame */
7905         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7906
7907         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7908
7909         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7910         if (!priv->ieee->host_decrypt && priv->ieee->iw_mode != IW_MODE_MONITOR)
7911                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7912
7913         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7914                 priv->ieee->stats.rx_errors++;
7915         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7916                 rxb->skb = NULL;
7917                 __ipw_led_activity_on(priv);
7918         }
7919 }
7920
7921 #ifdef CONFIG_IEEE80211_RADIOTAP
7922 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7923                                            struct ipw_rx_mem_buffer *rxb,
7924                                            struct ieee80211_rx_stats *stats)
7925 {
7926         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7927         struct ipw_rx_frame *frame = &pkt->u.frame;
7928
7929         /* initial pull of some data */
7930         u16 received_channel = frame->received_channel;
7931         u8 antennaAndPhy = frame->antennaAndPhy;
7932         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7933         u16 pktrate = frame->rate;
7934
7935         /* Magic struct that slots into the radiotap header -- no reason
7936          * to build this manually element by element, we can write it much
7937          * more efficiently than we can parse it. ORDER MATTERS HERE */
7938         struct ipw_rt_hdr {
7939                 struct ieee80211_radiotap_header rt_hdr;
7940                 u8 rt_flags;    /* radiotap packet flags */
7941                 u8 rt_rate;     /* rate in 500kb/s */
7942                 u16 rt_channel; /* channel in mhz */
7943                 u16 rt_chbitmask;       /* channel bitfield */
7944                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7945                 u8 rt_antenna;  /* antenna number */
7946         } *ipw_rt;
7947
7948         short len = le16_to_cpu(pkt->u.frame.length);
7949
7950         /* We received data from the HW, so stop the watchdog */
7951         priv->net_dev->trans_start = jiffies;
7952
7953         /* We only process data packets if the
7954          * interface is open */
7955         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7956                      skb_tailroom(rxb->skb))) {
7957                 priv->ieee->stats.rx_errors++;
7958                 priv->wstats.discard.misc++;
7959                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7960                 return;
7961         } else if (unlikely(!netif_running(priv->net_dev))) {
7962                 priv->ieee->stats.rx_dropped++;
7963                 priv->wstats.discard.misc++;
7964                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7965                 return;
7966         }
7967
7968         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7969          * that now */
7970         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7971                 /* FIXME: Should alloc bigger skb instead */
7972                 priv->ieee->stats.rx_dropped++;
7973                 priv->wstats.discard.misc++;
7974                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7975                 return;
7976         }
7977
7978         /* copy the frame itself */
7979         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7980                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7981
7982         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7983          * part of our real header, saves a little time.
7984          *
7985          * No longer necessary since we fill in all our data.  Purge before merging
7986          * patch officially.
7987          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7988          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7989          */
7990
7991         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7992
7993         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7994         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7995         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7996
7997         /* Big bitfield of all the fields we provide in radiotap */
7998         ipw_rt->rt_hdr.it_present =
7999             ((1 << IEEE80211_RADIOTAP_FLAGS) |
8000              (1 << IEEE80211_RADIOTAP_RATE) |
8001              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8002              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8003              (1 << IEEE80211_RADIOTAP_ANTENNA));
8004
8005         /* Zero the flags, we'll add to them as we go */
8006         ipw_rt->rt_flags = 0;
8007
8008         /* Convert signal to DBM */
8009         ipw_rt->rt_dbmsignal = antsignal;
8010
8011         /* Convert the channel data and set the flags */
8012         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
8013         if (received_channel > 14) {    /* 802.11a */
8014                 ipw_rt->rt_chbitmask =
8015                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8016         } else if (antennaAndPhy & 32) {        /* 802.11b */
8017                 ipw_rt->rt_chbitmask =
8018                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8019         } else {                /* 802.11g */
8020                 ipw_rt->rt_chbitmask =
8021                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8022         }
8023
8024         /* set the rate in multiples of 500k/s */
8025         switch (pktrate) {
8026         case IPW_TX_RATE_1MB:
8027                 ipw_rt->rt_rate = 2;
8028                 break;
8029         case IPW_TX_RATE_2MB:
8030                 ipw_rt->rt_rate = 4;
8031                 break;
8032         case IPW_TX_RATE_5MB:
8033                 ipw_rt->rt_rate = 10;
8034                 break;
8035         case IPW_TX_RATE_6MB:
8036                 ipw_rt->rt_rate = 12;
8037                 break;
8038         case IPW_TX_RATE_9MB:
8039                 ipw_rt->rt_rate = 18;
8040                 break;
8041         case IPW_TX_RATE_11MB:
8042                 ipw_rt->rt_rate = 22;
8043                 break;
8044         case IPW_TX_RATE_12MB:
8045                 ipw_rt->rt_rate = 24;
8046                 break;
8047         case IPW_TX_RATE_18MB:
8048                 ipw_rt->rt_rate = 36;
8049                 break;
8050         case IPW_TX_RATE_24MB:
8051                 ipw_rt->rt_rate = 48;
8052                 break;
8053         case IPW_TX_RATE_36MB:
8054                 ipw_rt->rt_rate = 72;
8055                 break;
8056         case IPW_TX_RATE_48MB:
8057                 ipw_rt->rt_rate = 96;
8058                 break;
8059         case IPW_TX_RATE_54MB:
8060                 ipw_rt->rt_rate = 108;
8061                 break;
8062         default:
8063                 ipw_rt->rt_rate = 0;
8064                 break;
8065         }
8066
8067         /* antenna number */
8068         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
8069
8070         /* set the preamble flag if we have it */
8071         if ((antennaAndPhy & 64))
8072                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8073
8074         /* Set the size of the skb to the size of the frame */
8075         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
8076
8077         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
8078
8079         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
8080                 priv->ieee->stats.rx_errors++;
8081         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
8082                 rxb->skb = NULL;
8083                 /* no LED during capture */
8084         }
8085 }
8086 #endif
8087
8088 static inline int is_network_packet(struct ipw_priv *priv,
8089                                     struct ieee80211_hdr_4addr *header)
8090 {
8091         /* Filter incoming packets to determine if they are targetted toward
8092          * this network, discarding packets coming from ourselves */
8093         switch (priv->ieee->iw_mode) {
8094         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8095                 /* packets from our adapter are dropped (echo) */
8096                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8097                         return 0;
8098
8099                 /* {broad,multi}cast packets to our BSSID go through */
8100                 if (is_multicast_ether_addr(header->addr1) ||
8101                     is_broadcast_ether_addr(header->addr1))
8102                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8103
8104                 /* packets to our adapter go through */
8105                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8106                                ETH_ALEN);
8107
8108         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8109                 /* packets from our adapter are dropped (echo) */
8110                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8111                         return 0;
8112
8113                 /* {broad,multi}cast packets to our BSS go through */
8114                 if (is_multicast_ether_addr(header->addr1) ||
8115                     is_broadcast_ether_addr(header->addr1))
8116                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8117
8118                 /* packets to our adapter go through */
8119                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8120                                ETH_ALEN);
8121         }
8122
8123         return 1;
8124 }
8125
8126 #define IPW_PACKET_RETRY_TIME HZ
8127
8128 static inline int is_duplicate_packet(struct ipw_priv *priv,
8129                                       struct ieee80211_hdr_4addr *header)
8130 {
8131         u16 sc = le16_to_cpu(header->seq_ctl);
8132         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8133         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8134         u16 *last_seq, *last_frag;
8135         unsigned long *last_time;
8136
8137         switch (priv->ieee->iw_mode) {
8138         case IW_MODE_ADHOC:
8139                 {
8140                         struct list_head *p;
8141                         struct ipw_ibss_seq *entry = NULL;
8142                         u8 *mac = header->addr2;
8143                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8144
8145                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8146                                 entry =
8147                                     list_entry(p, struct ipw_ibss_seq, list);
8148                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8149                                         break;
8150                         }
8151                         if (p == &priv->ibss_mac_hash[index]) {
8152                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8153                                 if (!entry) {
8154                                         IPW_ERROR
8155                                             ("Cannot malloc new mac entry\n");
8156                                         return 0;
8157                                 }
8158                                 memcpy(entry->mac, mac, ETH_ALEN);
8159                                 entry->seq_num = seq;
8160                                 entry->frag_num = frag;
8161                                 entry->packet_time = jiffies;
8162                                 list_add(&entry->list,
8163                                          &priv->ibss_mac_hash[index]);
8164                                 return 0;
8165                         }
8166                         last_seq = &entry->seq_num;
8167                         last_frag = &entry->frag_num;
8168                         last_time = &entry->packet_time;
8169                         break;
8170                 }
8171         case IW_MODE_INFRA:
8172                 last_seq = &priv->last_seq_num;
8173                 last_frag = &priv->last_frag_num;
8174                 last_time = &priv->last_packet_time;
8175                 break;
8176         default:
8177                 return 0;
8178         }
8179         if ((*last_seq == seq) &&
8180             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8181                 if (*last_frag == frag)
8182                         goto drop;
8183                 if (*last_frag + 1 != frag)
8184                         /* out-of-order fragment */
8185                         goto drop;
8186         } else
8187                 *last_seq = seq;
8188
8189         *last_frag = frag;
8190         *last_time = jiffies;
8191         return 0;
8192
8193       drop:
8194         /* Comment this line now since we observed the card receives
8195          * duplicate packets but the FCTL_RETRY bit is not set in the
8196          * IBSS mode with fragmentation enabled.
8197          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8198         return 1;
8199 }
8200
8201 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8202                                    struct ipw_rx_mem_buffer *rxb,
8203                                    struct ieee80211_rx_stats *stats)
8204 {
8205         struct sk_buff *skb = rxb->skb;
8206         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8207         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8208             (skb->data + IPW_RX_FRAME_SIZE);
8209
8210         ieee80211_rx_mgt(priv->ieee, header, stats);
8211
8212         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8213             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8214               IEEE80211_STYPE_PROBE_RESP) ||
8215              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8216               IEEE80211_STYPE_BEACON))) {
8217                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8218                         ipw_add_station(priv, header->addr2);
8219         }
8220
8221         if (priv->config & CFG_NET_STATS) {
8222                 IPW_DEBUG_HC("sending stat packet\n");
8223
8224                 /* Set the size of the skb to the size of the full
8225                  * ipw header and 802.11 frame */
8226                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8227                         IPW_RX_FRAME_SIZE);
8228
8229                 /* Advance past the ipw packet header to the 802.11 frame */
8230                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8231
8232                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8233                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8234
8235                 skb->dev = priv->ieee->dev;
8236
8237                 /* Point raw at the ieee80211_stats */
8238                 skb->mac.raw = skb->data;
8239
8240                 skb->pkt_type = PACKET_OTHERHOST;
8241                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8242                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8243                 netif_rx(skb);
8244                 rxb->skb = NULL;
8245         }
8246 }
8247
8248 /*
8249  * Main entry function for recieving a packet with 80211 headers.  This
8250  * should be called when ever the FW has notified us that there is a new
8251  * skb in the recieve queue.
8252  */
8253 static void ipw_rx(struct ipw_priv *priv)
8254 {
8255         struct ipw_rx_mem_buffer *rxb;
8256         struct ipw_rx_packet *pkt;
8257         struct ieee80211_hdr_4addr *header;
8258         u32 r, w, i;
8259         u8 network_packet;
8260
8261         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8262         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8263         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8264
8265         while (i != r) {
8266                 rxb = priv->rxq->queue[i];
8267 #ifdef CONFIG_IPW_DEBUG
8268                 if (unlikely(rxb == NULL)) {
8269                         printk(KERN_CRIT "Queue not allocated!\n");
8270                         break;
8271                 }
8272 #endif
8273                 priv->rxq->queue[i] = NULL;
8274
8275                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8276                                             IPW_RX_BUF_SIZE,
8277                                             PCI_DMA_FROMDEVICE);
8278
8279                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8280                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8281                              pkt->header.message_type,
8282                              pkt->header.rx_seq_num, pkt->header.control_bits);
8283
8284                 switch (pkt->header.message_type) {
8285                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8286                                 struct ieee80211_rx_stats stats = {
8287                                         .rssi =
8288                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8289                                             IPW_RSSI_TO_DBM,
8290                                         .signal =
8291                                             le16_to_cpu(pkt->u.frame.signal),
8292                                         .noise =
8293                                             le16_to_cpu(pkt->u.frame.noise),
8294                                         .rate = pkt->u.frame.rate,
8295                                         .mac_time = jiffies,
8296                                         .received_channel =
8297                                             pkt->u.frame.received_channel,
8298                                         .freq =
8299                                             (pkt->u.frame.
8300                                              control & (1 << 0)) ?
8301                                             IEEE80211_24GHZ_BAND :
8302                                             IEEE80211_52GHZ_BAND,
8303                                         .len = le16_to_cpu(pkt->u.frame.length),
8304                                 };
8305
8306                                 if (stats.rssi != 0)
8307                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8308                                 if (stats.signal != 0)
8309                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8310                                 if (stats.noise != 0)
8311                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8312                                 if (stats.rate != 0)
8313                                         stats.mask |= IEEE80211_STATMASK_RATE;
8314
8315                                 priv->rx_packets++;
8316
8317 #ifdef CONFIG_IPW2200_MONITOR
8318                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8319 #ifdef CONFIG_IEEE80211_RADIOTAP
8320                                         ipw_handle_data_packet_monitor(priv,
8321                                                                        rxb,
8322                                                                        &stats);
8323 #else
8324                                         ipw_handle_data_packet(priv, rxb,
8325                                                                &stats);
8326 #endif
8327                                         break;
8328                                 }
8329 #endif
8330
8331                                 header =
8332                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8333                                                                    data +
8334                                                                    IPW_RX_FRAME_SIZE);
8335                                 /* TODO: Check Ad-Hoc dest/source and make sure
8336                                  * that we are actually parsing these packets
8337                                  * correctly -- we should probably use the
8338                                  * frame control of the packet and disregard
8339                                  * the current iw_mode */
8340
8341                                 network_packet =
8342                                     is_network_packet(priv, header);
8343                                 if (network_packet && priv->assoc_network) {
8344                                         priv->assoc_network->stats.rssi =
8345                                             stats.rssi;
8346                                         average_add(&priv->average_rssi,
8347                                                     stats.rssi);
8348                                         priv->last_rx_rssi = stats.rssi;
8349                                 }
8350
8351                                 IPW_DEBUG_RX("Frame: len=%u\n",
8352                                              le16_to_cpu(pkt->u.frame.length));
8353
8354                                 if (le16_to_cpu(pkt->u.frame.length) <
8355                                     frame_hdr_len(header)) {
8356                                         IPW_DEBUG_DROP
8357                                             ("Received packet is too small. "
8358                                              "Dropping.\n");
8359                                         priv->ieee->stats.rx_errors++;
8360                                         priv->wstats.discard.misc++;
8361                                         break;
8362                                 }
8363
8364                                 switch (WLAN_FC_GET_TYPE
8365                                         (le16_to_cpu(header->frame_ctl))) {
8366
8367                                 case IEEE80211_FTYPE_MGMT:
8368                                         ipw_handle_mgmt_packet(priv, rxb,
8369                                                                &stats);
8370                                         break;
8371
8372                                 case IEEE80211_FTYPE_CTL:
8373                                         break;
8374
8375                                 case IEEE80211_FTYPE_DATA:
8376                                         if (unlikely(!network_packet ||
8377                                                      is_duplicate_packet(priv,
8378                                                                          header)))
8379                                         {
8380                                                 IPW_DEBUG_DROP("Dropping: "
8381                                                                MAC_FMT ", "
8382                                                                MAC_FMT ", "
8383                                                                MAC_FMT "\n",
8384                                                                MAC_ARG(header->
8385                                                                        addr1),
8386                                                                MAC_ARG(header->
8387                                                                        addr2),
8388                                                                MAC_ARG(header->
8389                                                                        addr3));
8390                                                 break;
8391                                         }
8392
8393                                         ipw_handle_data_packet(priv, rxb,
8394                                                                &stats);
8395
8396                                         break;
8397                                 }
8398                                 break;
8399                         }
8400
8401                 case RX_HOST_NOTIFICATION_TYPE:{
8402                                 IPW_DEBUG_RX
8403                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8404                                      pkt->u.notification.subtype,
8405                                      pkt->u.notification.flags,
8406                                      pkt->u.notification.size);
8407                                 ipw_rx_notification(priv, &pkt->u.notification);
8408                                 break;
8409                         }
8410
8411                 default:
8412                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8413                                      pkt->header.message_type);
8414                         break;
8415                 }
8416
8417                 /* For now we just don't re-use anything.  We can tweak this
8418                  * later to try and re-use notification packets and SKBs that
8419                  * fail to Rx correctly */
8420                 if (rxb->skb != NULL) {
8421                         dev_kfree_skb_any(rxb->skb);
8422                         rxb->skb = NULL;
8423                 }
8424
8425                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8426                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8427                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8428
8429                 i = (i + 1) % RX_QUEUE_SIZE;
8430         }
8431
8432         /* Backtrack one entry */
8433         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8434
8435         ipw_rx_queue_restock(priv);
8436 }
8437
8438 #define DEFAULT_RTS_THRESHOLD     2304U
8439 #define MIN_RTS_THRESHOLD         1U
8440 #define MAX_RTS_THRESHOLD         2304U
8441 #define DEFAULT_BEACON_INTERVAL   100U
8442 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8443 #define DEFAULT_LONG_RETRY_LIMIT  4U
8444
8445 static int ipw_sw_reset(struct ipw_priv *priv, int init)
8446 {
8447         int band, modulation;
8448         int old_mode = priv->ieee->iw_mode;
8449
8450         /* Initialize module parameter values here */
8451         priv->config = 0;
8452
8453         /* We default to disabling the LED code as right now it causes
8454          * too many systems to lock up... */
8455         if (!led)
8456                 priv->config |= CFG_NO_LED;
8457
8458         if (associate)
8459                 priv->config |= CFG_ASSOCIATE;
8460         else
8461                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8462
8463         if (auto_create)
8464                 priv->config |= CFG_ADHOC_CREATE;
8465         else
8466                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8467
8468         if (disable) {
8469                 priv->status |= STATUS_RF_KILL_SW;
8470                 IPW_DEBUG_INFO("Radio disabled.\n");
8471         }
8472
8473         if (channel != 0) {
8474                 priv->config |= CFG_STATIC_CHANNEL;
8475                 priv->channel = channel;
8476                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8477                 /* TODO: Validate that provided channel is in range */
8478         }
8479 #ifdef CONFIG_IPW_QOS
8480         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8481                      burst_duration_CCK, burst_duration_OFDM);
8482 #endif                          /* CONFIG_IPW_QOS */
8483
8484         switch (mode) {
8485         case 1:
8486                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8487                 priv->net_dev->type = ARPHRD_ETHER;
8488
8489                 break;
8490 #ifdef CONFIG_IPW2200_MONITOR
8491         case 2:
8492                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8493 #ifdef CONFIG_IEEE80211_RADIOTAP
8494                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8495 #else
8496                 priv->net_dev->type = ARPHRD_IEEE80211;
8497 #endif
8498                 break;
8499 #endif
8500         default:
8501         case 0:
8502                 priv->net_dev->type = ARPHRD_ETHER;
8503                 priv->ieee->iw_mode = IW_MODE_INFRA;
8504                 break;
8505         }
8506
8507         if (hwcrypto) {
8508                 priv->ieee->host_encrypt = 0;
8509                 priv->ieee->host_encrypt_msdu = 0;
8510                 priv->ieee->host_decrypt = 0;
8511         }
8512         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8513
8514         /* IPW2200/2915 is abled to do hardware fragmentation. */
8515         priv->ieee->host_open_frag = 0;
8516
8517         if ((priv->pci_dev->device == 0x4223) ||
8518             (priv->pci_dev->device == 0x4224)) {
8519                 if (init)
8520                         printk(KERN_INFO DRV_NAME
8521                                ": Detected Intel PRO/Wireless 2915ABG Network "
8522                                "Connection\n");
8523                 priv->ieee->abg_true = 1;
8524                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8525                 modulation = IEEE80211_OFDM_MODULATION |
8526                     IEEE80211_CCK_MODULATION;
8527                 priv->adapter = IPW_2915ABG;
8528                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8529         } else {
8530                 if (init)
8531                         printk(KERN_INFO DRV_NAME
8532                                ": Detected Intel PRO/Wireless 2200BG Network "
8533                                "Connection\n");
8534
8535                 priv->ieee->abg_true = 0;
8536                 band = IEEE80211_24GHZ_BAND;
8537                 modulation = IEEE80211_OFDM_MODULATION |
8538                     IEEE80211_CCK_MODULATION;
8539                 priv->adapter = IPW_2200BG;
8540                 priv->ieee->mode = IEEE_G | IEEE_B;
8541         }
8542
8543         priv->ieee->freq_band = band;
8544         priv->ieee->modulation = modulation;
8545
8546         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8547
8548         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8549         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8550
8551         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8552         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8553         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8554
8555         /* If power management is turned on, default to AC mode */
8556         priv->power_mode = IPW_POWER_AC;
8557         priv->tx_power = IPW_TX_POWER_DEFAULT;
8558
8559         return old_mode == priv->ieee->iw_mode;
8560 }
8561
8562 /*
8563  * This file defines the Wireless Extension handlers.  It does not
8564  * define any methods of hardware manipulation and relies on the
8565  * functions defined in ipw_main to provide the HW interaction.
8566  *
8567  * The exception to this is the use of the ipw_get_ordinal()
8568  * function used to poll the hardware vs. making unecessary calls.
8569  *
8570  */
8571
8572 static int ipw_wx_get_name(struct net_device *dev,
8573                            struct iw_request_info *info,
8574                            union iwreq_data *wrqu, char *extra)
8575 {
8576         struct ipw_priv *priv = ieee80211_priv(dev);
8577         down(&priv->sem);
8578         if (priv->status & STATUS_RF_KILL_MASK)
8579                 strcpy(wrqu->name, "radio off");
8580         else if (!(priv->status & STATUS_ASSOCIATED))
8581                 strcpy(wrqu->name, "unassociated");
8582         else
8583                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8584                          ipw_modes[priv->assoc_request.ieee_mode]);
8585         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8586         up(&priv->sem);
8587         return 0;
8588 }
8589
8590 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8591 {
8592         if (channel == 0) {
8593                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8594                 priv->config &= ~CFG_STATIC_CHANNEL;
8595                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8596                                 "parameters.\n");
8597                 ipw_associate(priv);
8598                 return 0;
8599         }
8600
8601         priv->config |= CFG_STATIC_CHANNEL;
8602
8603         if (priv->channel == channel) {
8604                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8605                                channel);
8606                 return 0;
8607         }
8608
8609         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8610         priv->channel = channel;
8611
8612 #ifdef CONFIG_IPW2200_MONITOR
8613         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8614                 int i;
8615                 if (priv->status & STATUS_SCANNING) {
8616                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8617                                        "channel change.\n");
8618                         ipw_abort_scan(priv);
8619                 }
8620
8621                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8622                         udelay(10);
8623
8624                 if (priv->status & STATUS_SCANNING)
8625                         IPW_DEBUG_SCAN("Still scanning...\n");
8626                 else
8627                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8628                                        1000 - i);
8629
8630                 return 0;
8631         }
8632 #endif                          /* CONFIG_IPW2200_MONITOR */
8633
8634         /* Network configuration changed -- force [re]association */
8635         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8636         if (!ipw_disassociate(priv))
8637                 ipw_associate(priv);
8638
8639         return 0;
8640 }
8641
8642 static int ipw_wx_set_freq(struct net_device *dev,
8643                            struct iw_request_info *info,
8644                            union iwreq_data *wrqu, char *extra)
8645 {
8646         struct ipw_priv *priv = ieee80211_priv(dev);
8647         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8648         struct iw_freq *fwrq = &wrqu->freq;
8649         int ret = 0, i;
8650         u8 channel, flags;
8651         int band;
8652
8653         if (fwrq->m == 0) {
8654                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8655                 down(&priv->sem);
8656                 ret = ipw_set_channel(priv, 0);
8657                 up(&priv->sem);
8658                 return ret;
8659         }
8660         /* if setting by freq convert to channel */
8661         if (fwrq->e == 1) {
8662                 channel = ipw_freq_to_channel(priv->ieee, fwrq->m);
8663                 if (channel == 0)
8664                         return -EINVAL;
8665         } else
8666                 channel = fwrq->m;
8667
8668         if (!(band = ipw_is_valid_channel(priv->ieee, channel)))
8669                 return -EINVAL;
8670
8671         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8672                 i = ipw_channel_to_index(priv->ieee, channel);
8673                 if (i == -1)
8674                         return -EINVAL;
8675
8676                 flags = (band == IEEE80211_24GHZ_BAND) ?
8677                     geo->bg[i].flags : geo->a[i].flags;
8678                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8679                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8680                         return -EINVAL;
8681                 }
8682         }
8683
8684         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8685         down(&priv->sem);
8686         ret = ipw_set_channel(priv, channel);
8687         up(&priv->sem);
8688         return ret;
8689 }
8690
8691 static int ipw_wx_get_freq(struct net_device *dev,
8692                            struct iw_request_info *info,
8693                            union iwreq_data *wrqu, char *extra)
8694 {
8695         struct ipw_priv *priv = ieee80211_priv(dev);
8696
8697         wrqu->freq.e = 0;
8698
8699         /* If we are associated, trying to associate, or have a statically
8700          * configured CHANNEL then return that; otherwise return ANY */
8701         down(&priv->sem);
8702         if (priv->config & CFG_STATIC_CHANNEL ||
8703             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8704                 wrqu->freq.m = priv->channel;
8705         else
8706                 wrqu->freq.m = 0;
8707
8708         up(&priv->sem);
8709         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8710         return 0;
8711 }
8712
8713 static int ipw_wx_set_mode(struct net_device *dev,
8714                            struct iw_request_info *info,
8715                            union iwreq_data *wrqu, char *extra)
8716 {
8717         struct ipw_priv *priv = ieee80211_priv(dev);
8718         int err = 0;
8719
8720         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8721
8722         switch (wrqu->mode) {
8723 #ifdef CONFIG_IPW2200_MONITOR
8724         case IW_MODE_MONITOR:
8725 #endif
8726         case IW_MODE_ADHOC:
8727         case IW_MODE_INFRA:
8728                 break;
8729         case IW_MODE_AUTO:
8730                 wrqu->mode = IW_MODE_INFRA;
8731                 break;
8732         default:
8733                 return -EINVAL;
8734         }
8735         if (wrqu->mode == priv->ieee->iw_mode)
8736                 return 0;
8737
8738         down(&priv->sem);
8739
8740         ipw_sw_reset(priv, 0);
8741
8742 #ifdef CONFIG_IPW2200_MONITOR
8743         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8744                 priv->net_dev->type = ARPHRD_ETHER;
8745
8746         if (wrqu->mode == IW_MODE_MONITOR)
8747 #ifdef CONFIG_IEEE80211_RADIOTAP
8748                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8749 #else
8750                 priv->net_dev->type = ARPHRD_IEEE80211;
8751 #endif
8752 #endif                          /* CONFIG_IPW2200_MONITOR */
8753
8754         /* Free the existing firmware and reset the fw_loaded
8755          * flag so ipw_load() will bring in the new firmawre */
8756         free_firmware();
8757
8758         priv->ieee->iw_mode = wrqu->mode;
8759
8760         queue_work(priv->workqueue, &priv->adapter_restart);
8761         up(&priv->sem);
8762         return err;
8763 }
8764
8765 static int ipw_wx_get_mode(struct net_device *dev,
8766                            struct iw_request_info *info,
8767                            union iwreq_data *wrqu, char *extra)
8768 {
8769         struct ipw_priv *priv = ieee80211_priv(dev);
8770         down(&priv->sem);
8771         wrqu->mode = priv->ieee->iw_mode;
8772         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8773         up(&priv->sem);
8774         return 0;
8775 }
8776
8777 /* Values are in microsecond */
8778 static const s32 timeout_duration[] = {
8779         350000,
8780         250000,
8781         75000,
8782         37000,
8783         25000,
8784 };
8785
8786 static const s32 period_duration[] = {
8787         400000,
8788         700000,
8789         1000000,
8790         1000000,
8791         1000000
8792 };
8793
8794 static int ipw_wx_get_range(struct net_device *dev,
8795                             struct iw_request_info *info,
8796                             union iwreq_data *wrqu, char *extra)
8797 {
8798         struct ipw_priv *priv = ieee80211_priv(dev);
8799         struct iw_range *range = (struct iw_range *)extra;
8800         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8801         int i = 0, j;
8802
8803         wrqu->data.length = sizeof(*range);
8804         memset(range, 0, sizeof(*range));
8805
8806         /* 54Mbs == ~27 Mb/s real (802.11g) */
8807         range->throughput = 27 * 1000 * 1000;
8808
8809         range->max_qual.qual = 100;
8810         /* TODO: Find real max RSSI and stick here */
8811         range->max_qual.level = 0;
8812         range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8813         range->max_qual.updated = 7;    /* Updated all three */
8814
8815         range->avg_qual.qual = 70;
8816         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8817         range->avg_qual.level = 0;      /* FIXME to real average level */
8818         range->avg_qual.noise = 0;
8819         range->avg_qual.updated = 7;    /* Updated all three */
8820         down(&priv->sem);
8821         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8822
8823         for (i = 0; i < range->num_bitrates; i++)
8824                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8825                     500000;
8826
8827         range->max_rts = DEFAULT_RTS_THRESHOLD;
8828         range->min_frag = MIN_FRAG_THRESHOLD;
8829         range->max_frag = MAX_FRAG_THRESHOLD;
8830
8831         range->encoding_size[0] = 5;
8832         range->encoding_size[1] = 13;
8833         range->num_encoding_sizes = 2;
8834         range->max_encoding_tokens = WEP_KEYS;
8835
8836         /* Set the Wireless Extension versions */
8837         range->we_version_compiled = WIRELESS_EXT;
8838         range->we_version_source = 16;
8839
8840         i = 0;
8841         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8842                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8843                      i++, j++) {
8844                         range->freq[i].i = geo->bg[j].channel;
8845                         range->freq[i].m = geo->bg[j].freq * 100000;
8846                         range->freq[i].e = 1;
8847                 }
8848         }
8849
8850         if (priv->ieee->mode & IEEE_A) {
8851                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8852                      i++, j++) {
8853                         range->freq[i].i = geo->a[j].channel;
8854                         range->freq[i].m = geo->a[j].freq * 100000;
8855                         range->freq[i].e = 1;
8856                 }
8857         }
8858
8859         range->num_channels = i;
8860         range->num_frequency = i;
8861
8862         up(&priv->sem);
8863         IPW_DEBUG_WX("GET Range\n");
8864         return 0;
8865 }
8866
8867 static int ipw_wx_set_wap(struct net_device *dev,
8868                           struct iw_request_info *info,
8869                           union iwreq_data *wrqu, char *extra)
8870 {
8871         struct ipw_priv *priv = ieee80211_priv(dev);
8872
8873         static const unsigned char any[] = {
8874                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8875         };
8876         static const unsigned char off[] = {
8877                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8878         };
8879
8880         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8881                 return -EINVAL;
8882         down(&priv->sem);
8883         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8884             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8885                 /* we disable mandatory BSSID association */
8886                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8887                 priv->config &= ~CFG_STATIC_BSSID;
8888                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8889                                 "parameters.\n");
8890                 ipw_associate(priv);
8891                 up(&priv->sem);
8892                 return 0;
8893         }
8894
8895         priv->config |= CFG_STATIC_BSSID;
8896         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8897                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8898                 up(&priv->sem);
8899                 return 0;
8900         }
8901
8902         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8903                      MAC_ARG(wrqu->ap_addr.sa_data));
8904
8905         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8906
8907         /* Network configuration changed -- force [re]association */
8908         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8909         if (!ipw_disassociate(priv))
8910                 ipw_associate(priv);
8911
8912         up(&priv->sem);
8913         return 0;
8914 }
8915
8916 static int ipw_wx_get_wap(struct net_device *dev,
8917                           struct iw_request_info *info,
8918                           union iwreq_data *wrqu, char *extra)
8919 {
8920         struct ipw_priv *priv = ieee80211_priv(dev);
8921         /* If we are associated, trying to associate, or have a statically
8922          * configured BSSID then return that; otherwise return ANY */
8923         down(&priv->sem);
8924         if (priv->config & CFG_STATIC_BSSID ||
8925             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8926                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8927                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8928         } else
8929                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8930
8931         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8932                      MAC_ARG(wrqu->ap_addr.sa_data));
8933         up(&priv->sem);
8934         return 0;
8935 }
8936
8937 static int ipw_wx_set_essid(struct net_device *dev,
8938                             struct iw_request_info *info,
8939                             union iwreq_data *wrqu, char *extra)
8940 {
8941         struct ipw_priv *priv = ieee80211_priv(dev);
8942         char *essid = "";       /* ANY */
8943         int length = 0;
8944         down(&priv->sem);
8945         if (wrqu->essid.flags && wrqu->essid.length) {
8946                 length = wrqu->essid.length - 1;
8947                 essid = extra;
8948         }
8949         if (length == 0) {
8950                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8951                 if ((priv->config & CFG_STATIC_ESSID) &&
8952                     !(priv->status & (STATUS_ASSOCIATED |
8953                                       STATUS_ASSOCIATING))) {
8954                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8955                                         "parameters.\n");
8956                         priv->config &= ~CFG_STATIC_ESSID;
8957                         ipw_associate(priv);
8958                 }
8959                 up(&priv->sem);
8960                 return 0;
8961         }
8962
8963         length = min(length, IW_ESSID_MAX_SIZE);
8964
8965         priv->config |= CFG_STATIC_ESSID;
8966
8967         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8968                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8969                 up(&priv->sem);
8970                 return 0;
8971         }
8972
8973         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8974                      length);
8975
8976         priv->essid_len = length;
8977         memcpy(priv->essid, essid, priv->essid_len);
8978
8979         /* Network configuration changed -- force [re]association */
8980         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8981         if (!ipw_disassociate(priv))
8982                 ipw_associate(priv);
8983
8984         up(&priv->sem);
8985         return 0;
8986 }
8987
8988 static int ipw_wx_get_essid(struct net_device *dev,
8989                             struct iw_request_info *info,
8990                             union iwreq_data *wrqu, char *extra)
8991 {
8992         struct ipw_priv *priv = ieee80211_priv(dev);
8993
8994         /* If we are associated, trying to associate, or have a statically
8995          * configured ESSID then return that; otherwise return ANY */
8996         down(&priv->sem);
8997         if (priv->config & CFG_STATIC_ESSID ||
8998             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8999                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9000                              escape_essid(priv->essid, priv->essid_len));
9001                 memcpy(extra, priv->essid, priv->essid_len);
9002                 wrqu->essid.length = priv->essid_len;
9003                 wrqu->essid.flags = 1;  /* active */
9004         } else {
9005                 IPW_DEBUG_WX("Getting essid: ANY\n");
9006                 wrqu->essid.length = 0;
9007                 wrqu->essid.flags = 0;  /* active */
9008         }
9009         up(&priv->sem);
9010         return 0;
9011 }
9012
9013 static int ipw_wx_set_nick(struct net_device *dev,
9014                            struct iw_request_info *info,
9015                            union iwreq_data *wrqu, char *extra)
9016 {
9017         struct ipw_priv *priv = ieee80211_priv(dev);
9018
9019         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9020         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9021                 return -E2BIG;
9022         down(&priv->sem);
9023         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9024         memset(priv->nick, 0, sizeof(priv->nick));
9025         memcpy(priv->nick, extra, wrqu->data.length);
9026         IPW_DEBUG_TRACE("<<\n");
9027         up(&priv->sem);
9028         return 0;
9029
9030 }
9031
9032 static int ipw_wx_get_nick(struct net_device *dev,
9033                            struct iw_request_info *info,
9034                            union iwreq_data *wrqu, char *extra)
9035 {
9036         struct ipw_priv *priv = ieee80211_priv(dev);
9037         IPW_DEBUG_WX("Getting nick\n");
9038         down(&priv->sem);
9039         wrqu->data.length = strlen(priv->nick) + 1;
9040         memcpy(extra, priv->nick, wrqu->data.length);
9041         wrqu->data.flags = 1;   /* active */
9042         up(&priv->sem);
9043         return 0;
9044 }
9045
9046 static int ipw_wx_set_rate(struct net_device *dev,
9047                            struct iw_request_info *info,
9048                            union iwreq_data *wrqu, char *extra)
9049 {
9050         /* TODO: We should use semaphores or locks for access to priv */
9051         struct ipw_priv *priv = ieee80211_priv(dev);
9052         u32 target_rate = wrqu->bitrate.value;
9053         u32 fixed, mask;
9054
9055         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9056         /* value = X, fixed = 1 means only rate X */
9057         /* value = X, fixed = 0 means all rates lower equal X */
9058
9059         if (target_rate == -1) {
9060                 fixed = 0;
9061                 mask = IEEE80211_DEFAULT_RATES_MASK;
9062                 /* Now we should reassociate */
9063                 goto apply;
9064         }
9065
9066         mask = 0;
9067         fixed = wrqu->bitrate.fixed;
9068
9069         if (target_rate == 1000000 || !fixed)
9070                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9071         if (target_rate == 1000000)
9072                 goto apply;
9073
9074         if (target_rate == 2000000 || !fixed)
9075                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9076         if (target_rate == 2000000)
9077                 goto apply;
9078
9079         if (target_rate == 5500000 || !fixed)
9080                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9081         if (target_rate == 5500000)
9082                 goto apply;
9083
9084         if (target_rate == 6000000 || !fixed)
9085                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9086         if (target_rate == 6000000)
9087                 goto apply;
9088
9089         if (target_rate == 9000000 || !fixed)
9090                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9091         if (target_rate == 9000000)
9092                 goto apply;
9093
9094         if (target_rate == 11000000 || !fixed)
9095                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9096         if (target_rate == 11000000)
9097                 goto apply;
9098
9099         if (target_rate == 12000000 || !fixed)
9100                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9101         if (target_rate == 12000000)
9102                 goto apply;
9103
9104         if (target_rate == 18000000 || !fixed)
9105                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9106         if (target_rate == 18000000)
9107                 goto apply;
9108
9109         if (target_rate == 24000000 || !fixed)
9110                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9111         if (target_rate == 24000000)
9112                 goto apply;
9113
9114         if (target_rate == 36000000 || !fixed)
9115                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9116         if (target_rate == 36000000)
9117                 goto apply;
9118
9119         if (target_rate == 48000000 || !fixed)
9120                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9121         if (target_rate == 48000000)
9122                 goto apply;
9123
9124         if (target_rate == 54000000 || !fixed)
9125                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9126         if (target_rate == 54000000)
9127                 goto apply;
9128
9129         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9130         return -EINVAL;
9131
9132       apply:
9133         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9134                      mask, fixed ? "fixed" : "sub-rates");
9135         down(&priv->sem);
9136         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9137                 priv->config &= ~CFG_FIXED_RATE;
9138                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9139         } else
9140                 priv->config |= CFG_FIXED_RATE;
9141
9142         if (priv->rates_mask == mask) {
9143                 IPW_DEBUG_WX("Mask set to current mask.\n");
9144                 up(&priv->sem);
9145                 return 0;
9146         }
9147
9148         priv->rates_mask = mask;
9149
9150         /* Network configuration changed -- force [re]association */
9151         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9152         if (!ipw_disassociate(priv))
9153                 ipw_associate(priv);
9154
9155         up(&priv->sem);
9156         return 0;
9157 }
9158
9159 static int ipw_wx_get_rate(struct net_device *dev,
9160                            struct iw_request_info *info,
9161                            union iwreq_data *wrqu, char *extra)
9162 {
9163         struct ipw_priv *priv = ieee80211_priv(dev);
9164         down(&priv->sem);
9165         wrqu->bitrate.value = priv->last_rate;
9166         up(&priv->sem);
9167         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9168         return 0;
9169 }
9170
9171 static int ipw_wx_set_rts(struct net_device *dev,
9172                           struct iw_request_info *info,
9173                           union iwreq_data *wrqu, char *extra)
9174 {
9175         struct ipw_priv *priv = ieee80211_priv(dev);
9176         down(&priv->sem);
9177         if (wrqu->rts.disabled)
9178                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9179         else {
9180                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9181                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9182                         up(&priv->sem);
9183                         return -EINVAL;
9184                 }
9185                 priv->rts_threshold = wrqu->rts.value;
9186         }
9187
9188         ipw_send_rts_threshold(priv, priv->rts_threshold);
9189         up(&priv->sem);
9190         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9191         return 0;
9192 }
9193
9194 static int ipw_wx_get_rts(struct net_device *dev,
9195                           struct iw_request_info *info,
9196                           union iwreq_data *wrqu, char *extra)
9197 {
9198         struct ipw_priv *priv = ieee80211_priv(dev);
9199         down(&priv->sem);
9200         wrqu->rts.value = priv->rts_threshold;
9201         wrqu->rts.fixed = 0;    /* no auto select */
9202         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9203         up(&priv->sem);
9204         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9205         return 0;
9206 }
9207
9208 static int ipw_wx_set_txpow(struct net_device *dev,
9209                             struct iw_request_info *info,
9210                             union iwreq_data *wrqu, char *extra)
9211 {
9212         struct ipw_priv *priv = ieee80211_priv(dev);
9213         int err = 0;
9214
9215         down(&priv->sem);
9216         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9217                 err = -EINPROGRESS;
9218                 goto out;
9219         }
9220
9221         if (!wrqu->power.fixed)
9222                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9223
9224         if (wrqu->power.flags != IW_TXPOW_DBM) {
9225                 err = -EINVAL;
9226                 goto out;
9227         }
9228
9229         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9230             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9231                 err = -EINVAL;
9232                 goto out;
9233         }
9234
9235         priv->tx_power = wrqu->power.value;
9236         err = ipw_set_tx_power(priv);
9237       out:
9238         up(&priv->sem);
9239         return err;
9240 }
9241
9242 static int ipw_wx_get_txpow(struct net_device *dev,
9243                             struct iw_request_info *info,
9244                             union iwreq_data *wrqu, char *extra)
9245 {
9246         struct ipw_priv *priv = ieee80211_priv(dev);
9247         down(&priv->sem);
9248         wrqu->power.value = priv->tx_power;
9249         wrqu->power.fixed = 1;
9250         wrqu->power.flags = IW_TXPOW_DBM;
9251         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9252         up(&priv->sem);
9253
9254         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9255                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9256
9257         return 0;
9258 }
9259
9260 static int ipw_wx_set_frag(struct net_device *dev,
9261                            struct iw_request_info *info,
9262                            union iwreq_data *wrqu, char *extra)
9263 {
9264         struct ipw_priv *priv = ieee80211_priv(dev);
9265         down(&priv->sem);
9266         if (wrqu->frag.disabled)
9267                 priv->ieee->fts = DEFAULT_FTS;
9268         else {
9269                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9270                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9271                         up(&priv->sem);
9272                         return -EINVAL;
9273                 }
9274
9275                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9276         }
9277
9278         ipw_send_frag_threshold(priv, wrqu->frag.value);
9279         up(&priv->sem);
9280         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9281         return 0;
9282 }
9283
9284 static int ipw_wx_get_frag(struct net_device *dev,
9285                            struct iw_request_info *info,
9286                            union iwreq_data *wrqu, char *extra)
9287 {
9288         struct ipw_priv *priv = ieee80211_priv(dev);
9289         down(&priv->sem);
9290         wrqu->frag.value = priv->ieee->fts;
9291         wrqu->frag.fixed = 0;   /* no auto select */
9292         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9293         up(&priv->sem);
9294         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9295
9296         return 0;
9297 }
9298
9299 static int ipw_wx_set_retry(struct net_device *dev,
9300                             struct iw_request_info *info,
9301                             union iwreq_data *wrqu, char *extra)
9302 {
9303         struct ipw_priv *priv = ieee80211_priv(dev);
9304
9305         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9306                 return -EINVAL;
9307
9308         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9309                 return 0;
9310
9311         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9312                 return -EINVAL;
9313
9314         down(&priv->sem);
9315         if (wrqu->retry.flags & IW_RETRY_MIN)
9316                 priv->short_retry_limit = (u8) wrqu->retry.value;
9317         else if (wrqu->retry.flags & IW_RETRY_MAX)
9318                 priv->long_retry_limit = (u8) wrqu->retry.value;
9319         else {
9320                 priv->short_retry_limit = (u8) wrqu->retry.value;
9321                 priv->long_retry_limit = (u8) wrqu->retry.value;
9322         }
9323
9324         ipw_send_retry_limit(priv, priv->short_retry_limit,
9325                              priv->long_retry_limit);
9326         up(&priv->sem);
9327         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9328                      priv->short_retry_limit, priv->long_retry_limit);
9329         return 0;
9330 }
9331
9332 static int ipw_wx_get_retry(struct net_device *dev,
9333                             struct iw_request_info *info,
9334                             union iwreq_data *wrqu, char *extra)
9335 {
9336         struct ipw_priv *priv = ieee80211_priv(dev);
9337
9338         down(&priv->sem);
9339         wrqu->retry.disabled = 0;
9340
9341         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9342                 up(&priv->sem);
9343                 return -EINVAL;
9344         }
9345
9346         if (wrqu->retry.flags & IW_RETRY_MAX) {
9347                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9348                 wrqu->retry.value = priv->long_retry_limit;
9349         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9350                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9351                 wrqu->retry.value = priv->short_retry_limit;
9352         } else {
9353                 wrqu->retry.flags = IW_RETRY_LIMIT;
9354                 wrqu->retry.value = priv->short_retry_limit;
9355         }
9356         up(&priv->sem);
9357
9358         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9359
9360         return 0;
9361 }
9362
9363 #if WIRELESS_EXT > 17
9364 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9365                                    int essid_len)
9366 {
9367         struct ipw_scan_request_ext scan;
9368         int err = 0, scan_type;
9369
9370         down(&priv->sem);
9371
9372         if (priv->status & STATUS_RF_KILL_MASK) {
9373                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9374                 priv->status |= STATUS_SCAN_PENDING;
9375                 goto done;
9376         }
9377
9378         IPW_DEBUG_HC("starting request direct scan!\n");
9379
9380         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9381                 err = wait_event_interruptible(priv->wait_state,
9382                                                !(priv->
9383                                                  status & (STATUS_SCANNING |
9384                                                            STATUS_SCAN_ABORTING)));
9385                 if (err) {
9386                         IPW_DEBUG_HC("aborting direct scan");
9387                         goto done;
9388                 }
9389         }
9390         memset(&scan, 0, sizeof(scan));
9391
9392         if (priv->config & CFG_SPEED_SCAN)
9393                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9394                     cpu_to_le16(30);
9395         else
9396                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9397                     cpu_to_le16(20);
9398
9399         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9400             cpu_to_le16(20);
9401         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9402         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9403
9404         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9405
9406         err = ipw_send_ssid(priv, essid, essid_len);
9407         if (err) {
9408                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9409                 goto done;
9410         }
9411         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9412
9413         ipw_add_scan_channels(priv, &scan, scan_type);
9414
9415         err = ipw_send_scan_request_ext(priv, &scan);
9416         if (err) {
9417                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9418                 goto done;
9419         }
9420
9421         priv->status |= STATUS_SCANNING;
9422
9423       done:
9424         up(&priv->sem);
9425         return err;
9426 }
9427 #endif                          /* WIRELESS_EXT > 17 */
9428
9429 static int ipw_wx_set_scan(struct net_device *dev,
9430                            struct iw_request_info *info,
9431                            union iwreq_data *wrqu, char *extra)
9432 {
9433         struct ipw_priv *priv = ieee80211_priv(dev);
9434 #if WIRELESS_EXT > 17
9435         struct iw_scan_req *req = NULL;
9436         if (wrqu->data.length
9437             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9438                 req = (struct iw_scan_req *)extra;
9439                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9440                         ipw_request_direct_scan(priv, req->essid,
9441                                                 req->essid_len);
9442                         return 0;
9443                 }
9444         }
9445 #endif
9446         IPW_DEBUG_WX("Start scan\n");
9447
9448         queue_work(priv->workqueue, &priv->request_scan);
9449
9450         return 0;
9451 }
9452
9453 static int ipw_wx_get_scan(struct net_device *dev,
9454                            struct iw_request_info *info,
9455                            union iwreq_data *wrqu, char *extra)
9456 {
9457         struct ipw_priv *priv = ieee80211_priv(dev);
9458         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9459 }
9460
9461 static int ipw_wx_set_encode(struct net_device *dev,
9462                              struct iw_request_info *info,
9463                              union iwreq_data *wrqu, char *key)
9464 {
9465         struct ipw_priv *priv = ieee80211_priv(dev);
9466         int ret;
9467         u32 cap = priv->capability;
9468
9469         down(&priv->sem);
9470         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9471
9472         /* In IBSS mode, we need to notify the firmware to update
9473          * the beacon info after we changed the capability. */
9474         if (cap != priv->capability &&
9475             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9476             priv->status & STATUS_ASSOCIATED)
9477                 ipw_disassociate(priv);
9478
9479         up(&priv->sem);
9480         return ret;
9481 }
9482
9483 static int ipw_wx_get_encode(struct net_device *dev,
9484                              struct iw_request_info *info,
9485                              union iwreq_data *wrqu, char *key)
9486 {
9487         struct ipw_priv *priv = ieee80211_priv(dev);
9488         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9489 }
9490
9491 static int ipw_wx_set_power(struct net_device *dev,
9492                             struct iw_request_info *info,
9493                             union iwreq_data *wrqu, char *extra)
9494 {
9495         struct ipw_priv *priv = ieee80211_priv(dev);
9496         int err;
9497         down(&priv->sem);
9498         if (wrqu->power.disabled) {
9499                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9500                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9501                 if (err) {
9502                         IPW_DEBUG_WX("failed setting power mode.\n");
9503                         up(&priv->sem);
9504                         return err;
9505                 }
9506                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9507                 up(&priv->sem);
9508                 return 0;
9509         }
9510
9511         switch (wrqu->power.flags & IW_POWER_MODE) {
9512         case IW_POWER_ON:       /* If not specified */
9513         case IW_POWER_MODE:     /* If set all mask */
9514         case IW_POWER_ALL_R:    /* If explicitely state all */
9515                 break;
9516         default:                /* Otherwise we don't support it */
9517                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9518                              wrqu->power.flags);
9519                 up(&priv->sem);
9520                 return -EOPNOTSUPP;
9521         }
9522
9523         /* If the user hasn't specified a power management mode yet, default
9524          * to BATTERY */
9525         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9526                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9527         else
9528                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9529         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9530         if (err) {
9531                 IPW_DEBUG_WX("failed setting power mode.\n");
9532                 up(&priv->sem);
9533                 return err;
9534         }
9535
9536         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9537         up(&priv->sem);
9538         return 0;
9539 }
9540
9541 static int ipw_wx_get_power(struct net_device *dev,
9542                             struct iw_request_info *info,
9543                             union iwreq_data *wrqu, char *extra)
9544 {
9545         struct ipw_priv *priv = ieee80211_priv(dev);
9546         down(&priv->sem);
9547         if (!(priv->power_mode & IPW_POWER_ENABLED))
9548                 wrqu->power.disabled = 1;
9549         else
9550                 wrqu->power.disabled = 0;
9551
9552         up(&priv->sem);
9553         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9554
9555         return 0;
9556 }
9557
9558 static int ipw_wx_set_powermode(struct net_device *dev,
9559                                 struct iw_request_info *info,
9560                                 union iwreq_data *wrqu, char *extra)
9561 {
9562         struct ipw_priv *priv = ieee80211_priv(dev);
9563         int mode = *(int *)extra;
9564         int err;
9565         down(&priv->sem);
9566         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9567                 mode = IPW_POWER_AC;
9568                 priv->power_mode = mode;
9569         } else {
9570                 priv->power_mode = IPW_POWER_ENABLED | mode;
9571         }
9572
9573         if (priv->power_mode != mode) {
9574                 err = ipw_send_power_mode(priv, mode);
9575
9576                 if (err) {
9577                         IPW_DEBUG_WX("failed setting power mode.\n");
9578                         up(&priv->sem);
9579                         return err;
9580                 }
9581         }
9582         up(&priv->sem);
9583         return 0;
9584 }
9585
9586 #define MAX_WX_STRING 80
9587 static int ipw_wx_get_powermode(struct net_device *dev,
9588                                 struct iw_request_info *info,
9589                                 union iwreq_data *wrqu, char *extra)
9590 {
9591         struct ipw_priv *priv = ieee80211_priv(dev);
9592         int level = IPW_POWER_LEVEL(priv->power_mode);
9593         char *p = extra;
9594
9595         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9596
9597         switch (level) {
9598         case IPW_POWER_AC:
9599                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9600                 break;
9601         case IPW_POWER_BATTERY:
9602                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9603                 break;
9604         default:
9605                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9606                               "(Timeout %dms, Period %dms)",
9607                               timeout_duration[level - 1] / 1000,
9608                               period_duration[level - 1] / 1000);
9609         }
9610
9611         if (!(priv->power_mode & IPW_POWER_ENABLED))
9612                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9613
9614         wrqu->data.length = p - extra + 1;
9615
9616         return 0;
9617 }
9618
9619 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9620                                     struct iw_request_info *info,
9621                                     union iwreq_data *wrqu, char *extra)
9622 {
9623         struct ipw_priv *priv = ieee80211_priv(dev);
9624         int mode = *(int *)extra;
9625         u8 band = 0, modulation = 0;
9626
9627         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9628                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9629                 return -EINVAL;
9630         }
9631         down(&priv->sem);
9632         if (priv->adapter == IPW_2915ABG) {
9633                 priv->ieee->abg_true = 1;
9634                 if (mode & IEEE_A) {
9635                         band |= IEEE80211_52GHZ_BAND;
9636                         modulation |= IEEE80211_OFDM_MODULATION;
9637                 } else
9638                         priv->ieee->abg_true = 0;
9639         } else {
9640                 if (mode & IEEE_A) {
9641                         IPW_WARNING("Attempt to set 2200BG into "
9642                                     "802.11a mode\n");
9643                         up(&priv->sem);
9644                         return -EINVAL;
9645                 }
9646
9647                 priv->ieee->abg_true = 0;
9648         }
9649
9650         if (mode & IEEE_B) {
9651                 band |= IEEE80211_24GHZ_BAND;
9652                 modulation |= IEEE80211_CCK_MODULATION;
9653         } else
9654                 priv->ieee->abg_true = 0;
9655
9656         if (mode & IEEE_G) {
9657                 band |= IEEE80211_24GHZ_BAND;
9658                 modulation |= IEEE80211_OFDM_MODULATION;
9659         } else
9660                 priv->ieee->abg_true = 0;
9661
9662         priv->ieee->mode = mode;
9663         priv->ieee->freq_band = band;
9664         priv->ieee->modulation = modulation;
9665         init_supported_rates(priv, &priv->rates);
9666
9667         /* Network configuration changed -- force [re]association */
9668         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9669         if (!ipw_disassociate(priv)) {
9670                 ipw_send_supported_rates(priv, &priv->rates);
9671                 ipw_associate(priv);
9672         }
9673
9674         /* Update the band LEDs */
9675         ipw_led_band_on(priv);
9676
9677         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9678                      mode & IEEE_A ? 'a' : '.',
9679                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9680         up(&priv->sem);
9681         return 0;
9682 }
9683
9684 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9685                                     struct iw_request_info *info,
9686                                     union iwreq_data *wrqu, char *extra)
9687 {
9688         struct ipw_priv *priv = ieee80211_priv(dev);
9689         down(&priv->sem);
9690         switch (priv->ieee->mode) {
9691         case IEEE_A:
9692                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9693                 break;
9694         case IEEE_B:
9695                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9696                 break;
9697         case IEEE_A | IEEE_B:
9698                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9699                 break;
9700         case IEEE_G:
9701                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9702                 break;
9703         case IEEE_A | IEEE_G:
9704                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9705                 break;
9706         case IEEE_B | IEEE_G:
9707                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9708                 break;
9709         case IEEE_A | IEEE_B | IEEE_G:
9710                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9711                 break;
9712         default:
9713                 strncpy(extra, "unknown", MAX_WX_STRING);
9714                 break;
9715         }
9716
9717         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9718
9719         wrqu->data.length = strlen(extra) + 1;
9720         up(&priv->sem);
9721
9722         return 0;
9723 }
9724
9725 static int ipw_wx_set_preamble(struct net_device *dev,
9726                                struct iw_request_info *info,
9727                                union iwreq_data *wrqu, char *extra)
9728 {
9729         struct ipw_priv *priv = ieee80211_priv(dev);
9730         int mode = *(int *)extra;
9731         down(&priv->sem);
9732         /* Switching from SHORT -> LONG requires a disassociation */
9733         if (mode == 1) {
9734                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9735                         priv->config |= CFG_PREAMBLE_LONG;
9736
9737                         /* Network configuration changed -- force [re]association */
9738                         IPW_DEBUG_ASSOC
9739                             ("[re]association triggered due to preamble change.\n");
9740                         if (!ipw_disassociate(priv))
9741                                 ipw_associate(priv);
9742                 }
9743                 goto done;
9744         }
9745
9746         if (mode == 0) {
9747                 priv->config &= ~CFG_PREAMBLE_LONG;
9748                 goto done;
9749         }
9750         up(&priv->sem);
9751         return -EINVAL;
9752
9753       done:
9754         up(&priv->sem);
9755         return 0;
9756 }
9757
9758 static int ipw_wx_get_preamble(struct net_device *dev,
9759                                struct iw_request_info *info,
9760                                union iwreq_data *wrqu, char *extra)
9761 {
9762         struct ipw_priv *priv = ieee80211_priv(dev);
9763         down(&priv->sem);
9764         if (priv->config & CFG_PREAMBLE_LONG)
9765                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9766         else
9767                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9768         up(&priv->sem);
9769         return 0;
9770 }
9771
9772 #ifdef CONFIG_IPW2200_MONITOR
9773 static int ipw_wx_set_monitor(struct net_device *dev,
9774                               struct iw_request_info *info,
9775                               union iwreq_data *wrqu, char *extra)
9776 {
9777         struct ipw_priv *priv = ieee80211_priv(dev);
9778         int *parms = (int *)extra;
9779         int enable = (parms[0] > 0);
9780         down(&priv->sem);
9781         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9782         if (enable) {
9783                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9784 #ifdef CONFIG_IEEE80211_RADIOTAP
9785                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9786 #else
9787                         priv->net_dev->type = ARPHRD_IEEE80211;
9788 #endif
9789                         queue_work(priv->workqueue, &priv->adapter_restart);
9790                 }
9791
9792                 ipw_set_channel(priv, parms[1]);
9793         } else {
9794                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9795                         up(&priv->sem);
9796                         return 0;
9797                 }
9798                 priv->net_dev->type = ARPHRD_ETHER;
9799                 queue_work(priv->workqueue, &priv->adapter_restart);
9800         }
9801         up(&priv->sem);
9802         return 0;
9803 }
9804
9805 #endif                          // CONFIG_IPW2200_MONITOR
9806
9807 static int ipw_wx_reset(struct net_device *dev,
9808                         struct iw_request_info *info,
9809                         union iwreq_data *wrqu, char *extra)
9810 {
9811         struct ipw_priv *priv = ieee80211_priv(dev);
9812         IPW_DEBUG_WX("RESET\n");
9813         queue_work(priv->workqueue, &priv->adapter_restart);
9814         return 0;
9815 }
9816
9817 static int ipw_wx_sw_reset(struct net_device *dev,
9818                            struct iw_request_info *info,
9819                            union iwreq_data *wrqu, char *extra)
9820 {
9821         struct ipw_priv *priv = ieee80211_priv(dev);
9822         union iwreq_data wrqu_sec = {
9823                 .encoding = {
9824                              .flags = IW_ENCODE_DISABLED,
9825                              },
9826         };
9827         int ret;
9828
9829         IPW_DEBUG_WX("SW_RESET\n");
9830
9831         down(&priv->sem);
9832
9833         ret = ipw_sw_reset(priv, 0);
9834         if (!ret) {
9835                 free_firmware();
9836                 ipw_adapter_restart(priv);
9837         }
9838
9839         /* The SW reset bit might have been toggled on by the 'disable'
9840          * module parameter, so take appropriate action */
9841         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9842
9843         up(&priv->sem);
9844         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9845         down(&priv->sem);
9846
9847         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9848                 /* Configuration likely changed -- force [re]association */
9849                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9850                                 "reset.\n");
9851                 if (!ipw_disassociate(priv))
9852                         ipw_associate(priv);
9853         }
9854
9855         up(&priv->sem);
9856
9857         return 0;
9858 }
9859
9860 /* Rebase the WE IOCTLs to zero for the handler array */
9861 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9862 static iw_handler ipw_wx_handlers[] = {
9863         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9864         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9865         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9866         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9867         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9868         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9869         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9870         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9871         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9872         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9873         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9874         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9875         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9876         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9877         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9878         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9879         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9880         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9881         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9882         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9883         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9884         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9885         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9886         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9887         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9888         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9889         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9890         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9891         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9892         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9893         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9894         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9895 #if WIRELESS_EXT > 17
9896         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9897         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9898         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9899         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9900         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9901         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9902         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9903 #endif
9904 };
9905
9906 enum {
9907         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9908         IPW_PRIV_GET_POWER,
9909         IPW_PRIV_SET_MODE,
9910         IPW_PRIV_GET_MODE,
9911         IPW_PRIV_SET_PREAMBLE,
9912         IPW_PRIV_GET_PREAMBLE,
9913         IPW_PRIV_RESET,
9914         IPW_PRIV_SW_RESET,
9915 #ifdef CONFIG_IPW2200_MONITOR
9916         IPW_PRIV_SET_MONITOR,
9917 #endif
9918 };
9919
9920 static struct iw_priv_args ipw_priv_args[] = {
9921         {
9922          .cmd = IPW_PRIV_SET_POWER,
9923          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9924          .name = "set_power"},
9925         {
9926          .cmd = IPW_PRIV_GET_POWER,
9927          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9928          .name = "get_power"},
9929         {
9930          .cmd = IPW_PRIV_SET_MODE,
9931          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9932          .name = "set_mode"},
9933         {
9934          .cmd = IPW_PRIV_GET_MODE,
9935          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9936          .name = "get_mode"},
9937         {
9938          .cmd = IPW_PRIV_SET_PREAMBLE,
9939          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9940          .name = "set_preamble"},
9941         {
9942          .cmd = IPW_PRIV_GET_PREAMBLE,
9943          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9944          .name = "get_preamble"},
9945         {
9946          IPW_PRIV_RESET,
9947          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9948         {
9949          IPW_PRIV_SW_RESET,
9950          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9951 #ifdef CONFIG_IPW2200_MONITOR
9952         {
9953          IPW_PRIV_SET_MONITOR,
9954          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9955 #endif                          /* CONFIG_IPW2200_MONITOR */
9956 };
9957
9958 static iw_handler ipw_priv_handler[] = {
9959         ipw_wx_set_powermode,
9960         ipw_wx_get_powermode,
9961         ipw_wx_set_wireless_mode,
9962         ipw_wx_get_wireless_mode,
9963         ipw_wx_set_preamble,
9964         ipw_wx_get_preamble,
9965         ipw_wx_reset,
9966         ipw_wx_sw_reset,
9967 #ifdef CONFIG_IPW2200_MONITOR
9968         ipw_wx_set_monitor,
9969 #endif
9970 };
9971
9972 static struct iw_handler_def ipw_wx_handler_def = {
9973         .standard = ipw_wx_handlers,
9974         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9975         .num_private = ARRAY_SIZE(ipw_priv_handler),
9976         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9977         .private = ipw_priv_handler,
9978         .private_args = ipw_priv_args,
9979 };
9980
9981 static struct iw_public_data ipw_wx_data;
9982
9983 /*
9984  * Get wireless statistics.
9985  * Called by /proc/net/wireless
9986  * Also called by SIOCGIWSTATS
9987  */
9988 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9989 {
9990         struct ipw_priv *priv = ieee80211_priv(dev);
9991         struct iw_statistics *wstats;
9992
9993         wstats = &priv->wstats;
9994
9995         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9996          * netdev->get_wireless_stats seems to be called before fw is
9997          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9998          * and associated; if not associcated, the values are all meaningless
9999          * anyway, so set them all to NULL and INVALID */
10000         if (!(priv->status & STATUS_ASSOCIATED)) {
10001                 wstats->miss.beacon = 0;
10002                 wstats->discard.retries = 0;
10003                 wstats->qual.qual = 0;
10004                 wstats->qual.level = 0;
10005                 wstats->qual.noise = 0;
10006                 wstats->qual.updated = 7;
10007                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10008                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10009                 return wstats;
10010         }
10011
10012         wstats->qual.qual = priv->quality;
10013         wstats->qual.level = average_value(&priv->average_rssi);
10014         wstats->qual.noise = average_value(&priv->average_noise);
10015         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10016             IW_QUAL_NOISE_UPDATED;
10017
10018         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10019         wstats->discard.retries = priv->last_tx_failures;
10020         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10021
10022 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10023         goto fail_get_ordinal;
10024         wstats->discard.retries += tx_retry; */
10025
10026         return wstats;
10027 }
10028
10029 /* net device stuff */
10030
10031 static inline void init_sys_config(struct ipw_sys_config *sys_config)
10032 {
10033         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10034         sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
10035         sys_config->answer_broadcast_ssid_probe = 0;
10036         sys_config->accept_all_data_frames = 0;
10037         sys_config->accept_non_directed_frames = 1;
10038         sys_config->exclude_unicast_unencrypted = 0;
10039         sys_config->disable_unicast_decryption = 1;
10040         sys_config->exclude_multicast_unencrypted = 0;
10041         sys_config->disable_multicast_decryption = 1;
10042         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
10043         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10044         sys_config->dot11g_auto_detection = 0;
10045         sys_config->enable_cts_to_self = 0;
10046         sys_config->bt_coexist_collision_thr = 0;
10047         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
10048 }
10049
10050 static int ipw_net_open(struct net_device *dev)
10051 {
10052         struct ipw_priv *priv = ieee80211_priv(dev);
10053         IPW_DEBUG_INFO("dev->open\n");
10054         /* we should be verifying the device is ready to be opened */
10055         down(&priv->sem);
10056         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10057             (priv->status & STATUS_ASSOCIATED))
10058                 netif_start_queue(dev);
10059         up(&priv->sem);
10060         return 0;
10061 }
10062
10063 static int ipw_net_stop(struct net_device *dev)
10064 {
10065         IPW_DEBUG_INFO("dev->close\n");
10066         netif_stop_queue(dev);
10067         return 0;
10068 }
10069
10070 /*
10071 todo:
10072
10073 modify to send one tfd per fragment instead of using chunking.  otherwise
10074 we need to heavily modify the ieee80211_skb_to_txb.
10075 */
10076
10077 static inline int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10078                              int pri)
10079 {
10080         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
10081             txb->fragments[0]->data;
10082         int i = 0;
10083         struct tfd_frame *tfd;
10084 #ifdef CONFIG_IPW_QOS
10085         int tx_id = ipw_get_tx_queue_number(priv, pri);
10086         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10087 #else
10088         struct clx2_tx_queue *txq = &priv->txq[0];
10089 #endif
10090         struct clx2_queue *q = &txq->q;
10091         u8 id, hdr_len, unicast;
10092         u16 remaining_bytes;
10093         int fc;
10094
10095         /* If there isn't room in the queue, we return busy and let the
10096          * network stack requeue the packet for us */
10097         if (ipw_queue_space(q) < q->high_mark)
10098                 return NETDEV_TX_BUSY;
10099
10100         switch (priv->ieee->iw_mode) {
10101         case IW_MODE_ADHOC:
10102                 hdr_len = IEEE80211_3ADDR_LEN;
10103                 unicast = !is_multicast_ether_addr(hdr->addr1);
10104                 id = ipw_find_station(priv, hdr->addr1);
10105                 if (id == IPW_INVALID_STATION) {
10106                         id = ipw_add_station(priv, hdr->addr1);
10107                         if (id == IPW_INVALID_STATION) {
10108                                 IPW_WARNING("Attempt to send data to "
10109                                             "invalid cell: " MAC_FMT "\n",
10110                                             MAC_ARG(hdr->addr1));
10111                                 goto drop;
10112                         }
10113                 }
10114                 break;
10115
10116         case IW_MODE_INFRA:
10117         default:
10118                 unicast = !is_multicast_ether_addr(hdr->addr3);
10119                 hdr_len = IEEE80211_3ADDR_LEN;
10120                 id = 0;
10121                 break;
10122         }
10123
10124         tfd = &txq->bd[q->first_empty];
10125         txq->txb[q->first_empty] = txb;
10126         memset(tfd, 0, sizeof(*tfd));
10127         tfd->u.data.station_number = id;
10128
10129         tfd->control_flags.message_type = TX_FRAME_TYPE;
10130         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10131
10132         tfd->u.data.cmd_id = DINO_CMD_TX;
10133         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10134         remaining_bytes = txb->payload_size;
10135
10136         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10137                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10138         else
10139                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10140
10141         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10142                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10143
10144         fc = le16_to_cpu(hdr->frame_ctl);
10145         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10146
10147         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10148
10149         if (likely(unicast))
10150                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10151
10152         if (txb->encrypted && !priv->ieee->host_encrypt) {
10153                 switch (priv->ieee->sec.level) {
10154                 case SEC_LEVEL_3:
10155                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10156                             IEEE80211_FCTL_PROTECTED;
10157                         /* XXX: ACK flag must be set for CCMP even if it
10158                          * is a multicast/broadcast packet, because CCMP
10159                          * group communication encrypted by GTK is
10160                          * actually done by the AP. */
10161                         if (!unicast)
10162                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10163
10164                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10165                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10166                         tfd->u.data.key_index = 0;
10167                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10168                         break;
10169                 case SEC_LEVEL_2:
10170                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10171                             IEEE80211_FCTL_PROTECTED;
10172                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10173                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10174                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10175                         break;
10176                 case SEC_LEVEL_1:
10177                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10178                             IEEE80211_FCTL_PROTECTED;
10179                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10180                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10181                             40)
10182                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10183                         else
10184                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10185                         break;
10186                 case SEC_LEVEL_0:
10187                         break;
10188                 default:
10189                         printk(KERN_ERR "Unknow security level %d\n",
10190                                priv->ieee->sec.level);
10191                         break;
10192                 }
10193         } else
10194                 /* No hardware encryption */
10195                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10196
10197 #ifdef CONFIG_IPW_QOS
10198         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
10199 #endif                          /* CONFIG_IPW_QOS */
10200
10201         /* payload */
10202         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10203                                                  txb->nr_frags));
10204         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10205                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10206         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10207                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10208                                i, le32_to_cpu(tfd->u.data.num_chunks),
10209                                txb->fragments[i]->len - hdr_len);
10210                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10211                              i, tfd->u.data.num_chunks,
10212                              txb->fragments[i]->len - hdr_len);
10213                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10214                            txb->fragments[i]->len - hdr_len);
10215
10216                 tfd->u.data.chunk_ptr[i] =
10217                     cpu_to_le32(pci_map_single
10218                                 (priv->pci_dev,
10219                                  txb->fragments[i]->data + hdr_len,
10220                                  txb->fragments[i]->len - hdr_len,
10221                                  PCI_DMA_TODEVICE));
10222                 tfd->u.data.chunk_len[i] =
10223                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10224         }
10225
10226         if (i != txb->nr_frags) {
10227                 struct sk_buff *skb;
10228                 u16 remaining_bytes = 0;
10229                 int j;
10230
10231                 for (j = i; j < txb->nr_frags; j++)
10232                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10233
10234                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10235                        remaining_bytes);
10236                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10237                 if (skb != NULL) {
10238                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10239                         for (j = i; j < txb->nr_frags; j++) {
10240                                 int size = txb->fragments[j]->len - hdr_len;
10241
10242                                 printk(KERN_INFO "Adding frag %d %d...\n",
10243                                        j, size);
10244                                 memcpy(skb_put(skb, size),
10245                                        txb->fragments[j]->data + hdr_len, size);
10246                         }
10247                         dev_kfree_skb_any(txb->fragments[i]);
10248                         txb->fragments[i] = skb;
10249                         tfd->u.data.chunk_ptr[i] =
10250                             cpu_to_le32(pci_map_single
10251                                         (priv->pci_dev, skb->data,
10252                                          tfd->u.data.chunk_len[i],
10253                                          PCI_DMA_TODEVICE));
10254
10255                         tfd->u.data.num_chunks =
10256                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10257                                         1);
10258                 }
10259         }
10260
10261         /* kick DMA */
10262         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10263         ipw_write32(priv, q->reg_w, q->first_empty);
10264
10265         return NETDEV_TX_OK;
10266
10267       drop:
10268         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10269         ieee80211_txb_free(txb);
10270         return NETDEV_TX_OK;
10271 }
10272
10273 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10274 {
10275         struct ipw_priv *priv = ieee80211_priv(dev);
10276 #ifdef CONFIG_IPW_QOS
10277         int tx_id = ipw_get_tx_queue_number(priv, pri);
10278         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10279 #else
10280         struct clx2_tx_queue *txq = &priv->txq[0];
10281 #endif                          /* CONFIG_IPW_QOS */
10282
10283         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10284                 return 1;
10285
10286         return 0;
10287 }
10288
10289 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10290                                    struct net_device *dev, int pri)
10291 {
10292         struct ipw_priv *priv = ieee80211_priv(dev);
10293         unsigned long flags;
10294         int ret;
10295
10296         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10297         spin_lock_irqsave(&priv->lock, flags);
10298
10299         if (!(priv->status & STATUS_ASSOCIATED)) {
10300                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10301                 priv->ieee->stats.tx_carrier_errors++;
10302                 netif_stop_queue(dev);
10303                 goto fail_unlock;
10304         }
10305
10306         ret = ipw_tx_skb(priv, txb, pri);
10307         if (ret == NETDEV_TX_OK)
10308                 __ipw_led_activity_on(priv);
10309         spin_unlock_irqrestore(&priv->lock, flags);
10310
10311         return ret;
10312
10313       fail_unlock:
10314         spin_unlock_irqrestore(&priv->lock, flags);
10315         return 1;
10316 }
10317
10318 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10319 {
10320         struct ipw_priv *priv = ieee80211_priv(dev);
10321
10322         priv->ieee->stats.tx_packets = priv->tx_packets;
10323         priv->ieee->stats.rx_packets = priv->rx_packets;
10324         return &priv->ieee->stats;
10325 }
10326
10327 static void ipw_net_set_multicast_list(struct net_device *dev)
10328 {
10329
10330 }
10331
10332 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10333 {
10334         struct ipw_priv *priv = ieee80211_priv(dev);
10335         struct sockaddr *addr = p;
10336         if (!is_valid_ether_addr(addr->sa_data))
10337                 return -EADDRNOTAVAIL;
10338         down(&priv->sem);
10339         priv->config |= CFG_CUSTOM_MAC;
10340         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10341         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10342                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10343         queue_work(priv->workqueue, &priv->adapter_restart);
10344         up(&priv->sem);
10345         return 0;
10346 }
10347
10348 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10349                                     struct ethtool_drvinfo *info)
10350 {
10351         struct ipw_priv *p = ieee80211_priv(dev);
10352         char vers[64];
10353         char date[32];
10354         u32 len;
10355
10356         strcpy(info->driver, DRV_NAME);
10357         strcpy(info->version, DRV_VERSION);
10358
10359         len = sizeof(vers);
10360         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10361         len = sizeof(date);
10362         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10363
10364         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10365                  vers, date);
10366         strcpy(info->bus_info, pci_name(p->pci_dev));
10367         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10368 }
10369
10370 static u32 ipw_ethtool_get_link(struct net_device *dev)
10371 {
10372         struct ipw_priv *priv = ieee80211_priv(dev);
10373         return (priv->status & STATUS_ASSOCIATED) != 0;
10374 }
10375
10376 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10377 {
10378         return IPW_EEPROM_IMAGE_SIZE;
10379 }
10380
10381 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10382                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10383 {
10384         struct ipw_priv *p = ieee80211_priv(dev);
10385
10386         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10387                 return -EINVAL;
10388         down(&p->sem);
10389         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10390         up(&p->sem);
10391         return 0;
10392 }
10393
10394 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10395                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10396 {
10397         struct ipw_priv *p = ieee80211_priv(dev);
10398         int i;
10399
10400         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10401                 return -EINVAL;
10402         down(&p->sem);
10403         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10404         for (i = IPW_EEPROM_DATA;
10405              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
10406                 ipw_write8(p, i, p->eeprom[i]);
10407         up(&p->sem);
10408         return 0;
10409 }
10410
10411 static struct ethtool_ops ipw_ethtool_ops = {
10412         .get_link = ipw_ethtool_get_link,
10413         .get_drvinfo = ipw_ethtool_get_drvinfo,
10414         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10415         .get_eeprom = ipw_ethtool_get_eeprom,
10416         .set_eeprom = ipw_ethtool_set_eeprom,
10417 };
10418
10419 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10420 {
10421         struct ipw_priv *priv = data;
10422         u32 inta, inta_mask;
10423
10424         if (!priv)
10425                 return IRQ_NONE;
10426
10427         spin_lock(&priv->lock);
10428
10429         if (!(priv->status & STATUS_INT_ENABLED)) {
10430                 /* Shared IRQ */
10431                 goto none;
10432         }
10433
10434         inta = ipw_read32(priv, IPW_INTA_RW);
10435         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10436
10437         if (inta == 0xFFFFFFFF) {
10438                 /* Hardware disappeared */
10439                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10440                 goto none;
10441         }
10442
10443         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10444                 /* Shared interrupt */
10445                 goto none;
10446         }
10447
10448         /* tell the device to stop sending interrupts */
10449         ipw_disable_interrupts(priv);
10450
10451         /* ack current interrupts */
10452         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10453         ipw_write32(priv, IPW_INTA_RW, inta);
10454
10455         /* Cache INTA value for our tasklet */
10456         priv->isr_inta = inta;
10457
10458         tasklet_schedule(&priv->irq_tasklet);
10459
10460         spin_unlock(&priv->lock);
10461
10462         return IRQ_HANDLED;
10463       none:
10464         spin_unlock(&priv->lock);
10465         return IRQ_NONE;
10466 }
10467
10468 static void ipw_rf_kill(void *adapter)
10469 {
10470         struct ipw_priv *priv = adapter;
10471         unsigned long flags;
10472
10473         spin_lock_irqsave(&priv->lock, flags);
10474
10475         if (rf_kill_active(priv)) {
10476                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10477                 if (priv->workqueue)
10478                         queue_delayed_work(priv->workqueue,
10479                                            &priv->rf_kill, 2 * HZ);
10480                 goto exit_unlock;
10481         }
10482
10483         /* RF Kill is now disabled, so bring the device back up */
10484
10485         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10486                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10487                                   "device\n");
10488
10489                 /* we can not do an adapter restart while inside an irq lock */
10490                 queue_work(priv->workqueue, &priv->adapter_restart);
10491         } else
10492                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10493                                   "enabled\n");
10494
10495       exit_unlock:
10496         spin_unlock_irqrestore(&priv->lock, flags);
10497 }
10498
10499 static void ipw_bg_rf_kill(void *data)
10500 {
10501         struct ipw_priv *priv = data;
10502         down(&priv->sem);
10503         ipw_rf_kill(data);
10504         up(&priv->sem);
10505 }
10506
10507 void ipw_link_up(struct ipw_priv *priv)
10508 {
10509         priv->last_seq_num = -1;
10510         priv->last_frag_num = -1;
10511         priv->last_packet_time = 0;
10512
10513         netif_carrier_on(priv->net_dev);
10514         if (netif_queue_stopped(priv->net_dev)) {
10515                 IPW_DEBUG_NOTIF("waking queue\n");
10516                 netif_wake_queue(priv->net_dev);
10517         } else {
10518                 IPW_DEBUG_NOTIF("starting queue\n");
10519                 netif_start_queue(priv->net_dev);
10520         }
10521
10522         cancel_delayed_work(&priv->request_scan);
10523         ipw_reset_stats(priv);
10524         /* Ensure the rate is updated immediately */
10525         priv->last_rate = ipw_get_current_rate(priv);
10526         ipw_gather_stats(priv);
10527         ipw_led_link_up(priv);
10528         notify_wx_assoc_event(priv);
10529
10530         if (priv->config & CFG_BACKGROUND_SCAN)
10531                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10532 }
10533
10534 static void ipw_bg_link_up(void *data)
10535 {
10536         struct ipw_priv *priv = data;
10537         down(&priv->sem);
10538         ipw_link_up(data);
10539         up(&priv->sem);
10540 }
10541
10542 void ipw_link_down(struct ipw_priv *priv)
10543 {
10544         ipw_led_link_down(priv);
10545         netif_carrier_off(priv->net_dev);
10546         netif_stop_queue(priv->net_dev);
10547         notify_wx_assoc_event(priv);
10548
10549         /* Cancel any queued work ... */
10550         cancel_delayed_work(&priv->request_scan);
10551         cancel_delayed_work(&priv->adhoc_check);
10552         cancel_delayed_work(&priv->gather_stats);
10553
10554         ipw_reset_stats(priv);
10555
10556         if (!(priv->status & STATUS_EXIT_PENDING)) {
10557                 /* Queue up another scan... */
10558                 queue_work(priv->workqueue, &priv->request_scan);
10559         }
10560 }
10561
10562 static void ipw_bg_link_down(void *data)
10563 {
10564         struct ipw_priv *priv = data;
10565         down(&priv->sem);
10566         ipw_link_down(data);
10567         up(&priv->sem);
10568 }
10569
10570 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10571 {
10572         int ret = 0;
10573
10574         priv->workqueue = create_workqueue(DRV_NAME);
10575         init_waitqueue_head(&priv->wait_command_queue);
10576         init_waitqueue_head(&priv->wait_state);
10577
10578         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10579         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10580         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10581         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10582         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10583         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10584         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10585         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10586         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10587         INIT_WORK(&priv->request_scan,
10588                   (void (*)(void *))ipw_request_scan, priv);
10589         INIT_WORK(&priv->gather_stats,
10590                   (void (*)(void *))ipw_bg_gather_stats, priv);
10591         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10592         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10593         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10594         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10595         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10596         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10597                   priv);
10598         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10599                   priv);
10600         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10601                   priv);
10602         INIT_WORK(&priv->merge_networks,
10603                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10604
10605 #ifdef CONFIG_IPW_QOS
10606         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10607                   priv);
10608 #endif                          /* CONFIG_IPW_QOS */
10609
10610         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10611                      ipw_irq_tasklet, (unsigned long)priv);
10612
10613         return ret;
10614 }
10615
10616 static void shim__set_security(struct net_device *dev,
10617                                struct ieee80211_security *sec)
10618 {
10619         struct ipw_priv *priv = ieee80211_priv(dev);
10620         int i;
10621         for (i = 0; i < 4; i++) {
10622                 if (sec->flags & (1 << i)) {
10623                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10624                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10625                         if (sec->key_sizes[i] == 0)
10626                                 priv->ieee->sec.flags &= ~(1 << i);
10627                         else {
10628                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10629                                        sec->key_sizes[i]);
10630                                 priv->ieee->sec.flags |= (1 << i);
10631                         }
10632                         priv->status |= STATUS_SECURITY_UPDATED;
10633                 } else if (sec->level != SEC_LEVEL_1)
10634                         priv->ieee->sec.flags &= ~(1 << i);
10635         }
10636
10637         if (sec->flags & SEC_ACTIVE_KEY) {
10638                 if (sec->active_key <= 3) {
10639                         priv->ieee->sec.active_key = sec->active_key;
10640                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10641                 } else
10642                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10643                 priv->status |= STATUS_SECURITY_UPDATED;
10644         } else
10645                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10646
10647         if ((sec->flags & SEC_AUTH_MODE) &&
10648             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10649                 priv->ieee->sec.auth_mode = sec->auth_mode;
10650                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10651                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10652                         priv->capability |= CAP_SHARED_KEY;
10653                 else
10654                         priv->capability &= ~CAP_SHARED_KEY;
10655                 priv->status |= STATUS_SECURITY_UPDATED;
10656         }
10657
10658         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10659                 priv->ieee->sec.flags |= SEC_ENABLED;
10660                 priv->ieee->sec.enabled = sec->enabled;
10661                 priv->status |= STATUS_SECURITY_UPDATED;
10662                 if (sec->enabled)
10663                         priv->capability |= CAP_PRIVACY_ON;
10664                 else
10665                         priv->capability &= ~CAP_PRIVACY_ON;
10666         }
10667
10668         if (sec->flags & SEC_ENCRYPT)
10669                 priv->ieee->sec.encrypt = sec->encrypt;
10670
10671         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10672                 priv->ieee->sec.level = sec->level;
10673                 priv->ieee->sec.flags |= SEC_LEVEL;
10674                 priv->status |= STATUS_SECURITY_UPDATED;
10675         }
10676
10677         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10678                 ipw_set_hwcrypto_keys(priv);
10679
10680         /* To match current functionality of ipw2100 (which works well w/
10681          * various supplicants, we don't force a disassociate if the
10682          * privacy capability changes ... */
10683 #if 0
10684         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10685             (((priv->assoc_request.capability &
10686                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10687              (!(priv->assoc_request.capability &
10688                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10689                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10690                                 "change.\n");
10691                 ipw_disassociate(priv);
10692         }
10693 #endif
10694 }
10695
10696 static int init_supported_rates(struct ipw_priv *priv,
10697                                 struct ipw_supported_rates *rates)
10698 {
10699         /* TODO: Mask out rates based on priv->rates_mask */
10700
10701         memset(rates, 0, sizeof(*rates));
10702         /* configure supported rates */
10703         switch (priv->ieee->freq_band) {
10704         case IEEE80211_52GHZ_BAND:
10705                 rates->ieee_mode = IPW_A_MODE;
10706                 rates->purpose = IPW_RATE_CAPABILITIES;
10707                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10708                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10709                 break;
10710
10711         default:                /* Mixed or 2.4Ghz */
10712                 rates->ieee_mode = IPW_G_MODE;
10713                 rates->purpose = IPW_RATE_CAPABILITIES;
10714                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10715                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10716                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10717                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10718                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10719                 }
10720                 break;
10721         }
10722
10723         return 0;
10724 }
10725
10726 static int ipw_config(struct ipw_priv *priv)
10727 {
10728         /* This is only called from ipw_up, which resets/reloads the firmware
10729            so, we don't need to first disable the card before we configure
10730            it */
10731         if (ipw_set_tx_power(priv))
10732                 goto error;
10733
10734         /* initialize adapter address */
10735         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10736                 goto error;
10737
10738         /* set basic system config settings */
10739         init_sys_config(&priv->sys_config);
10740         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10741                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10742         else
10743                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10744
10745         if (ipw_send_system_config(priv, &priv->sys_config))
10746                 goto error;
10747
10748         init_supported_rates(priv, &priv->rates);
10749         if (ipw_send_supported_rates(priv, &priv->rates))
10750                 goto error;
10751
10752         /* Set request-to-send threshold */
10753         if (priv->rts_threshold) {
10754                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10755                         goto error;
10756         }
10757 #ifdef CONFIG_IPW_QOS
10758         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10759         ipw_qos_activate(priv, NULL);
10760 #endif                          /* CONFIG_IPW_QOS */
10761
10762         if (ipw_set_random_seed(priv))
10763                 goto error;
10764
10765         /* final state transition to the RUN state */
10766         if (ipw_send_host_complete(priv))
10767                 goto error;
10768
10769         priv->status |= STATUS_INIT;
10770
10771         ipw_led_init(priv);
10772         ipw_led_radio_on(priv);
10773         priv->notif_missed_beacons = 0;
10774
10775         /* Set hardware WEP key if it is configured. */
10776         if ((priv->capability & CAP_PRIVACY_ON) &&
10777             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10778             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10779                 ipw_set_hwcrypto_keys(priv);
10780
10781         return 0;
10782
10783       error:
10784         return -EIO;
10785 }
10786
10787 /*
10788  * NOTE:
10789  *
10790  * These tables have been tested in conjunction with the
10791  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10792  *
10793  * Altering this values, using it on other hardware, or in geographies
10794  * not intended for resale of the above mentioned Intel adapters has
10795  * not been tested.
10796  *
10797  */
10798 static const struct ieee80211_geo ipw_geos[] = {
10799         {                       /* Restricted */
10800          "---",
10801          .bg_channels = 11,
10802          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10803                 {2427, 4}, {2432, 5}, {2437, 6},
10804                 {2442, 7}, {2447, 8}, {2452, 9},
10805                 {2457, 10}, {2462, 11}},
10806          },
10807
10808         {                       /* Custom US/Canada */
10809          "ZZF",
10810          .bg_channels = 11,
10811          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10812                 {2427, 4}, {2432, 5}, {2437, 6},
10813                 {2442, 7}, {2447, 8}, {2452, 9},
10814                 {2457, 10}, {2462, 11}},
10815          .a_channels = 8,
10816          .a = {{5180, 36},
10817                {5200, 40},
10818                {5220, 44},
10819                {5240, 48},
10820                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10821                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10822                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10823                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10824          },
10825
10826         {                       /* Rest of World */
10827          "ZZD",
10828          .bg_channels = 13,
10829          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10830                 {2427, 4}, {2432, 5}, {2437, 6},
10831                 {2442, 7}, {2447, 8}, {2452, 9},
10832                 {2457, 10}, {2462, 11}, {2467, 12},
10833                 {2472, 13}},
10834          },
10835
10836         {                       /* Custom USA & Europe & High */
10837          "ZZA",
10838          .bg_channels = 11,
10839          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10840                 {2427, 4}, {2432, 5}, {2437, 6},
10841                 {2442, 7}, {2447, 8}, {2452, 9},
10842                 {2457, 10}, {2462, 11}},
10843          .a_channels = 13,
10844          .a = {{5180, 36},
10845                {5200, 40},
10846                {5220, 44},
10847                {5240, 48},
10848                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10849                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10850                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10851                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10852                {5745, 149},
10853                {5765, 153},
10854                {5785, 157},
10855                {5805, 161},
10856                {5825, 165}},
10857          },
10858
10859         {                       /* Custom NA & Europe */
10860          "ZZB",
10861          .bg_channels = 11,
10862          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10863                 {2427, 4}, {2432, 5}, {2437, 6},
10864                 {2442, 7}, {2447, 8}, {2452, 9},
10865                 {2457, 10}, {2462, 11}},
10866          .a_channels = 13,
10867          .a = {{5180, 36},
10868                {5200, 40},
10869                {5220, 44},
10870                {5240, 48},
10871                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10872                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10873                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10874                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10875                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10876                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10877                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10878                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10879                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10880          },
10881
10882         {                       /* Custom Japan */
10883          "ZZC",
10884          .bg_channels = 11,
10885          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10886                 {2427, 4}, {2432, 5}, {2437, 6},
10887                 {2442, 7}, {2447, 8}, {2452, 9},
10888                 {2457, 10}, {2462, 11}},
10889          .a_channels = 4,
10890          .a = {{5170, 34}, {5190, 38},
10891                {5210, 42}, {5230, 46}},
10892          },
10893
10894         {                       /* Custom */
10895          "ZZM",
10896          .bg_channels = 11,
10897          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10898                 {2427, 4}, {2432, 5}, {2437, 6},
10899                 {2442, 7}, {2447, 8}, {2452, 9},
10900                 {2457, 10}, {2462, 11}},
10901          },
10902
10903         {                       /* Europe */
10904          "ZZE",
10905          .bg_channels = 13,
10906          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10907                 {2427, 4}, {2432, 5}, {2437, 6},
10908                 {2442, 7}, {2447, 8}, {2452, 9},
10909                 {2457, 10}, {2462, 11}, {2467, 12},
10910                 {2472, 13}},
10911          .a_channels = 19,
10912          .a = {{5180, 36},
10913                {5200, 40},
10914                {5220, 44},
10915                {5240, 48},
10916                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10917                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10918                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10919                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10920                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10921                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10922                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10923                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10924                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10925                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10926                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10927                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10928                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10929                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10930                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10931          },
10932
10933         {                       /* Custom Japan */
10934          "ZZJ",
10935          .bg_channels = 14,
10936          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10937                 {2427, 4}, {2432, 5}, {2437, 6},
10938                 {2442, 7}, {2447, 8}, {2452, 9},
10939                 {2457, 10}, {2462, 11}, {2467, 12},
10940                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10941          .a_channels = 4,
10942          .a = {{5170, 34}, {5190, 38},
10943                {5210, 42}, {5230, 46}},
10944          },
10945
10946         {                       /* High Band */
10947          "ZZH",
10948          .bg_channels = 13,
10949          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10950                 {2427, 4}, {2432, 5}, {2437, 6},
10951                 {2442, 7}, {2447, 8}, {2452, 9},
10952                 {2457, 10}, {2462, 11},
10953                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10954                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10955          .a_channels = 4,
10956          .a = {{5745, 149}, {5765, 153},
10957                {5785, 157}, {5805, 161}},
10958          },
10959
10960         {                       /* Custom Europe */
10961          "ZZG",
10962          .bg_channels = 13,
10963          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10964                 {2427, 4}, {2432, 5}, {2437, 6},
10965                 {2442, 7}, {2447, 8}, {2452, 9},
10966                 {2457, 10}, {2462, 11},
10967                 {2467, 12}, {2472, 13}},
10968          .a_channels = 4,
10969          .a = {{5180, 36}, {5200, 40},
10970                {5220, 44}, {5240, 48}},
10971          },
10972
10973         {                       /* Europe */
10974          "ZZK",
10975          .bg_channels = 13,
10976          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10977                 {2427, 4}, {2432, 5}, {2437, 6},
10978                 {2442, 7}, {2447, 8}, {2452, 9},
10979                 {2457, 10}, {2462, 11},
10980                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10981                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10982          .a_channels = 24,
10983          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10984                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10985                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10986                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10987                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10988                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10989                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10990                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10991                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10992                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10993                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10994                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10995                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10996                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10997                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10998                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10999                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11000                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11001                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11002                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11003                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11004                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11005                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11006                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11007          },
11008
11009         {                       /* Europe */
11010          "ZZL",
11011          .bg_channels = 11,
11012          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11013                 {2427, 4}, {2432, 5}, {2437, 6},
11014                 {2442, 7}, {2447, 8}, {2452, 9},
11015                 {2457, 10}, {2462, 11}},
11016          .a_channels = 13,
11017          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11018                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11019                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11020                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11021                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11022                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11023                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11024                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11025                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11026                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11027                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11028                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11029                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11030          }
11031 };
11032
11033 /* GEO code borrowed from ieee80211_geo.c */
11034 static int ipw_is_valid_channel(struct ieee80211_device *ieee, u8 channel)
11035 {
11036         int i;
11037
11038         /* Driver needs to initialize the geography map before using
11039          * these helper functions */
11040         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
11041
11042         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
11043                 for (i = 0; i < ieee->geo.bg_channels; i++)
11044                         /* NOTE: If G mode is currently supported but
11045                          * this is a B only channel, we don't see it
11046                          * as valid. */
11047                         if ((ieee->geo.bg[i].channel == channel) &&
11048                             (!(ieee->mode & IEEE_G) ||
11049                              !(ieee->geo.bg[i].flags & IEEE80211_CH_B_ONLY)))
11050                                 return IEEE80211_24GHZ_BAND;
11051
11052         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
11053                 for (i = 0; i < ieee->geo.a_channels; i++)
11054                         if (ieee->geo.a[i].channel == channel)
11055                                 return IEEE80211_52GHZ_BAND;
11056
11057         return 0;
11058 }
11059
11060 static int ipw_channel_to_index(struct ieee80211_device *ieee, u8 channel)
11061 {
11062         int i;
11063
11064         /* Driver needs to initialize the geography map before using
11065          * these helper functions */
11066         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
11067
11068         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
11069                 for (i = 0; i < ieee->geo.bg_channels; i++)
11070                         if (ieee->geo.bg[i].channel == channel)
11071                                 return i;
11072
11073         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
11074                 for (i = 0; i < ieee->geo.a_channels; i++)
11075                         if (ieee->geo.a[i].channel == channel)
11076                                 return i;
11077
11078         return -1;
11079 }
11080
11081 static u8 ipw_freq_to_channel(struct ieee80211_device *ieee, u32 freq)
11082 {
11083         int i;
11084
11085         /* Driver needs to initialize the geography map before using
11086          * these helper functions */
11087         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
11088
11089         freq /= 100000;
11090
11091         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
11092                 for (i = 0; i < ieee->geo.bg_channels; i++)
11093                         if (ieee->geo.bg[i].freq == freq)
11094                                 return ieee->geo.bg[i].channel;
11095
11096         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
11097                 for (i = 0; i < ieee->geo.a_channels; i++)
11098                         if (ieee->geo.a[i].freq == freq)
11099                                 return ieee->geo.a[i].channel;
11100
11101         return 0;
11102 }
11103
11104 static int ipw_set_geo(struct ieee80211_device *ieee,
11105                        const struct ieee80211_geo *geo)
11106 {
11107         memcpy(ieee->geo.name, geo->name, 3);
11108         ieee->geo.name[3] = '\0';
11109         ieee->geo.bg_channels = geo->bg_channels;
11110         ieee->geo.a_channels = geo->a_channels;
11111         memcpy(ieee->geo.bg, geo->bg, geo->bg_channels *
11112                sizeof(struct ieee80211_channel));
11113         memcpy(ieee->geo.a, geo->a, ieee->geo.a_channels *
11114                sizeof(struct ieee80211_channel));
11115         return 0;
11116 }
11117
11118 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *ieee)
11119 {
11120         return &ieee->geo;
11121 }
11122
11123 #define MAX_HW_RESTARTS 5
11124 static int ipw_up(struct ipw_priv *priv)
11125 {
11126         int rc, i, j;
11127
11128         if (priv->status & STATUS_EXIT_PENDING)
11129                 return -EIO;
11130
11131         if (cmdlog && !priv->cmdlog) {
11132                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11133                                        GFP_KERNEL);
11134                 if (priv->cmdlog == NULL) {
11135                         IPW_ERROR("Error allocating %d command log entries.\n",
11136                                   cmdlog);
11137                 } else {
11138                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11139                         priv->cmdlog_len = cmdlog;
11140                 }
11141         }
11142
11143         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11144                 /* Load the microcode, firmware, and eeprom.
11145                  * Also start the clocks. */
11146                 rc = ipw_load(priv);
11147                 if (rc) {
11148                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11149                         return rc;
11150                 }
11151
11152                 ipw_init_ordinals(priv);
11153                 if (!(priv->config & CFG_CUSTOM_MAC))
11154                         eeprom_parse_mac(priv, priv->mac_addr);
11155                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11156
11157                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11158                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11159                                     ipw_geos[j].name, 3))
11160                                 break;
11161                 }
11162                 if (j == ARRAY_SIZE(ipw_geos))
11163                         j = 0;
11164                 if (ipw_set_geo(priv->ieee, &ipw_geos[j])) {
11165                         IPW_WARNING("Could not set geography.");
11166                         return 0;
11167                 }
11168
11169                 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
11170                                j, priv->ieee->geo.name);
11171
11172                 if (priv->status & STATUS_RF_KILL_SW) {
11173                         IPW_WARNING("Radio disabled by module parameter.\n");
11174                         return 0;
11175                 } else if (rf_kill_active(priv)) {
11176                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11177                                     "Kill switch must be turned off for "
11178                                     "wireless networking to work.\n");
11179                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11180                                            2 * HZ);
11181                         return 0;
11182                 }
11183
11184                 rc = ipw_config(priv);
11185                 if (!rc) {
11186                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11187
11188                         /* If configure to try and auto-associate, kick
11189                          * off a scan. */
11190                         queue_work(priv->workqueue, &priv->request_scan);
11191
11192                         return 0;
11193                 }
11194
11195                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11196                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11197                                i, MAX_HW_RESTARTS);
11198
11199                 /* We had an error bringing up the hardware, so take it
11200                  * all the way back down so we can try again */
11201                 ipw_down(priv);
11202         }
11203
11204         /* tried to restart and config the device for as long as our
11205          * patience could withstand */
11206         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11207
11208         return -EIO;
11209 }
11210
11211 static void ipw_bg_up(void *data)
11212 {
11213         struct ipw_priv *priv = data;
11214         down(&priv->sem);
11215         ipw_up(data);
11216         up(&priv->sem);
11217 }
11218
11219 static void ipw_deinit(struct ipw_priv *priv)
11220 {
11221         int i;
11222
11223         if (priv->status & STATUS_SCANNING) {
11224                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11225                 ipw_abort_scan(priv);
11226         }
11227
11228         if (priv->status & STATUS_ASSOCIATED) {
11229                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11230                 ipw_disassociate(priv);
11231         }
11232
11233         ipw_led_shutdown(priv);
11234
11235         /* Wait up to 1s for status to change to not scanning and not
11236          * associated (disassociation can take a while for a ful 802.11
11237          * exchange */
11238         for (i = 1000; i && (priv->status &
11239                              (STATUS_DISASSOCIATING |
11240                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11241                 udelay(10);
11242
11243         if (priv->status & (STATUS_DISASSOCIATING |
11244                             STATUS_ASSOCIATED | STATUS_SCANNING))
11245                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11246         else
11247                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11248
11249         /* Attempt to disable the card */
11250         ipw_send_card_disable(priv, 0);
11251
11252         priv->status &= ~STATUS_INIT;
11253 }
11254
11255 static void ipw_down(struct ipw_priv *priv)
11256 {
11257         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11258
11259         priv->status |= STATUS_EXIT_PENDING;
11260
11261         if (ipw_is_init(priv))
11262                 ipw_deinit(priv);
11263
11264         /* Wipe out the EXIT_PENDING status bit if we are not actually
11265          * exiting the module */
11266         if (!exit_pending)
11267                 priv->status &= ~STATUS_EXIT_PENDING;
11268
11269         /* tell the device to stop sending interrupts */
11270         ipw_disable_interrupts(priv);
11271
11272         /* Clear all bits but the RF Kill */
11273         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11274         netif_carrier_off(priv->net_dev);
11275         netif_stop_queue(priv->net_dev);
11276
11277         ipw_stop_nic(priv);
11278
11279         ipw_led_radio_off(priv);
11280 }
11281
11282 static void ipw_bg_down(void *data)
11283 {
11284         struct ipw_priv *priv = data;
11285         down(&priv->sem);
11286         ipw_down(data);
11287         up(&priv->sem);
11288 }
11289
11290 #if WIRELESS_EXT < 18
11291 static int ipw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
11292 {
11293         struct iwreq *wrq = (struct iwreq *)rq;
11294         int ret = -1;
11295         switch (cmd) {
11296         case IPW_IOCTL_WPA_SUPPLICANT:
11297                 ret = ipw_wpa_supplicant(dev, &wrq->u.data);
11298                 return ret;
11299
11300         default:
11301                 return -EOPNOTSUPP;
11302         }
11303
11304         return -EOPNOTSUPP;
11305 }
11306 #endif
11307
11308 /* Called by register_netdev() */
11309 static int ipw_net_init(struct net_device *dev)
11310 {
11311         struct ipw_priv *priv = ieee80211_priv(dev);
11312         down(&priv->sem);
11313
11314         if (ipw_up(priv)) {
11315                 up(&priv->sem);
11316                 return -EIO;
11317         }
11318
11319         up(&priv->sem);
11320         return 0;
11321 }
11322
11323 /* PCI driver stuff */
11324 static struct pci_device_id card_ids[] = {
11325         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11326         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11327         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11328         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11329         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11330         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11331         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11332         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11333         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11334         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11335         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11336         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11337         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11338         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11339         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11340         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11341         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11342         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11343         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11344         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11345         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11346         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11347
11348         /* required last entry */
11349         {0,}
11350 };
11351
11352 MODULE_DEVICE_TABLE(pci, card_ids);
11353
11354 static struct attribute *ipw_sysfs_entries[] = {
11355         &dev_attr_rf_kill.attr,
11356         &dev_attr_direct_dword.attr,
11357         &dev_attr_indirect_byte.attr,
11358         &dev_attr_indirect_dword.attr,
11359         &dev_attr_mem_gpio_reg.attr,
11360         &dev_attr_command_event_reg.attr,
11361         &dev_attr_nic_type.attr,
11362         &dev_attr_status.attr,
11363         &dev_attr_cfg.attr,
11364         &dev_attr_error.attr,
11365         &dev_attr_event_log.attr,
11366         &dev_attr_cmd_log.attr,
11367         &dev_attr_eeprom_delay.attr,
11368         &dev_attr_ucode_version.attr,
11369         &dev_attr_rtc.attr,
11370         &dev_attr_scan_age.attr,
11371         &dev_attr_led.attr,
11372         &dev_attr_speed_scan.attr,
11373         &dev_attr_net_stats.attr,
11374         NULL
11375 };
11376
11377 static struct attribute_group ipw_attribute_group = {
11378         .name = NULL,           /* put in device directory */
11379         .attrs = ipw_sysfs_entries,
11380 };
11381
11382 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11383 {
11384         int err = 0;
11385         struct net_device *net_dev;
11386         void __iomem *base;
11387         u32 length, val;
11388         struct ipw_priv *priv;
11389         int i;
11390
11391         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11392         if (net_dev == NULL) {
11393                 err = -ENOMEM;
11394                 goto out;
11395         }
11396
11397         priv = ieee80211_priv(net_dev);
11398         priv->ieee = netdev_priv(net_dev);
11399
11400         priv->net_dev = net_dev;
11401         priv->pci_dev = pdev;
11402 #ifdef CONFIG_IPW_DEBUG
11403         ipw_debug_level = debug;
11404 #endif
11405         spin_lock_init(&priv->lock);
11406         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11407                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11408
11409         init_MUTEX(&priv->sem);
11410         if (pci_enable_device(pdev)) {
11411                 err = -ENODEV;
11412                 goto out_free_ieee80211;
11413         }
11414
11415         pci_set_master(pdev);
11416
11417         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11418         if (!err)
11419                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11420         if (err) {
11421                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11422                 goto out_pci_disable_device;
11423         }
11424
11425         pci_set_drvdata(pdev, priv);
11426
11427         err = pci_request_regions(pdev, DRV_NAME);
11428         if (err)
11429                 goto out_pci_disable_device;
11430
11431         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11432          * PCI Tx retries from interfering with C3 CPU state */
11433         pci_read_config_dword(pdev, 0x40, &val);
11434         if ((val & 0x0000ff00) != 0)
11435                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11436
11437         length = pci_resource_len(pdev, 0);
11438         priv->hw_len = length;
11439
11440         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11441         if (!base) {
11442                 err = -ENODEV;
11443                 goto out_pci_release_regions;
11444         }
11445
11446         priv->hw_base = base;
11447         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11448         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11449
11450         err = ipw_setup_deferred_work(priv);
11451         if (err) {
11452                 IPW_ERROR("Unable to setup deferred work\n");
11453                 goto out_iounmap;
11454         }
11455
11456         ipw_sw_reset(priv, 1);
11457
11458         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
11459         if (err) {
11460                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11461                 goto out_destroy_workqueue;
11462         }
11463
11464         SET_MODULE_OWNER(net_dev);
11465         SET_NETDEV_DEV(net_dev, &pdev->dev);
11466
11467         ipw_wx_data.spy_data = &priv->ieee->spy_data;
11468         ipw_wx_data.ieee80211 = priv->ieee;
11469
11470         down(&priv->sem);
11471
11472         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11473         priv->ieee->set_security = shim__set_security;
11474         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11475
11476 #ifdef CONFIG_IPW_QOS
11477         priv->ieee->handle_probe_response = ipw_handle_beacon;
11478         priv->ieee->handle_beacon = ipw_handle_probe_response;
11479         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11480 #endif                          /* CONFIG_IPW_QOS */
11481
11482         priv->ieee->perfect_rssi = -20;
11483         priv->ieee->worst_rssi = -85;
11484
11485         net_dev->open = ipw_net_open;
11486         net_dev->stop = ipw_net_stop;
11487         net_dev->init = ipw_net_init;
11488 #if WIRELESS_EXT < 18
11489         net_dev->do_ioctl = ipw_ioctl;
11490 #endif
11491         net_dev->get_stats = ipw_net_get_stats;
11492         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11493         net_dev->set_mac_address = ipw_net_set_mac_address;
11494         net_dev->get_wireless_stats = ipw_get_wireless_stats;
11495         net_dev->wireless_data = &ipw_wx_data;
11496         net_dev->wireless_handlers = &ipw_wx_handler_def;
11497         net_dev->ethtool_ops = &ipw_ethtool_ops;
11498         net_dev->irq = pdev->irq;
11499         net_dev->base_addr = (unsigned long)priv->hw_base;
11500         net_dev->mem_start = pci_resource_start(pdev, 0);
11501         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11502
11503         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11504         if (err) {
11505                 IPW_ERROR("failed to create sysfs device attributes\n");
11506                 up(&priv->sem);
11507                 goto out_release_irq;
11508         }
11509
11510         up(&priv->sem);
11511         err = register_netdev(net_dev);
11512         if (err) {
11513                 IPW_ERROR("failed to register network device\n");
11514                 goto out_remove_sysfs;
11515         }
11516         return 0;
11517
11518       out_remove_sysfs:
11519         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11520       out_release_irq:
11521         free_irq(pdev->irq, priv);
11522       out_destroy_workqueue:
11523         destroy_workqueue(priv->workqueue);
11524         priv->workqueue = NULL;
11525       out_iounmap:
11526         iounmap(priv->hw_base);
11527       out_pci_release_regions:
11528         pci_release_regions(pdev);
11529       out_pci_disable_device:
11530         pci_disable_device(pdev);
11531         pci_set_drvdata(pdev, NULL);
11532       out_free_ieee80211:
11533         free_ieee80211(priv->net_dev);
11534       out:
11535         return err;
11536 }
11537
11538 static void ipw_pci_remove(struct pci_dev *pdev)
11539 {
11540         struct ipw_priv *priv = pci_get_drvdata(pdev);
11541         struct list_head *p, *q;
11542         int i;
11543
11544         if (!priv)
11545                 return;
11546
11547         down(&priv->sem);
11548
11549         priv->status |= STATUS_EXIT_PENDING;
11550         ipw_down(priv);
11551         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11552
11553         up(&priv->sem);
11554
11555         unregister_netdev(priv->net_dev);
11556
11557         if (priv->rxq) {
11558                 ipw_rx_queue_free(priv, priv->rxq);
11559                 priv->rxq = NULL;
11560         }
11561         ipw_tx_queue_free(priv);
11562
11563         if (priv->cmdlog) {
11564                 kfree(priv->cmdlog);
11565                 priv->cmdlog = NULL;
11566         }
11567         /* ipw_down will ensure that there is no more pending work
11568          * in the workqueue's, so we can safely remove them now. */
11569         cancel_delayed_work(&priv->adhoc_check);
11570         cancel_delayed_work(&priv->gather_stats);
11571         cancel_delayed_work(&priv->request_scan);
11572         cancel_delayed_work(&priv->rf_kill);
11573         cancel_delayed_work(&priv->scan_check);
11574         destroy_workqueue(priv->workqueue);
11575         priv->workqueue = NULL;
11576
11577         /* Free MAC hash list for ADHOC */
11578         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11579                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11580                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11581                         list_del(p);
11582                 }
11583         }
11584
11585         if (priv->error) {
11586                 ipw_free_error_log(priv->error);
11587                 priv->error = NULL;
11588         }
11589
11590         free_irq(pdev->irq, priv);
11591         iounmap(priv->hw_base);
11592         pci_release_regions(pdev);
11593         pci_disable_device(pdev);
11594         pci_set_drvdata(pdev, NULL);
11595         free_ieee80211(priv->net_dev);
11596         free_firmware();
11597 }
11598
11599 #ifdef CONFIG_PM
11600 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11601 {
11602         struct ipw_priv *priv = pci_get_drvdata(pdev);
11603         struct net_device *dev = priv->net_dev;
11604
11605         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11606
11607         /* Take down the device; powers it off, etc. */
11608         ipw_down(priv);
11609
11610         /* Remove the PRESENT state of the device */
11611         netif_device_detach(dev);
11612
11613         pci_save_state(pdev);
11614         pci_disable_device(pdev);
11615         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11616
11617         return 0;
11618 }
11619
11620 static int ipw_pci_resume(struct pci_dev *pdev)
11621 {
11622         struct ipw_priv *priv = pci_get_drvdata(pdev);
11623         struct net_device *dev = priv->net_dev;
11624         u32 val;
11625
11626         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11627
11628         pci_set_power_state(pdev, PCI_D0);
11629         pci_enable_device(pdev);
11630         pci_restore_state(pdev);
11631
11632         /*
11633          * Suspend/Resume resets the PCI configuration space, so we have to
11634          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11635          * from interfering with C3 CPU state. pci_restore_state won't help
11636          * here since it only restores the first 64 bytes pci config header.
11637          */
11638         pci_read_config_dword(pdev, 0x40, &val);
11639         if ((val & 0x0000ff00) != 0)
11640                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11641
11642         /* Set the device back into the PRESENT state; this will also wake
11643          * the queue of needed */
11644         netif_device_attach(dev);
11645
11646         /* Bring the device back up */
11647         queue_work(priv->workqueue, &priv->up);
11648
11649         return 0;
11650 }
11651 #endif
11652
11653 /* driver initialization stuff */
11654 static struct pci_driver ipw_driver = {
11655         .name = DRV_NAME,
11656         .id_table = card_ids,
11657         .probe = ipw_pci_probe,
11658         .remove = __devexit_p(ipw_pci_remove),
11659 #ifdef CONFIG_PM
11660         .suspend = ipw_pci_suspend,
11661         .resume = ipw_pci_resume,
11662 #endif
11663 };
11664
11665 static int __init ipw_init(void)
11666 {
11667         int ret;
11668
11669         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11670         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11671
11672         ret = pci_module_init(&ipw_driver);
11673         if (ret) {
11674                 IPW_ERROR("Unable to initialize PCI module\n");
11675                 return ret;
11676         }
11677
11678         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11679         if (ret) {
11680                 IPW_ERROR("Unable to create driver sysfs file\n");
11681                 pci_unregister_driver(&ipw_driver);
11682                 return ret;
11683         }
11684
11685         return ret;
11686 }
11687
11688 static void __exit ipw_exit(void)
11689 {
11690         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11691         pci_unregister_driver(&ipw_driver);
11692 }
11693
11694 module_param(disable, int, 0444);
11695 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11696
11697 module_param(associate, int, 0444);
11698 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11699
11700 module_param(auto_create, int, 0444);
11701 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11702
11703 module_param(led, int, 0444);
11704 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11705
11706 module_param(debug, int, 0444);
11707 MODULE_PARM_DESC(debug, "debug output mask");
11708
11709 module_param(channel, int, 0444);
11710 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11711
11712 #ifdef CONFIG_IPW_QOS
11713 module_param(qos_enable, int, 0444);
11714 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11715
11716 module_param(qos_burst_enable, int, 0444);
11717 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11718
11719 module_param(qos_no_ack_mask, int, 0444);
11720 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11721
11722 module_param(burst_duration_CCK, int, 0444);
11723 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11724
11725 module_param(burst_duration_OFDM, int, 0444);
11726 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11727 #endif                          /* CONFIG_IPW_QOS */
11728
11729 #ifdef CONFIG_IPW2200_MONITOR
11730 module_param(mode, int, 0444);
11731 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11732 #else
11733 module_param(mode, int, 0444);
11734 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11735 #endif
11736
11737 module_param(hwcrypto, int, 0444);
11738 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default on)");
11739
11740 module_param(cmdlog, int, 0444);
11741 MODULE_PARM_DESC(cmdlog,
11742                  "allocate a ring buffer for logging firmware commands");
11743
11744 module_exit(ipw_exit);
11745 module_init(ipw_init);