894192964c0b92c54088ec9fd1c0d6e323a9d368
[safe/jmp/linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35 #define IPW2200_VERSION "1.0.7"
36 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
38 #define DRV_VERSION     IPW2200_VERSION
39
40 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
41
42 MODULE_DESCRIPTION(DRV_DESCRIPTION);
43 MODULE_VERSION(DRV_VERSION);
44 MODULE_AUTHOR(DRV_COPYRIGHT);
45 MODULE_LICENSE("GPL");
46
47 static int cmdlog = 0;
48 static int debug = 0;
49 static int channel = 0;
50 static int mode = 0;
51
52 static u32 ipw_debug_level;
53 static int associate = 1;
54 static int auto_create = 1;
55 static int led = 0;
56 static int disable = 0;
57 static int hwcrypto = 1;
58 static const char ipw_modes[] = {
59         'a', 'b', 'g', '?'
60 };
61
62 #ifdef CONFIG_IPW_QOS
63 static int qos_enable = 0;
64 static int qos_burst_enable = 0;
65 static int qos_no_ack_mask = 0;
66 static int burst_duration_CCK = 0;
67 static int burst_duration_OFDM = 0;
68
69 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
70         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
71          QOS_TX3_CW_MIN_OFDM},
72         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
73          QOS_TX3_CW_MAX_OFDM},
74         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
75         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
76         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
77          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
78 };
79
80 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
81         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
82          QOS_TX3_CW_MIN_CCK},
83         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
84          QOS_TX3_CW_MAX_CCK},
85         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
86         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
87         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
88          QOS_TX3_TXOP_LIMIT_CCK}
89 };
90
91 static struct ieee80211_qos_parameters def_parameters_OFDM = {
92         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
93          DEF_TX3_CW_MIN_OFDM},
94         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
95          DEF_TX3_CW_MAX_OFDM},
96         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
97         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
98         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
99          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
100 };
101
102 static struct ieee80211_qos_parameters def_parameters_CCK = {
103         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
104          DEF_TX3_CW_MIN_CCK},
105         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
106          DEF_TX3_CW_MAX_CCK},
107         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
108         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
109         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
110          DEF_TX3_TXOP_LIMIT_CCK}
111 };
112
113 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
114
115 static int from_priority_to_tx_queue[] = {
116         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
117         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
118 };
119
120 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
121
122 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
123                                        *qos_param);
124 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
125                                      *qos_param);
126 #endif                          /* CONFIG_IPW_QOS */
127
128 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
129 static void ipw_remove_current_network(struct ipw_priv *priv);
130 static void ipw_rx(struct ipw_priv *priv);
131 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
132                                 struct clx2_tx_queue *txq, int qindex);
133 static int ipw_queue_reset(struct ipw_priv *priv);
134
135 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
136                              int len, int sync);
137
138 static void ipw_tx_queue_free(struct ipw_priv *);
139
140 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
141 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
142 static void ipw_rx_queue_replenish(void *);
143 static int ipw_up(struct ipw_priv *);
144 static void ipw_bg_up(void *);
145 static void ipw_down(struct ipw_priv *);
146 static void ipw_bg_down(void *);
147 static int ipw_config(struct ipw_priv *);
148 static int init_supported_rates(struct ipw_priv *priv,
149                                 struct ipw_supported_rates *prates);
150 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
151 static void ipw_send_wep_keys(struct ipw_priv *, int);
152
153 static int ipw_is_valid_channel(struct ieee80211_device *, u8);
154 static int ipw_channel_to_index(struct ieee80211_device *, u8);
155 static u8 ipw_freq_to_channel(struct ieee80211_device *, u32);
156 static int ipw_set_geo(struct ieee80211_device *, const struct ieee80211_geo *);
157 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *);
158
159 static int snprint_line(char *buf, size_t count,
160                         const u8 * data, u32 len, u32 ofs)
161 {
162         int out, i, j, l;
163         char c;
164
165         out = snprintf(buf, count, "%08X", ofs);
166
167         for (l = 0, i = 0; i < 2; i++) {
168                 out += snprintf(buf + out, count - out, " ");
169                 for (j = 0; j < 8 && l < len; j++, l++)
170                         out += snprintf(buf + out, count - out, "%02X ",
171                                         data[(i * 8 + j)]);
172                 for (; j < 8; j++)
173                         out += snprintf(buf + out, count - out, "   ");
174         }
175
176         out += snprintf(buf + out, count - out, " ");
177         for (l = 0, i = 0; i < 2; i++) {
178                 out += snprintf(buf + out, count - out, " ");
179                 for (j = 0; j < 8 && l < len; j++, l++) {
180                         c = data[(i * 8 + j)];
181                         if (!isascii(c) || !isprint(c))
182                                 c = '.';
183
184                         out += snprintf(buf + out, count - out, "%c", c);
185                 }
186
187                 for (; j < 8; j++)
188                         out += snprintf(buf + out, count - out, " ");
189         }
190
191         return out;
192 }
193
194 static void printk_buf(int level, const u8 * data, u32 len)
195 {
196         char line[81];
197         u32 ofs = 0;
198         if (!(ipw_debug_level & level))
199                 return;
200
201         while (len) {
202                 snprint_line(line, sizeof(line), &data[ofs],
203                              min(len, 16U), ofs);
204                 printk(KERN_DEBUG "%s\n", line);
205                 ofs += 16;
206                 len -= min(len, 16U);
207         }
208 }
209
210 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
211 {
212         size_t out = size;
213         u32 ofs = 0;
214         int total = 0;
215
216         while (size && len) {
217                 out = snprint_line(output, size, &data[ofs],
218                                    min_t(size_t, len, 16U), ofs);
219
220                 ofs += 16;
221                 output += out;
222                 size -= out;
223                 len -= min_t(size_t, len, 16U);
224                 total += out;
225         }
226         return total;
227 }
228
229 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
230 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
231
232 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
233 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
234
235 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
236 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
237 {
238         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
239                      __LINE__, (u32) (b), (u32) (c));
240         _ipw_write_reg8(a, b, c);
241 }
242
243 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
244 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
245 {
246         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
247                      __LINE__, (u32) (b), (u32) (c));
248         _ipw_write_reg16(a, b, c);
249 }
250
251 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
252 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
253 {
254         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
255                      __LINE__, (u32) (b), (u32) (c));
256         _ipw_write_reg32(a, b, c);
257 }
258
259 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
260 #define ipw_write8(ipw, ofs, val) \
261  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
262  _ipw_write8(ipw, ofs, val)
263
264 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
265 #define ipw_write16(ipw, ofs, val) \
266  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
267  _ipw_write16(ipw, ofs, val)
268
269 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
270 #define ipw_write32(ipw, ofs, val) \
271  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
272  _ipw_write32(ipw, ofs, val)
273
274 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
275 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
276 {
277         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
278         return _ipw_read8(ipw, ofs);
279 }
280
281 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
282
283 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
284 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
285 {
286         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
287         return _ipw_read16(ipw, ofs);
288 }
289
290 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
291
292 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
293 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
294 {
295         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
296         return _ipw_read32(ipw, ofs);
297 }
298
299 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
300
301 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
302 static inline void __ipw_read_indirect(const char *f, int l,
303                                        struct ipw_priv *a, u32 b, u8 * c, int d)
304 {
305         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
306                      d);
307         _ipw_read_indirect(a, b, c, d);
308 }
309
310 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
311
312 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
313                                 int num);
314 #define ipw_write_indirect(a, b, c, d) \
315         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
316         _ipw_write_indirect(a, b, c, d)
317
318 /* indirect write s */
319 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
320 {
321         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
322         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
323         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
324 }
325
326 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
327 {
328         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
329         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
330         _ipw_write8(priv, IPW_INDIRECT_DATA, value);
331 }
332
333 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
334 {
335         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
336         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
337         _ipw_write16(priv, IPW_INDIRECT_DATA, value);
338 }
339
340 /* indirect read s */
341
342 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
343 {
344         u32 word;
345         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
346         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
347         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
348         return (word >> ((reg & 0x3) * 8)) & 0xff;
349 }
350
351 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
352 {
353         u32 value;
354
355         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
356
357         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
358         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
359         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
360         return value;
361 }
362
363 /* iterative/auto-increment 32 bit reads and writes */
364 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
365                                int num)
366 {
367         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
368         u32 dif_len = addr - aligned_addr;
369         u32 i;
370
371         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
372
373         if (num <= 0) {
374                 return;
375         }
376
377         /* Read the first nibble byte by byte */
378         if (unlikely(dif_len)) {
379                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
380                 /* Start reading at aligned_addr + dif_len */
381                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
382                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
383                 aligned_addr += 4;
384         }
385
386         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
387         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
388                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
389
390         /* Copy the last nibble */
391         if (unlikely(num)) {
392                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
393                 for (i = 0; num > 0; i++, num--)
394                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
395         }
396 }
397
398 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
399                                 int num)
400 {
401         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
402         u32 dif_len = addr - aligned_addr;
403         u32 i;
404
405         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
406
407         if (num <= 0) {
408                 return;
409         }
410
411         /* Write the first nibble byte by byte */
412         if (unlikely(dif_len)) {
413                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414                 /* Start reading at aligned_addr + dif_len */
415                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
416                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
417                 aligned_addr += 4;
418         }
419
420         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
421         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
422                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
423
424         /* Copy the last nibble */
425         if (unlikely(num)) {
426                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
427                 for (i = 0; num > 0; i++, num--, buf++)
428                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
429         }
430 }
431
432 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
433                              int num)
434 {
435         memcpy_toio((priv->hw_base + addr), buf, num);
436 }
437
438 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
439 {
440         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
441 }
442
443 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
444 {
445         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
446 }
447
448 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
449 {
450         if (priv->status & STATUS_INT_ENABLED)
451                 return;
452         priv->status |= STATUS_INT_ENABLED;
453         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
454 }
455
456 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
457 {
458         if (!(priv->status & STATUS_INT_ENABLED))
459                 return;
460         priv->status &= ~STATUS_INT_ENABLED;
461         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
462 }
463
464 #ifdef CONFIG_IPW_DEBUG
465 static char *ipw_error_desc(u32 val)
466 {
467         switch (val) {
468         case IPW_FW_ERROR_OK:
469                 return "ERROR_OK";
470         case IPW_FW_ERROR_FAIL:
471                 return "ERROR_FAIL";
472         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
473                 return "MEMORY_UNDERFLOW";
474         case IPW_FW_ERROR_MEMORY_OVERFLOW:
475                 return "MEMORY_OVERFLOW";
476         case IPW_FW_ERROR_BAD_PARAM:
477                 return "BAD_PARAM";
478         case IPW_FW_ERROR_BAD_CHECKSUM:
479                 return "BAD_CHECKSUM";
480         case IPW_FW_ERROR_NMI_INTERRUPT:
481                 return "NMI_INTERRUPT";
482         case IPW_FW_ERROR_BAD_DATABASE:
483                 return "BAD_DATABASE";
484         case IPW_FW_ERROR_ALLOC_FAIL:
485                 return "ALLOC_FAIL";
486         case IPW_FW_ERROR_DMA_UNDERRUN:
487                 return "DMA_UNDERRUN";
488         case IPW_FW_ERROR_DMA_STATUS:
489                 return "DMA_STATUS";
490         case IPW_FW_ERROR_DINO_ERROR:
491                 return "DINO_ERROR";
492         case IPW_FW_ERROR_EEPROM_ERROR:
493                 return "EEPROM_ERROR";
494         case IPW_FW_ERROR_SYSASSERT:
495                 return "SYSASSERT";
496         case IPW_FW_ERROR_FATAL_ERROR:
497                 return "FATAL_ERROR";
498         default:
499                 return "UNKNOWN_ERROR";
500         }
501 }
502
503 static void ipw_dump_error_log(struct ipw_priv *priv,
504                                struct ipw_fw_error *error)
505 {
506         u32 i;
507
508         if (!error) {
509                 IPW_ERROR("Error allocating and capturing error log.  "
510                           "Nothing to dump.\n");
511                 return;
512         }
513
514         IPW_ERROR("Start IPW Error Log Dump:\n");
515         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
516                   error->status, error->config);
517
518         for (i = 0; i < error->elem_len; i++)
519                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
520                           ipw_error_desc(error->elem[i].desc),
521                           error->elem[i].time,
522                           error->elem[i].blink1,
523                           error->elem[i].blink2,
524                           error->elem[i].link1,
525                           error->elem[i].link2, error->elem[i].data);
526         for (i = 0; i < error->log_len; i++)
527                 IPW_ERROR("%i\t0x%08x\t%i\n",
528                           error->log[i].time,
529                           error->log[i].event, error->log[i].data);
530 }
531 #endif
532
533 static inline int ipw_is_init(struct ipw_priv *priv)
534 {
535         return (priv->status & STATUS_INIT) ? 1 : 0;
536 }
537
538 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
539 {
540         u32 addr, field_info, field_len, field_count, total_len;
541
542         IPW_DEBUG_ORD("ordinal = %i\n", ord);
543
544         if (!priv || !val || !len) {
545                 IPW_DEBUG_ORD("Invalid argument\n");
546                 return -EINVAL;
547         }
548
549         /* verify device ordinal tables have been initialized */
550         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
551                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
552                 return -EINVAL;
553         }
554
555         switch (IPW_ORD_TABLE_ID_MASK & ord) {
556         case IPW_ORD_TABLE_0_MASK:
557                 /*
558                  * TABLE 0: Direct access to a table of 32 bit values
559                  *
560                  * This is a very simple table with the data directly
561                  * read from the table
562                  */
563
564                 /* remove the table id from the ordinal */
565                 ord &= IPW_ORD_TABLE_VALUE_MASK;
566
567                 /* boundary check */
568                 if (ord > priv->table0_len) {
569                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
570                                       "max (%i)\n", ord, priv->table0_len);
571                         return -EINVAL;
572                 }
573
574                 /* verify we have enough room to store the value */
575                 if (*len < sizeof(u32)) {
576                         IPW_DEBUG_ORD("ordinal buffer length too small, "
577                                       "need %zd\n", sizeof(u32));
578                         return -EINVAL;
579                 }
580
581                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
582                               ord, priv->table0_addr + (ord << 2));
583
584                 *len = sizeof(u32);
585                 ord <<= 2;
586                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
587                 break;
588
589         case IPW_ORD_TABLE_1_MASK:
590                 /*
591                  * TABLE 1: Indirect access to a table of 32 bit values
592                  *
593                  * This is a fairly large table of u32 values each
594                  * representing starting addr for the data (which is
595                  * also a u32)
596                  */
597
598                 /* remove the table id from the ordinal */
599                 ord &= IPW_ORD_TABLE_VALUE_MASK;
600
601                 /* boundary check */
602                 if (ord > priv->table1_len) {
603                         IPW_DEBUG_ORD("ordinal value too long\n");
604                         return -EINVAL;
605                 }
606
607                 /* verify we have enough room to store the value */
608                 if (*len < sizeof(u32)) {
609                         IPW_DEBUG_ORD("ordinal buffer length too small, "
610                                       "need %zd\n", sizeof(u32));
611                         return -EINVAL;
612                 }
613
614                 *((u32 *) val) =
615                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
616                 *len = sizeof(u32);
617                 break;
618
619         case IPW_ORD_TABLE_2_MASK:
620                 /*
621                  * TABLE 2: Indirect access to a table of variable sized values
622                  *
623                  * This table consist of six values, each containing
624                  *     - dword containing the starting offset of the data
625                  *     - dword containing the lengh in the first 16bits
626                  *       and the count in the second 16bits
627                  */
628
629                 /* remove the table id from the ordinal */
630                 ord &= IPW_ORD_TABLE_VALUE_MASK;
631
632                 /* boundary check */
633                 if (ord > priv->table2_len) {
634                         IPW_DEBUG_ORD("ordinal value too long\n");
635                         return -EINVAL;
636                 }
637
638                 /* get the address of statistic */
639                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
640
641                 /* get the second DW of statistics ;
642                  * two 16-bit words - first is length, second is count */
643                 field_info =
644                     ipw_read_reg32(priv,
645                                    priv->table2_addr + (ord << 3) +
646                                    sizeof(u32));
647
648                 /* get each entry length */
649                 field_len = *((u16 *) & field_info);
650
651                 /* get number of entries */
652                 field_count = *(((u16 *) & field_info) + 1);
653
654                 /* abort if not enought memory */
655                 total_len = field_len * field_count;
656                 if (total_len > *len) {
657                         *len = total_len;
658                         return -EINVAL;
659                 }
660
661                 *len = total_len;
662                 if (!total_len)
663                         return 0;
664
665                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
666                               "field_info = 0x%08x\n",
667                               addr, total_len, field_info);
668                 ipw_read_indirect(priv, addr, val, total_len);
669                 break;
670
671         default:
672                 IPW_DEBUG_ORD("Invalid ordinal!\n");
673                 return -EINVAL;
674
675         }
676
677         return 0;
678 }
679
680 static void ipw_init_ordinals(struct ipw_priv *priv)
681 {
682         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
683         priv->table0_len = ipw_read32(priv, priv->table0_addr);
684
685         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
686                       priv->table0_addr, priv->table0_len);
687
688         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
689         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
690
691         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
692                       priv->table1_addr, priv->table1_len);
693
694         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
695         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
696         priv->table2_len &= 0x0000ffff; /* use first two bytes */
697
698         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
699                       priv->table2_addr, priv->table2_len);
700
701 }
702
703 u32 ipw_register_toggle(u32 reg)
704 {
705         reg &= ~IPW_START_STANDBY;
706         if (reg & IPW_GATE_ODMA)
707                 reg &= ~IPW_GATE_ODMA;
708         if (reg & IPW_GATE_IDMA)
709                 reg &= ~IPW_GATE_IDMA;
710         if (reg & IPW_GATE_ADMA)
711                 reg &= ~IPW_GATE_ADMA;
712         return reg;
713 }
714
715 /*
716  * LED behavior:
717  * - On radio ON, turn on any LEDs that require to be on during start
718  * - On initialization, start unassociated blink
719  * - On association, disable unassociated blink
720  * - On disassociation, start unassociated blink
721  * - On radio OFF, turn off any LEDs started during radio on
722  *
723  */
724 #define LD_TIME_LINK_ON 300
725 #define LD_TIME_LINK_OFF 2700
726 #define LD_TIME_ACT_ON 250
727
728 void ipw_led_link_on(struct ipw_priv *priv)
729 {
730         unsigned long flags;
731         u32 led;
732
733         /* If configured to not use LEDs, or nic_type is 1,
734          * then we don't toggle a LINK led */
735         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
736                 return;
737
738         spin_lock_irqsave(&priv->lock, flags);
739
740         if (!(priv->status & STATUS_RF_KILL_MASK) &&
741             !(priv->status & STATUS_LED_LINK_ON)) {
742                 IPW_DEBUG_LED("Link LED On\n");
743                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
744                 led |= priv->led_association_on;
745
746                 led = ipw_register_toggle(led);
747
748                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
749                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
750
751                 priv->status |= STATUS_LED_LINK_ON;
752
753                 /* If we aren't associated, schedule turning the LED off */
754                 if (!(priv->status & STATUS_ASSOCIATED))
755                         queue_delayed_work(priv->workqueue,
756                                            &priv->led_link_off,
757                                            LD_TIME_LINK_ON);
758         }
759
760         spin_unlock_irqrestore(&priv->lock, flags);
761 }
762
763 static void ipw_bg_led_link_on(void *data)
764 {
765         struct ipw_priv *priv = data;
766         down(&priv->sem);
767         ipw_led_link_on(data);
768         up(&priv->sem);
769 }
770
771 void ipw_led_link_off(struct ipw_priv *priv)
772 {
773         unsigned long flags;
774         u32 led;
775
776         /* If configured not to use LEDs, or nic type is 1,
777          * then we don't goggle the LINK led. */
778         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
779                 return;
780
781         spin_lock_irqsave(&priv->lock, flags);
782
783         if (priv->status & STATUS_LED_LINK_ON) {
784                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
785                 led &= priv->led_association_off;
786                 led = ipw_register_toggle(led);
787
788                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
789                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
790
791                 IPW_DEBUG_LED("Link LED Off\n");
792
793                 priv->status &= ~STATUS_LED_LINK_ON;
794
795                 /* If we aren't associated and the radio is on, schedule
796                  * turning the LED on (blink while unassociated) */
797                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
798                     !(priv->status & STATUS_ASSOCIATED))
799                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
800                                            LD_TIME_LINK_OFF);
801
802         }
803
804         spin_unlock_irqrestore(&priv->lock, flags);
805 }
806
807 static void ipw_bg_led_link_off(void *data)
808 {
809         struct ipw_priv *priv = data;
810         down(&priv->sem);
811         ipw_led_link_off(data);
812         up(&priv->sem);
813 }
814
815 static inline void __ipw_led_activity_on(struct ipw_priv *priv)
816 {
817         u32 led;
818
819         if (priv->config & CFG_NO_LED)
820                 return;
821
822         if (priv->status & STATUS_RF_KILL_MASK)
823                 return;
824
825         if (!(priv->status & STATUS_LED_ACT_ON)) {
826                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
827                 led |= priv->led_activity_on;
828
829                 led = ipw_register_toggle(led);
830
831                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
832                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
833
834                 IPW_DEBUG_LED("Activity LED On\n");
835
836                 priv->status |= STATUS_LED_ACT_ON;
837
838                 cancel_delayed_work(&priv->led_act_off);
839                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
840                                    LD_TIME_ACT_ON);
841         } else {
842                 /* Reschedule LED off for full time period */
843                 cancel_delayed_work(&priv->led_act_off);
844                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
845                                    LD_TIME_ACT_ON);
846         }
847 }
848
849 void ipw_led_activity_on(struct ipw_priv *priv)
850 {
851         unsigned long flags;
852         spin_lock_irqsave(&priv->lock, flags);
853         __ipw_led_activity_on(priv);
854         spin_unlock_irqrestore(&priv->lock, flags);
855 }
856
857 void ipw_led_activity_off(struct ipw_priv *priv)
858 {
859         unsigned long flags;
860         u32 led;
861
862         if (priv->config & CFG_NO_LED)
863                 return;
864
865         spin_lock_irqsave(&priv->lock, flags);
866
867         if (priv->status & STATUS_LED_ACT_ON) {
868                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
869                 led &= priv->led_activity_off;
870
871                 led = ipw_register_toggle(led);
872
873                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
874                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
875
876                 IPW_DEBUG_LED("Activity LED Off\n");
877
878                 priv->status &= ~STATUS_LED_ACT_ON;
879         }
880
881         spin_unlock_irqrestore(&priv->lock, flags);
882 }
883
884 static void ipw_bg_led_activity_off(void *data)
885 {
886         struct ipw_priv *priv = data;
887         down(&priv->sem);
888         ipw_led_activity_off(data);
889         up(&priv->sem);
890 }
891
892 void ipw_led_band_on(struct ipw_priv *priv)
893 {
894         unsigned long flags;
895         u32 led;
896
897         /* Only nic type 1 supports mode LEDs */
898         if (priv->config & CFG_NO_LED ||
899             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
900                 return;
901
902         spin_lock_irqsave(&priv->lock, flags);
903
904         led = ipw_read_reg32(priv, IPW_EVENT_REG);
905         if (priv->assoc_network->mode == IEEE_A) {
906                 led |= priv->led_ofdm_on;
907                 led &= priv->led_association_off;
908                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
909         } else if (priv->assoc_network->mode == IEEE_G) {
910                 led |= priv->led_ofdm_on;
911                 led |= priv->led_association_on;
912                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
913         } else {
914                 led &= priv->led_ofdm_off;
915                 led |= priv->led_association_on;
916                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
917         }
918
919         led = ipw_register_toggle(led);
920
921         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
922         ipw_write_reg32(priv, IPW_EVENT_REG, led);
923
924         spin_unlock_irqrestore(&priv->lock, flags);
925 }
926
927 void ipw_led_band_off(struct ipw_priv *priv)
928 {
929         unsigned long flags;
930         u32 led;
931
932         /* Only nic type 1 supports mode LEDs */
933         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
934                 return;
935
936         spin_lock_irqsave(&priv->lock, flags);
937
938         led = ipw_read_reg32(priv, IPW_EVENT_REG);
939         led &= priv->led_ofdm_off;
940         led &= priv->led_association_off;
941
942         led = ipw_register_toggle(led);
943
944         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
945         ipw_write_reg32(priv, IPW_EVENT_REG, led);
946
947         spin_unlock_irqrestore(&priv->lock, flags);
948 }
949
950 void ipw_led_radio_on(struct ipw_priv *priv)
951 {
952         ipw_led_link_on(priv);
953 }
954
955 void ipw_led_radio_off(struct ipw_priv *priv)
956 {
957         ipw_led_activity_off(priv);
958         ipw_led_link_off(priv);
959 }
960
961 void ipw_led_link_up(struct ipw_priv *priv)
962 {
963         /* Set the Link Led on for all nic types */
964         ipw_led_link_on(priv);
965 }
966
967 void ipw_led_link_down(struct ipw_priv *priv)
968 {
969         ipw_led_activity_off(priv);
970         ipw_led_link_off(priv);
971
972         if (priv->status & STATUS_RF_KILL_MASK)
973                 ipw_led_radio_off(priv);
974 }
975
976 void ipw_led_init(struct ipw_priv *priv)
977 {
978         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
979
980         /* Set the default PINs for the link and activity leds */
981         priv->led_activity_on = IPW_ACTIVITY_LED;
982         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
983
984         priv->led_association_on = IPW_ASSOCIATED_LED;
985         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
986
987         /* Set the default PINs for the OFDM leds */
988         priv->led_ofdm_on = IPW_OFDM_LED;
989         priv->led_ofdm_off = ~(IPW_OFDM_LED);
990
991         switch (priv->nic_type) {
992         case EEPROM_NIC_TYPE_1:
993                 /* In this NIC type, the LEDs are reversed.... */
994                 priv->led_activity_on = IPW_ASSOCIATED_LED;
995                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
996                 priv->led_association_on = IPW_ACTIVITY_LED;
997                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
998
999                 if (!(priv->config & CFG_NO_LED))
1000                         ipw_led_band_on(priv);
1001
1002                 /* And we don't blink link LEDs for this nic, so
1003                  * just return here */
1004                 return;
1005
1006         case EEPROM_NIC_TYPE_3:
1007         case EEPROM_NIC_TYPE_2:
1008         case EEPROM_NIC_TYPE_4:
1009         case EEPROM_NIC_TYPE_0:
1010                 break;
1011
1012         default:
1013                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1014                                priv->nic_type);
1015                 priv->nic_type = EEPROM_NIC_TYPE_0;
1016                 break;
1017         }
1018
1019         if (!(priv->config & CFG_NO_LED)) {
1020                 if (priv->status & STATUS_ASSOCIATED)
1021                         ipw_led_link_on(priv);
1022                 else
1023                         ipw_led_link_off(priv);
1024         }
1025 }
1026
1027 void ipw_led_shutdown(struct ipw_priv *priv)
1028 {
1029         ipw_led_activity_off(priv);
1030         ipw_led_link_off(priv);
1031         ipw_led_band_off(priv);
1032         cancel_delayed_work(&priv->led_link_on);
1033         cancel_delayed_work(&priv->led_link_off);
1034         cancel_delayed_work(&priv->led_act_off);
1035 }
1036
1037 /*
1038  * The following adds a new attribute to the sysfs representation
1039  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1040  * used for controling the debug level.
1041  *
1042  * See the level definitions in ipw for details.
1043  */
1044 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1045 {
1046         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1047 }
1048
1049 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1050                                  size_t count)
1051 {
1052         char *p = (char *)buf;
1053         u32 val;
1054
1055         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1056                 p++;
1057                 if (p[0] == 'x' || p[0] == 'X')
1058                         p++;
1059                 val = simple_strtoul(p, &p, 16);
1060         } else
1061                 val = simple_strtoul(p, &p, 10);
1062         if (p == buf)
1063                 printk(KERN_INFO DRV_NAME
1064                        ": %s is not in hex or decimal form.\n", buf);
1065         else
1066                 ipw_debug_level = val;
1067
1068         return strnlen(buf, count);
1069 }
1070
1071 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1072                    show_debug_level, store_debug_level);
1073
1074 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1075 {
1076         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1077 }
1078
1079 static void ipw_capture_event_log(struct ipw_priv *priv,
1080                                   u32 log_len, struct ipw_event *log)
1081 {
1082         u32 base;
1083
1084         if (log_len) {
1085                 base = ipw_read32(priv, IPW_EVENT_LOG);
1086                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1087                                   (u8 *) log, sizeof(*log) * log_len);
1088         }
1089 }
1090
1091 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1092 {
1093         struct ipw_fw_error *error;
1094         u32 log_len = ipw_get_event_log_len(priv);
1095         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1096         u32 elem_len = ipw_read_reg32(priv, base);
1097
1098         error = kmalloc(sizeof(*error) +
1099                         sizeof(*error->elem) * elem_len +
1100                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1101         if (!error) {
1102                 IPW_ERROR("Memory allocation for firmware error log "
1103                           "failed.\n");
1104                 return NULL;
1105         }
1106         error->jiffies = jiffies;
1107         error->status = priv->status;
1108         error->config = priv->config;
1109         error->elem_len = elem_len;
1110         error->log_len = log_len;
1111         error->elem = (struct ipw_error_elem *)error->payload;
1112         error->log = (struct ipw_event *)(error->elem +
1113                                           (sizeof(*error->elem) * elem_len));
1114
1115         ipw_capture_event_log(priv, log_len, error->log);
1116
1117         if (elem_len)
1118                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1119                                   sizeof(*error->elem) * elem_len);
1120
1121         return error;
1122 }
1123
1124 static void ipw_free_error_log(struct ipw_fw_error *error)
1125 {
1126         if (error)
1127                 kfree(error);
1128 }
1129
1130 static ssize_t show_event_log(struct device *d,
1131                               struct device_attribute *attr, char *buf)
1132 {
1133         struct ipw_priv *priv = dev_get_drvdata(d);
1134         u32 log_len = ipw_get_event_log_len(priv);
1135         struct ipw_event log[log_len];
1136         u32 len = 0, i;
1137
1138         ipw_capture_event_log(priv, log_len, log);
1139
1140         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1141         for (i = 0; i < log_len; i++)
1142                 len += snprintf(buf + len, PAGE_SIZE - len,
1143                                 "\n%08X%08X%08X",
1144                                 log[i].time, log[i].event, log[i].data);
1145         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1146         return len;
1147 }
1148
1149 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1150
1151 static ssize_t show_error(struct device *d,
1152                           struct device_attribute *attr, char *buf)
1153 {
1154         struct ipw_priv *priv = dev_get_drvdata(d);
1155         u32 len = 0, i;
1156         if (!priv->error)
1157                 return 0;
1158         len += snprintf(buf + len, PAGE_SIZE - len,
1159                         "%08lX%08X%08X%08X",
1160                         priv->error->jiffies,
1161                         priv->error->status,
1162                         priv->error->config, priv->error->elem_len);
1163         for (i = 0; i < priv->error->elem_len; i++)
1164                 len += snprintf(buf + len, PAGE_SIZE - len,
1165                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1166                                 priv->error->elem[i].time,
1167                                 priv->error->elem[i].desc,
1168                                 priv->error->elem[i].blink1,
1169                                 priv->error->elem[i].blink2,
1170                                 priv->error->elem[i].link1,
1171                                 priv->error->elem[i].link2,
1172                                 priv->error->elem[i].data);
1173
1174         len += snprintf(buf + len, PAGE_SIZE - len,
1175                         "\n%08X", priv->error->log_len);
1176         for (i = 0; i < priv->error->log_len; i++)
1177                 len += snprintf(buf + len, PAGE_SIZE - len,
1178                                 "\n%08X%08X%08X",
1179                                 priv->error->log[i].time,
1180                                 priv->error->log[i].event,
1181                                 priv->error->log[i].data);
1182         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1183         return len;
1184 }
1185
1186 static ssize_t clear_error(struct device *d,
1187                            struct device_attribute *attr,
1188                            const char *buf, size_t count)
1189 {
1190         struct ipw_priv *priv = dev_get_drvdata(d);
1191         if (priv->error) {
1192                 ipw_free_error_log(priv->error);
1193                 priv->error = NULL;
1194         }
1195         return count;
1196 }
1197
1198 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1199
1200 static ssize_t show_cmd_log(struct device *d,
1201                             struct device_attribute *attr, char *buf)
1202 {
1203         struct ipw_priv *priv = dev_get_drvdata(d);
1204         u32 len = 0, i;
1205         if (!priv->cmdlog)
1206                 return 0;
1207         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1208              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1209              i = (i + 1) % priv->cmdlog_len) {
1210                 len +=
1211                     snprintf(buf + len, PAGE_SIZE - len,
1212                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1213                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1214                              priv->cmdlog[i].cmd.len);
1215                 len +=
1216                     snprintk_buf(buf + len, PAGE_SIZE - len,
1217                                  (u8 *) priv->cmdlog[i].cmd.param,
1218                                  priv->cmdlog[i].cmd.len);
1219                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1220         }
1221         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1222         return len;
1223 }
1224
1225 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1226
1227 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1228                              char *buf)
1229 {
1230         struct ipw_priv *priv = dev_get_drvdata(d);
1231         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1232 }
1233
1234 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1235                               const char *buf, size_t count)
1236 {
1237         struct ipw_priv *priv = dev_get_drvdata(d);
1238 #ifdef CONFIG_IPW_DEBUG
1239         struct net_device *dev = priv->net_dev;
1240 #endif
1241         char buffer[] = "00000000";
1242         unsigned long len =
1243             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1244         unsigned long val;
1245         char *p = buffer;
1246
1247         IPW_DEBUG_INFO("enter\n");
1248
1249         strncpy(buffer, buf, len);
1250         buffer[len] = 0;
1251
1252         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1253                 p++;
1254                 if (p[0] == 'x' || p[0] == 'X')
1255                         p++;
1256                 val = simple_strtoul(p, &p, 16);
1257         } else
1258                 val = simple_strtoul(p, &p, 10);
1259         if (p == buffer) {
1260                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1261         } else {
1262                 priv->ieee->scan_age = val;
1263                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1264         }
1265
1266         IPW_DEBUG_INFO("exit\n");
1267         return len;
1268 }
1269
1270 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1271
1272 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1273                         char *buf)
1274 {
1275         struct ipw_priv *priv = dev_get_drvdata(d);
1276         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1277 }
1278
1279 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1280                          const char *buf, size_t count)
1281 {
1282         struct ipw_priv *priv = dev_get_drvdata(d);
1283
1284         IPW_DEBUG_INFO("enter\n");
1285
1286         if (count == 0)
1287                 return 0;
1288
1289         if (*buf == 0) {
1290                 IPW_DEBUG_LED("Disabling LED control.\n");
1291                 priv->config |= CFG_NO_LED;
1292                 ipw_led_shutdown(priv);
1293         } else {
1294                 IPW_DEBUG_LED("Enabling LED control.\n");
1295                 priv->config &= ~CFG_NO_LED;
1296                 ipw_led_init(priv);
1297         }
1298
1299         IPW_DEBUG_INFO("exit\n");
1300         return count;
1301 }
1302
1303 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1304
1305 static ssize_t show_status(struct device *d,
1306                            struct device_attribute *attr, char *buf)
1307 {
1308         struct ipw_priv *p = d->driver_data;
1309         return sprintf(buf, "0x%08x\n", (int)p->status);
1310 }
1311
1312 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1313
1314 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1315                         char *buf)
1316 {
1317         struct ipw_priv *p = d->driver_data;
1318         return sprintf(buf, "0x%08x\n", (int)p->config);
1319 }
1320
1321 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1322
1323 static ssize_t show_nic_type(struct device *d,
1324                              struct device_attribute *attr, char *buf)
1325 {
1326         struct ipw_priv *priv = d->driver_data;
1327         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1328 }
1329
1330 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1331
1332 static ssize_t show_ucode_version(struct device *d,
1333                                   struct device_attribute *attr, char *buf)
1334 {
1335         u32 len = sizeof(u32), tmp = 0;
1336         struct ipw_priv *p = d->driver_data;
1337
1338         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1339                 return 0;
1340
1341         return sprintf(buf, "0x%08x\n", tmp);
1342 }
1343
1344 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1345
1346 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1347                         char *buf)
1348 {
1349         u32 len = sizeof(u32), tmp = 0;
1350         struct ipw_priv *p = d->driver_data;
1351
1352         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1353                 return 0;
1354
1355         return sprintf(buf, "0x%08x\n", tmp);
1356 }
1357
1358 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1359
1360 /*
1361  * Add a device attribute to view/control the delay between eeprom
1362  * operations.
1363  */
1364 static ssize_t show_eeprom_delay(struct device *d,
1365                                  struct device_attribute *attr, char *buf)
1366 {
1367         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1368         return sprintf(buf, "%i\n", n);
1369 }
1370 static ssize_t store_eeprom_delay(struct device *d,
1371                                   struct device_attribute *attr,
1372                                   const char *buf, size_t count)
1373 {
1374         struct ipw_priv *p = d->driver_data;
1375         sscanf(buf, "%i", &p->eeprom_delay);
1376         return strnlen(buf, count);
1377 }
1378
1379 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1380                    show_eeprom_delay, store_eeprom_delay);
1381
1382 static ssize_t show_command_event_reg(struct device *d,
1383                                       struct device_attribute *attr, char *buf)
1384 {
1385         u32 reg = 0;
1386         struct ipw_priv *p = d->driver_data;
1387
1388         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1389         return sprintf(buf, "0x%08x\n", reg);
1390 }
1391 static ssize_t store_command_event_reg(struct device *d,
1392                                        struct device_attribute *attr,
1393                                        const char *buf, size_t count)
1394 {
1395         u32 reg;
1396         struct ipw_priv *p = d->driver_data;
1397
1398         sscanf(buf, "%x", &reg);
1399         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1400         return strnlen(buf, count);
1401 }
1402
1403 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1404                    show_command_event_reg, store_command_event_reg);
1405
1406 static ssize_t show_mem_gpio_reg(struct device *d,
1407                                  struct device_attribute *attr, char *buf)
1408 {
1409         u32 reg = 0;
1410         struct ipw_priv *p = d->driver_data;
1411
1412         reg = ipw_read_reg32(p, 0x301100);
1413         return sprintf(buf, "0x%08x\n", reg);
1414 }
1415 static ssize_t store_mem_gpio_reg(struct device *d,
1416                                   struct device_attribute *attr,
1417                                   const char *buf, size_t count)
1418 {
1419         u32 reg;
1420         struct ipw_priv *p = d->driver_data;
1421
1422         sscanf(buf, "%x", &reg);
1423         ipw_write_reg32(p, 0x301100, reg);
1424         return strnlen(buf, count);
1425 }
1426
1427 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1428                    show_mem_gpio_reg, store_mem_gpio_reg);
1429
1430 static ssize_t show_indirect_dword(struct device *d,
1431                                    struct device_attribute *attr, char *buf)
1432 {
1433         u32 reg = 0;
1434         struct ipw_priv *priv = d->driver_data;
1435
1436         if (priv->status & STATUS_INDIRECT_DWORD)
1437                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1438         else
1439                 reg = 0;
1440
1441         return sprintf(buf, "0x%08x\n", reg);
1442 }
1443 static ssize_t store_indirect_dword(struct device *d,
1444                                     struct device_attribute *attr,
1445                                     const char *buf, size_t count)
1446 {
1447         struct ipw_priv *priv = d->driver_data;
1448
1449         sscanf(buf, "%x", &priv->indirect_dword);
1450         priv->status |= STATUS_INDIRECT_DWORD;
1451         return strnlen(buf, count);
1452 }
1453
1454 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1455                    show_indirect_dword, store_indirect_dword);
1456
1457 static ssize_t show_indirect_byte(struct device *d,
1458                                   struct device_attribute *attr, char *buf)
1459 {
1460         u8 reg = 0;
1461         struct ipw_priv *priv = d->driver_data;
1462
1463         if (priv->status & STATUS_INDIRECT_BYTE)
1464                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1465         else
1466                 reg = 0;
1467
1468         return sprintf(buf, "0x%02x\n", reg);
1469 }
1470 static ssize_t store_indirect_byte(struct device *d,
1471                                    struct device_attribute *attr,
1472                                    const char *buf, size_t count)
1473 {
1474         struct ipw_priv *priv = d->driver_data;
1475
1476         sscanf(buf, "%x", &priv->indirect_byte);
1477         priv->status |= STATUS_INDIRECT_BYTE;
1478         return strnlen(buf, count);
1479 }
1480
1481 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1482                    show_indirect_byte, store_indirect_byte);
1483
1484 static ssize_t show_direct_dword(struct device *d,
1485                                  struct device_attribute *attr, char *buf)
1486 {
1487         u32 reg = 0;
1488         struct ipw_priv *priv = d->driver_data;
1489
1490         if (priv->status & STATUS_DIRECT_DWORD)
1491                 reg = ipw_read32(priv, priv->direct_dword);
1492         else
1493                 reg = 0;
1494
1495         return sprintf(buf, "0x%08x\n", reg);
1496 }
1497 static ssize_t store_direct_dword(struct device *d,
1498                                   struct device_attribute *attr,
1499                                   const char *buf, size_t count)
1500 {
1501         struct ipw_priv *priv = d->driver_data;
1502
1503         sscanf(buf, "%x", &priv->direct_dword);
1504         priv->status |= STATUS_DIRECT_DWORD;
1505         return strnlen(buf, count);
1506 }
1507
1508 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1509                    show_direct_dword, store_direct_dword);
1510
1511 static inline int rf_kill_active(struct ipw_priv *priv)
1512 {
1513         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1514                 priv->status |= STATUS_RF_KILL_HW;
1515         else
1516                 priv->status &= ~STATUS_RF_KILL_HW;
1517
1518         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1519 }
1520
1521 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1522                             char *buf)
1523 {
1524         /* 0 - RF kill not enabled
1525            1 - SW based RF kill active (sysfs)
1526            2 - HW based RF kill active
1527            3 - Both HW and SW baed RF kill active */
1528         struct ipw_priv *priv = d->driver_data;
1529         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1530             (rf_kill_active(priv) ? 0x2 : 0x0);
1531         return sprintf(buf, "%i\n", val);
1532 }
1533
1534 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1535 {
1536         if ((disable_radio ? 1 : 0) ==
1537             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1538                 return 0;
1539
1540         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1541                           disable_radio ? "OFF" : "ON");
1542
1543         if (disable_radio) {
1544                 priv->status |= STATUS_RF_KILL_SW;
1545
1546                 if (priv->workqueue)
1547                         cancel_delayed_work(&priv->request_scan);
1548                 queue_work(priv->workqueue, &priv->down);
1549         } else {
1550                 priv->status &= ~STATUS_RF_KILL_SW;
1551                 if (rf_kill_active(priv)) {
1552                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1553                                           "disabled by HW switch\n");
1554                         /* Make sure the RF_KILL check timer is running */
1555                         cancel_delayed_work(&priv->rf_kill);
1556                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1557                                            2 * HZ);
1558                 } else
1559                         queue_work(priv->workqueue, &priv->up);
1560         }
1561
1562         return 1;
1563 }
1564
1565 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1566                              const char *buf, size_t count)
1567 {
1568         struct ipw_priv *priv = d->driver_data;
1569
1570         ipw_radio_kill_sw(priv, buf[0] == '1');
1571
1572         return count;
1573 }
1574
1575 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1576
1577 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1578                                char *buf)
1579 {
1580         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1581         int pos = 0, len = 0;
1582         if (priv->config & CFG_SPEED_SCAN) {
1583                 while (priv->speed_scan[pos] != 0)
1584                         len += sprintf(&buf[len], "%d ",
1585                                        priv->speed_scan[pos++]);
1586                 return len + sprintf(&buf[len], "\n");
1587         }
1588
1589         return sprintf(buf, "0\n");
1590 }
1591
1592 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1593                                 const char *buf, size_t count)
1594 {
1595         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1596         int channel, pos = 0;
1597         const char *p = buf;
1598
1599         /* list of space separated channels to scan, optionally ending with 0 */
1600         while ((channel = simple_strtol(p, NULL, 0))) {
1601                 if (pos == MAX_SPEED_SCAN - 1) {
1602                         priv->speed_scan[pos] = 0;
1603                         break;
1604                 }
1605
1606                 if (ipw_is_valid_channel(priv->ieee, channel))
1607                         priv->speed_scan[pos++] = channel;
1608                 else
1609                         IPW_WARNING("Skipping invalid channel request: %d\n",
1610                                     channel);
1611                 p = strchr(p, ' ');
1612                 if (!p)
1613                         break;
1614                 while (*p == ' ' || *p == '\t')
1615                         p++;
1616         }
1617
1618         if (pos == 0)
1619                 priv->config &= ~CFG_SPEED_SCAN;
1620         else {
1621                 priv->speed_scan_pos = 0;
1622                 priv->config |= CFG_SPEED_SCAN;
1623         }
1624
1625         return count;
1626 }
1627
1628 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1629                    store_speed_scan);
1630
1631 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1632                               char *buf)
1633 {
1634         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1635         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1636 }
1637
1638 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1639                                const char *buf, size_t count)
1640 {
1641         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1642         if (buf[0] == '1')
1643                 priv->config |= CFG_NET_STATS;
1644         else
1645                 priv->config &= ~CFG_NET_STATS;
1646
1647         return count;
1648 }
1649
1650 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1651                    show_net_stats, store_net_stats);
1652
1653 static void notify_wx_assoc_event(struct ipw_priv *priv)
1654 {
1655         union iwreq_data wrqu;
1656         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1657         if (priv->status & STATUS_ASSOCIATED)
1658                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1659         else
1660                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1661         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1662 }
1663
1664 static void ipw_irq_tasklet(struct ipw_priv *priv)
1665 {
1666         u32 inta, inta_mask, handled = 0;
1667         unsigned long flags;
1668         int rc = 0;
1669
1670         spin_lock_irqsave(&priv->lock, flags);
1671
1672         inta = ipw_read32(priv, IPW_INTA_RW);
1673         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1674         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1675
1676         /* Add any cached INTA values that need to be handled */
1677         inta |= priv->isr_inta;
1678
1679         /* handle all the justifications for the interrupt */
1680         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1681                 ipw_rx(priv);
1682                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1683         }
1684
1685         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1686                 IPW_DEBUG_HC("Command completed.\n");
1687                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1688                 priv->status &= ~STATUS_HCMD_ACTIVE;
1689                 wake_up_interruptible(&priv->wait_command_queue);
1690                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1691         }
1692
1693         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1694                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1695                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1696                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1697         }
1698
1699         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1700                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1701                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1702                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1703         }
1704
1705         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1706                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1707                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1708                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1709         }
1710
1711         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1712                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1713                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1714                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1715         }
1716
1717         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1718                 IPW_WARNING("STATUS_CHANGE\n");
1719                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1720         }
1721
1722         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1723                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1724                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1725         }
1726
1727         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1728                 IPW_WARNING("HOST_CMD_DONE\n");
1729                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1730         }
1731
1732         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1733                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1734                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1735         }
1736
1737         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1738                 IPW_WARNING("PHY_OFF_DONE\n");
1739                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1740         }
1741
1742         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1743                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1744                 priv->status |= STATUS_RF_KILL_HW;
1745                 wake_up_interruptible(&priv->wait_command_queue);
1746                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1747                 cancel_delayed_work(&priv->request_scan);
1748                 schedule_work(&priv->link_down);
1749                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1750                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1751         }
1752
1753         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1754                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1755                 if (priv->error) {
1756                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1757 #ifdef CONFIG_IPW_DEBUG
1758                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1759                                 struct ipw_fw_error *error =
1760                                     ipw_alloc_error_log(priv);
1761                                 ipw_dump_error_log(priv, error);
1762                                 if (error)
1763                                         ipw_free_error_log(error);
1764                         }
1765 #endif
1766                 } else {
1767                         priv->error = ipw_alloc_error_log(priv);
1768                         if (priv->error)
1769                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1770                         else
1771                                 IPW_ERROR("Error allocating sysfs 'error' "
1772                                           "log.\n");
1773 #ifdef CONFIG_IPW_DEBUG
1774                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1775                                 ipw_dump_error_log(priv, priv->error);
1776 #endif
1777                 }
1778
1779                 /* XXX: If hardware encryption is for WPA/WPA2,
1780                  * we have to notify the supplicant. */
1781                 if (priv->ieee->sec.encrypt) {
1782                         priv->status &= ~STATUS_ASSOCIATED;
1783                         notify_wx_assoc_event(priv);
1784                 }
1785
1786                 /* Keep the restart process from trying to send host
1787                  * commands by clearing the INIT status bit */
1788                 priv->status &= ~STATUS_INIT;
1789
1790                 /* Cancel currently queued command. */
1791                 priv->status &= ~STATUS_HCMD_ACTIVE;
1792                 wake_up_interruptible(&priv->wait_command_queue);
1793
1794                 queue_work(priv->workqueue, &priv->adapter_restart);
1795                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1796         }
1797
1798         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1799                 IPW_ERROR("Parity error\n");
1800                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1801         }
1802
1803         if (handled != inta) {
1804                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1805         }
1806
1807         /* enable all interrupts */
1808         ipw_enable_interrupts(priv);
1809
1810         spin_unlock_irqrestore(&priv->lock, flags);
1811 }
1812
1813 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1814 static char *get_cmd_string(u8 cmd)
1815 {
1816         switch (cmd) {
1817                 IPW_CMD(HOST_COMPLETE);
1818                 IPW_CMD(POWER_DOWN);
1819                 IPW_CMD(SYSTEM_CONFIG);
1820                 IPW_CMD(MULTICAST_ADDRESS);
1821                 IPW_CMD(SSID);
1822                 IPW_CMD(ADAPTER_ADDRESS);
1823                 IPW_CMD(PORT_TYPE);
1824                 IPW_CMD(RTS_THRESHOLD);
1825                 IPW_CMD(FRAG_THRESHOLD);
1826                 IPW_CMD(POWER_MODE);
1827                 IPW_CMD(WEP_KEY);
1828                 IPW_CMD(TGI_TX_KEY);
1829                 IPW_CMD(SCAN_REQUEST);
1830                 IPW_CMD(SCAN_REQUEST_EXT);
1831                 IPW_CMD(ASSOCIATE);
1832                 IPW_CMD(SUPPORTED_RATES);
1833                 IPW_CMD(SCAN_ABORT);
1834                 IPW_CMD(TX_FLUSH);
1835                 IPW_CMD(QOS_PARAMETERS);
1836                 IPW_CMD(DINO_CONFIG);
1837                 IPW_CMD(RSN_CAPABILITIES);
1838                 IPW_CMD(RX_KEY);
1839                 IPW_CMD(CARD_DISABLE);
1840                 IPW_CMD(SEED_NUMBER);
1841                 IPW_CMD(TX_POWER);
1842                 IPW_CMD(COUNTRY_INFO);
1843                 IPW_CMD(AIRONET_INFO);
1844                 IPW_CMD(AP_TX_POWER);
1845                 IPW_CMD(CCKM_INFO);
1846                 IPW_CMD(CCX_VER_INFO);
1847                 IPW_CMD(SET_CALIBRATION);
1848                 IPW_CMD(SENSITIVITY_CALIB);
1849                 IPW_CMD(RETRY_LIMIT);
1850                 IPW_CMD(IPW_PRE_POWER_DOWN);
1851                 IPW_CMD(VAP_BEACON_TEMPLATE);
1852                 IPW_CMD(VAP_DTIM_PERIOD);
1853                 IPW_CMD(EXT_SUPPORTED_RATES);
1854                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1855                 IPW_CMD(VAP_QUIET_INTERVALS);
1856                 IPW_CMD(VAP_CHANNEL_SWITCH);
1857                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1858                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1859                 IPW_CMD(VAP_CF_PARAM_SET);
1860                 IPW_CMD(VAP_SET_BEACONING_STATE);
1861                 IPW_CMD(MEASUREMENT);
1862                 IPW_CMD(POWER_CAPABILITY);
1863                 IPW_CMD(SUPPORTED_CHANNELS);
1864                 IPW_CMD(TPC_REPORT);
1865                 IPW_CMD(WME_INFO);
1866                 IPW_CMD(PRODUCTION_COMMAND);
1867         default:
1868                 return "UNKNOWN";
1869         }
1870 }
1871
1872 #define HOST_COMPLETE_TIMEOUT HZ
1873 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1874 {
1875         int rc = 0;
1876         unsigned long flags;
1877
1878         spin_lock_irqsave(&priv->lock, flags);
1879         if (priv->status & STATUS_HCMD_ACTIVE) {
1880                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1881                           get_cmd_string(cmd->cmd));
1882                 spin_unlock_irqrestore(&priv->lock, flags);
1883                 return -EAGAIN;
1884         }
1885
1886         priv->status |= STATUS_HCMD_ACTIVE;
1887
1888         if (priv->cmdlog) {
1889                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1890                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1891                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1892                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1893                        cmd->len);
1894                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1895         }
1896
1897         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1898                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1899                      priv->status);
1900         printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1901
1902         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1903         if (rc) {
1904                 priv->status &= ~STATUS_HCMD_ACTIVE;
1905                 IPW_ERROR("Failed to send %s: Reason %d\n",
1906                           get_cmd_string(cmd->cmd), rc);
1907                 spin_unlock_irqrestore(&priv->lock, flags);
1908                 goto exit;
1909         }
1910         spin_unlock_irqrestore(&priv->lock, flags);
1911
1912         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1913                                               !(priv->
1914                                                 status & STATUS_HCMD_ACTIVE),
1915                                               HOST_COMPLETE_TIMEOUT);
1916         if (rc == 0) {
1917                 spin_lock_irqsave(&priv->lock, flags);
1918                 if (priv->status & STATUS_HCMD_ACTIVE) {
1919                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1920                                   get_cmd_string(cmd->cmd));
1921                         priv->status &= ~STATUS_HCMD_ACTIVE;
1922                         spin_unlock_irqrestore(&priv->lock, flags);
1923                         rc = -EIO;
1924                         goto exit;
1925                 }
1926                 spin_unlock_irqrestore(&priv->lock, flags);
1927         } else
1928                 rc = 0;
1929
1930         if (priv->status & STATUS_RF_KILL_HW) {
1931                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1932                           get_cmd_string(cmd->cmd));
1933                 rc = -EIO;
1934                 goto exit;
1935         }
1936
1937       exit:
1938         if (priv->cmdlog) {
1939                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1940                 priv->cmdlog_pos %= priv->cmdlog_len;
1941         }
1942         return rc;
1943 }
1944
1945 static int ipw_send_host_complete(struct ipw_priv *priv)
1946 {
1947         struct host_cmd cmd = {
1948                 .cmd = IPW_CMD_HOST_COMPLETE,
1949                 .len = 0
1950         };
1951
1952         if (!priv) {
1953                 IPW_ERROR("Invalid args\n");
1954                 return -1;
1955         }
1956
1957         return ipw_send_cmd(priv, &cmd);
1958 }
1959
1960 static int ipw_send_system_config(struct ipw_priv *priv,
1961                                   struct ipw_sys_config *config)
1962 {
1963         struct host_cmd cmd = {
1964                 .cmd = IPW_CMD_SYSTEM_CONFIG,
1965                 .len = sizeof(*config)
1966         };
1967
1968         if (!priv || !config) {
1969                 IPW_ERROR("Invalid args\n");
1970                 return -1;
1971         }
1972
1973         memcpy(cmd.param, config, sizeof(*config));
1974         return ipw_send_cmd(priv, &cmd);
1975 }
1976
1977 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1978 {
1979         struct host_cmd cmd = {
1980                 .cmd = IPW_CMD_SSID,
1981                 .len = min(len, IW_ESSID_MAX_SIZE)
1982         };
1983
1984         if (!priv || !ssid) {
1985                 IPW_ERROR("Invalid args\n");
1986                 return -1;
1987         }
1988
1989         memcpy(cmd.param, ssid, cmd.len);
1990         return ipw_send_cmd(priv, &cmd);
1991 }
1992
1993 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
1994 {
1995         struct host_cmd cmd = {
1996                 .cmd = IPW_CMD_ADAPTER_ADDRESS,
1997                 .len = ETH_ALEN
1998         };
1999
2000         if (!priv || !mac) {
2001                 IPW_ERROR("Invalid args\n");
2002                 return -1;
2003         }
2004
2005         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2006                        priv->net_dev->name, MAC_ARG(mac));
2007
2008         memcpy(cmd.param, mac, ETH_ALEN);
2009         return ipw_send_cmd(priv, &cmd);
2010 }
2011
2012 /*
2013  * NOTE: This must be executed from our workqueue as it results in udelay
2014  * being called which may corrupt the keyboard if executed on default
2015  * workqueue
2016  */
2017 static void ipw_adapter_restart(void *adapter)
2018 {
2019         struct ipw_priv *priv = adapter;
2020
2021         if (priv->status & STATUS_RF_KILL_MASK)
2022                 return;
2023
2024         ipw_down(priv);
2025
2026         if (priv->assoc_network &&
2027             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2028                 ipw_remove_current_network(priv);
2029
2030         if (ipw_up(priv)) {
2031                 IPW_ERROR("Failed to up device\n");
2032                 return;
2033         }
2034 }
2035
2036 static void ipw_bg_adapter_restart(void *data)
2037 {
2038         struct ipw_priv *priv = data;
2039         down(&priv->sem);
2040         ipw_adapter_restart(data);
2041         up(&priv->sem);
2042 }
2043
2044 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2045
2046 static void ipw_scan_check(void *data)
2047 {
2048         struct ipw_priv *priv = data;
2049         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2050                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2051                                "adapter (%dms).\n",
2052                                IPW_SCAN_CHECK_WATCHDOG / 100);
2053                 queue_work(priv->workqueue, &priv->adapter_restart);
2054         }
2055 }
2056
2057 static void ipw_bg_scan_check(void *data)
2058 {
2059         struct ipw_priv *priv = data;
2060         down(&priv->sem);
2061         ipw_scan_check(data);
2062         up(&priv->sem);
2063 }
2064
2065 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2066                                      struct ipw_scan_request_ext *request)
2067 {
2068         struct host_cmd cmd = {
2069                 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
2070                 .len = sizeof(*request)
2071         };
2072
2073         memcpy(cmd.param, request, sizeof(*request));
2074         return ipw_send_cmd(priv, &cmd);
2075 }
2076
2077 static int ipw_send_scan_abort(struct ipw_priv *priv)
2078 {
2079         struct host_cmd cmd = {
2080                 .cmd = IPW_CMD_SCAN_ABORT,
2081                 .len = 0
2082         };
2083
2084         if (!priv) {
2085                 IPW_ERROR("Invalid args\n");
2086                 return -1;
2087         }
2088
2089         return ipw_send_cmd(priv, &cmd);
2090 }
2091
2092 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2093 {
2094         struct host_cmd cmd = {
2095                 .cmd = IPW_CMD_SENSITIVITY_CALIB,
2096                 .len = sizeof(struct ipw_sensitivity_calib)
2097         };
2098         struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
2099             &cmd.param;
2100         calib->beacon_rssi_raw = sens;
2101         return ipw_send_cmd(priv, &cmd);
2102 }
2103
2104 static int ipw_send_associate(struct ipw_priv *priv,
2105                               struct ipw_associate *associate)
2106 {
2107         struct host_cmd cmd = {
2108                 .cmd = IPW_CMD_ASSOCIATE,
2109                 .len = sizeof(*associate)
2110         };
2111
2112         struct ipw_associate tmp_associate;
2113         memcpy(&tmp_associate, associate, sizeof(*associate));
2114         tmp_associate.policy_support =
2115             cpu_to_le16(tmp_associate.policy_support);
2116         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2117         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2118         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2119         tmp_associate.listen_interval =
2120             cpu_to_le16(tmp_associate.listen_interval);
2121         tmp_associate.beacon_interval =
2122             cpu_to_le16(tmp_associate.beacon_interval);
2123         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2124
2125         if (!priv || !associate) {
2126                 IPW_ERROR("Invalid args\n");
2127                 return -1;
2128         }
2129
2130         memcpy(cmd.param, &tmp_associate, sizeof(*associate));
2131         return ipw_send_cmd(priv, &cmd);
2132 }
2133
2134 static int ipw_send_supported_rates(struct ipw_priv *priv,
2135                                     struct ipw_supported_rates *rates)
2136 {
2137         struct host_cmd cmd = {
2138                 .cmd = IPW_CMD_SUPPORTED_RATES,
2139                 .len = sizeof(*rates)
2140         };
2141
2142         if (!priv || !rates) {
2143                 IPW_ERROR("Invalid args\n");
2144                 return -1;
2145         }
2146
2147         memcpy(cmd.param, rates, sizeof(*rates));
2148         return ipw_send_cmd(priv, &cmd);
2149 }
2150
2151 static int ipw_set_random_seed(struct ipw_priv *priv)
2152 {
2153         struct host_cmd cmd = {
2154                 .cmd = IPW_CMD_SEED_NUMBER,
2155                 .len = sizeof(u32)
2156         };
2157
2158         if (!priv) {
2159                 IPW_ERROR("Invalid args\n");
2160                 return -1;
2161         }
2162
2163         get_random_bytes(&cmd.param, sizeof(u32));
2164
2165         return ipw_send_cmd(priv, &cmd);
2166 }
2167
2168 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2169 {
2170         struct host_cmd cmd = {
2171                 .cmd = IPW_CMD_CARD_DISABLE,
2172                 .len = sizeof(u32)
2173         };
2174
2175         if (!priv) {
2176                 IPW_ERROR("Invalid args\n");
2177                 return -1;
2178         }
2179
2180         *((u32 *) & cmd.param) = phy_off;
2181
2182         return ipw_send_cmd(priv, &cmd);
2183 }
2184
2185 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2186 {
2187         struct host_cmd cmd = {
2188                 .cmd = IPW_CMD_TX_POWER,
2189                 .len = sizeof(*power)
2190         };
2191
2192         if (!priv || !power) {
2193                 IPW_ERROR("Invalid args\n");
2194                 return -1;
2195         }
2196
2197         memcpy(cmd.param, power, sizeof(*power));
2198         return ipw_send_cmd(priv, &cmd);
2199 }
2200
2201 static int ipw_set_tx_power(struct ipw_priv *priv)
2202 {
2203         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
2204         struct ipw_tx_power tx_power;
2205         s8 max_power;
2206         int i;
2207
2208         memset(&tx_power, 0, sizeof(tx_power));
2209
2210         /* configure device for 'G' band */
2211         tx_power.ieee_mode = IPW_G_MODE;
2212         tx_power.num_channels = geo->bg_channels;
2213         for (i = 0; i < geo->bg_channels; i++) {
2214                 max_power = geo->bg[i].max_power;
2215                 tx_power.channels_tx_power[i].channel_number =
2216                     geo->bg[i].channel;
2217                 tx_power.channels_tx_power[i].tx_power = max_power ?
2218                     min(max_power, priv->tx_power) : priv->tx_power;
2219         }
2220         if (ipw_send_tx_power(priv, &tx_power))
2221                 return -EIO;
2222
2223         /* configure device to also handle 'B' band */
2224         tx_power.ieee_mode = IPW_B_MODE;
2225         if (ipw_send_tx_power(priv, &tx_power))
2226                 return -EIO;
2227
2228         /* configure device to also handle 'A' band */
2229         if (priv->ieee->abg_true) {
2230                 tx_power.ieee_mode = IPW_A_MODE;
2231                 tx_power.num_channels = geo->a_channels;
2232                 for (i = 0; i < tx_power.num_channels; i++) {
2233                         max_power = geo->a[i].max_power;
2234                         tx_power.channels_tx_power[i].channel_number =
2235                             geo->a[i].channel;
2236                         tx_power.channels_tx_power[i].tx_power = max_power ?
2237                             min(max_power, priv->tx_power) : priv->tx_power;
2238                 }
2239                 if (ipw_send_tx_power(priv, &tx_power))
2240                         return -EIO;
2241         }
2242         return 0;
2243 }
2244
2245 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2246 {
2247         struct ipw_rts_threshold rts_threshold = {
2248                 .rts_threshold = rts,
2249         };
2250         struct host_cmd cmd = {
2251                 .cmd = IPW_CMD_RTS_THRESHOLD,
2252                 .len = sizeof(rts_threshold)
2253         };
2254
2255         if (!priv) {
2256                 IPW_ERROR("Invalid args\n");
2257                 return -1;
2258         }
2259
2260         memcpy(cmd.param, &rts_threshold, sizeof(rts_threshold));
2261         return ipw_send_cmd(priv, &cmd);
2262 }
2263
2264 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2265 {
2266         struct ipw_frag_threshold frag_threshold = {
2267                 .frag_threshold = frag,
2268         };
2269         struct host_cmd cmd = {
2270                 .cmd = IPW_CMD_FRAG_THRESHOLD,
2271                 .len = sizeof(frag_threshold)
2272         };
2273
2274         if (!priv) {
2275                 IPW_ERROR("Invalid args\n");
2276                 return -1;
2277         }
2278
2279         memcpy(cmd.param, &frag_threshold, sizeof(frag_threshold));
2280         return ipw_send_cmd(priv, &cmd);
2281 }
2282
2283 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2284 {
2285         struct host_cmd cmd = {
2286                 .cmd = IPW_CMD_POWER_MODE,
2287                 .len = sizeof(u32)
2288         };
2289         u32 *param = (u32 *) (&cmd.param);
2290
2291         if (!priv) {
2292                 IPW_ERROR("Invalid args\n");
2293                 return -1;
2294         }
2295
2296         /* If on battery, set to 3, if AC set to CAM, else user
2297          * level */
2298         switch (mode) {
2299         case IPW_POWER_BATTERY:
2300                 *param = IPW_POWER_INDEX_3;
2301                 break;
2302         case IPW_POWER_AC:
2303                 *param = IPW_POWER_MODE_CAM;
2304                 break;
2305         default:
2306                 *param = mode;
2307                 break;
2308         }
2309
2310         return ipw_send_cmd(priv, &cmd);
2311 }
2312
2313 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2314 {
2315         struct ipw_retry_limit retry_limit = {
2316                 .short_retry_limit = slimit,
2317                 .long_retry_limit = llimit
2318         };
2319         struct host_cmd cmd = {
2320                 .cmd = IPW_CMD_RETRY_LIMIT,
2321                 .len = sizeof(retry_limit)
2322         };
2323
2324         if (!priv) {
2325                 IPW_ERROR("Invalid args\n");
2326                 return -1;
2327         }
2328
2329         memcpy(cmd.param, &retry_limit, sizeof(retry_limit));
2330         return ipw_send_cmd(priv, &cmd);
2331 }
2332
2333 /*
2334  * The IPW device contains a Microwire compatible EEPROM that stores
2335  * various data like the MAC address.  Usually the firmware has exclusive
2336  * access to the eeprom, but during device initialization (before the
2337  * device driver has sent the HostComplete command to the firmware) the
2338  * device driver has read access to the EEPROM by way of indirect addressing
2339  * through a couple of memory mapped registers.
2340  *
2341  * The following is a simplified implementation for pulling data out of the
2342  * the eeprom, along with some helper functions to find information in
2343  * the per device private data's copy of the eeprom.
2344  *
2345  * NOTE: To better understand how these functions work (i.e what is a chip
2346  *       select and why do have to keep driving the eeprom clock?), read
2347  *       just about any data sheet for a Microwire compatible EEPROM.
2348  */
2349
2350 /* write a 32 bit value into the indirect accessor register */
2351 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2352 {
2353         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2354
2355         /* the eeprom requires some time to complete the operation */
2356         udelay(p->eeprom_delay);
2357
2358         return;
2359 }
2360
2361 /* perform a chip select operation */
2362 static inline void eeprom_cs(struct ipw_priv *priv)
2363 {
2364         eeprom_write_reg(priv, 0);
2365         eeprom_write_reg(priv, EEPROM_BIT_CS);
2366         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2367         eeprom_write_reg(priv, EEPROM_BIT_CS);
2368 }
2369
2370 /* perform a chip select operation */
2371 static inline void eeprom_disable_cs(struct ipw_priv *priv)
2372 {
2373         eeprom_write_reg(priv, EEPROM_BIT_CS);
2374         eeprom_write_reg(priv, 0);
2375         eeprom_write_reg(priv, EEPROM_BIT_SK);
2376 }
2377
2378 /* push a single bit down to the eeprom */
2379 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2380 {
2381         int d = (bit ? EEPROM_BIT_DI : 0);
2382         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2383         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2384 }
2385
2386 /* push an opcode followed by an address down to the eeprom */
2387 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2388 {
2389         int i;
2390
2391         eeprom_cs(priv);
2392         eeprom_write_bit(priv, 1);
2393         eeprom_write_bit(priv, op & 2);
2394         eeprom_write_bit(priv, op & 1);
2395         for (i = 7; i >= 0; i--) {
2396                 eeprom_write_bit(priv, addr & (1 << i));
2397         }
2398 }
2399
2400 /* pull 16 bits off the eeprom, one bit at a time */
2401 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2402 {
2403         int i;
2404         u16 r = 0;
2405
2406         /* Send READ Opcode */
2407         eeprom_op(priv, EEPROM_CMD_READ, addr);
2408
2409         /* Send dummy bit */
2410         eeprom_write_reg(priv, EEPROM_BIT_CS);
2411
2412         /* Read the byte off the eeprom one bit at a time */
2413         for (i = 0; i < 16; i++) {
2414                 u32 data = 0;
2415                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2416                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2417                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2418                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2419         }
2420
2421         /* Send another dummy bit */
2422         eeprom_write_reg(priv, 0);
2423         eeprom_disable_cs(priv);
2424
2425         return r;
2426 }
2427
2428 /* helper function for pulling the mac address out of the private */
2429 /* data's copy of the eeprom data                                 */
2430 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2431 {
2432         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2433 }
2434
2435 /*
2436  * Either the device driver (i.e. the host) or the firmware can
2437  * load eeprom data into the designated region in SRAM.  If neither
2438  * happens then the FW will shutdown with a fatal error.
2439  *
2440  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2441  * bit needs region of shared SRAM needs to be non-zero.
2442  */
2443 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2444 {
2445         int i;
2446         u16 *eeprom = (u16 *) priv->eeprom;
2447
2448         IPW_DEBUG_TRACE(">>\n");
2449
2450         /* read entire contents of eeprom into private buffer */
2451         for (i = 0; i < 128; i++)
2452                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2453
2454         /*
2455            If the data looks correct, then copy it to our private
2456            copy.  Otherwise let the firmware know to perform the operation
2457            on it's own
2458          */
2459         if ((priv->eeprom + EEPROM_VERSION) != 0) {
2460                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2461
2462                 /* write the eeprom data to sram */
2463                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2464                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2465
2466                 /* Do not load eeprom data on fatal error or suspend */
2467                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2468         } else {
2469                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2470
2471                 /* Load eeprom data on fatal error or suspend */
2472                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2473         }
2474
2475         IPW_DEBUG_TRACE("<<\n");
2476 }
2477
2478 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2479 {
2480         count >>= 2;
2481         if (!count)
2482                 return;
2483         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2484         while (count--)
2485                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2486 }
2487
2488 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2489 {
2490         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2491                         CB_NUMBER_OF_ELEMENTS_SMALL *
2492                         sizeof(struct command_block));
2493 }
2494
2495 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2496 {                               /* start dma engine but no transfers yet */
2497
2498         IPW_DEBUG_FW(">> : \n");
2499
2500         /* Start the dma */
2501         ipw_fw_dma_reset_command_blocks(priv);
2502
2503         /* Write CB base address */
2504         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2505
2506         IPW_DEBUG_FW("<< : \n");
2507         return 0;
2508 }
2509
2510 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2511 {
2512         u32 control = 0;
2513
2514         IPW_DEBUG_FW(">> :\n");
2515
2516         //set the Stop and Abort bit
2517         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2518         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2519         priv->sram_desc.last_cb_index = 0;
2520
2521         IPW_DEBUG_FW("<< \n");
2522 }
2523
2524 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2525                                           struct command_block *cb)
2526 {
2527         u32 address =
2528             IPW_SHARED_SRAM_DMA_CONTROL +
2529             (sizeof(struct command_block) * index);
2530         IPW_DEBUG_FW(">> :\n");
2531
2532         ipw_write_indirect(priv, address, (u8 *) cb,
2533                            (int)sizeof(struct command_block));
2534
2535         IPW_DEBUG_FW("<< :\n");
2536         return 0;
2537
2538 }
2539
2540 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2541 {
2542         u32 control = 0;
2543         u32 index = 0;
2544
2545         IPW_DEBUG_FW(">> :\n");
2546
2547         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2548                 ipw_fw_dma_write_command_block(priv, index,
2549                                                &priv->sram_desc.cb_list[index]);
2550
2551         /* Enable the DMA in the CSR register */
2552         ipw_clear_bit(priv, IPW_RESET_REG,
2553                       IPW_RESET_REG_MASTER_DISABLED |
2554                       IPW_RESET_REG_STOP_MASTER);
2555
2556         /* Set the Start bit. */
2557         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2558         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2559
2560         IPW_DEBUG_FW("<< :\n");
2561         return 0;
2562 }
2563
2564 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2565 {
2566         u32 address;
2567         u32 register_value = 0;
2568         u32 cb_fields_address = 0;
2569
2570         IPW_DEBUG_FW(">> :\n");
2571         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2572         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2573
2574         /* Read the DMA Controlor register */
2575         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2576         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2577
2578         /* Print the CB values */
2579         cb_fields_address = address;
2580         register_value = ipw_read_reg32(priv, cb_fields_address);
2581         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2582
2583         cb_fields_address += sizeof(u32);
2584         register_value = ipw_read_reg32(priv, cb_fields_address);
2585         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2586
2587         cb_fields_address += sizeof(u32);
2588         register_value = ipw_read_reg32(priv, cb_fields_address);
2589         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2590                           register_value);
2591
2592         cb_fields_address += sizeof(u32);
2593         register_value = ipw_read_reg32(priv, cb_fields_address);
2594         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2595
2596         IPW_DEBUG_FW(">> :\n");
2597 }
2598
2599 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2600 {
2601         u32 current_cb_address = 0;
2602         u32 current_cb_index = 0;
2603
2604         IPW_DEBUG_FW("<< :\n");
2605         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2606
2607         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2608             sizeof(struct command_block);
2609
2610         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2611                           current_cb_index, current_cb_address);
2612
2613         IPW_DEBUG_FW(">> :\n");
2614         return current_cb_index;
2615
2616 }
2617
2618 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2619                                         u32 src_address,
2620                                         u32 dest_address,
2621                                         u32 length,
2622                                         int interrupt_enabled, int is_last)
2623 {
2624
2625         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2626             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2627             CB_DEST_SIZE_LONG;
2628         struct command_block *cb;
2629         u32 last_cb_element = 0;
2630
2631         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2632                           src_address, dest_address, length);
2633
2634         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2635                 return -1;
2636
2637         last_cb_element = priv->sram_desc.last_cb_index;
2638         cb = &priv->sram_desc.cb_list[last_cb_element];
2639         priv->sram_desc.last_cb_index++;
2640
2641         /* Calculate the new CB control word */
2642         if (interrupt_enabled)
2643                 control |= CB_INT_ENABLED;
2644
2645         if (is_last)
2646                 control |= CB_LAST_VALID;
2647
2648         control |= length;
2649
2650         /* Calculate the CB Element's checksum value */
2651         cb->status = control ^ src_address ^ dest_address;
2652
2653         /* Copy the Source and Destination addresses */
2654         cb->dest_addr = dest_address;
2655         cb->source_addr = src_address;
2656
2657         /* Copy the Control Word last */
2658         cb->control = control;
2659
2660         return 0;
2661 }
2662
2663 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2664                                  u32 src_phys, u32 dest_address, u32 length)
2665 {
2666         u32 bytes_left = length;
2667         u32 src_offset = 0;
2668         u32 dest_offset = 0;
2669         int status = 0;
2670         IPW_DEBUG_FW(">> \n");
2671         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2672                           src_phys, dest_address, length);
2673         while (bytes_left > CB_MAX_LENGTH) {
2674                 status = ipw_fw_dma_add_command_block(priv,
2675                                                       src_phys + src_offset,
2676                                                       dest_address +
2677                                                       dest_offset,
2678                                                       CB_MAX_LENGTH, 0, 0);
2679                 if (status) {
2680                         IPW_DEBUG_FW_INFO(": Failed\n");
2681                         return -1;
2682                 } else
2683                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2684
2685                 src_offset += CB_MAX_LENGTH;
2686                 dest_offset += CB_MAX_LENGTH;
2687                 bytes_left -= CB_MAX_LENGTH;
2688         }
2689
2690         /* add the buffer tail */
2691         if (bytes_left > 0) {
2692                 status =
2693                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2694                                                  dest_address + dest_offset,
2695                                                  bytes_left, 0, 0);
2696                 if (status) {
2697                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2698                         return -1;
2699                 } else
2700                         IPW_DEBUG_FW_INFO
2701                             (": Adding new cb - the buffer tail\n");
2702         }
2703
2704         IPW_DEBUG_FW("<< \n");
2705         return 0;
2706 }
2707
2708 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2709 {
2710         u32 current_index = 0;
2711         u32 watchdog = 0;
2712
2713         IPW_DEBUG_FW(">> : \n");
2714
2715         current_index = ipw_fw_dma_command_block_index(priv);
2716         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2717                           (int)priv->sram_desc.last_cb_index);
2718
2719         while (current_index < priv->sram_desc.last_cb_index) {
2720                 udelay(50);
2721                 current_index = ipw_fw_dma_command_block_index(priv);
2722
2723                 watchdog++;
2724
2725                 if (watchdog > 400) {
2726                         IPW_DEBUG_FW_INFO("Timeout\n");
2727                         ipw_fw_dma_dump_command_block(priv);
2728                         ipw_fw_dma_abort(priv);
2729                         return -1;
2730                 }
2731         }
2732
2733         ipw_fw_dma_abort(priv);
2734
2735         /*Disable the DMA in the CSR register */
2736         ipw_set_bit(priv, IPW_RESET_REG,
2737                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2738
2739         IPW_DEBUG_FW("<< dmaWaitSync \n");
2740         return 0;
2741 }
2742
2743 static void ipw_remove_current_network(struct ipw_priv *priv)
2744 {
2745         struct list_head *element, *safe;
2746         struct ieee80211_network *network = NULL;
2747         unsigned long flags;
2748
2749         spin_lock_irqsave(&priv->ieee->lock, flags);
2750         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2751                 network = list_entry(element, struct ieee80211_network, list);
2752                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2753                         list_del(element);
2754                         list_add_tail(&network->list,
2755                                       &priv->ieee->network_free_list);
2756                 }
2757         }
2758         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2759 }
2760
2761 /**
2762  * Check that card is still alive.
2763  * Reads debug register from domain0.
2764  * If card is present, pre-defined value should
2765  * be found there.
2766  *
2767  * @param priv
2768  * @return 1 if card is present, 0 otherwise
2769  */
2770 static inline int ipw_alive(struct ipw_priv *priv)
2771 {
2772         return ipw_read32(priv, 0x90) == 0xd55555d5;
2773 }
2774
2775 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2776                                int timeout)
2777 {
2778         int i = 0;
2779
2780         do {
2781                 if ((ipw_read32(priv, addr) & mask) == mask)
2782                         return i;
2783                 mdelay(10);
2784                 i += 10;
2785         } while (i < timeout);
2786
2787         return -ETIME;
2788 }
2789
2790 /* These functions load the firmware and micro code for the operation of
2791  * the ipw hardware.  It assumes the buffer has all the bits for the
2792  * image and the caller is handling the memory allocation and clean up.
2793  */
2794
2795 static int ipw_stop_master(struct ipw_priv *priv)
2796 {
2797         int rc;
2798
2799         IPW_DEBUG_TRACE(">> \n");
2800         /* stop master. typical delay - 0 */
2801         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2802
2803         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2804                           IPW_RESET_REG_MASTER_DISABLED, 100);
2805         if (rc < 0) {
2806                 IPW_ERROR("stop master failed in 10ms\n");
2807                 return -1;
2808         }
2809
2810         IPW_DEBUG_INFO("stop master %dms\n", rc);
2811
2812         return rc;
2813 }
2814
2815 static void ipw_arc_release(struct ipw_priv *priv)
2816 {
2817         IPW_DEBUG_TRACE(">> \n");
2818         mdelay(5);
2819
2820         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2821
2822         /* no one knows timing, for safety add some delay */
2823         mdelay(5);
2824 }
2825
2826 struct fw_header {
2827         u32 version;
2828         u32 mode;
2829 };
2830
2831 struct fw_chunk {
2832         u32 address;
2833         u32 length;
2834 };
2835
2836 #define IPW_FW_MAJOR_VERSION 2
2837 #define IPW_FW_MINOR_VERSION 3
2838
2839 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2840 #define IPW_FW_MAJOR(x) (x & 0xff)
2841
2842 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2843
2844 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2845 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2846
2847 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2848 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2849 #else
2850 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2851 #endif
2852
2853 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2854 {
2855         int rc = 0, i, addr;
2856         u8 cr = 0;
2857         u16 *image;
2858
2859         image = (u16 *) data;
2860
2861         IPW_DEBUG_TRACE(">> \n");
2862
2863         rc = ipw_stop_master(priv);
2864
2865         if (rc < 0)
2866                 return rc;
2867
2868 //      spin_lock_irqsave(&priv->lock, flags);
2869
2870         for (addr = IPW_SHARED_LOWER_BOUND;
2871              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2872                 ipw_write32(priv, addr, 0);
2873         }
2874
2875         /* no ucode (yet) */
2876         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2877         /* destroy DMA queues */
2878         /* reset sequence */
2879
2880         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2881         ipw_arc_release(priv);
2882         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2883         mdelay(1);
2884
2885         /* reset PHY */
2886         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2887         mdelay(1);
2888
2889         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2890         mdelay(1);
2891
2892         /* enable ucode store */
2893         ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2894         ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2895         mdelay(1);
2896
2897         /* write ucode */
2898         /**
2899          * @bug
2900          * Do NOT set indirect address register once and then
2901          * store data to indirect data register in the loop.
2902          * It seems very reasonable, but in this case DINO do not
2903          * accept ucode. It is essential to set address each time.
2904          */
2905         /* load new ipw uCode */
2906         for (i = 0; i < len / 2; i++)
2907                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2908                                 cpu_to_le16(image[i]));
2909
2910         /* enable DINO */
2911         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2912         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2913
2914         /* this is where the igx / win driver deveates from the VAP driver. */
2915
2916         /* wait for alive response */
2917         for (i = 0; i < 100; i++) {
2918                 /* poll for incoming data */
2919                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2920                 if (cr & DINO_RXFIFO_DATA)
2921                         break;
2922                 mdelay(1);
2923         }
2924
2925         if (cr & DINO_RXFIFO_DATA) {
2926                 /* alive_command_responce size is NOT multiple of 4 */
2927                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2928
2929                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2930                         response_buffer[i] =
2931                             le32_to_cpu(ipw_read_reg32(priv,
2932                                                        IPW_BASEBAND_RX_FIFO_READ));
2933                 memcpy(&priv->dino_alive, response_buffer,
2934                        sizeof(priv->dino_alive));
2935                 if (priv->dino_alive.alive_command == 1
2936                     && priv->dino_alive.ucode_valid == 1) {
2937                         rc = 0;
2938                         IPW_DEBUG_INFO
2939                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2940                              "of %02d/%02d/%02d %02d:%02d\n",
2941                              priv->dino_alive.software_revision,
2942                              priv->dino_alive.software_revision,
2943                              priv->dino_alive.device_identifier,
2944                              priv->dino_alive.device_identifier,
2945                              priv->dino_alive.time_stamp[0],
2946                              priv->dino_alive.time_stamp[1],
2947                              priv->dino_alive.time_stamp[2],
2948                              priv->dino_alive.time_stamp[3],
2949                              priv->dino_alive.time_stamp[4]);
2950                 } else {
2951                         IPW_DEBUG_INFO("Microcode is not alive\n");
2952                         rc = -EINVAL;
2953                 }
2954         } else {
2955                 IPW_DEBUG_INFO("No alive response from DINO\n");
2956                 rc = -ETIME;
2957         }
2958
2959         /* disable DINO, otherwise for some reason
2960            firmware have problem getting alive resp. */
2961         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2962
2963 //      spin_unlock_irqrestore(&priv->lock, flags);
2964
2965         return rc;
2966 }
2967
2968 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2969 {
2970         int rc = -1;
2971         int offset = 0;
2972         struct fw_chunk *chunk;
2973         dma_addr_t shared_phys;
2974         u8 *shared_virt;
2975
2976         IPW_DEBUG_TRACE("<< : \n");
2977         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2978
2979         if (!shared_virt)
2980                 return -ENOMEM;
2981
2982         memmove(shared_virt, data, len);
2983
2984         /* Start the Dma */
2985         rc = ipw_fw_dma_enable(priv);
2986
2987         if (priv->sram_desc.last_cb_index > 0) {
2988                 /* the DMA is already ready this would be a bug. */
2989                 BUG();
2990                 goto out;
2991         }
2992
2993         do {
2994                 chunk = (struct fw_chunk *)(data + offset);
2995                 offset += sizeof(struct fw_chunk);
2996                 /* build DMA packet and queue up for sending */
2997                 /* dma to chunk->address, the chunk->length bytes from data +
2998                  * offeset*/
2999                 /* Dma loading */
3000                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3001                                            le32_to_cpu(chunk->address),
3002                                            le32_to_cpu(chunk->length));
3003                 if (rc) {
3004                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3005                         goto out;
3006                 }
3007
3008                 offset += le32_to_cpu(chunk->length);
3009         } while (offset < len);
3010
3011         /* Run the DMA and wait for the answer */
3012         rc = ipw_fw_dma_kick(priv);
3013         if (rc) {
3014                 IPW_ERROR("dmaKick Failed\n");
3015                 goto out;
3016         }
3017
3018         rc = ipw_fw_dma_wait(priv);
3019         if (rc) {
3020                 IPW_ERROR("dmaWaitSync Failed\n");
3021                 goto out;
3022         }
3023       out:
3024         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3025         return rc;
3026 }
3027
3028 /* stop nic */
3029 static int ipw_stop_nic(struct ipw_priv *priv)
3030 {
3031         int rc = 0;
3032
3033         /* stop */
3034         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3035
3036         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3037                           IPW_RESET_REG_MASTER_DISABLED, 500);
3038         if (rc < 0) {
3039                 IPW_ERROR("wait for reg master disabled failed\n");
3040                 return rc;
3041         }
3042
3043         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3044
3045         return rc;
3046 }
3047
3048 static void ipw_start_nic(struct ipw_priv *priv)
3049 {
3050         IPW_DEBUG_TRACE(">>\n");
3051
3052         /* prvHwStartNic  release ARC */
3053         ipw_clear_bit(priv, IPW_RESET_REG,
3054                       IPW_RESET_REG_MASTER_DISABLED |
3055                       IPW_RESET_REG_STOP_MASTER |
3056                       CBD_RESET_REG_PRINCETON_RESET);
3057
3058         /* enable power management */
3059         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3060                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3061
3062         IPW_DEBUG_TRACE("<<\n");
3063 }
3064
3065 static int ipw_init_nic(struct ipw_priv *priv)
3066 {
3067         int rc;
3068
3069         IPW_DEBUG_TRACE(">>\n");
3070         /* reset */
3071         /*prvHwInitNic */
3072         /* set "initialization complete" bit to move adapter to D0 state */
3073         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3074
3075         /* low-level PLL activation */
3076         ipw_write32(priv, IPW_READ_INT_REGISTER,
3077                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3078
3079         /* wait for clock stabilization */
3080         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3081                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3082         if (rc < 0)
3083                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3084
3085         /* assert SW reset */
3086         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3087
3088         udelay(10);
3089
3090         /* set "initialization complete" bit to move adapter to D0 state */
3091         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3092
3093         IPW_DEBUG_TRACE(">>\n");
3094         return 0;
3095 }
3096
3097 /* Call this function from process context, it will sleep in request_firmware.
3098  * Probe is an ok place to call this from.
3099  */
3100 static int ipw_reset_nic(struct ipw_priv *priv)
3101 {
3102         int rc = 0;
3103         unsigned long flags;
3104
3105         IPW_DEBUG_TRACE(">>\n");
3106
3107         rc = ipw_init_nic(priv);
3108
3109         spin_lock_irqsave(&priv->lock, flags);
3110         /* Clear the 'host command active' bit... */
3111         priv->status &= ~STATUS_HCMD_ACTIVE;
3112         wake_up_interruptible(&priv->wait_command_queue);
3113         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3114         wake_up_interruptible(&priv->wait_state);
3115         spin_unlock_irqrestore(&priv->lock, flags);
3116
3117         IPW_DEBUG_TRACE("<<\n");
3118         return rc;
3119 }
3120
3121 static int ipw_get_fw(struct ipw_priv *priv,
3122                       const struct firmware **fw, const char *name)
3123 {
3124         struct fw_header *header;
3125         int rc;
3126
3127         /* ask firmware_class module to get the boot firmware off disk */
3128         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3129         if (rc < 0) {
3130                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3131                 return rc;
3132         }
3133
3134         header = (struct fw_header *)(*fw)->data;
3135         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3136                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3137                           name,
3138                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3139                           IPW_FW_MAJOR_VERSION);
3140                 return -EINVAL;
3141         }
3142
3143         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3144                        name,
3145                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3146                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3147                        (*fw)->size - sizeof(struct fw_header));
3148         return 0;
3149 }
3150
3151 #define IPW_RX_BUF_SIZE (3000)
3152
3153 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
3154                                       struct ipw_rx_queue *rxq)
3155 {
3156         unsigned long flags;
3157         int i;
3158
3159         spin_lock_irqsave(&rxq->lock, flags);
3160
3161         INIT_LIST_HEAD(&rxq->rx_free);
3162         INIT_LIST_HEAD(&rxq->rx_used);
3163
3164         /* Fill the rx_used queue with _all_ of the Rx buffers */
3165         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3166                 /* In the reset function, these buffers may have been allocated
3167                  * to an SKB, so we need to unmap and free potential storage */
3168                 if (rxq->pool[i].skb != NULL) {
3169                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3170                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3171                         dev_kfree_skb(rxq->pool[i].skb);
3172                         rxq->pool[i].skb = NULL;
3173                 }
3174                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3175         }
3176
3177         /* Set us so that we have processed and used all buffers, but have
3178          * not restocked the Rx queue with fresh buffers */
3179         rxq->read = rxq->write = 0;
3180         rxq->processed = RX_QUEUE_SIZE - 1;
3181         rxq->free_count = 0;
3182         spin_unlock_irqrestore(&rxq->lock, flags);
3183 }
3184
3185 #ifdef CONFIG_PM
3186 static int fw_loaded = 0;
3187 static const struct firmware *bootfw = NULL;
3188 static const struct firmware *firmware = NULL;
3189 static const struct firmware *ucode = NULL;
3190
3191 static void free_firmware(void)
3192 {
3193         if (fw_loaded) {
3194                 release_firmware(bootfw);
3195                 release_firmware(ucode);
3196                 release_firmware(firmware);
3197                 bootfw = ucode = firmware = NULL;
3198                 fw_loaded = 0;
3199         }
3200 }
3201 #else
3202 #define free_firmware() do {} while (0)
3203 #endif
3204
3205 static int ipw_load(struct ipw_priv *priv)
3206 {
3207 #ifndef CONFIG_PM
3208         const struct firmware *bootfw = NULL;
3209         const struct firmware *firmware = NULL;
3210         const struct firmware *ucode = NULL;
3211 #endif
3212         int rc = 0, retries = 3;
3213
3214 #ifdef CONFIG_PM
3215         if (!fw_loaded) {
3216 #endif
3217                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3218                 if (rc)
3219                         goto error;
3220
3221                 switch (priv->ieee->iw_mode) {
3222                 case IW_MODE_ADHOC:
3223                         rc = ipw_get_fw(priv, &ucode,
3224                                         IPW_FW_NAME("ibss_ucode"));
3225                         if (rc)
3226                                 goto error;
3227
3228                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
3229                         break;
3230
3231 #ifdef CONFIG_IPW2200_MONITOR
3232                 case IW_MODE_MONITOR:
3233                         rc = ipw_get_fw(priv, &ucode,
3234                                         IPW_FW_NAME("sniffer_ucode"));
3235                         if (rc)
3236                                 goto error;
3237
3238                         rc = ipw_get_fw(priv, &firmware,
3239                                         IPW_FW_NAME("sniffer"));
3240                         break;
3241 #endif
3242                 case IW_MODE_INFRA:
3243                         rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
3244                         if (rc)
3245                                 goto error;
3246
3247                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
3248                         break;
3249
3250                 default:
3251                         rc = -EINVAL;
3252                 }
3253
3254                 if (rc)
3255                         goto error;
3256
3257 #ifdef CONFIG_PM
3258                 fw_loaded = 1;
3259         }
3260 #endif
3261
3262         if (!priv->rxq)
3263                 priv->rxq = ipw_rx_queue_alloc(priv);
3264         else
3265                 ipw_rx_queue_reset(priv, priv->rxq);
3266         if (!priv->rxq) {
3267                 IPW_ERROR("Unable to initialize Rx queue\n");
3268                 goto error;
3269         }
3270
3271       retry:
3272         /* Ensure interrupts are disabled */
3273         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3274         priv->status &= ~STATUS_INT_ENABLED;
3275
3276         /* ack pending interrupts */
3277         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3278
3279         ipw_stop_nic(priv);
3280
3281         rc = ipw_reset_nic(priv);
3282         if (rc) {
3283                 IPW_ERROR("Unable to reset NIC\n");
3284                 goto error;
3285         }
3286
3287         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3288                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3289
3290         /* DMA the initial boot firmware into the device */
3291         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3292                                bootfw->size - sizeof(struct fw_header));
3293         if (rc < 0) {
3294                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3295                 goto error;
3296         }
3297
3298         /* kick start the device */
3299         ipw_start_nic(priv);
3300
3301         /* wait for the device to finish it's initial startup sequence */
3302         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3303                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3304         if (rc < 0) {
3305                 IPW_ERROR("device failed to boot initial fw image\n");
3306                 goto error;
3307         }
3308         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3309
3310         /* ack fw init done interrupt */
3311         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3312
3313         /* DMA the ucode into the device */
3314         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3315                             ucode->size - sizeof(struct fw_header));
3316         if (rc < 0) {
3317                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3318                 goto error;
3319         }
3320
3321         /* stop nic */
3322         ipw_stop_nic(priv);
3323
3324         /* DMA bss firmware into the device */
3325         rc = ipw_load_firmware(priv, firmware->data +
3326                                sizeof(struct fw_header),
3327                                firmware->size - sizeof(struct fw_header));
3328         if (rc < 0) {
3329                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3330                 goto error;
3331         }
3332
3333         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3334
3335         rc = ipw_queue_reset(priv);
3336         if (rc) {
3337                 IPW_ERROR("Unable to initialize queues\n");
3338                 goto error;
3339         }
3340
3341         /* Ensure interrupts are disabled */
3342         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3343         /* ack pending interrupts */
3344         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3345
3346         /* kick start the device */
3347         ipw_start_nic(priv);
3348
3349         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3350                 if (retries > 0) {
3351                         IPW_WARNING("Parity error.  Retrying init.\n");
3352                         retries--;
3353                         goto retry;
3354                 }
3355
3356                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3357                 rc = -EIO;
3358                 goto error;
3359         }
3360
3361         /* wait for the device */
3362         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3363                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3364         if (rc < 0) {
3365                 IPW_ERROR("device failed to start after 500ms\n");
3366                 goto error;
3367         }
3368         IPW_DEBUG_INFO("device response after %dms\n", rc);
3369
3370         /* ack fw init done interrupt */
3371         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3372
3373         /* read eeprom data and initialize the eeprom region of sram */
3374         priv->eeprom_delay = 1;
3375         ipw_eeprom_init_sram(priv);
3376
3377         /* enable interrupts */
3378         ipw_enable_interrupts(priv);
3379
3380         /* Ensure our queue has valid packets */
3381         ipw_rx_queue_replenish(priv);
3382
3383         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3384
3385         /* ack pending interrupts */
3386         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3387
3388 #ifndef CONFIG_PM
3389         release_firmware(bootfw);
3390         release_firmware(ucode);
3391         release_firmware(firmware);
3392 #endif
3393         return 0;
3394
3395       error:
3396         if (priv->rxq) {
3397                 ipw_rx_queue_free(priv, priv->rxq);
3398                 priv->rxq = NULL;
3399         }
3400         ipw_tx_queue_free(priv);
3401         if (bootfw)
3402                 release_firmware(bootfw);
3403         if (ucode)
3404                 release_firmware(ucode);
3405         if (firmware)
3406                 release_firmware(firmware);
3407 #ifdef CONFIG_PM
3408         fw_loaded = 0;
3409         bootfw = ucode = firmware = NULL;
3410 #endif
3411
3412         return rc;
3413 }
3414
3415 /**
3416  * DMA services
3417  *
3418  * Theory of operation
3419  *
3420  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3421  * 2 empty entries always kept in the buffer to protect from overflow.
3422  *
3423  * For Tx queue, there are low mark and high mark limits. If, after queuing
3424  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3425  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3426  * Tx queue resumed.
3427  *
3428  * The IPW operates with six queues, one receive queue in the device's
3429  * sram, one transmit queue for sending commands to the device firmware,
3430  * and four transmit queues for data.
3431  *
3432  * The four transmit queues allow for performing quality of service (qos)
3433  * transmissions as per the 802.11 protocol.  Currently Linux does not
3434  * provide a mechanism to the user for utilizing prioritized queues, so
3435  * we only utilize the first data transmit queue (queue1).
3436  */
3437
3438 /**
3439  * Driver allocates buffers of this size for Rx
3440  */
3441
3442 static inline int ipw_queue_space(const struct clx2_queue *q)
3443 {
3444         int s = q->last_used - q->first_empty;
3445         if (s <= 0)
3446                 s += q->n_bd;
3447         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3448         if (s < 0)
3449                 s = 0;
3450         return s;
3451 }
3452
3453 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3454 {
3455         return (++index == n_bd) ? 0 : index;
3456 }
3457
3458 /**
3459  * Initialize common DMA queue structure
3460  *
3461  * @param q                queue to init
3462  * @param count            Number of BD's to allocate. Should be power of 2
3463  * @param read_register    Address for 'read' register
3464  *                         (not offset within BAR, full address)
3465  * @param write_register   Address for 'write' register
3466  *                         (not offset within BAR, full address)
3467  * @param base_register    Address for 'base' register
3468  *                         (not offset within BAR, full address)
3469  * @param size             Address for 'size' register
3470  *                         (not offset within BAR, full address)
3471  */
3472 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3473                            int count, u32 read, u32 write, u32 base, u32 size)
3474 {
3475         q->n_bd = count;
3476
3477         q->low_mark = q->n_bd / 4;
3478         if (q->low_mark < 4)
3479                 q->low_mark = 4;
3480
3481         q->high_mark = q->n_bd / 8;
3482         if (q->high_mark < 2)
3483                 q->high_mark = 2;
3484
3485         q->first_empty = q->last_used = 0;
3486         q->reg_r = read;
3487         q->reg_w = write;
3488
3489         ipw_write32(priv, base, q->dma_addr);
3490         ipw_write32(priv, size, count);
3491         ipw_write32(priv, read, 0);
3492         ipw_write32(priv, write, 0);
3493
3494         _ipw_read32(priv, 0x90);
3495 }
3496
3497 static int ipw_queue_tx_init(struct ipw_priv *priv,
3498                              struct clx2_tx_queue *q,
3499                              int count, u32 read, u32 write, u32 base, u32 size)
3500 {
3501         struct pci_dev *dev = priv->pci_dev;
3502
3503         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3504         if (!q->txb) {
3505                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3506                 return -ENOMEM;
3507         }
3508
3509         q->bd =
3510             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3511         if (!q->bd) {
3512                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3513                           sizeof(q->bd[0]) * count);
3514                 kfree(q->txb);
3515                 q->txb = NULL;
3516                 return -ENOMEM;
3517         }
3518
3519         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3520         return 0;
3521 }
3522
3523 /**
3524  * Free one TFD, those at index [txq->q.last_used].
3525  * Do NOT advance any indexes
3526  *
3527  * @param dev
3528  * @param txq
3529  */
3530 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3531                                   struct clx2_tx_queue *txq)
3532 {
3533         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3534         struct pci_dev *dev = priv->pci_dev;
3535         int i;
3536
3537         /* classify bd */
3538         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3539                 /* nothing to cleanup after for host commands */
3540                 return;
3541
3542         /* sanity check */
3543         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3544                 IPW_ERROR("Too many chunks: %i\n",
3545                           le32_to_cpu(bd->u.data.num_chunks));
3546                 /** @todo issue fatal error, it is quite serious situation */
3547                 return;
3548         }
3549
3550         /* unmap chunks if any */
3551         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3552                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3553                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3554                                  PCI_DMA_TODEVICE);
3555                 if (txq->txb[txq->q.last_used]) {
3556                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3557                         txq->txb[txq->q.last_used] = NULL;
3558                 }
3559         }
3560 }
3561
3562 /**
3563  * Deallocate DMA queue.
3564  *
3565  * Empty queue by removing and destroying all BD's.
3566  * Free all buffers.
3567  *
3568  * @param dev
3569  * @param q
3570  */
3571 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3572 {
3573         struct clx2_queue *q = &txq->q;
3574         struct pci_dev *dev = priv->pci_dev;
3575
3576         if (q->n_bd == 0)
3577                 return;
3578
3579         /* first, empty all BD's */
3580         for (; q->first_empty != q->last_used;
3581              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3582                 ipw_queue_tx_free_tfd(priv, txq);
3583         }
3584
3585         /* free buffers belonging to queue itself */
3586         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3587                             q->dma_addr);
3588         kfree(txq->txb);
3589
3590         /* 0 fill whole structure */
3591         memset(txq, 0, sizeof(*txq));
3592 }
3593
3594 /**
3595  * Destroy all DMA queues and structures
3596  *
3597  * @param priv
3598  */
3599 static void ipw_tx_queue_free(struct ipw_priv *priv)
3600 {
3601         /* Tx CMD queue */
3602         ipw_queue_tx_free(priv, &priv->txq_cmd);
3603
3604         /* Tx queues */
3605         ipw_queue_tx_free(priv, &priv->txq[0]);
3606         ipw_queue_tx_free(priv, &priv->txq[1]);
3607         ipw_queue_tx_free(priv, &priv->txq[2]);
3608         ipw_queue_tx_free(priv, &priv->txq[3]);
3609 }
3610
3611 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3612 {
3613         /* First 3 bytes are manufacturer */
3614         bssid[0] = priv->mac_addr[0];
3615         bssid[1] = priv->mac_addr[1];
3616         bssid[2] = priv->mac_addr[2];
3617
3618         /* Last bytes are random */
3619         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3620
3621         bssid[0] &= 0xfe;       /* clear multicast bit */
3622         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3623 }
3624
3625 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3626 {
3627         struct ipw_station_entry entry;
3628         int i;
3629
3630         for (i = 0; i < priv->num_stations; i++) {
3631                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3632                         /* Another node is active in network */
3633                         priv->missed_adhoc_beacons = 0;
3634                         if (!(priv->config & CFG_STATIC_CHANNEL))
3635                                 /* when other nodes drop out, we drop out */
3636                                 priv->config &= ~CFG_ADHOC_PERSIST;
3637
3638                         return i;
3639                 }
3640         }
3641
3642         if (i == MAX_STATIONS)
3643                 return IPW_INVALID_STATION;
3644
3645         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3646
3647         entry.reserved = 0;
3648         entry.support_mode = 0;
3649         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3650         memcpy(priv->stations[i], bssid, ETH_ALEN);
3651         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3652                          &entry, sizeof(entry));
3653         priv->num_stations++;
3654
3655         return i;
3656 }
3657
3658 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3659 {
3660         int i;
3661
3662         for (i = 0; i < priv->num_stations; i++)
3663                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3664                         return i;
3665
3666         return IPW_INVALID_STATION;
3667 }
3668
3669 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3670 {
3671         int err;
3672
3673         if (priv->status & STATUS_ASSOCIATING) {
3674                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3675                 queue_work(priv->workqueue, &priv->disassociate);
3676                 return;
3677         }
3678
3679         if (!(priv->status & STATUS_ASSOCIATED)) {
3680                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3681                 return;
3682         }
3683
3684         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3685                         "on channel %d.\n",
3686                         MAC_ARG(priv->assoc_request.bssid),
3687                         priv->assoc_request.channel);
3688
3689         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3690         priv->status |= STATUS_DISASSOCIATING;
3691
3692         if (quiet)
3693                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3694         else
3695                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3696
3697         err = ipw_send_associate(priv, &priv->assoc_request);
3698         if (err) {
3699                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3700                              "failed.\n");
3701                 return;
3702         }
3703
3704 }
3705
3706 static int ipw_disassociate(void *data)
3707 {
3708         struct ipw_priv *priv = data;
3709         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3710                 return 0;
3711         ipw_send_disassociate(data, 0);
3712         return 1;
3713 }
3714
3715 static void ipw_bg_disassociate(void *data)
3716 {
3717         struct ipw_priv *priv = data;
3718         down(&priv->sem);
3719         ipw_disassociate(data);
3720         up(&priv->sem);
3721 }
3722
3723 static void ipw_system_config(void *data)
3724 {
3725         struct ipw_priv *priv = data;
3726         ipw_send_system_config(priv, &priv->sys_config);
3727 }
3728
3729 struct ipw_status_code {
3730         u16 status;
3731         const char *reason;
3732 };
3733
3734 static const struct ipw_status_code ipw_status_codes[] = {
3735         {0x00, "Successful"},
3736         {0x01, "Unspecified failure"},
3737         {0x0A, "Cannot support all requested capabilities in the "
3738          "Capability information field"},
3739         {0x0B, "Reassociation denied due to inability to confirm that "
3740          "association exists"},
3741         {0x0C, "Association denied due to reason outside the scope of this "
3742          "standard"},
3743         {0x0D,
3744          "Responding station does not support the specified authentication "
3745          "algorithm"},
3746         {0x0E,
3747          "Received an Authentication frame with authentication sequence "
3748          "transaction sequence number out of expected sequence"},
3749         {0x0F, "Authentication rejected because of challenge failure"},
3750         {0x10, "Authentication rejected due to timeout waiting for next "
3751          "frame in sequence"},
3752         {0x11, "Association denied because AP is unable to handle additional "
3753          "associated stations"},
3754         {0x12,
3755          "Association denied due to requesting station not supporting all "
3756          "of the datarates in the BSSBasicServiceSet Parameter"},
3757         {0x13,
3758          "Association denied due to requesting station not supporting "
3759          "short preamble operation"},
3760         {0x14,
3761          "Association denied due to requesting station not supporting "
3762          "PBCC encoding"},
3763         {0x15,
3764          "Association denied due to requesting station not supporting "
3765          "channel agility"},
3766         {0x19,
3767          "Association denied due to requesting station not supporting "
3768          "short slot operation"},
3769         {0x1A,
3770          "Association denied due to requesting station not supporting "
3771          "DSSS-OFDM operation"},
3772         {0x28, "Invalid Information Element"},
3773         {0x29, "Group Cipher is not valid"},
3774         {0x2A, "Pairwise Cipher is not valid"},
3775         {0x2B, "AKMP is not valid"},
3776         {0x2C, "Unsupported RSN IE version"},
3777         {0x2D, "Invalid RSN IE Capabilities"},
3778         {0x2E, "Cipher suite is rejected per security policy"},
3779 };
3780
3781 #ifdef CONFIG_IPW_DEBUG
3782 static const char *ipw_get_status_code(u16 status)
3783 {
3784         int i;
3785         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3786                 if (ipw_status_codes[i].status == (status & 0xff))
3787                         return ipw_status_codes[i].reason;
3788         return "Unknown status value.";
3789 }
3790 #endif
3791
3792 static void inline average_init(struct average *avg)
3793 {
3794         memset(avg, 0, sizeof(*avg));
3795 }
3796
3797 static void inline average_add(struct average *avg, s16 val)
3798 {
3799         avg->sum -= avg->entries[avg->pos];
3800         avg->sum += val;
3801         avg->entries[avg->pos++] = val;
3802         if (unlikely(avg->pos == AVG_ENTRIES)) {
3803                 avg->init = 1;
3804                 avg->pos = 0;
3805         }
3806 }
3807
3808 static s16 inline average_value(struct average *avg)
3809 {
3810         if (!unlikely(avg->init)) {
3811                 if (avg->pos)
3812                         return avg->sum / avg->pos;
3813                 return 0;
3814         }
3815
3816         return avg->sum / AVG_ENTRIES;
3817 }
3818
3819 static void ipw_reset_stats(struct ipw_priv *priv)
3820 {
3821         u32 len = sizeof(u32);
3822
3823         priv->quality = 0;
3824
3825         average_init(&priv->average_missed_beacons);
3826         average_init(&priv->average_rssi);
3827         average_init(&priv->average_noise);
3828
3829         priv->last_rate = 0;
3830         priv->last_missed_beacons = 0;
3831         priv->last_rx_packets = 0;
3832         priv->last_tx_packets = 0;
3833         priv->last_tx_failures = 0;
3834
3835         /* Firmware managed, reset only when NIC is restarted, so we have to
3836          * normalize on the current value */
3837         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3838                         &priv->last_rx_err, &len);
3839         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3840                         &priv->last_tx_failures, &len);
3841
3842         /* Driver managed, reset with each association */
3843         priv->missed_adhoc_beacons = 0;
3844         priv->missed_beacons = 0;
3845         priv->tx_packets = 0;
3846         priv->rx_packets = 0;
3847
3848 }
3849
3850 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3851 {
3852         u32 i = 0x80000000;
3853         u32 mask = priv->rates_mask;
3854         /* If currently associated in B mode, restrict the maximum
3855          * rate match to B rates */
3856         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3857                 mask &= IEEE80211_CCK_RATES_MASK;
3858
3859         /* TODO: Verify that the rate is supported by the current rates
3860          * list. */
3861
3862         while (i && !(mask & i))
3863                 i >>= 1;
3864         switch (i) {
3865         case IEEE80211_CCK_RATE_1MB_MASK:
3866                 return 1000000;
3867         case IEEE80211_CCK_RATE_2MB_MASK:
3868                 return 2000000;
3869         case IEEE80211_CCK_RATE_5MB_MASK:
3870                 return 5500000;
3871         case IEEE80211_OFDM_RATE_6MB_MASK:
3872                 return 6000000;
3873         case IEEE80211_OFDM_RATE_9MB_MASK:
3874                 return 9000000;
3875         case IEEE80211_CCK_RATE_11MB_MASK:
3876                 return 11000000;
3877         case IEEE80211_OFDM_RATE_12MB_MASK:
3878                 return 12000000;
3879         case IEEE80211_OFDM_RATE_18MB_MASK:
3880                 return 18000000;
3881         case IEEE80211_OFDM_RATE_24MB_MASK:
3882                 return 24000000;
3883         case IEEE80211_OFDM_RATE_36MB_MASK:
3884                 return 36000000;
3885         case IEEE80211_OFDM_RATE_48MB_MASK:
3886                 return 48000000;
3887         case IEEE80211_OFDM_RATE_54MB_MASK:
3888                 return 54000000;
3889         }
3890
3891         if (priv->ieee->mode == IEEE_B)
3892                 return 11000000;
3893         else
3894                 return 54000000;
3895 }
3896
3897 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3898 {
3899         u32 rate, len = sizeof(rate);
3900         int err;
3901
3902         if (!(priv->status & STATUS_ASSOCIATED))
3903                 return 0;
3904
3905         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3906                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3907                                       &len);
3908                 if (err) {
3909                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3910                         return 0;
3911                 }
3912         } else
3913                 return ipw_get_max_rate(priv);
3914
3915         switch (rate) {
3916         case IPW_TX_RATE_1MB:
3917                 return 1000000;
3918         case IPW_TX_RATE_2MB:
3919                 return 2000000;
3920         case IPW_TX_RATE_5MB:
3921                 return 5500000;
3922         case IPW_TX_RATE_6MB:
3923                 return 6000000;
3924         case IPW_TX_RATE_9MB:
3925                 return 9000000;
3926         case IPW_TX_RATE_11MB:
3927                 return 11000000;
3928         case IPW_TX_RATE_12MB:
3929                 return 12000000;
3930         case IPW_TX_RATE_18MB:
3931                 return 18000000;
3932         case IPW_TX_RATE_24MB:
3933                 return 24000000;
3934         case IPW_TX_RATE_36MB:
3935                 return 36000000;
3936         case IPW_TX_RATE_48MB:
3937                 return 48000000;
3938         case IPW_TX_RATE_54MB:
3939                 return 54000000;
3940         }
3941
3942         return 0;
3943 }
3944
3945 #define IPW_STATS_INTERVAL (2 * HZ)
3946 static void ipw_gather_stats(struct ipw_priv *priv)
3947 {
3948         u32 rx_err, rx_err_delta, rx_packets_delta;
3949         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3950         u32 missed_beacons_percent, missed_beacons_delta;
3951         u32 quality = 0;
3952         u32 len = sizeof(u32);
3953         s16 rssi;
3954         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3955             rate_quality;
3956         u32 max_rate;
3957
3958         if (!(priv->status & STATUS_ASSOCIATED)) {
3959                 priv->quality = 0;
3960                 return;
3961         }
3962
3963         /* Update the statistics */
3964         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3965                         &priv->missed_beacons, &len);
3966         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3967         priv->last_missed_beacons = priv->missed_beacons;
3968         if (priv->assoc_request.beacon_interval) {
3969                 missed_beacons_percent = missed_beacons_delta *
3970                     (HZ * priv->assoc_request.beacon_interval) /
3971                     (IPW_STATS_INTERVAL * 10);
3972         } else {
3973                 missed_beacons_percent = 0;
3974         }
3975         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3976
3977         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3978         rx_err_delta = rx_err - priv->last_rx_err;
3979         priv->last_rx_err = rx_err;
3980
3981         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3982         tx_failures_delta = tx_failures - priv->last_tx_failures;
3983         priv->last_tx_failures = tx_failures;
3984
3985         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3986         priv->last_rx_packets = priv->rx_packets;
3987
3988         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3989         priv->last_tx_packets = priv->tx_packets;
3990
3991         /* Calculate quality based on the following:
3992          *
3993          * Missed beacon: 100% = 0, 0% = 70% missed
3994          * Rate: 60% = 1Mbs, 100% = Max
3995          * Rx and Tx errors represent a straight % of total Rx/Tx
3996          * RSSI: 100% = > -50,  0% = < -80
3997          * Rx errors: 100% = 0, 0% = 50% missed
3998          *
3999          * The lowest computed quality is used.
4000          *
4001          */
4002 #define BEACON_THRESHOLD 5
4003         beacon_quality = 100 - missed_beacons_percent;
4004         if (beacon_quality < BEACON_THRESHOLD)
4005                 beacon_quality = 0;
4006         else
4007                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4008                     (100 - BEACON_THRESHOLD);
4009         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4010                         beacon_quality, missed_beacons_percent);
4011
4012         priv->last_rate = ipw_get_current_rate(priv);
4013         max_rate = ipw_get_max_rate(priv);
4014         rate_quality = priv->last_rate * 40 / max_rate + 60;
4015         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4016                         rate_quality, priv->last_rate / 1000000);
4017
4018         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4019                 rx_quality = 100 - (rx_err_delta * 100) /
4020                     (rx_packets_delta + rx_err_delta);
4021         else
4022                 rx_quality = 100;
4023         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4024                         rx_quality, rx_err_delta, rx_packets_delta);
4025
4026         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4027                 tx_quality = 100 - (tx_failures_delta * 100) /
4028                     (tx_packets_delta + tx_failures_delta);
4029         else
4030                 tx_quality = 100;
4031         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4032                         tx_quality, tx_failures_delta, tx_packets_delta);
4033
4034         rssi = average_value(&priv->average_rssi);
4035         signal_quality =
4036             (100 *
4037              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4038              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4039              (priv->ieee->perfect_rssi - rssi) *
4040              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4041               62 * (priv->ieee->perfect_rssi - rssi))) /
4042             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4043              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4044         if (signal_quality > 100)
4045                 signal_quality = 100;
4046         else if (signal_quality < 1)
4047                 signal_quality = 0;
4048
4049         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4050                         signal_quality, rssi);
4051
4052         quality = min(beacon_quality,
4053                       min(rate_quality,
4054                           min(tx_quality, min(rx_quality, signal_quality))));
4055         if (quality == beacon_quality)
4056                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4057                                 quality);
4058         if (quality == rate_quality)
4059                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4060                                 quality);
4061         if (quality == tx_quality)
4062                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4063                                 quality);
4064         if (quality == rx_quality)
4065                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4066                                 quality);
4067         if (quality == signal_quality)
4068                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4069                                 quality);
4070
4071         priv->quality = quality;
4072
4073         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4074                            IPW_STATS_INTERVAL);
4075 }
4076
4077 static void ipw_bg_gather_stats(void *data)
4078 {
4079         struct ipw_priv *priv = data;
4080         down(&priv->sem);
4081         ipw_gather_stats(data);
4082         up(&priv->sem);
4083 }
4084
4085 /* Missed beacon behavior:
4086  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4087  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4088  * Above disassociate threshold, give up and stop scanning.
4089  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4090 static inline void ipw_handle_missed_beacon(struct ipw_priv *priv,
4091                                             int missed_count)
4092 {
4093         priv->notif_missed_beacons = missed_count;
4094
4095         if (missed_count > priv->disassociate_threshold &&
4096             priv->status & STATUS_ASSOCIATED) {
4097                 /* If associated and we've hit the missed
4098                  * beacon threshold, disassociate, turn
4099                  * off roaming, and abort any active scans */
4100                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4101                           IPW_DL_STATE | IPW_DL_ASSOC,
4102                           "Missed beacon: %d - disassociate\n", missed_count);
4103                 priv->status &= ~STATUS_ROAMING;
4104                 if (priv->status & STATUS_SCANNING) {
4105                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4106                                   IPW_DL_STATE,
4107                                   "Aborting scan with missed beacon.\n");
4108                         queue_work(priv->workqueue, &priv->abort_scan);
4109                 }
4110
4111                 queue_work(priv->workqueue, &priv->disassociate);
4112                 return;
4113         }
4114
4115         if (priv->status & STATUS_ROAMING) {
4116                 /* If we are currently roaming, then just
4117                  * print a debug statement... */
4118                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4119                           "Missed beacon: %d - roam in progress\n",
4120                           missed_count);
4121                 return;
4122         }
4123
4124         if (missed_count > priv->roaming_threshold &&
4125             missed_count <= priv->disassociate_threshold) {
4126                 /* If we are not already roaming, set the ROAM
4127                  * bit in the status and kick off a scan.
4128                  * This can happen several times before we reach
4129                  * disassociate_threshold. */
4130                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4131                           "Missed beacon: %d - initiate "
4132                           "roaming\n", missed_count);
4133                 if (!(priv->status & STATUS_ROAMING)) {
4134                         priv->status |= STATUS_ROAMING;
4135                         if (!(priv->status & STATUS_SCANNING))
4136                                 queue_work(priv->workqueue,
4137                                            &priv->request_scan);
4138                 }
4139                 return;
4140         }
4141
4142         if (priv->status & STATUS_SCANNING) {
4143                 /* Stop scan to keep fw from getting
4144                  * stuck (only if we aren't roaming --
4145                  * otherwise we'll never scan more than 2 or 3
4146                  * channels..) */
4147                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4148                           "Aborting scan with missed beacon.\n");
4149                 queue_work(priv->workqueue, &priv->abort_scan);
4150         }
4151
4152         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4153
4154 }
4155
4156 /**
4157  * Handle host notification packet.
4158  * Called from interrupt routine
4159  */
4160 static inline void ipw_rx_notification(struct ipw_priv *priv,
4161                                        struct ipw_rx_notification *notif)
4162 {
4163         notif->size = le16_to_cpu(notif->size);
4164
4165         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4166
4167         switch (notif->subtype) {
4168         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4169                         struct notif_association *assoc = &notif->u.assoc;
4170
4171                         switch (assoc->state) {
4172                         case CMAS_ASSOCIATED:{
4173                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4174                                                   IPW_DL_ASSOC,
4175                                                   "associated: '%s' " MAC_FMT
4176                                                   " \n",
4177                                                   escape_essid(priv->essid,
4178                                                                priv->essid_len),
4179                                                   MAC_ARG(priv->bssid));
4180
4181                                         switch (priv->ieee->iw_mode) {
4182                                         case IW_MODE_INFRA:
4183                                                 memcpy(priv->ieee->bssid,
4184                                                        priv->bssid, ETH_ALEN);
4185                                                 break;
4186
4187                                         case IW_MODE_ADHOC:
4188                                                 memcpy(priv->ieee->bssid,
4189                                                        priv->bssid, ETH_ALEN);
4190
4191                                                 /* clear out the station table */
4192                                                 priv->num_stations = 0;
4193
4194                                                 IPW_DEBUG_ASSOC
4195                                                     ("queueing adhoc check\n");
4196                                                 queue_delayed_work(priv->
4197                                                                    workqueue,
4198                                                                    &priv->
4199                                                                    adhoc_check,
4200                                                                    priv->
4201                                                                    assoc_request.
4202                                                                    beacon_interval);
4203                                                 break;
4204                                         }
4205
4206                                         priv->status &= ~STATUS_ASSOCIATING;
4207                                         priv->status |= STATUS_ASSOCIATED;
4208                                         queue_work(priv->workqueue,
4209                                                    &priv->system_config);
4210
4211 #ifdef CONFIG_IPW_QOS
4212 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4213                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4214                                         if ((priv->status & STATUS_AUTH) &&
4215                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4216                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4217                                                 if ((sizeof
4218                                                      (struct
4219                                                       ieee80211_assoc_response)
4220                                                      <= notif->size)
4221                                                     && (notif->size <= 2314)) {
4222                                                         struct
4223                                                         ieee80211_rx_stats
4224                                                             stats = {
4225                                                                 .len =
4226                                                                     notif->
4227                                                                     size - 1,
4228                                                         };
4229
4230                                                         IPW_DEBUG_QOS
4231                                                             ("QoS Associate "
4232                                                              "size %d\n",
4233                                                              notif->size);
4234                                                         ieee80211_rx_mgt(priv->
4235                                                                          ieee,
4236                                                                          (struct
4237                                                                           ieee80211_hdr_4addr
4238                                                                           *)
4239                                                                          &notif->u.raw, &stats);
4240                                                 }
4241                                         }
4242 #endif
4243
4244                                         schedule_work(&priv->link_up);
4245
4246                                         break;
4247                                 }
4248
4249                         case CMAS_AUTHENTICATED:{
4250                                         if (priv->
4251                                             status & (STATUS_ASSOCIATED |
4252                                                       STATUS_AUTH)) {
4253 #ifdef CONFIG_IPW_DEBUG
4254                                                 struct notif_authenticate *auth
4255                                                     = &notif->u.auth;
4256                                                 IPW_DEBUG(IPW_DL_NOTIF |
4257                                                           IPW_DL_STATE |
4258                                                           IPW_DL_ASSOC,
4259                                                           "deauthenticated: '%s' "
4260                                                           MAC_FMT
4261                                                           ": (0x%04X) - %s \n",
4262                                                           escape_essid(priv->
4263                                                                        essid,
4264                                                                        priv->
4265                                                                        essid_len),
4266                                                           MAC_ARG(priv->bssid),
4267                                                           ntohs(auth->status),
4268                                                           ipw_get_status_code
4269                                                           (ntohs
4270                                                            (auth->status)));
4271 #endif
4272
4273                                                 priv->status &=
4274                                                     ~(STATUS_ASSOCIATING |
4275                                                       STATUS_AUTH |
4276                                                       STATUS_ASSOCIATED);
4277
4278                                                 schedule_work(&priv->link_down);
4279                                                 break;
4280                                         }
4281
4282                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4283                                                   IPW_DL_ASSOC,
4284                                                   "authenticated: '%s' " MAC_FMT
4285                                                   "\n",
4286                                                   escape_essid(priv->essid,
4287                                                                priv->essid_len),
4288                                                   MAC_ARG(priv->bssid));
4289                                         break;
4290                                 }
4291
4292                         case CMAS_INIT:{
4293                                         if (priv->status & STATUS_AUTH) {
4294                                                 struct
4295                                                     ieee80211_assoc_response
4296                                                 *resp;
4297                                                 resp =
4298                                                     (struct
4299                                                      ieee80211_assoc_response
4300                                                      *)&notif->u.raw;
4301                                                 IPW_DEBUG(IPW_DL_NOTIF |
4302                                                           IPW_DL_STATE |
4303                                                           IPW_DL_ASSOC,
4304                                                           "association failed (0x%04X): %s\n",
4305                                                           ntohs(resp->status),
4306                                                           ipw_get_status_code
4307                                                           (ntohs
4308                                                            (resp->status)));
4309                                         }
4310
4311                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4312                                                   IPW_DL_ASSOC,
4313                                                   "disassociated: '%s' " MAC_FMT
4314                                                   " \n",
4315                                                   escape_essid(priv->essid,
4316                                                                priv->essid_len),
4317                                                   MAC_ARG(priv->bssid));
4318
4319                                         priv->status &=
4320                                             ~(STATUS_DISASSOCIATING |
4321                                               STATUS_ASSOCIATING |
4322                                               STATUS_ASSOCIATED | STATUS_AUTH);
4323                                         if (priv->assoc_network
4324                                             && (priv->assoc_network->
4325                                                 capability &
4326                                                 WLAN_CAPABILITY_IBSS))
4327                                                 ipw_remove_current_network
4328                                                     (priv);
4329
4330                                         schedule_work(&priv->link_down);
4331
4332                                         break;
4333                                 }
4334
4335                         case CMAS_RX_ASSOC_RESP:
4336                                 break;
4337
4338                         default:
4339                                 IPW_ERROR("assoc: unknown (%d)\n",
4340                                           assoc->state);
4341                                 break;
4342                         }
4343
4344                         break;
4345                 }
4346
4347         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4348                         struct notif_authenticate *auth = &notif->u.auth;
4349                         switch (auth->state) {
4350                         case CMAS_AUTHENTICATED:
4351                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4352                                           "authenticated: '%s' " MAC_FMT " \n",
4353                                           escape_essid(priv->essid,
4354                                                        priv->essid_len),
4355                                           MAC_ARG(priv->bssid));
4356                                 priv->status |= STATUS_AUTH;
4357                                 break;
4358
4359                         case CMAS_INIT:
4360                                 if (priv->status & STATUS_AUTH) {
4361                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4362                                                   IPW_DL_ASSOC,
4363                                                   "authentication failed (0x%04X): %s\n",
4364                                                   ntohs(auth->status),
4365                                                   ipw_get_status_code(ntohs
4366                                                                       (auth->
4367                                                                        status)));
4368                                 }
4369                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4370                                           IPW_DL_ASSOC,
4371                                           "deauthenticated: '%s' " MAC_FMT "\n",
4372                                           escape_essid(priv->essid,
4373                                                        priv->essid_len),
4374                                           MAC_ARG(priv->bssid));
4375
4376                                 priv->status &= ~(STATUS_ASSOCIATING |
4377                                                   STATUS_AUTH |
4378                                                   STATUS_ASSOCIATED);
4379
4380                                 schedule_work(&priv->link_down);
4381                                 break;
4382
4383                         case CMAS_TX_AUTH_SEQ_1:
4384                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4385                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4386                                 break;
4387                         case CMAS_RX_AUTH_SEQ_2:
4388                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4389                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4390                                 break;
4391                         case CMAS_AUTH_SEQ_1_PASS:
4392                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4393                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4394                                 break;
4395                         case CMAS_AUTH_SEQ_1_FAIL:
4396                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4397                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4398                                 break;
4399                         case CMAS_TX_AUTH_SEQ_3:
4400                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4401                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4402                                 break;
4403                         case CMAS_RX_AUTH_SEQ_4:
4404                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4405                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4406                                 break;
4407                         case CMAS_AUTH_SEQ_2_PASS:
4408                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4410                                 break;
4411                         case CMAS_AUTH_SEQ_2_FAIL:
4412                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4414                                 break;
4415                         case CMAS_TX_ASSOC:
4416                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4418                                 break;
4419                         case CMAS_RX_ASSOC_RESP:
4420                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4421                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4422
4423                                 break;
4424                         case CMAS_ASSOCIATED:
4425                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4426                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4427                                 break;
4428                         default:
4429                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4430                                                 auth->state);
4431                                 break;
4432                         }
4433                         break;
4434                 }
4435
4436         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4437                         struct notif_channel_result *x =
4438                             &notif->u.channel_result;
4439
4440                         if (notif->size == sizeof(*x)) {
4441                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4442                                                x->channel_num);
4443                         } else {
4444                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4445                                                "(should be %zd)\n",
4446                                                notif->size, sizeof(*x));
4447                         }
4448                         break;
4449                 }
4450
4451         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4452                         struct notif_scan_complete *x = &notif->u.scan_complete;
4453                         if (notif->size == sizeof(*x)) {
4454                                 IPW_DEBUG_SCAN
4455                                     ("Scan completed: type %d, %d channels, "
4456                                      "%d status\n", x->scan_type,
4457                                      x->num_channels, x->status);
4458                         } else {
4459                                 IPW_ERROR("Scan completed of wrong size %d "
4460                                           "(should be %zd)\n",
4461                                           notif->size, sizeof(*x));
4462                         }
4463
4464                         priv->status &=
4465                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4466
4467                         wake_up_interruptible(&priv->wait_state);
4468                         cancel_delayed_work(&priv->scan_check);
4469
4470                         if (priv->status & STATUS_EXIT_PENDING)
4471                                 break;
4472
4473                         priv->ieee->scans++;
4474
4475 #ifdef CONFIG_IPW2200_MONITOR
4476                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4477                                 priv->status |= STATUS_SCAN_FORCED;
4478                                 queue_work(priv->workqueue,
4479                                            &priv->request_scan);
4480                                 break;
4481                         }
4482                         priv->status &= ~STATUS_SCAN_FORCED;
4483 #endif                          /* CONFIG_IPW2200_MONITOR */
4484
4485                         if (!(priv->status & (STATUS_ASSOCIATED |
4486                                               STATUS_ASSOCIATING |
4487                                               STATUS_ROAMING |
4488                                               STATUS_DISASSOCIATING)))
4489                                 queue_work(priv->workqueue, &priv->associate);
4490                         else if (priv->status & STATUS_ROAMING) {
4491                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4492                                         /* If a scan completed and we are in roam mode, then
4493                                          * the scan that completed was the one requested as a
4494                                          * result of entering roam... so, schedule the
4495                                          * roam work */
4496                                         queue_work(priv->workqueue,
4497                                                    &priv->roam);
4498                                 else
4499                                         /* Don't schedule if we aborted the scan */
4500                                         priv->status &= ~STATUS_ROAMING;
4501                         } else if (priv->status & STATUS_SCAN_PENDING)
4502                                 queue_work(priv->workqueue,
4503                                            &priv->request_scan);
4504                         else if (priv->config & CFG_BACKGROUND_SCAN
4505                                  && priv->status & STATUS_ASSOCIATED)
4506                                 queue_delayed_work(priv->workqueue,
4507                                                    &priv->request_scan, HZ);
4508                         break;
4509                 }
4510
4511         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4512                         struct notif_frag_length *x = &notif->u.frag_len;
4513
4514                         if (notif->size == sizeof(*x))
4515                                 IPW_ERROR("Frag length: %d\n",
4516                                           le16_to_cpu(x->frag_length));
4517                         else
4518                                 IPW_ERROR("Frag length of wrong size %d "
4519                                           "(should be %zd)\n",
4520                                           notif->size, sizeof(*x));
4521                         break;
4522                 }
4523
4524         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4525                         struct notif_link_deterioration *x =
4526                             &notif->u.link_deterioration;
4527
4528                         if (notif->size == sizeof(*x)) {
4529                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4530                                           "link deterioration: '%s' " MAC_FMT
4531                                           " \n", escape_essid(priv->essid,
4532                                                               priv->essid_len),
4533                                           MAC_ARG(priv->bssid));
4534                                 memcpy(&priv->last_link_deterioration, x,
4535                                        sizeof(*x));
4536                         } else {
4537                                 IPW_ERROR("Link Deterioration of wrong size %d "
4538                                           "(should be %zd)\n",
4539                                           notif->size, sizeof(*x));
4540                         }
4541                         break;
4542                 }
4543
4544         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4545                         IPW_ERROR("Dino config\n");
4546                         if (priv->hcmd
4547                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4548                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4549
4550                         break;
4551                 }
4552
4553         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4554                         struct notif_beacon_state *x = &notif->u.beacon_state;
4555                         if (notif->size != sizeof(*x)) {
4556                                 IPW_ERROR
4557                                     ("Beacon state of wrong size %d (should "
4558                                      "be %zd)\n", notif->size, sizeof(*x));
4559                                 break;
4560                         }
4561
4562                         if (le32_to_cpu(x->state) ==
4563                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4564                                 ipw_handle_missed_beacon(priv,
4565                                                          le32_to_cpu(x->
4566                                                                      number));
4567
4568                         break;
4569                 }
4570
4571         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4572                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4573                         if (notif->size == sizeof(*x)) {
4574                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4575                                           "0x%02x station %d\n",
4576                                           x->key_state, x->security_type,
4577                                           x->station_index);
4578                                 break;
4579                         }
4580
4581                         IPW_ERROR
4582                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4583                              notif->size, sizeof(*x));
4584                         break;
4585                 }
4586
4587         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4588                         struct notif_calibration *x = &notif->u.calibration;
4589
4590                         if (notif->size == sizeof(*x)) {
4591                                 memcpy(&priv->calib, x, sizeof(*x));
4592                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4593                                 break;
4594                         }
4595
4596                         IPW_ERROR
4597                             ("Calibration of wrong size %d (should be %zd)\n",
4598                              notif->size, sizeof(*x));
4599                         break;
4600                 }
4601
4602         case HOST_NOTIFICATION_NOISE_STATS:{
4603                         if (notif->size == sizeof(u32)) {
4604                                 priv->last_noise =
4605                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4606                                           0xff);
4607                                 average_add(&priv->average_noise,
4608                                             priv->last_noise);
4609                                 break;
4610                         }
4611
4612                         IPW_ERROR
4613                             ("Noise stat is wrong size %d (should be %zd)\n",
4614                              notif->size, sizeof(u32));
4615                         break;
4616                 }
4617
4618         default:
4619                 IPW_ERROR("Unknown notification: "
4620                           "subtype=%d,flags=0x%2x,size=%d\n",
4621                           notif->subtype, notif->flags, notif->size);
4622         }
4623 }
4624
4625 /**
4626  * Destroys all DMA structures and initialise them again
4627  *
4628  * @param priv
4629  * @return error code
4630  */
4631 static int ipw_queue_reset(struct ipw_priv *priv)
4632 {
4633         int rc = 0;
4634         /** @todo customize queue sizes */
4635         int nTx = 64, nTxCmd = 8;
4636         ipw_tx_queue_free(priv);
4637         /* Tx CMD queue */
4638         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4639                                IPW_TX_CMD_QUEUE_READ_INDEX,
4640                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4641                                IPW_TX_CMD_QUEUE_BD_BASE,
4642                                IPW_TX_CMD_QUEUE_BD_SIZE);
4643         if (rc) {
4644                 IPW_ERROR("Tx Cmd queue init failed\n");
4645                 goto error;
4646         }
4647         /* Tx queue(s) */
4648         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4649                                IPW_TX_QUEUE_0_READ_INDEX,
4650                                IPW_TX_QUEUE_0_WRITE_INDEX,
4651                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4652         if (rc) {
4653                 IPW_ERROR("Tx 0 queue init failed\n");
4654                 goto error;
4655         }
4656         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4657                                IPW_TX_QUEUE_1_READ_INDEX,
4658                                IPW_TX_QUEUE_1_WRITE_INDEX,
4659                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4660         if (rc) {
4661                 IPW_ERROR("Tx 1 queue init failed\n");
4662                 goto error;
4663         }
4664         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4665                                IPW_TX_QUEUE_2_READ_INDEX,
4666                                IPW_TX_QUEUE_2_WRITE_INDEX,
4667                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4668         if (rc) {
4669                 IPW_ERROR("Tx 2 queue init failed\n");
4670                 goto error;
4671         }
4672         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4673                                IPW_TX_QUEUE_3_READ_INDEX,
4674                                IPW_TX_QUEUE_3_WRITE_INDEX,
4675                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4676         if (rc) {
4677                 IPW_ERROR("Tx 3 queue init failed\n");
4678                 goto error;
4679         }
4680         /* statistics */
4681         priv->rx_bufs_min = 0;
4682         priv->rx_pend_max = 0;
4683         return rc;
4684
4685       error:
4686         ipw_tx_queue_free(priv);
4687         return rc;
4688 }
4689
4690 /**
4691  * Reclaim Tx queue entries no more used by NIC.
4692  *
4693  * When FW adwances 'R' index, all entries between old and
4694  * new 'R' index need to be reclaimed. As result, some free space
4695  * forms. If there is enough free space (> low mark), wake Tx queue.
4696  *
4697  * @note Need to protect against garbage in 'R' index
4698  * @param priv
4699  * @param txq
4700  * @param qindex
4701  * @return Number of used entries remains in the queue
4702  */
4703 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4704                                 struct clx2_tx_queue *txq, int qindex)
4705 {
4706         u32 hw_tail;
4707         int used;
4708         struct clx2_queue *q = &txq->q;
4709
4710         hw_tail = ipw_read32(priv, q->reg_r);
4711         if (hw_tail >= q->n_bd) {
4712                 IPW_ERROR
4713                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4714                      hw_tail, q->n_bd);
4715                 goto done;
4716         }
4717         for (; q->last_used != hw_tail;
4718              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4719                 ipw_queue_tx_free_tfd(priv, txq);
4720                 priv->tx_packets++;
4721         }
4722       done:
4723         if ((ipw_queue_space(q) > q->low_mark) &&
4724             (qindex >= 0) &&
4725             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4726                 netif_wake_queue(priv->net_dev);
4727         used = q->first_empty - q->last_used;
4728         if (used < 0)
4729                 used += q->n_bd;
4730
4731         return used;
4732 }
4733
4734 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4735                              int len, int sync)
4736 {
4737         struct clx2_tx_queue *txq = &priv->txq_cmd;
4738         struct clx2_queue *q = &txq->q;
4739         struct tfd_frame *tfd;
4740
4741         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4742                 IPW_ERROR("No space for Tx\n");
4743                 return -EBUSY;
4744         }
4745
4746         tfd = &txq->bd[q->first_empty];
4747         txq->txb[q->first_empty] = NULL;
4748
4749         memset(tfd, 0, sizeof(*tfd));
4750         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4751         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4752         priv->hcmd_seq++;
4753         tfd->u.cmd.index = hcmd;
4754         tfd->u.cmd.length = len;
4755         memcpy(tfd->u.cmd.payload, buf, len);
4756         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4757         ipw_write32(priv, q->reg_w, q->first_empty);
4758         _ipw_read32(priv, 0x90);
4759
4760         return 0;
4761 }
4762
4763 /*
4764  * Rx theory of operation
4765  *
4766  * The host allocates 32 DMA target addresses and passes the host address
4767  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4768  * 0 to 31
4769  *
4770  * Rx Queue Indexes
4771  * The host/firmware share two index registers for managing the Rx buffers.
4772  *
4773  * The READ index maps to the first position that the firmware may be writing
4774  * to -- the driver can read up to (but not including) this position and get
4775  * good data.
4776  * The READ index is managed by the firmware once the card is enabled.
4777  *
4778  * The WRITE index maps to the last position the driver has read from -- the
4779  * position preceding WRITE is the last slot the firmware can place a packet.
4780  *
4781  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4782  * WRITE = READ.
4783  *
4784  * During initialization the host sets up the READ queue position to the first
4785  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4786  *
4787  * When the firmware places a packet in a buffer it will advance the READ index
4788  * and fire the RX interrupt.  The driver can then query the READ index and
4789  * process as many packets as possible, moving the WRITE index forward as it
4790  * resets the Rx queue buffers with new memory.
4791  *
4792  * The management in the driver is as follows:
4793  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4794  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4795  *   to replensish the ipw->rxq->rx_free.
4796  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4797  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4798  *   'processed' and 'read' driver indexes as well)
4799  * + A received packet is processed and handed to the kernel network stack,
4800  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4801  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4802  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4803  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4804  *   were enough free buffers and RX_STALLED is set it is cleared.
4805  *
4806  *
4807  * Driver sequence:
4808  *
4809  * ipw_rx_queue_alloc()       Allocates rx_free
4810  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4811  *                            ipw_rx_queue_restock
4812  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4813  *                            queue, updates firmware pointers, and updates
4814  *                            the WRITE index.  If insufficient rx_free buffers
4815  *                            are available, schedules ipw_rx_queue_replenish
4816  *
4817  * -- enable interrupts --
4818  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4819  *                            READ INDEX, detaching the SKB from the pool.
4820  *                            Moves the packet buffer from queue to rx_used.
4821  *                            Calls ipw_rx_queue_restock to refill any empty
4822  *                            slots.
4823  * ...
4824  *
4825  */
4826
4827 /*
4828  * If there are slots in the RX queue that  need to be restocked,
4829  * and we have free pre-allocated buffers, fill the ranks as much
4830  * as we can pulling from rx_free.
4831  *
4832  * This moves the 'write' index forward to catch up with 'processed', and
4833  * also updates the memory address in the firmware to reference the new
4834  * target buffer.
4835  */
4836 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4837 {
4838         struct ipw_rx_queue *rxq = priv->rxq;
4839         struct list_head *element;
4840         struct ipw_rx_mem_buffer *rxb;
4841         unsigned long flags;
4842         int write;
4843
4844         spin_lock_irqsave(&rxq->lock, flags);
4845         write = rxq->write;
4846         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4847                 element = rxq->rx_free.next;
4848                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4849                 list_del(element);
4850
4851                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4852                             rxb->dma_addr);
4853                 rxq->queue[rxq->write] = rxb;
4854                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4855                 rxq->free_count--;
4856         }
4857         spin_unlock_irqrestore(&rxq->lock, flags);
4858
4859         /* If the pre-allocated buffer pool is dropping low, schedule to
4860          * refill it */
4861         if (rxq->free_count <= RX_LOW_WATERMARK)
4862                 queue_work(priv->workqueue, &priv->rx_replenish);
4863
4864         /* If we've added more space for the firmware to place data, tell it */
4865         if (write != rxq->write)
4866                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4867 }
4868
4869 /*
4870  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4871  * Also restock the Rx queue via ipw_rx_queue_restock.
4872  *
4873  * This is called as a scheduled work item (except for during intialization)
4874  */
4875 static void ipw_rx_queue_replenish(void *data)
4876 {
4877         struct ipw_priv *priv = data;
4878         struct ipw_rx_queue *rxq = priv->rxq;
4879         struct list_head *element;
4880         struct ipw_rx_mem_buffer *rxb;
4881         unsigned long flags;
4882
4883         spin_lock_irqsave(&rxq->lock, flags);
4884         while (!list_empty(&rxq->rx_used)) {
4885                 element = rxq->rx_used.next;
4886                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4887                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4888                 if (!rxb->skb) {
4889                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4890                                priv->net_dev->name);
4891                         /* We don't reschedule replenish work here -- we will
4892                          * call the restock method and if it still needs
4893                          * more buffers it will schedule replenish */
4894                         break;
4895                 }
4896                 list_del(element);
4897
4898                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4899                 rxb->dma_addr =
4900                     pci_map_single(priv->pci_dev, rxb->skb->data,
4901                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4902
4903                 list_add_tail(&rxb->list, &rxq->rx_free);
4904                 rxq->free_count++;
4905         }
4906         spin_unlock_irqrestore(&rxq->lock, flags);
4907
4908         ipw_rx_queue_restock(priv);
4909 }
4910
4911 static void ipw_bg_rx_queue_replenish(void *data)
4912 {
4913         struct ipw_priv *priv = data;
4914         down(&priv->sem);
4915         ipw_rx_queue_replenish(data);
4916         up(&priv->sem);
4917 }
4918
4919 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4920  * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4921  * This free routine walks the list of POOL entries and if SKB is set to
4922  * non NULL it is unmapped and freed
4923  */
4924 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4925 {
4926         int i;
4927
4928         if (!rxq)
4929                 return;
4930
4931         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4932                 if (rxq->pool[i].skb != NULL) {
4933                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4934                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4935                         dev_kfree_skb(rxq->pool[i].skb);
4936                 }
4937         }
4938
4939         kfree(rxq);
4940 }
4941
4942 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4943 {
4944         struct ipw_rx_queue *rxq;
4945         int i;
4946
4947         rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4948         if (unlikely(!rxq)) {
4949                 IPW_ERROR("memory allocation failed\n");
4950                 return NULL;
4951         }
4952         memset(rxq, 0, sizeof(*rxq));
4953         spin_lock_init(&rxq->lock);
4954         INIT_LIST_HEAD(&rxq->rx_free);
4955         INIT_LIST_HEAD(&rxq->rx_used);
4956
4957         /* Fill the rx_used queue with _all_ of the Rx buffers */
4958         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4959                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4960
4961         /* Set us so that we have processed and used all buffers, but have
4962          * not restocked the Rx queue with fresh buffers */
4963         rxq->read = rxq->write = 0;
4964         rxq->processed = RX_QUEUE_SIZE - 1;
4965         rxq->free_count = 0;
4966
4967         return rxq;
4968 }
4969
4970 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4971 {
4972         rate &= ~IEEE80211_BASIC_RATE_MASK;
4973         if (ieee_mode == IEEE_A) {
4974                 switch (rate) {
4975                 case IEEE80211_OFDM_RATE_6MB:
4976                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4977                             1 : 0;
4978                 case IEEE80211_OFDM_RATE_9MB:
4979                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4980                             1 : 0;
4981                 case IEEE80211_OFDM_RATE_12MB:
4982                         return priv->
4983                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4984                 case IEEE80211_OFDM_RATE_18MB:
4985                         return priv->
4986                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4987                 case IEEE80211_OFDM_RATE_24MB:
4988                         return priv->
4989                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4990                 case IEEE80211_OFDM_RATE_36MB:
4991                         return priv->
4992                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4993                 case IEEE80211_OFDM_RATE_48MB:
4994                         return priv->
4995                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4996                 case IEEE80211_OFDM_RATE_54MB:
4997                         return priv->
4998                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4999                 default:
5000                         return 0;
5001                 }
5002         }
5003
5004         /* B and G mixed */
5005         switch (rate) {
5006         case IEEE80211_CCK_RATE_1MB:
5007                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5008         case IEEE80211_CCK_RATE_2MB:
5009                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5010         case IEEE80211_CCK_RATE_5MB:
5011                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5012         case IEEE80211_CCK_RATE_11MB:
5013                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5014         }
5015
5016         /* If we are limited to B modulations, bail at this point */
5017         if (ieee_mode == IEEE_B)
5018                 return 0;
5019
5020         /* G */
5021         switch (rate) {
5022         case IEEE80211_OFDM_RATE_6MB:
5023                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5024         case IEEE80211_OFDM_RATE_9MB:
5025                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5026         case IEEE80211_OFDM_RATE_12MB:
5027                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5028         case IEEE80211_OFDM_RATE_18MB:
5029                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5030         case IEEE80211_OFDM_RATE_24MB:
5031                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5032         case IEEE80211_OFDM_RATE_36MB:
5033                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5034         case IEEE80211_OFDM_RATE_48MB:
5035                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5036         case IEEE80211_OFDM_RATE_54MB:
5037                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5038         }
5039
5040         return 0;
5041 }
5042
5043 static int ipw_compatible_rates(struct ipw_priv *priv,
5044                                 const struct ieee80211_network *network,
5045                                 struct ipw_supported_rates *rates)
5046 {
5047         int num_rates, i;
5048
5049         memset(rates, 0, sizeof(*rates));
5050         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5051         rates->num_rates = 0;
5052         for (i = 0; i < num_rates; i++) {
5053                 if (!ipw_is_rate_in_mask(priv, network->mode,
5054                                          network->rates[i])) {
5055
5056                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5057                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5058                                                "rate %02X\n",
5059                                                network->rates[i]);
5060                                 rates->supported_rates[rates->num_rates++] =
5061                                     network->rates[i];
5062                                 continue;
5063                         }
5064
5065                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5066                                        network->rates[i], priv->rates_mask);
5067                         continue;
5068                 }
5069
5070                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5071         }
5072
5073         num_rates = min(network->rates_ex_len,
5074                         (u8) (IPW_MAX_RATES - num_rates));
5075         for (i = 0; i < num_rates; i++) {
5076                 if (!ipw_is_rate_in_mask(priv, network->mode,
5077                                          network->rates_ex[i])) {
5078                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5079                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5080                                                "rate %02X\n",
5081                                                network->rates_ex[i]);
5082                                 rates->supported_rates[rates->num_rates++] =
5083                                     network->rates[i];
5084                                 continue;
5085                         }
5086
5087                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5088                                        network->rates_ex[i], priv->rates_mask);
5089                         continue;
5090                 }
5091
5092                 rates->supported_rates[rates->num_rates++] =
5093                     network->rates_ex[i];
5094         }
5095
5096         return 1;
5097 }
5098
5099 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
5100                                   const struct ipw_supported_rates *src)
5101 {
5102         u8 i;
5103         for (i = 0; i < src->num_rates; i++)
5104                 dest->supported_rates[i] = src->supported_rates[i];
5105         dest->num_rates = src->num_rates;
5106 }
5107
5108 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5109  * mask should ever be used -- right now all callers to add the scan rates are
5110  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5111 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5112                                    u8 modulation, u32 rate_mask)
5113 {
5114         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5115             IEEE80211_BASIC_RATE_MASK : 0;
5116
5117         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5118                 rates->supported_rates[rates->num_rates++] =
5119                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5120
5121         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5122                 rates->supported_rates[rates->num_rates++] =
5123                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5124
5125         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5126                 rates->supported_rates[rates->num_rates++] = basic_mask |
5127                     IEEE80211_CCK_RATE_5MB;
5128
5129         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5130                 rates->supported_rates[rates->num_rates++] = basic_mask |
5131                     IEEE80211_CCK_RATE_11MB;
5132 }
5133
5134 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5135                                     u8 modulation, u32 rate_mask)
5136 {
5137         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5138             IEEE80211_BASIC_RATE_MASK : 0;
5139
5140         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5141                 rates->supported_rates[rates->num_rates++] = basic_mask |
5142                     IEEE80211_OFDM_RATE_6MB;
5143
5144         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5145                 rates->supported_rates[rates->num_rates++] =
5146                     IEEE80211_OFDM_RATE_9MB;
5147
5148         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5149                 rates->supported_rates[rates->num_rates++] = basic_mask |
5150                     IEEE80211_OFDM_RATE_12MB;
5151
5152         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5153                 rates->supported_rates[rates->num_rates++] =
5154                     IEEE80211_OFDM_RATE_18MB;
5155
5156         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5157                 rates->supported_rates[rates->num_rates++] = basic_mask |
5158                     IEEE80211_OFDM_RATE_24MB;
5159
5160         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5161                 rates->supported_rates[rates->num_rates++] =
5162                     IEEE80211_OFDM_RATE_36MB;
5163
5164         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5165                 rates->supported_rates[rates->num_rates++] =
5166                     IEEE80211_OFDM_RATE_48MB;
5167
5168         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5169                 rates->supported_rates[rates->num_rates++] =
5170                     IEEE80211_OFDM_RATE_54MB;
5171 }
5172
5173 struct ipw_network_match {
5174         struct ieee80211_network *network;
5175         struct ipw_supported_rates rates;
5176 };
5177
5178 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5179                                   struct ipw_network_match *match,
5180                                   struct ieee80211_network *network,
5181                                   int roaming)
5182 {
5183         struct ipw_supported_rates rates;
5184
5185         /* Verify that this network's capability is compatible with the
5186          * current mode (AdHoc or Infrastructure) */
5187         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5188              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5189                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5190                                 "capability mismatch.\n",
5191                                 escape_essid(network->ssid, network->ssid_len),
5192                                 MAC_ARG(network->bssid));
5193                 return 0;
5194         }
5195
5196         /* If we do not have an ESSID for this AP, we can not associate with
5197          * it */
5198         if (network->flags & NETWORK_EMPTY_ESSID) {
5199                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5200                                 "because of hidden ESSID.\n",
5201                                 escape_essid(network->ssid, network->ssid_len),
5202                                 MAC_ARG(network->bssid));
5203                 return 0;
5204         }
5205
5206         if (unlikely(roaming)) {
5207                 /* If we are roaming, then ensure check if this is a valid
5208                  * network to try and roam to */
5209                 if ((network->ssid_len != match->network->ssid_len) ||
5210                     memcmp(network->ssid, match->network->ssid,
5211                            network->ssid_len)) {
5212                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5213                                         "because of non-network ESSID.\n",
5214                                         escape_essid(network->ssid,
5215                                                      network->ssid_len),
5216                                         MAC_ARG(network->bssid));
5217                         return 0;
5218                 }
5219         } else {
5220                 /* If an ESSID has been configured then compare the broadcast
5221                  * ESSID to ours */
5222                 if ((priv->config & CFG_STATIC_ESSID) &&
5223                     ((network->ssid_len != priv->essid_len) ||
5224                      memcmp(network->ssid, priv->essid,
5225                             min(network->ssid_len, priv->essid_len)))) {
5226                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5227
5228                         strncpy(escaped,
5229                                 escape_essid(network->ssid, network->ssid_len),
5230                                 sizeof(escaped));
5231                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5232                                         "because of ESSID mismatch: '%s'.\n",
5233                                         escaped, MAC_ARG(network->bssid),
5234                                         escape_essid(priv->essid,
5235                                                      priv->essid_len));
5236                         return 0;
5237                 }
5238         }
5239
5240         /* If the old network rate is better than this one, don't bother
5241          * testing everything else. */
5242
5243         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5244                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5245                                 "current network.\n",
5246                                 escape_essid(match->network->ssid,
5247                                              match->network->ssid_len));
5248                 return 0;
5249         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5250                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5251                                 "current network.\n",
5252                                 escape_essid(match->network->ssid,
5253                                              match->network->ssid_len));
5254                 return 0;
5255         }
5256
5257         /* Now go through and see if the requested network is valid... */
5258         if (priv->ieee->scan_age != 0 &&
5259             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5260                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5261                                 "because of age: %lums.\n",
5262                                 escape_essid(network->ssid, network->ssid_len),
5263                                 MAC_ARG(network->bssid),
5264                                 1000 * (jiffies - network->last_scanned) / HZ);
5265                 return 0;
5266         }
5267
5268         if ((priv->config & CFG_STATIC_CHANNEL) &&
5269             (network->channel != priv->channel)) {
5270                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5271                                 "because of channel mismatch: %d != %d.\n",
5272                                 escape_essid(network->ssid, network->ssid_len),
5273                                 MAC_ARG(network->bssid),
5274                                 network->channel, priv->channel);
5275                 return 0;
5276         }
5277
5278         /* Verify privacy compatability */
5279         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5280             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5281                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5282                                 "because of privacy mismatch: %s != %s.\n",
5283                                 escape_essid(network->ssid, network->ssid_len),
5284                                 MAC_ARG(network->bssid),
5285                                 priv->
5286                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5287                                 network->
5288                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5289                                 "off");
5290                 return 0;
5291         }
5292
5293         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5294                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5295                                 "because of the same BSSID match: " MAC_FMT
5296                                 ".\n", escape_essid(network->ssid,
5297                                                     network->ssid_len),
5298                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5299                 return 0;
5300         }
5301
5302         /* Filter out any incompatible freq / mode combinations */
5303         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5304                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5305                                 "because of invalid frequency/mode "
5306                                 "combination.\n",
5307                                 escape_essid(network->ssid, network->ssid_len),
5308                                 MAC_ARG(network->bssid));
5309                 return 0;
5310         }
5311
5312         /* Ensure that the rates supported by the driver are compatible with
5313          * this AP, including verification of basic rates (mandatory) */
5314         if (!ipw_compatible_rates(priv, network, &rates)) {
5315                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5316                                 "because configured rate mask excludes "
5317                                 "AP mandatory rate.\n",
5318                                 escape_essid(network->ssid, network->ssid_len),
5319                                 MAC_ARG(network->bssid));
5320                 return 0;
5321         }
5322
5323         if (rates.num_rates == 0) {
5324                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5325                                 "because of no compatible rates.\n",
5326                                 escape_essid(network->ssid, network->ssid_len),
5327                                 MAC_ARG(network->bssid));
5328                 return 0;
5329         }
5330
5331         /* TODO: Perform any further minimal comparititive tests.  We do not
5332          * want to put too much policy logic here; intelligent scan selection
5333          * should occur within a generic IEEE 802.11 user space tool.  */
5334
5335         /* Set up 'new' AP to this network */
5336         ipw_copy_rates(&match->rates, &rates);
5337         match->network = network;
5338         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5339                         escape_essid(network->ssid, network->ssid_len),
5340                         MAC_ARG(network->bssid));
5341
5342         return 1;
5343 }
5344
5345 static void ipw_merge_adhoc_network(void *data)
5346 {
5347         struct ipw_priv *priv = data;
5348         struct ieee80211_network *network = NULL;
5349         struct ipw_network_match match = {
5350                 .network = priv->assoc_network
5351         };
5352
5353         if ((priv->status & STATUS_ASSOCIATED) &&
5354             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5355                 /* First pass through ROAM process -- look for a better
5356                  * network */
5357                 unsigned long flags;
5358
5359                 spin_lock_irqsave(&priv->ieee->lock, flags);
5360                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5361                         if (network != priv->assoc_network)
5362                                 ipw_find_adhoc_network(priv, &match, network,
5363                                                        1);
5364                 }
5365                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5366
5367                 if (match.network == priv->assoc_network) {
5368                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5369                                         "merge to.\n");
5370                         return;
5371                 }
5372
5373                 down(&priv->sem);
5374                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5375                         IPW_DEBUG_MERGE("remove network %s\n",
5376                                         escape_essid(priv->essid,
5377                                                      priv->essid_len));
5378                         ipw_remove_current_network(priv);
5379                 }
5380
5381                 ipw_disassociate(priv);
5382                 priv->assoc_network = match.network;
5383                 up(&priv->sem);
5384                 return;
5385         }
5386 }
5387
5388 static int ipw_best_network(struct ipw_priv *priv,
5389                             struct ipw_network_match *match,
5390                             struct ieee80211_network *network, int roaming)
5391 {
5392         struct ipw_supported_rates rates;
5393
5394         /* Verify that this network's capability is compatible with the
5395          * current mode (AdHoc or Infrastructure) */
5396         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5397              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5398             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5399              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5400                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5401                                 "capability mismatch.\n",
5402                                 escape_essid(network->ssid, network->ssid_len),
5403                                 MAC_ARG(network->bssid));
5404                 return 0;
5405         }
5406
5407         /* If we do not have an ESSID for this AP, we can not associate with
5408          * it */
5409         if (network->flags & NETWORK_EMPTY_ESSID) {
5410                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5411                                 "because of hidden ESSID.\n",
5412                                 escape_essid(network->ssid, network->ssid_len),
5413                                 MAC_ARG(network->bssid));
5414                 return 0;
5415         }
5416
5417         if (unlikely(roaming)) {
5418                 /* If we are roaming, then ensure check if this is a valid
5419                  * network to try and roam to */
5420                 if ((network->ssid_len != match->network->ssid_len) ||
5421                     memcmp(network->ssid, match->network->ssid,
5422                            network->ssid_len)) {
5423                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5424                                         "because of non-network ESSID.\n",
5425                                         escape_essid(network->ssid,
5426                                                      network->ssid_len),
5427                                         MAC_ARG(network->bssid));
5428                         return 0;
5429                 }
5430         } else {
5431                 /* If an ESSID has been configured then compare the broadcast
5432                  * ESSID to ours */
5433                 if ((priv->config & CFG_STATIC_ESSID) &&
5434                     ((network->ssid_len != priv->essid_len) ||
5435                      memcmp(network->ssid, priv->essid,
5436                             min(network->ssid_len, priv->essid_len)))) {
5437                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5438                         strncpy(escaped,
5439                                 escape_essid(network->ssid, network->ssid_len),
5440                                 sizeof(escaped));
5441                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5442                                         "because of ESSID mismatch: '%s'.\n",
5443                                         escaped, MAC_ARG(network->bssid),
5444                                         escape_essid(priv->essid,
5445                                                      priv->essid_len));
5446                         return 0;
5447                 }
5448         }
5449
5450         /* If the old network rate is better than this one, don't bother
5451          * testing everything else. */
5452         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5453                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5454                 strncpy(escaped,
5455                         escape_essid(network->ssid, network->ssid_len),
5456                         sizeof(escaped));
5457                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5458                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5459                                 escaped, MAC_ARG(network->bssid),
5460                                 escape_essid(match->network->ssid,
5461                                              match->network->ssid_len),
5462                                 MAC_ARG(match->network->bssid));
5463                 return 0;
5464         }
5465
5466         /* If this network has already had an association attempt within the
5467          * last 3 seconds, do not try and associate again... */
5468         if (network->last_associate &&
5469             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5470                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5471                                 "because of storming (%lus since last "
5472                                 "assoc attempt).\n",
5473                                 escape_essid(network->ssid, network->ssid_len),
5474                                 MAC_ARG(network->bssid),
5475                                 (jiffies - network->last_associate) / HZ);
5476                 return 0;
5477         }
5478
5479         /* Now go through and see if the requested network is valid... */
5480         if (priv->ieee->scan_age != 0 &&
5481             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5482                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5483                                 "because of age: %lums.\n",
5484                                 escape_essid(network->ssid, network->ssid_len),
5485                                 MAC_ARG(network->bssid),
5486                                 1000 * (jiffies - network->last_scanned) / HZ);
5487                 return 0;
5488         }
5489
5490         if ((priv->config & CFG_STATIC_CHANNEL) &&
5491             (network->channel != priv->channel)) {
5492                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5493                                 "because of channel mismatch: %d != %d.\n",
5494                                 escape_essid(network->ssid, network->ssid_len),
5495                                 MAC_ARG(network->bssid),
5496                                 network->channel, priv->channel);
5497                 return 0;
5498         }
5499
5500         /* Verify privacy compatability */
5501         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5502             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5503                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5504                                 "because of privacy mismatch: %s != %s.\n",
5505                                 escape_essid(network->ssid, network->ssid_len),
5506                                 MAC_ARG(network->bssid),
5507                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5508                                 "off",
5509                                 network->capability &
5510                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5511                 return 0;
5512         }
5513
5514         if (!priv->ieee->wpa_enabled && (network->wpa_ie_len > 0 ||
5515                                          network->rsn_ie_len > 0)) {
5516                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5517                                 "because of WPA capability mismatch.\n",
5518                                 escape_essid(network->ssid, network->ssid_len),
5519                                 MAC_ARG(network->bssid));
5520                 return 0;
5521         }
5522
5523         if ((priv->config & CFG_STATIC_BSSID) &&
5524             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5525                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5526                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5527                                 escape_essid(network->ssid, network->ssid_len),
5528                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5529                 return 0;
5530         }
5531
5532         /* Filter out any incompatible freq / mode combinations */
5533         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5534                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5535                                 "because of invalid frequency/mode "
5536                                 "combination.\n",
5537                                 escape_essid(network->ssid, network->ssid_len),
5538                                 MAC_ARG(network->bssid));
5539                 return 0;
5540         }
5541
5542         /* Filter out invalid channel in current GEO */
5543         if (!ipw_is_valid_channel(priv->ieee, network->channel)) {
5544                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5545                                 "because of invalid channel in current GEO\n",
5546                                 escape_essid(network->ssid, network->ssid_len),
5547                                 MAC_ARG(network->bssid));
5548                 return 0;
5549         }
5550
5551         /* Ensure that the rates supported by the driver are compatible with
5552          * this AP, including verification of basic rates (mandatory) */
5553         if (!ipw_compatible_rates(priv, network, &rates)) {
5554                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5555                                 "because configured rate mask excludes "
5556                                 "AP mandatory rate.\n",
5557                                 escape_essid(network->ssid, network->ssid_len),
5558                                 MAC_ARG(network->bssid));
5559                 return 0;
5560         }
5561
5562         if (rates.num_rates == 0) {
5563                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5564                                 "because of no compatible rates.\n",
5565                                 escape_essid(network->ssid, network->ssid_len),
5566                                 MAC_ARG(network->bssid));
5567                 return 0;
5568         }
5569
5570         /* TODO: Perform any further minimal comparititive tests.  We do not
5571          * want to put too much policy logic here; intelligent scan selection
5572          * should occur within a generic IEEE 802.11 user space tool.  */
5573
5574         /* Set up 'new' AP to this network */
5575         ipw_copy_rates(&match->rates, &rates);
5576         match->network = network;
5577
5578         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5579                         escape_essid(network->ssid, network->ssid_len),
5580                         MAC_ARG(network->bssid));
5581
5582         return 1;
5583 }
5584
5585 static void ipw_adhoc_create(struct ipw_priv *priv,
5586                              struct ieee80211_network *network)
5587 {
5588         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
5589         int i;
5590
5591         /*
5592          * For the purposes of scanning, we can set our wireless mode
5593          * to trigger scans across combinations of bands, but when it
5594          * comes to creating a new ad-hoc network, we have tell the FW
5595          * exactly which band to use.
5596          *
5597          * We also have the possibility of an invalid channel for the
5598          * chossen band.  Attempting to create a new ad-hoc network
5599          * with an invalid channel for wireless mode will trigger a
5600          * FW fatal error.
5601          *
5602          */
5603         switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
5604         case IEEE80211_52GHZ_BAND:
5605                 network->mode = IEEE_A;
5606                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5607                 if (i == -1)
5608                         BUG();
5609                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5610                         IPW_WARNING("Overriding invalid channel\n");
5611                         priv->channel = geo->a[0].channel;
5612                 }
5613                 break;
5614
5615         case IEEE80211_24GHZ_BAND:
5616                 if (priv->ieee->mode & IEEE_G)
5617                         network->mode = IEEE_G;
5618                 else
5619                         network->mode = IEEE_B;
5620                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5621                 if (i == -1)
5622                         BUG();
5623                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5624                         IPW_WARNING("Overriding invalid channel\n");
5625                         priv->channel = geo->bg[0].channel;
5626                 }
5627                 break;
5628
5629         default:
5630                 IPW_WARNING("Overriding invalid channel\n");
5631                 if (priv->ieee->mode & IEEE_A) {
5632                         network->mode = IEEE_A;
5633                         priv->channel = geo->a[0].channel;
5634                 } else if (priv->ieee->mode & IEEE_G) {
5635                         network->mode = IEEE_G;
5636                         priv->channel = geo->bg[0].channel;
5637                 } else {
5638                         network->mode = IEEE_B;
5639                         priv->channel = geo->bg[0].channel;
5640                 }
5641                 break;
5642         }
5643
5644         network->channel = priv->channel;
5645         priv->config |= CFG_ADHOC_PERSIST;
5646         ipw_create_bssid(priv, network->bssid);
5647         network->ssid_len = priv->essid_len;
5648         memcpy(network->ssid, priv->essid, priv->essid_len);
5649         memset(&network->stats, 0, sizeof(network->stats));
5650         network->capability = WLAN_CAPABILITY_IBSS;
5651         if (!(priv->config & CFG_PREAMBLE_LONG))
5652                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5653         if (priv->capability & CAP_PRIVACY_ON)
5654                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5655         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5656         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5657         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5658         memcpy(network->rates_ex,
5659                &priv->rates.supported_rates[network->rates_len],
5660                network->rates_ex_len);
5661         network->last_scanned = 0;
5662         network->flags = 0;
5663         network->last_associate = 0;
5664         network->time_stamp[0] = 0;
5665         network->time_stamp[1] = 0;
5666         network->beacon_interval = 100; /* Default */
5667         network->listen_interval = 10;  /* Default */
5668         network->atim_window = 0;       /* Default */
5669         network->wpa_ie_len = 0;
5670         network->rsn_ie_len = 0;
5671 }
5672
5673 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5674 {
5675         struct ipw_tgi_tx_key *key;
5676         struct host_cmd cmd = {
5677                 .cmd = IPW_CMD_TGI_TX_KEY,
5678                 .len = sizeof(*key)
5679         };
5680
5681         if (!(priv->ieee->sec.flags & (1 << index)))
5682                 return;
5683
5684         key = (struct ipw_tgi_tx_key *)&cmd.param;
5685         key->key_id = index;
5686         memcpy(key->key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5687         key->security_type = type;
5688         key->station_index = 0; /* always 0 for BSS */
5689         key->flags = 0;
5690         /* 0 for new key; previous value of counter (after fatal error) */
5691         key->tx_counter[0] = 0;
5692         key->tx_counter[1] = 0;
5693
5694         ipw_send_cmd(priv, &cmd);
5695 }
5696
5697 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5698 {
5699         struct ipw_wep_key *key;
5700         int i;
5701         struct host_cmd cmd = {
5702                 .cmd = IPW_CMD_WEP_KEY,
5703                 .len = sizeof(*key)
5704         };
5705
5706         key = (struct ipw_wep_key *)&cmd.param;
5707         key->cmd_id = DINO_CMD_WEP_KEY;
5708         key->seq_num = 0;
5709
5710         /* Note: AES keys cannot be set for multiple times.
5711          * Only set it at the first time. */
5712         for (i = 0; i < 4; i++) {
5713                 key->key_index = i | type;
5714                 if (!(priv->ieee->sec.flags & (1 << i))) {
5715                         key->key_size = 0;
5716                         continue;
5717                 }
5718
5719                 key->key_size = priv->ieee->sec.key_sizes[i];
5720                 memcpy(key->key, priv->ieee->sec.keys[i], key->key_size);
5721
5722                 ipw_send_cmd(priv, &cmd);
5723         }
5724 }
5725
5726 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5727 {
5728         if (priv->ieee->host_encrypt)
5729                 return;
5730
5731         switch (level) {
5732         case SEC_LEVEL_3:
5733                 priv->sys_config.disable_unicast_decryption = 0;
5734                 priv->ieee->host_decrypt = 0;
5735                 break;
5736         case SEC_LEVEL_2:
5737                 priv->sys_config.disable_unicast_decryption = 1;
5738                 priv->ieee->host_decrypt = 1;
5739                 break;
5740         case SEC_LEVEL_1:
5741                 priv->sys_config.disable_unicast_decryption = 0;
5742                 priv->ieee->host_decrypt = 0;
5743                 break;
5744         case SEC_LEVEL_0:
5745                 priv->sys_config.disable_unicast_decryption = 1;
5746                 break;
5747         default:
5748                 break;
5749         }
5750 }
5751
5752 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5753 {
5754         if (priv->ieee->host_encrypt)
5755                 return;
5756
5757         switch (level) {
5758         case SEC_LEVEL_3:
5759                 priv->sys_config.disable_multicast_decryption = 0;
5760                 break;
5761         case SEC_LEVEL_2:
5762                 priv->sys_config.disable_multicast_decryption = 1;
5763                 break;
5764         case SEC_LEVEL_1:
5765                 priv->sys_config.disable_multicast_decryption = 0;
5766                 break;
5767         case SEC_LEVEL_0:
5768                 priv->sys_config.disable_multicast_decryption = 1;
5769                 break;
5770         default:
5771                 break;
5772         }
5773 }
5774
5775 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5776 {
5777         switch (priv->ieee->sec.level) {
5778         case SEC_LEVEL_3:
5779                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5780                         ipw_send_tgi_tx_key(priv,
5781                                             DCT_FLAG_EXT_SECURITY_CCM,
5782                                             priv->ieee->sec.active_key);
5783
5784                 if (!priv->ieee->host_mc_decrypt)
5785                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5786                 break;
5787         case SEC_LEVEL_2:
5788                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5789                         ipw_send_tgi_tx_key(priv,
5790                                             DCT_FLAG_EXT_SECURITY_TKIP,
5791                                             priv->ieee->sec.active_key);
5792                 break;
5793         case SEC_LEVEL_1:
5794                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5795                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5796                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5797                 break;
5798         case SEC_LEVEL_0:
5799         default:
5800                 break;
5801         }
5802 }
5803
5804 static void ipw_adhoc_check(void *data)
5805 {
5806         struct ipw_priv *priv = data;
5807
5808         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5809             !(priv->config & CFG_ADHOC_PERSIST)) {
5810                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5811                           IPW_DL_STATE | IPW_DL_ASSOC,
5812                           "Missed beacon: %d - disassociate\n",
5813                           priv->missed_adhoc_beacons);
5814                 ipw_remove_current_network(priv);
5815                 ipw_disassociate(priv);
5816                 return;
5817         }
5818
5819         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5820                            priv->assoc_request.beacon_interval);
5821 }
5822
5823 static void ipw_bg_adhoc_check(void *data)
5824 {
5825         struct ipw_priv *priv = data;
5826         down(&priv->sem);
5827         ipw_adhoc_check(data);
5828         up(&priv->sem);
5829 }
5830
5831 #ifdef CONFIG_IPW_DEBUG
5832 static void ipw_debug_config(struct ipw_priv *priv)
5833 {
5834         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5835                        "[CFG 0x%08X]\n", priv->config);
5836         if (priv->config & CFG_STATIC_CHANNEL)
5837                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5838         else
5839                 IPW_DEBUG_INFO("Channel unlocked.\n");
5840         if (priv->config & CFG_STATIC_ESSID)
5841                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5842                                escape_essid(priv->essid, priv->essid_len));
5843         else
5844                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5845         if (priv->config & CFG_STATIC_BSSID)
5846                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5847                                MAC_ARG(priv->bssid));
5848         else
5849                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5850         if (priv->capability & CAP_PRIVACY_ON)
5851                 IPW_DEBUG_INFO("PRIVACY on\n");
5852         else
5853                 IPW_DEBUG_INFO("PRIVACY off\n");
5854         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5855 }
5856 #else
5857 #define ipw_debug_config(x) do {} while (0)
5858 #endif
5859
5860 static inline void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5861 {
5862         /* TODO: Verify that this works... */
5863         struct ipw_fixed_rate fr = {
5864                 .tx_rates = priv->rates_mask
5865         };
5866         u32 reg;
5867         u16 mask = 0;
5868
5869         /* Identify 'current FW band' and match it with the fixed
5870          * Tx rates */
5871
5872         switch (priv->ieee->freq_band) {
5873         case IEEE80211_52GHZ_BAND:      /* A only */
5874                 /* IEEE_A */
5875                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5876                         /* Invalid fixed rate mask */
5877                         IPW_DEBUG_WX
5878                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5879                         fr.tx_rates = 0;
5880                         break;
5881                 }
5882
5883                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5884                 break;
5885
5886         default:                /* 2.4Ghz or Mixed */
5887                 /* IEEE_B */
5888                 if (mode == IEEE_B) {
5889                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5890                                 /* Invalid fixed rate mask */
5891                                 IPW_DEBUG_WX
5892                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5893                                 fr.tx_rates = 0;
5894                         }
5895                         break;
5896                 }
5897
5898                 /* IEEE_G */
5899                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5900                                     IEEE80211_OFDM_RATES_MASK)) {
5901                         /* Invalid fixed rate mask */
5902                         IPW_DEBUG_WX
5903                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5904                         fr.tx_rates = 0;
5905                         break;
5906                 }
5907
5908                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5909                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5910                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5911                 }
5912
5913                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5914                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5915                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5916                 }
5917
5918                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5919                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5920                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5921                 }
5922
5923                 fr.tx_rates |= mask;
5924                 break;
5925         }
5926
5927         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5928         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5929 }
5930
5931 static void ipw_abort_scan(struct ipw_priv *priv)
5932 {
5933         int err;
5934
5935         if (priv->status & STATUS_SCAN_ABORTING) {
5936                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5937                 return;
5938         }
5939         priv->status |= STATUS_SCAN_ABORTING;
5940
5941         err = ipw_send_scan_abort(priv);
5942         if (err)
5943                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5944 }
5945
5946 static void ipw_add_scan_channels(struct ipw_priv *priv,
5947                                   struct ipw_scan_request_ext *scan,
5948                                   int scan_type)
5949 {
5950         int channel_index = 0;
5951         const struct ieee80211_geo *geo;
5952         int i;
5953
5954         geo = ipw_get_geo(priv->ieee);
5955
5956         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5957                 int start = channel_index;
5958                 for (i = 0; i < geo->a_channels; i++) {
5959                         if ((priv->status & STATUS_ASSOCIATED) &&
5960                             geo->a[i].channel == priv->channel)
5961                                 continue;
5962                         channel_index++;
5963                         scan->channels_list[channel_index] = geo->a[i].channel;
5964                         ipw_set_scan_type(scan, channel_index,
5965                                           geo->a[i].
5966                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5967                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5968                                           scan_type);
5969                 }
5970
5971                 if (start != channel_index) {
5972                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5973                             (channel_index - start);
5974                         channel_index++;
5975                 }
5976         }
5977
5978         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5979                 int start = channel_index;
5980                 if (priv->config & CFG_SPEED_SCAN) {
5981                         int index;
5982                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5983                                 /* nop out the list */
5984                                 [0] = 0
5985                         };
5986
5987                         u8 channel;
5988                         while (channel_index < IPW_SCAN_CHANNELS) {
5989                                 channel =
5990                                     priv->speed_scan[priv->speed_scan_pos];
5991                                 if (channel == 0) {
5992                                         priv->speed_scan_pos = 0;
5993                                         channel = priv->speed_scan[0];
5994                                 }
5995                                 if ((priv->status & STATUS_ASSOCIATED) &&
5996                                     channel == priv->channel) {
5997                                         priv->speed_scan_pos++;
5998                                         continue;
5999                                 }
6000
6001                                 /* If this channel has already been
6002                                  * added in scan, break from loop
6003                                  * and this will be the first channel
6004                                  * in the next scan.
6005                                  */
6006                                 if (channels[channel - 1] != 0)
6007                                         break;
6008
6009                                 channels[channel - 1] = 1;
6010                                 priv->speed_scan_pos++;
6011                                 channel_index++;
6012                                 scan->channels_list[channel_index] = channel;
6013                                 index =
6014                                     ipw_channel_to_index(priv->ieee, channel);
6015                                 ipw_set_scan_type(scan, channel_index,
6016                                                   geo->bg[index].
6017                                                   flags &
6018                                                   IEEE80211_CH_PASSIVE_ONLY ?
6019                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6020                                                   : scan_type);
6021                         }
6022                 } else {
6023                         for (i = 0; i < geo->bg_channels; i++) {
6024                                 if ((priv->status & STATUS_ASSOCIATED) &&
6025                                     geo->bg[i].channel == priv->channel)
6026                                         continue;
6027                                 channel_index++;
6028                                 scan->channels_list[channel_index] =
6029                                     geo->bg[i].channel;
6030                                 ipw_set_scan_type(scan, channel_index,
6031                                                   geo->bg[i].
6032                                                   flags &
6033                                                   IEEE80211_CH_PASSIVE_ONLY ?
6034                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6035                                                   : scan_type);
6036                         }
6037                 }
6038
6039                 if (start != channel_index) {
6040                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6041                             (channel_index - start);
6042                 }
6043         }
6044 }
6045
6046 static int ipw_request_scan(struct ipw_priv *priv)
6047 {
6048         struct ipw_scan_request_ext scan;
6049         int err = 0, scan_type;
6050
6051         if (!(priv->status & STATUS_INIT) ||
6052             (priv->status & STATUS_EXIT_PENDING))
6053                 return 0;
6054
6055         down(&priv->sem);
6056
6057         if (priv->status & STATUS_SCANNING) {
6058                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6059                 priv->status |= STATUS_SCAN_PENDING;
6060                 goto done;
6061         }
6062
6063         if (!(priv->status & STATUS_SCAN_FORCED) &&
6064             priv->status & STATUS_SCAN_ABORTING) {
6065                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6066                 priv->status |= STATUS_SCAN_PENDING;
6067                 goto done;
6068         }
6069
6070         if (priv->status & STATUS_RF_KILL_MASK) {
6071                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6072                 priv->status |= STATUS_SCAN_PENDING;
6073                 goto done;
6074         }
6075
6076         memset(&scan, 0, sizeof(scan));
6077
6078         if (priv->config & CFG_SPEED_SCAN)
6079                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6080                     cpu_to_le16(30);
6081         else
6082                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6083                     cpu_to_le16(20);
6084
6085         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6086             cpu_to_le16(20);
6087         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6088
6089         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6090
6091 #ifdef CONFIG_IPW2200_MONITOR
6092         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6093                 u8 channel;
6094                 u8 band = 0;
6095
6096                 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
6097                 case IEEE80211_52GHZ_BAND:
6098                         band = (u8) (IPW_A_MODE << 6) | 1;
6099                         channel = priv->channel;
6100                         break;
6101
6102                 case IEEE80211_24GHZ_BAND:
6103                         band = (u8) (IPW_B_MODE << 6) | 1;
6104                         channel = priv->channel;
6105                         break;
6106
6107                 default:
6108                         band = (u8) (IPW_B_MODE << 6) | 1;
6109                         channel = 9;
6110                         break;
6111                 }
6112
6113                 scan.channels_list[0] = band;
6114                 scan.channels_list[1] = channel;
6115                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6116
6117                 /* NOTE:  The card will sit on this channel for this time
6118                  * period.  Scan aborts are timing sensitive and frequently
6119                  * result in firmware restarts.  As such, it is best to
6120                  * set a small dwell_time here and just keep re-issuing
6121                  * scans.  Otherwise fast channel hopping will not actually
6122                  * hop channels.
6123                  *
6124                  * TODO: Move SPEED SCAN support to all modes and bands */
6125                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6126                     cpu_to_le16(2000);
6127         } else {
6128 #endif                          /* CONFIG_IPW2200_MONITOR */
6129                 /* If we are roaming, then make this a directed scan for the
6130                  * current network.  Otherwise, ensure that every other scan
6131                  * is a fast channel hop scan */
6132                 if ((priv->status & STATUS_ROAMING)
6133                     || (!(priv->status & STATUS_ASSOCIATED)
6134                         && (priv->config & CFG_STATIC_ESSID)
6135                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6136                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6137                         if (err) {
6138                                 IPW_DEBUG_HC("Attempt to send SSID command "
6139                                              "failed.\n");
6140                                 goto done;
6141                         }
6142
6143                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6144                 } else
6145                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6146
6147                 ipw_add_scan_channels(priv, &scan, scan_type);
6148 #ifdef CONFIG_IPW2200_MONITOR
6149         }
6150 #endif
6151
6152         err = ipw_send_scan_request_ext(priv, &scan);
6153         if (err) {
6154                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6155                 goto done;
6156         }
6157
6158         priv->status |= STATUS_SCANNING;
6159         priv->status &= ~STATUS_SCAN_PENDING;
6160         queue_delayed_work(priv->workqueue, &priv->scan_check,
6161                            IPW_SCAN_CHECK_WATCHDOG);
6162       done:
6163         up(&priv->sem);
6164         return err;
6165 }
6166
6167 static void ipw_bg_abort_scan(void *data)
6168 {
6169         struct ipw_priv *priv = data;
6170         down(&priv->sem);
6171         ipw_abort_scan(data);
6172         up(&priv->sem);
6173 }
6174
6175 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6176 {
6177         /* This is called when wpa_supplicant loads and closes the driver
6178          * interface. */
6179         priv->ieee->wpa_enabled = value;
6180         return 0;
6181 }
6182
6183 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6184 {
6185         struct ieee80211_device *ieee = priv->ieee;
6186         struct ieee80211_security sec = {
6187                 .flags = SEC_AUTH_MODE,
6188         };
6189         int ret = 0;
6190
6191         if (value & IW_AUTH_ALG_SHARED_KEY) {
6192                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6193                 ieee->open_wep = 0;
6194         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6195                 sec.auth_mode = WLAN_AUTH_OPEN;
6196                 ieee->open_wep = 1;
6197         } else
6198                 return -EINVAL;
6199
6200         if (ieee->set_security)
6201                 ieee->set_security(ieee->dev, &sec);
6202         else
6203                 ret = -EOPNOTSUPP;
6204
6205         return ret;
6206 }
6207
6208 void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, int wpa_ie_len)
6209 {
6210         /* make sure WPA is enabled */
6211         ipw_wpa_enable(priv, 1);
6212
6213         ipw_disassociate(priv);
6214 }
6215
6216 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6217                             char *capabilities, int length)
6218 {
6219         struct host_cmd cmd = {
6220                 .cmd = IPW_CMD_RSN_CAPABILITIES,
6221                 .len = length,
6222         };
6223
6224         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6225
6226         memcpy(cmd.param, capabilities, length);
6227         return ipw_send_cmd(priv, &cmd);
6228 }
6229
6230 /*
6231  * WE-18 support
6232  */
6233
6234 /* SIOCSIWGENIE */
6235 static int ipw_wx_set_genie(struct net_device *dev,
6236                             struct iw_request_info *info,
6237                             union iwreq_data *wrqu, char *extra)
6238 {
6239         struct ipw_priv *priv = ieee80211_priv(dev);
6240         struct ieee80211_device *ieee = priv->ieee;
6241         u8 *buf;
6242         int err = 0;
6243
6244         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6245             (wrqu->data.length && extra == NULL))
6246                 return -EINVAL;
6247
6248         //down(&priv->sem);
6249
6250         //if (!ieee->wpa_enabled) {
6251         //      err = -EOPNOTSUPP;
6252         //      goto out;
6253         //}
6254
6255         if (wrqu->data.length) {
6256                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6257                 if (buf == NULL) {
6258                         err = -ENOMEM;
6259                         goto out;
6260                 }
6261
6262                 memcpy(buf, extra, wrqu->data.length);
6263                 kfree(ieee->wpa_ie);
6264                 ieee->wpa_ie = buf;
6265                 ieee->wpa_ie_len = wrqu->data.length;
6266         } else {
6267                 kfree(ieee->wpa_ie);
6268                 ieee->wpa_ie = NULL;
6269                 ieee->wpa_ie_len = 0;
6270         }
6271
6272         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6273       out:
6274         //up(&priv->sem);
6275         return err;
6276 }
6277
6278 /* SIOCGIWGENIE */
6279 static int ipw_wx_get_genie(struct net_device *dev,
6280                             struct iw_request_info *info,
6281                             union iwreq_data *wrqu, char *extra)
6282 {
6283         struct ipw_priv *priv = ieee80211_priv(dev);
6284         struct ieee80211_device *ieee = priv->ieee;
6285         int err = 0;
6286
6287         //down(&priv->sem);
6288
6289         //if (!ieee->wpa_enabled) {
6290         //      err = -EOPNOTSUPP;
6291         //      goto out;
6292         //}
6293
6294         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6295                 wrqu->data.length = 0;
6296                 goto out;
6297         }
6298
6299         if (wrqu->data.length < ieee->wpa_ie_len) {
6300                 err = -E2BIG;
6301                 goto out;
6302         }
6303
6304         wrqu->data.length = ieee->wpa_ie_len;
6305         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6306
6307       out:
6308         //up(&priv->sem);
6309         return err;
6310 }
6311
6312 static int wext_cipher2level(int cipher)
6313 {
6314         switch (cipher) {
6315         case IW_AUTH_CIPHER_NONE:
6316                 return SEC_LEVEL_0;
6317         case IW_AUTH_CIPHER_WEP40:
6318         case IW_AUTH_CIPHER_WEP104:
6319                 return SEC_LEVEL_1;
6320         case IW_AUTH_CIPHER_TKIP:
6321                 return SEC_LEVEL_2;
6322         case IW_AUTH_CIPHER_CCMP:
6323                 return SEC_LEVEL_3;
6324         default:
6325                 return -1;
6326         }
6327 }
6328
6329 /* SIOCSIWAUTH */
6330 static int ipw_wx_set_auth(struct net_device *dev,
6331                            struct iw_request_info *info,
6332                            union iwreq_data *wrqu, char *extra)
6333 {
6334         struct ipw_priv *priv = ieee80211_priv(dev);
6335         struct ieee80211_device *ieee = priv->ieee;
6336         struct iw_param *param = &wrqu->param;
6337         struct ieee80211_crypt_data *crypt;
6338         unsigned long flags;
6339         int ret = 0;
6340
6341         switch (param->flags & IW_AUTH_INDEX) {
6342         case IW_AUTH_WPA_VERSION:
6343                 break;
6344         case IW_AUTH_CIPHER_PAIRWISE:
6345                 ipw_set_hw_decrypt_unicast(priv,
6346                                            wext_cipher2level(param->value));
6347                 break;
6348         case IW_AUTH_CIPHER_GROUP:
6349                 ipw_set_hw_decrypt_multicast(priv,
6350                                              wext_cipher2level(param->value));
6351                 break;
6352         case IW_AUTH_KEY_MGMT:
6353                 /*
6354                  * ipw2200 does not use these parameters
6355                  */
6356                 break;
6357
6358         case IW_AUTH_TKIP_COUNTERMEASURES:
6359                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6360                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6361                         IPW_WARNING("Can't set TKIP countermeasures: "
6362                                     "crypt not set!\n");
6363                         break;
6364                 }
6365
6366                 flags = crypt->ops->get_flags(crypt->priv);
6367
6368                 if (param->value)
6369                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6370                 else
6371                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6372
6373                 crypt->ops->set_flags(flags, crypt->priv);
6374
6375                 break;
6376
6377         case IW_AUTH_DROP_UNENCRYPTED:{
6378                         /* HACK:
6379                          *
6380                          * wpa_supplicant calls set_wpa_enabled when the driver
6381                          * is loaded and unloaded, regardless of if WPA is being
6382                          * used.  No other calls are made which can be used to
6383                          * determine if encryption will be used or not prior to
6384                          * association being expected.  If encryption is not being
6385                          * used, drop_unencrypted is set to false, else true -- we
6386                          * can use this to determine if the CAP_PRIVACY_ON bit should
6387                          * be set.
6388                          */
6389                         struct ieee80211_security sec = {
6390                                 .flags = SEC_ENABLED,
6391                                 .enabled = param->value,
6392                         };
6393                         priv->ieee->drop_unencrypted = param->value;
6394                         /* We only change SEC_LEVEL for open mode. Others
6395                          * are set by ipw_wpa_set_encryption.
6396                          */
6397                         if (!param->value) {
6398                                 sec.flags |= SEC_LEVEL;
6399                                 sec.level = SEC_LEVEL_0;
6400                         } else {
6401                                 sec.flags |= SEC_LEVEL;
6402                                 sec.level = SEC_LEVEL_1;
6403                         }
6404                         if (priv->ieee->set_security)
6405                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6406                         break;
6407                 }
6408
6409         case IW_AUTH_80211_AUTH_ALG:
6410                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6411                 break;
6412
6413         case IW_AUTH_WPA_ENABLED:
6414                 ret = ipw_wpa_enable(priv, param->value);
6415                 break;
6416
6417         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6418                 ieee->ieee802_1x = param->value;
6419                 break;
6420
6421                 //case IW_AUTH_ROAMING_CONTROL:
6422         case IW_AUTH_PRIVACY_INVOKED:
6423                 ieee->privacy_invoked = param->value;
6424                 break;
6425
6426         default:
6427                 return -EOPNOTSUPP;
6428         }
6429         return ret;
6430 }
6431
6432 /* SIOCGIWAUTH */
6433 static int ipw_wx_get_auth(struct net_device *dev,
6434                            struct iw_request_info *info,
6435                            union iwreq_data *wrqu, char *extra)
6436 {
6437         struct ipw_priv *priv = ieee80211_priv(dev);
6438         struct ieee80211_device *ieee = priv->ieee;
6439         struct ieee80211_crypt_data *crypt;
6440         struct iw_param *param = &wrqu->param;
6441         int ret = 0;
6442
6443         switch (param->flags & IW_AUTH_INDEX) {
6444         case IW_AUTH_WPA_VERSION:
6445         case IW_AUTH_CIPHER_PAIRWISE:
6446         case IW_AUTH_CIPHER_GROUP:
6447         case IW_AUTH_KEY_MGMT:
6448                 /*
6449                  * wpa_supplicant will control these internally
6450                  */
6451                 ret = -EOPNOTSUPP;
6452                 break;
6453
6454         case IW_AUTH_TKIP_COUNTERMEASURES:
6455                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6456                 if (!crypt || !crypt->ops->get_flags) {
6457                         IPW_WARNING("Can't get TKIP countermeasures: "
6458                                     "crypt not set!\n");
6459                         break;
6460                 }
6461
6462                 param->value = (crypt->ops->get_flags(crypt->priv) &
6463                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6464
6465                 break;
6466
6467         case IW_AUTH_DROP_UNENCRYPTED:
6468                 param->value = ieee->drop_unencrypted;
6469                 break;
6470
6471         case IW_AUTH_80211_AUTH_ALG:
6472                 param->value = ieee->sec.auth_mode;
6473                 break;
6474
6475         case IW_AUTH_WPA_ENABLED:
6476                 param->value = ieee->wpa_enabled;
6477                 break;
6478
6479         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6480                 param->value = ieee->ieee802_1x;
6481                 break;
6482
6483         case IW_AUTH_ROAMING_CONTROL:
6484         case IW_AUTH_PRIVACY_INVOKED:
6485                 param->value = ieee->privacy_invoked;
6486                 break;
6487
6488         default:
6489                 return -EOPNOTSUPP;
6490         }
6491         return 0;
6492 }
6493
6494 /* SIOCSIWENCODEEXT */
6495 static int ipw_wx_set_encodeext(struct net_device *dev,
6496                                 struct iw_request_info *info,
6497                                 union iwreq_data *wrqu, char *extra)
6498 {
6499         struct ipw_priv *priv = ieee80211_priv(dev);
6500         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6501
6502         if (hwcrypto) {
6503                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6504                         /* IPW HW can't build TKIP MIC,
6505                            host decryption still needed */
6506                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6507                                 priv->ieee->host_mc_decrypt = 1;
6508                         else {
6509                                 priv->ieee->host_encrypt = 0;
6510                                 priv->ieee->host_encrypt_msdu = 1;
6511                                 priv->ieee->host_decrypt = 1;
6512                         }
6513                 } else {
6514                         priv->ieee->host_encrypt = 0;
6515                         priv->ieee->host_encrypt_msdu = 0;
6516                         priv->ieee->host_decrypt = 0;
6517                         priv->ieee->host_mc_decrypt = 0;
6518                 }
6519         }
6520
6521         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6522 }
6523
6524 /* SIOCGIWENCODEEXT */
6525 static int ipw_wx_get_encodeext(struct net_device *dev,
6526                                 struct iw_request_info *info,
6527                                 union iwreq_data *wrqu, char *extra)
6528 {
6529         struct ipw_priv *priv = ieee80211_priv(dev);
6530         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6531 }
6532
6533 /* SIOCSIWMLME */
6534 static int ipw_wx_set_mlme(struct net_device *dev,
6535                            struct iw_request_info *info,
6536                            union iwreq_data *wrqu, char *extra)
6537 {
6538         struct ipw_priv *priv = ieee80211_priv(dev);
6539         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6540         u16 reason;
6541
6542         reason = cpu_to_le16(mlme->reason_code);
6543
6544         switch (mlme->cmd) {
6545         case IW_MLME_DEAUTH:
6546                 // silently ignore
6547                 break;
6548
6549         case IW_MLME_DISASSOC:
6550                 ipw_disassociate(priv);
6551                 break;
6552
6553         default:
6554                 return -EOPNOTSUPP;
6555         }
6556         return 0;
6557 }
6558
6559 #ifdef CONFIG_IPW_QOS
6560
6561 /* QoS */
6562 /*
6563 * get the modulation type of the current network or
6564 * the card current mode
6565 */
6566 u8 ipw_qos_current_mode(struct ipw_priv * priv)
6567 {
6568         u8 mode = 0;
6569
6570         if (priv->status & STATUS_ASSOCIATED) {
6571                 unsigned long flags;
6572
6573                 spin_lock_irqsave(&priv->ieee->lock, flags);
6574                 mode = priv->assoc_network->mode;
6575                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6576         } else {
6577                 mode = priv->ieee->mode;
6578         }
6579         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6580         return mode;
6581 }
6582
6583 /*
6584 * Handle management frame beacon and probe response
6585 */
6586 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6587                                          int active_network,
6588                                          struct ieee80211_network *network)
6589 {
6590         u32 size = sizeof(struct ieee80211_qos_parameters);
6591
6592         if (network->capability & WLAN_CAPABILITY_IBSS)
6593                 network->qos_data.active = network->qos_data.supported;
6594
6595         if (network->flags & NETWORK_HAS_QOS_MASK) {
6596                 if (active_network &&
6597                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6598                         network->qos_data.active = network->qos_data.supported;
6599
6600                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6601                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6602                     (network->qos_data.old_param_count !=
6603                      network->qos_data.param_count)) {
6604                         network->qos_data.old_param_count =
6605                             network->qos_data.param_count;
6606                         schedule_work(&priv->qos_activate);
6607                         IPW_DEBUG_QOS("QoS parameters change call "
6608                                       "qos_activate\n");
6609                 }
6610         } else {
6611                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6612                         memcpy(&network->qos_data.parameters,
6613                                &def_parameters_CCK, size);
6614                 else
6615                         memcpy(&network->qos_data.parameters,
6616                                &def_parameters_OFDM, size);
6617
6618                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6619                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6620                         schedule_work(&priv->qos_activate);
6621                 }
6622
6623                 network->qos_data.active = 0;
6624                 network->qos_data.supported = 0;
6625         }
6626         if ((priv->status & STATUS_ASSOCIATED) &&
6627             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6628                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6629                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6630                             !(network->flags & NETWORK_EMPTY_ESSID))
6631                                 if ((network->ssid_len ==
6632                                      priv->assoc_network->ssid_len) &&
6633                                     !memcmp(network->ssid,
6634                                             priv->assoc_network->ssid,
6635                                             network->ssid_len)) {
6636                                         queue_work(priv->workqueue,
6637                                                    &priv->merge_networks);
6638                                 }
6639         }
6640
6641         return 0;
6642 }
6643
6644 /*
6645 * This function set up the firmware to support QoS. It sends
6646 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6647 */
6648 static int ipw_qos_activate(struct ipw_priv *priv,
6649                             struct ieee80211_qos_data *qos_network_data)
6650 {
6651         int err;
6652         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6653         struct ieee80211_qos_parameters *active_one = NULL;
6654         u32 size = sizeof(struct ieee80211_qos_parameters);
6655         u32 burst_duration;
6656         int i;
6657         u8 type;
6658
6659         type = ipw_qos_current_mode(priv);
6660
6661         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6662         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6663         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6664         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6665
6666         if (qos_network_data == NULL) {
6667                 if (type == IEEE_B) {
6668                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6669                         active_one = &def_parameters_CCK;
6670                 } else
6671                         active_one = &def_parameters_OFDM;
6672
6673                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6674                 burst_duration = ipw_qos_get_burst_duration(priv);
6675                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6676                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6677                             (u16) burst_duration;
6678         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6679                 if (type == IEEE_B) {
6680                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6681                                       type);
6682                         if (priv->qos_data.qos_enable == 0)
6683                                 active_one = &def_parameters_CCK;
6684                         else
6685                                 active_one = priv->qos_data.def_qos_parm_CCK;
6686                 } else {
6687                         if (priv->qos_data.qos_enable == 0)
6688                                 active_one = &def_parameters_OFDM;
6689                         else
6690                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6691                 }
6692                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6693         } else {
6694                 unsigned long flags;
6695                 int active;
6696
6697                 spin_lock_irqsave(&priv->ieee->lock, flags);
6698                 active_one = &(qos_network_data->parameters);
6699                 qos_network_data->old_param_count =
6700                     qos_network_data->param_count;
6701                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6702                 active = qos_network_data->supported;
6703                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6704
6705                 if (active == 0) {
6706                         burst_duration = ipw_qos_get_burst_duration(priv);
6707                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6708                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6709                                     tx_op_limit[i] = (u16) burst_duration;
6710                 }
6711         }
6712
6713         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6714         err = ipw_send_qos_params_command(priv,
6715                                           (struct ieee80211_qos_parameters *)
6716                                           &(qos_parameters[0]));
6717         if (err)
6718                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6719
6720         return err;
6721 }
6722
6723 /*
6724 * send IPW_CMD_WME_INFO to the firmware
6725 */
6726 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6727 {
6728         int ret = 0;
6729         struct ieee80211_qos_information_element qos_info;
6730
6731         if (priv == NULL)
6732                 return -1;
6733
6734         qos_info.elementID = QOS_ELEMENT_ID;
6735         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6736
6737         qos_info.version = QOS_VERSION_1;
6738         qos_info.ac_info = 0;
6739
6740         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6741         qos_info.qui_type = QOS_OUI_TYPE;
6742         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6743
6744         ret = ipw_send_qos_info_command(priv, &qos_info);
6745         if (ret != 0) {
6746                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6747         }
6748         return ret;
6749 }
6750
6751 /*
6752 * Set the QoS parameter with the association request structure
6753 */
6754 static int ipw_qos_association(struct ipw_priv *priv,
6755                                struct ieee80211_network *network)
6756 {
6757         int err = 0;
6758         struct ieee80211_qos_data *qos_data = NULL;
6759         struct ieee80211_qos_data ibss_data = {
6760                 .supported = 1,
6761                 .active = 1,
6762         };
6763
6764         switch (priv->ieee->iw_mode) {
6765         case IW_MODE_ADHOC:
6766                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
6767                         BUG();
6768
6769                 qos_data = &ibss_data;
6770                 break;
6771
6772         case IW_MODE_INFRA:
6773                 qos_data = &network->qos_data;
6774                 break;
6775
6776         default:
6777                 BUG();
6778                 break;
6779         }
6780
6781         err = ipw_qos_activate(priv, qos_data);
6782         if (err) {
6783                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6784                 return err;
6785         }
6786
6787         if (priv->qos_data.qos_enable && qos_data->supported) {
6788                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6789                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6790                 return ipw_qos_set_info_element(priv);
6791         }
6792
6793         return 0;
6794 }
6795
6796 /*
6797 * handling the beaconing responces. if we get different QoS setting
6798 * of the network from the the associated setting adjust the QoS
6799 * setting
6800 */
6801 static int ipw_qos_association_resp(struct ipw_priv *priv,
6802                                     struct ieee80211_network *network)
6803 {
6804         int ret = 0;
6805         unsigned long flags;
6806         u32 size = sizeof(struct ieee80211_qos_parameters);
6807         int set_qos_param = 0;
6808
6809         if ((priv == NULL) || (network == NULL) ||
6810             (priv->assoc_network == NULL))
6811                 return ret;
6812
6813         if (!(priv->status & STATUS_ASSOCIATED))
6814                 return ret;
6815
6816         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6817                 return ret;
6818
6819         spin_lock_irqsave(&priv->ieee->lock, flags);
6820         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6821                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6822                        sizeof(struct ieee80211_qos_data));
6823                 priv->assoc_network->qos_data.active = 1;
6824                 if ((network->qos_data.old_param_count !=
6825                      network->qos_data.param_count)) {
6826                         set_qos_param = 1;
6827                         network->qos_data.old_param_count =
6828                             network->qos_data.param_count;
6829                 }
6830
6831         } else {
6832                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6833                         memcpy(&priv->assoc_network->qos_data.parameters,
6834                                &def_parameters_CCK, size);
6835                 else
6836                         memcpy(&priv->assoc_network->qos_data.parameters,
6837                                &def_parameters_OFDM, size);
6838                 priv->assoc_network->qos_data.active = 0;
6839                 priv->assoc_network->qos_data.supported = 0;
6840                 set_qos_param = 1;
6841         }
6842
6843         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6844
6845         if (set_qos_param == 1)
6846                 schedule_work(&priv->qos_activate);
6847
6848         return ret;
6849 }
6850
6851 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6852 {
6853         u32 ret = 0;
6854
6855         if ((priv == NULL))
6856                 return 0;
6857
6858         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6859                 ret = priv->qos_data.burst_duration_CCK;
6860         else
6861                 ret = priv->qos_data.burst_duration_OFDM;
6862
6863         return ret;
6864 }
6865
6866 /*
6867 * Initialize the setting of QoS global
6868 */
6869 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6870                          int burst_enable, u32 burst_duration_CCK,
6871                          u32 burst_duration_OFDM)
6872 {
6873         priv->qos_data.qos_enable = enable;
6874
6875         if (priv->qos_data.qos_enable) {
6876                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6877                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6878                 IPW_DEBUG_QOS("QoS is enabled\n");
6879         } else {
6880                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6881                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6882                 IPW_DEBUG_QOS("QoS is not enabled\n");
6883         }
6884
6885         priv->qos_data.burst_enable = burst_enable;
6886
6887         if (burst_enable) {
6888                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6889                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6890         } else {
6891                 priv->qos_data.burst_duration_CCK = 0;
6892                 priv->qos_data.burst_duration_OFDM = 0;
6893         }
6894 }
6895
6896 /*
6897 * map the packet priority to the right TX Queue
6898 */
6899 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6900 {
6901         if (priority > 7 || !priv->qos_data.qos_enable)
6902                 priority = 0;
6903
6904         return from_priority_to_tx_queue[priority] - 1;
6905 }
6906
6907 /*
6908 * add QoS parameter to the TX command
6909 */
6910 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6911                                         u16 priority,
6912                                         struct tfd_data *tfd, u8 unicast)
6913 {
6914         int ret = 0;
6915         int tx_queue_id = 0;
6916         struct ieee80211_qos_data *qos_data = NULL;
6917         int active, supported;
6918         unsigned long flags;
6919
6920         if (!(priv->status & STATUS_ASSOCIATED))
6921                 return 0;
6922
6923         qos_data = &priv->assoc_network->qos_data;
6924
6925         spin_lock_irqsave(&priv->ieee->lock, flags);
6926
6927         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6928                 if (unicast == 0)
6929                         qos_data->active = 0;
6930                 else
6931                         qos_data->active = qos_data->supported;
6932         }
6933
6934         active = qos_data->active;
6935         supported = qos_data->supported;
6936
6937         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6938
6939         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
6940                       "unicast %d\n",
6941                       priv->qos_data.qos_enable, active, supported, unicast);
6942         if (active && priv->qos_data.qos_enable) {
6943                 ret = from_priority_to_tx_queue[priority];
6944                 tx_queue_id = ret - 1;
6945                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6946                 if (priority <= 7) {
6947                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6948                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6949                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
6950                             IEEE80211_STYPE_QOS_DATA;
6951
6952                         if (priv->qos_data.qos_no_ack_mask &
6953                             (1UL << tx_queue_id)) {
6954                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6955                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6956                                     CTRL_QOS_NO_ACK;
6957                         }
6958                 }
6959         }
6960
6961         return ret;
6962 }
6963
6964 /*
6965 * background support to run QoS activate functionality
6966 */
6967 static void ipw_bg_qos_activate(void *data)
6968 {
6969         struct ipw_priv *priv = data;
6970
6971         if (priv == NULL)
6972                 return;
6973
6974         down(&priv->sem);
6975
6976         if (priv->status & STATUS_ASSOCIATED)
6977                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
6978
6979         up(&priv->sem);
6980 }
6981
6982 static int ipw_handle_probe_response(struct net_device *dev,
6983                                      struct ieee80211_probe_response *resp,
6984                                      struct ieee80211_network *network)
6985 {
6986         struct ipw_priv *priv = ieee80211_priv(dev);
6987         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6988                               (network == priv->assoc_network));
6989
6990         ipw_qos_handle_probe_response(priv, active_network, network);
6991
6992         return 0;
6993 }
6994
6995 static int ipw_handle_beacon(struct net_device *dev,
6996                              struct ieee80211_beacon *resp,
6997                              struct ieee80211_network *network)
6998 {
6999         struct ipw_priv *priv = ieee80211_priv(dev);
7000         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7001                               (network == priv->assoc_network));
7002
7003         ipw_qos_handle_probe_response(priv, active_network, network);
7004
7005         return 0;
7006 }
7007
7008 static int ipw_handle_assoc_response(struct net_device *dev,
7009                                      struct ieee80211_assoc_response *resp,
7010                                      struct ieee80211_network *network)
7011 {
7012         struct ipw_priv *priv = ieee80211_priv(dev);
7013         ipw_qos_association_resp(priv, network);
7014         return 0;
7015 }
7016
7017 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7018                                        *qos_param)
7019 {
7020         struct host_cmd cmd = {
7021                 .cmd = IPW_CMD_QOS_PARAMETERS,
7022                 .len = (sizeof(struct ieee80211_qos_parameters) * 3)
7023         };
7024
7025         memcpy(cmd.param, qos_param, sizeof(*qos_param) * 3);
7026         return ipw_send_cmd(priv, &cmd);
7027 }
7028
7029 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7030                                      *qos_param)
7031 {
7032         struct host_cmd cmd = {
7033                 .cmd = IPW_CMD_WME_INFO,
7034                 .len = sizeof(*qos_param)
7035         };
7036
7037         memcpy(cmd.param, qos_param, sizeof(*qos_param));
7038         return ipw_send_cmd(priv, &cmd);
7039 }
7040
7041 #endif                          /* CONFIG_IPW_QOS */
7042
7043 static int ipw_associate_network(struct ipw_priv *priv,
7044                                  struct ieee80211_network *network,
7045                                  struct ipw_supported_rates *rates, int roaming)
7046 {
7047         int err;
7048
7049         if (priv->config & CFG_FIXED_RATE)
7050                 ipw_set_fixed_rate(priv, network->mode);
7051
7052         if (!(priv->config & CFG_STATIC_ESSID)) {
7053                 priv->essid_len = min(network->ssid_len,
7054                                       (u8) IW_ESSID_MAX_SIZE);
7055                 memcpy(priv->essid, network->ssid, priv->essid_len);
7056         }
7057
7058         network->last_associate = jiffies;
7059
7060         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7061         priv->assoc_request.channel = network->channel;
7062         if ((priv->capability & CAP_PRIVACY_ON) &&
7063             (priv->capability & CAP_SHARED_KEY)) {
7064                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7065                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7066
7067                 if ((priv->capability & CAP_PRIVACY_ON) &&
7068                     (priv->ieee->sec.level == SEC_LEVEL_1) &&
7069                     !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
7070                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7071         } else {
7072                 priv->assoc_request.auth_type = AUTH_OPEN;
7073                 priv->assoc_request.auth_key = 0;
7074         }
7075
7076         if (priv->ieee->wpa_ie_len) {
7077                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7078                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7079                                  priv->ieee->wpa_ie_len);
7080         }
7081
7082         /*
7083          * It is valid for our ieee device to support multiple modes, but
7084          * when it comes to associating to a given network we have to choose
7085          * just one mode.
7086          */
7087         if (network->mode & priv->ieee->mode & IEEE_A)
7088                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7089         else if (network->mode & priv->ieee->mode & IEEE_G)
7090                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7091         else if (network->mode & priv->ieee->mode & IEEE_B)
7092                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7093
7094         priv->assoc_request.capability = network->capability;
7095         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7096             && !(priv->config & CFG_PREAMBLE_LONG)) {
7097                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7098         } else {
7099                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7100
7101                 /* Clear the short preamble if we won't be supporting it */
7102                 priv->assoc_request.capability &=
7103                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7104         }
7105
7106         /* Clear capability bits that aren't used in Ad Hoc */
7107         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7108                 priv->assoc_request.capability &=
7109                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7110
7111         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7112                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7113                         roaming ? "Rea" : "A",
7114                         escape_essid(priv->essid, priv->essid_len),
7115                         network->channel,
7116                         ipw_modes[priv->assoc_request.ieee_mode],
7117                         rates->num_rates,
7118                         (priv->assoc_request.preamble_length ==
7119                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7120                         network->capability &
7121                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7122                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7123                         priv->capability & CAP_PRIVACY_ON ?
7124                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7125                          "(open)") : "",
7126                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7127                         priv->capability & CAP_PRIVACY_ON ?
7128                         '1' + priv->ieee->sec.active_key : '.',
7129                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7130
7131         priv->assoc_request.beacon_interval = network->beacon_interval;
7132         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7133             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7134                 priv->assoc_request.assoc_type = HC_IBSS_START;
7135                 priv->assoc_request.assoc_tsf_msw = 0;
7136                 priv->assoc_request.assoc_tsf_lsw = 0;
7137         } else {
7138                 if (unlikely(roaming))
7139                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7140                 else
7141                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7142                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7143                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7144         }
7145
7146         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7147
7148         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7149                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7150                 priv->assoc_request.atim_window = network->atim_window;
7151         } else {
7152                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7153                 priv->assoc_request.atim_window = 0;
7154         }
7155
7156         priv->assoc_request.listen_interval = network->listen_interval;
7157
7158         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7159         if (err) {
7160                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7161                 return err;
7162         }
7163
7164         rates->ieee_mode = priv->assoc_request.ieee_mode;
7165         rates->purpose = IPW_RATE_CONNECT;
7166         ipw_send_supported_rates(priv, rates);
7167
7168         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7169                 priv->sys_config.dot11g_auto_detection = 1;
7170         else
7171                 priv->sys_config.dot11g_auto_detection = 0;
7172
7173         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7174                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7175         else
7176                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7177
7178         err = ipw_send_system_config(priv, &priv->sys_config);
7179         if (err) {
7180                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7181                 return err;
7182         }
7183
7184         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7185         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7186         if (err) {
7187                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7188                 return err;
7189         }
7190
7191         /*
7192          * If preemption is enabled, it is possible for the association
7193          * to complete before we return from ipw_send_associate.  Therefore
7194          * we have to be sure and update our priviate data first.
7195          */
7196         priv->channel = network->channel;
7197         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7198         priv->status |= STATUS_ASSOCIATING;
7199         priv->status &= ~STATUS_SECURITY_UPDATED;
7200
7201         priv->assoc_network = network;
7202
7203 #ifdef CONFIG_IPW_QOS
7204         ipw_qos_association(priv, network);
7205 #endif
7206
7207         err = ipw_send_associate(priv, &priv->assoc_request);
7208         if (err) {
7209                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7210                 return err;
7211         }
7212
7213         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7214                   escape_essid(priv->essid, priv->essid_len),
7215                   MAC_ARG(priv->bssid));
7216
7217         return 0;
7218 }
7219
7220 static void ipw_roam(void *data)
7221 {
7222         struct ipw_priv *priv = data;
7223         struct ieee80211_network *network = NULL;
7224         struct ipw_network_match match = {
7225                 .network = priv->assoc_network
7226         };
7227
7228         /* The roaming process is as follows:
7229          *
7230          * 1.  Missed beacon threshold triggers the roaming process by
7231          *     setting the status ROAM bit and requesting a scan.
7232          * 2.  When the scan completes, it schedules the ROAM work
7233          * 3.  The ROAM work looks at all of the known networks for one that
7234          *     is a better network than the currently associated.  If none
7235          *     found, the ROAM process is over (ROAM bit cleared)
7236          * 4.  If a better network is found, a disassociation request is
7237          *     sent.
7238          * 5.  When the disassociation completes, the roam work is again
7239          *     scheduled.  The second time through, the driver is no longer
7240          *     associated, and the newly selected network is sent an
7241          *     association request.
7242          * 6.  At this point ,the roaming process is complete and the ROAM
7243          *     status bit is cleared.
7244          */
7245
7246         /* If we are no longer associated, and the roaming bit is no longer
7247          * set, then we are not actively roaming, so just return */
7248         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7249                 return;
7250
7251         if (priv->status & STATUS_ASSOCIATED) {
7252                 /* First pass through ROAM process -- look for a better
7253                  * network */
7254                 unsigned long flags;
7255                 u8 rssi = priv->assoc_network->stats.rssi;
7256                 priv->assoc_network->stats.rssi = -128;
7257                 spin_lock_irqsave(&priv->ieee->lock, flags);
7258                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7259                         if (network != priv->assoc_network)
7260                                 ipw_best_network(priv, &match, network, 1);
7261                 }
7262                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7263                 priv->assoc_network->stats.rssi = rssi;
7264
7265                 if (match.network == priv->assoc_network) {
7266                         IPW_DEBUG_ASSOC("No better APs in this network to "
7267                                         "roam to.\n");
7268                         priv->status &= ~STATUS_ROAMING;
7269                         ipw_debug_config(priv);
7270                         return;
7271                 }
7272
7273                 ipw_send_disassociate(priv, 1);
7274                 priv->assoc_network = match.network;
7275
7276                 return;
7277         }
7278
7279         /* Second pass through ROAM process -- request association */
7280         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7281         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7282         priv->status &= ~STATUS_ROAMING;
7283 }
7284
7285 static void ipw_bg_roam(void *data)
7286 {
7287         struct ipw_priv *priv = data;
7288         down(&priv->sem);
7289         ipw_roam(data);
7290         up(&priv->sem);
7291 }
7292
7293 static int ipw_associate(void *data)
7294 {
7295         struct ipw_priv *priv = data;
7296
7297         struct ieee80211_network *network = NULL;
7298         struct ipw_network_match match = {
7299                 .network = NULL
7300         };
7301         struct ipw_supported_rates *rates;
7302         struct list_head *element;
7303         unsigned long flags;
7304
7305         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7306                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7307                 return 0;
7308         }
7309
7310         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7311                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7312                                 "progress)\n");
7313                 return 0;
7314         }
7315
7316         if (priv->status & STATUS_DISASSOCIATING) {
7317                 IPW_DEBUG_ASSOC("Not attempting association (in "
7318                                 "disassociating)\n ");
7319                 queue_work(priv->workqueue, &priv->associate);
7320                 return 0;
7321         }
7322
7323         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7324                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7325                                 "initialized)\n");
7326                 return 0;
7327         }
7328
7329         if (!(priv->config & CFG_ASSOCIATE) &&
7330             !(priv->config & (CFG_STATIC_ESSID |
7331                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7332                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7333                 return 0;
7334         }
7335
7336         /* Protect our use of the network_list */
7337         spin_lock_irqsave(&priv->ieee->lock, flags);
7338         list_for_each_entry(network, &priv->ieee->network_list, list)
7339             ipw_best_network(priv, &match, network, 0);
7340
7341         network = match.network;
7342         rates = &match.rates;
7343
7344         if (network == NULL &&
7345             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7346             priv->config & CFG_ADHOC_CREATE &&
7347             priv->config & CFG_STATIC_ESSID &&
7348             priv->config & CFG_STATIC_CHANNEL &&
7349             !list_empty(&priv->ieee->network_free_list)) {
7350                 element = priv->ieee->network_free_list.next;
7351                 network = list_entry(element, struct ieee80211_network, list);
7352                 ipw_adhoc_create(priv, network);
7353                 rates = &priv->rates;
7354                 list_del(element);
7355                 list_add_tail(&network->list, &priv->ieee->network_list);
7356         }
7357         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7358
7359         /* If we reached the end of the list, then we don't have any valid
7360          * matching APs */
7361         if (!network) {
7362                 ipw_debug_config(priv);
7363
7364                 if (!(priv->status & STATUS_SCANNING)) {
7365                         if (!(priv->config & CFG_SPEED_SCAN))
7366                                 queue_delayed_work(priv->workqueue,
7367                                                    &priv->request_scan,
7368                                                    SCAN_INTERVAL);
7369                         else
7370                                 queue_work(priv->workqueue,
7371                                            &priv->request_scan);
7372                 }
7373
7374                 return 0;
7375         }
7376
7377         ipw_associate_network(priv, network, rates, 0);
7378
7379         return 1;
7380 }
7381
7382 static void ipw_bg_associate(void *data)
7383 {
7384         struct ipw_priv *priv = data;
7385         down(&priv->sem);
7386         ipw_associate(data);
7387         up(&priv->sem);
7388 }
7389
7390 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7391                                       struct sk_buff *skb)
7392 {
7393         struct ieee80211_hdr *hdr;
7394         u16 fc;
7395
7396         hdr = (struct ieee80211_hdr *)skb->data;
7397         fc = le16_to_cpu(hdr->frame_ctl);
7398         if (!(fc & IEEE80211_FCTL_PROTECTED))
7399                 return;
7400
7401         fc &= ~IEEE80211_FCTL_PROTECTED;
7402         hdr->frame_ctl = cpu_to_le16(fc);
7403         switch (priv->ieee->sec.level) {
7404         case SEC_LEVEL_3:
7405                 /* Remove CCMP HDR */
7406                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7407                         skb->data + IEEE80211_3ADDR_LEN + 8,
7408                         skb->len - IEEE80211_3ADDR_LEN - 8);
7409                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7410                 break;
7411         case SEC_LEVEL_2:
7412                 break;
7413         case SEC_LEVEL_1:
7414                 /* Remove IV */
7415                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7416                         skb->data + IEEE80211_3ADDR_LEN + 4,
7417                         skb->len - IEEE80211_3ADDR_LEN - 4);
7418                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7419                 break;
7420         case SEC_LEVEL_0:
7421                 break;
7422         default:
7423                 printk(KERN_ERR "Unknow security level %d\n",
7424                        priv->ieee->sec.level);
7425                 break;
7426         }
7427 }
7428
7429 static void ipw_handle_data_packet(struct ipw_priv *priv,
7430                                    struct ipw_rx_mem_buffer *rxb,
7431                                    struct ieee80211_rx_stats *stats)
7432 {
7433         struct ieee80211_hdr_4addr *hdr;
7434         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7435
7436         /* We received data from the HW, so stop the watchdog */
7437         priv->net_dev->trans_start = jiffies;
7438
7439         /* We only process data packets if the
7440          * interface is open */
7441         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7442                      skb_tailroom(rxb->skb))) {
7443                 priv->ieee->stats.rx_errors++;
7444                 priv->wstats.discard.misc++;
7445                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7446                 return;
7447         } else if (unlikely(!netif_running(priv->net_dev))) {
7448                 priv->ieee->stats.rx_dropped++;
7449                 priv->wstats.discard.misc++;
7450                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7451                 return;
7452         }
7453
7454         /* Advance skb->data to the start of the actual payload */
7455         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7456
7457         /* Set the size of the skb to the size of the frame */
7458         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7459
7460         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7461
7462         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7463         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7464         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7465             (is_multicast_ether_addr(hdr->addr1) ?
7466              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7467                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7468
7469         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7470                 priv->ieee->stats.rx_errors++;
7471         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7472                 rxb->skb = NULL;
7473                 __ipw_led_activity_on(priv);
7474         }
7475 }
7476
7477 #ifdef CONFIG_IEEE80211_RADIOTAP
7478 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7479                                            struct ipw_rx_mem_buffer *rxb,
7480                                            struct ieee80211_rx_stats *stats)
7481 {
7482         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7483         struct ipw_rx_frame *frame = &pkt->u.frame;
7484
7485         /* initial pull of some data */
7486         u16 received_channel = frame->received_channel;
7487         u8 antennaAndPhy = frame->antennaAndPhy;
7488         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7489         u16 pktrate = frame->rate;
7490
7491         /* Magic struct that slots into the radiotap header -- no reason
7492          * to build this manually element by element, we can write it much
7493          * more efficiently than we can parse it. ORDER MATTERS HERE */
7494         struct ipw_rt_hdr {
7495                 struct ieee80211_radiotap_header rt_hdr;
7496                 u8 rt_flags;    /* radiotap packet flags */
7497                 u8 rt_rate;     /* rate in 500kb/s */
7498                 u16 rt_channel; /* channel in mhz */
7499                 u16 rt_chbitmask;       /* channel bitfield */
7500                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7501                 u8 rt_antenna;  /* antenna number */
7502         } *ipw_rt;
7503
7504         short len = le16_to_cpu(pkt->u.frame.length);
7505
7506         /* We received data from the HW, so stop the watchdog */
7507         priv->net_dev->trans_start = jiffies;
7508
7509         /* We only process data packets if the
7510          * interface is open */
7511         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7512                      skb_tailroom(rxb->skb))) {
7513                 priv->ieee->stats.rx_errors++;
7514                 priv->wstats.discard.misc++;
7515                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7516                 return;
7517         } else if (unlikely(!netif_running(priv->net_dev))) {
7518                 priv->ieee->stats.rx_dropped++;
7519                 priv->wstats.discard.misc++;
7520                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7521                 return;
7522         }
7523
7524         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7525          * that now */
7526         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7527                 /* FIXME: Should alloc bigger skb instead */
7528                 priv->ieee->stats.rx_dropped++;
7529                 priv->wstats.discard.misc++;
7530                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7531                 return;
7532         }
7533
7534         /* copy the frame itself */
7535         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7536                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7537
7538         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7539          * part of our real header, saves a little time.
7540          *
7541          * No longer necessary since we fill in all our data.  Purge before merging
7542          * patch officially.
7543          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7544          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7545          */
7546
7547         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7548
7549         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7550         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7551         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7552
7553         /* Big bitfield of all the fields we provide in radiotap */
7554         ipw_rt->rt_hdr.it_present =
7555             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7556              (1 << IEEE80211_RADIOTAP_RATE) |
7557              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7558              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7559              (1 << IEEE80211_RADIOTAP_ANTENNA));
7560
7561         /* Zero the flags, we'll add to them as we go */
7562         ipw_rt->rt_flags = 0;
7563
7564         /* Convert signal to DBM */
7565         ipw_rt->rt_dbmsignal = antsignal;
7566
7567         /* Convert the channel data and set the flags */
7568         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7569         if (received_channel > 14) {    /* 802.11a */
7570                 ipw_rt->rt_chbitmask =
7571                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7572         } else if (antennaAndPhy & 32) {        /* 802.11b */
7573                 ipw_rt->rt_chbitmask =
7574                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7575         } else {                /* 802.11g */
7576                 ipw_rt->rt_chbitmask =
7577                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7578         }
7579
7580         /* set the rate in multiples of 500k/s */
7581         switch (pktrate) {
7582         case IPW_TX_RATE_1MB:
7583                 ipw_rt->rt_rate = 2;
7584                 break;
7585         case IPW_TX_RATE_2MB:
7586                 ipw_rt->rt_rate = 4;
7587                 break;
7588         case IPW_TX_RATE_5MB:
7589                 ipw_rt->rt_rate = 10;
7590                 break;
7591         case IPW_TX_RATE_6MB:
7592                 ipw_rt->rt_rate = 12;
7593                 break;
7594         case IPW_TX_RATE_9MB:
7595                 ipw_rt->rt_rate = 18;
7596                 break;
7597         case IPW_TX_RATE_11MB:
7598                 ipw_rt->rt_rate = 22;
7599                 break;
7600         case IPW_TX_RATE_12MB:
7601                 ipw_rt->rt_rate = 24;
7602                 break;
7603         case IPW_TX_RATE_18MB:
7604                 ipw_rt->rt_rate = 36;
7605                 break;
7606         case IPW_TX_RATE_24MB:
7607                 ipw_rt->rt_rate = 48;
7608                 break;
7609         case IPW_TX_RATE_36MB:
7610                 ipw_rt->rt_rate = 72;
7611                 break;
7612         case IPW_TX_RATE_48MB:
7613                 ipw_rt->rt_rate = 96;
7614                 break;
7615         case IPW_TX_RATE_54MB:
7616                 ipw_rt->rt_rate = 108;
7617                 break;
7618         default:
7619                 ipw_rt->rt_rate = 0;
7620                 break;
7621         }
7622
7623         /* antenna number */
7624         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7625
7626         /* set the preamble flag if we have it */
7627         if ((antennaAndPhy & 64))
7628                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7629
7630         /* Set the size of the skb to the size of the frame */
7631         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7632
7633         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7634
7635         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7636                 priv->ieee->stats.rx_errors++;
7637         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7638                 rxb->skb = NULL;
7639                 /* no LED during capture */
7640         }
7641 }
7642 #endif
7643
7644 static inline int is_network_packet(struct ipw_priv *priv,
7645                                     struct ieee80211_hdr_4addr *header)
7646 {
7647         /* Filter incoming packets to determine if they are targetted toward
7648          * this network, discarding packets coming from ourselves */
7649         switch (priv->ieee->iw_mode) {
7650         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7651                 /* packets from our adapter are dropped (echo) */
7652                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7653                         return 0;
7654
7655                 /* {broad,multi}cast packets to our BSSID go through */
7656                 if (is_multicast_ether_addr(header->addr1) ||
7657                     is_broadcast_ether_addr(header->addr1))
7658                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7659
7660                 /* packets to our adapter go through */
7661                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7662                                ETH_ALEN);
7663
7664         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7665                 /* packets from our adapter are dropped (echo) */
7666                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7667                         return 0;
7668
7669                 /* {broad,multi}cast packets to our BSS go through */
7670                 if (is_multicast_ether_addr(header->addr1) ||
7671                     is_broadcast_ether_addr(header->addr1))
7672                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7673
7674                 /* packets to our adapter go through */
7675                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7676                                ETH_ALEN);
7677         }
7678
7679         return 1;
7680 }
7681
7682 #define IPW_PACKET_RETRY_TIME HZ
7683
7684 static inline int is_duplicate_packet(struct ipw_priv *priv,
7685                                       struct ieee80211_hdr_4addr *header)
7686 {
7687         u16 sc = le16_to_cpu(header->seq_ctl);
7688         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7689         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7690         u16 *last_seq, *last_frag;
7691         unsigned long *last_time;
7692
7693         switch (priv->ieee->iw_mode) {
7694         case IW_MODE_ADHOC:
7695                 {
7696                         struct list_head *p;
7697                         struct ipw_ibss_seq *entry = NULL;
7698                         u8 *mac = header->addr2;
7699                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7700
7701                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7702                                 entry =
7703                                     list_entry(p, struct ipw_ibss_seq, list);
7704                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7705                                         break;
7706                         }
7707                         if (p == &priv->ibss_mac_hash[index]) {
7708                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7709                                 if (!entry) {
7710                                         IPW_ERROR
7711                                             ("Cannot malloc new mac entry\n");
7712                                         return 0;
7713                                 }
7714                                 memcpy(entry->mac, mac, ETH_ALEN);
7715                                 entry->seq_num = seq;
7716                                 entry->frag_num = frag;
7717                                 entry->packet_time = jiffies;
7718                                 list_add(&entry->list,
7719                                          &priv->ibss_mac_hash[index]);
7720                                 return 0;
7721                         }
7722                         last_seq = &entry->seq_num;
7723                         last_frag = &entry->frag_num;
7724                         last_time = &entry->packet_time;
7725                         break;
7726                 }
7727         case IW_MODE_INFRA:
7728                 last_seq = &priv->last_seq_num;
7729                 last_frag = &priv->last_frag_num;
7730                 last_time = &priv->last_packet_time;
7731                 break;
7732         default:
7733                 return 0;
7734         }
7735         if ((*last_seq == seq) &&
7736             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7737                 if (*last_frag == frag)
7738                         goto drop;
7739                 if (*last_frag + 1 != frag)
7740                         /* out-of-order fragment */
7741                         goto drop;
7742         } else
7743                 *last_seq = seq;
7744
7745         *last_frag = frag;
7746         *last_time = jiffies;
7747         return 0;
7748
7749       drop:
7750         /* Comment this line now since we observed the card receives
7751          * duplicate packets but the FCTL_RETRY bit is not set in the
7752          * IBSS mode with fragmentation enabled.
7753          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7754         return 1;
7755 }
7756
7757 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7758                                    struct ipw_rx_mem_buffer *rxb,
7759                                    struct ieee80211_rx_stats *stats)
7760 {
7761         struct sk_buff *skb = rxb->skb;
7762         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7763         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7764             (skb->data + IPW_RX_FRAME_SIZE);
7765
7766         ieee80211_rx_mgt(priv->ieee, header, stats);
7767
7768         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7769             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7770               IEEE80211_STYPE_PROBE_RESP) ||
7771              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7772               IEEE80211_STYPE_BEACON))) {
7773                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7774                         ipw_add_station(priv, header->addr2);
7775         }
7776
7777         if (priv->config & CFG_NET_STATS) {
7778                 IPW_DEBUG_HC("sending stat packet\n");
7779
7780                 /* Set the size of the skb to the size of the full
7781                  * ipw header and 802.11 frame */
7782                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7783                         IPW_RX_FRAME_SIZE);
7784
7785                 /* Advance past the ipw packet header to the 802.11 frame */
7786                 skb_pull(skb, IPW_RX_FRAME_SIZE);
7787
7788                 /* Push the ieee80211_rx_stats before the 802.11 frame */
7789                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7790
7791                 skb->dev = priv->ieee->dev;
7792
7793                 /* Point raw at the ieee80211_stats */
7794                 skb->mac.raw = skb->data;
7795
7796                 skb->pkt_type = PACKET_OTHERHOST;
7797                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7798                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7799                 netif_rx(skb);
7800                 rxb->skb = NULL;
7801         }
7802 }
7803
7804 /*
7805  * Main entry function for recieving a packet with 80211 headers.  This
7806  * should be called when ever the FW has notified us that there is a new
7807  * skb in the recieve queue.
7808  */
7809 static void ipw_rx(struct ipw_priv *priv)
7810 {
7811         struct ipw_rx_mem_buffer *rxb;
7812         struct ipw_rx_packet *pkt;
7813         struct ieee80211_hdr_4addr *header;
7814         u32 r, w, i;
7815         u8 network_packet;
7816
7817         r = ipw_read32(priv, IPW_RX_READ_INDEX);
7818         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7819         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7820
7821         while (i != r) {
7822                 rxb = priv->rxq->queue[i];
7823 #ifdef CONFIG_IPW_DEBUG
7824                 if (unlikely(rxb == NULL)) {
7825                         printk(KERN_CRIT "Queue not allocated!\n");
7826                         break;
7827                 }
7828 #endif
7829                 priv->rxq->queue[i] = NULL;
7830
7831                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7832                                             IPW_RX_BUF_SIZE,
7833                                             PCI_DMA_FROMDEVICE);
7834
7835                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7836                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7837                              pkt->header.message_type,
7838                              pkt->header.rx_seq_num, pkt->header.control_bits);
7839
7840                 switch (pkt->header.message_type) {
7841                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
7842                                 struct ieee80211_rx_stats stats = {
7843                                         .rssi =
7844                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7845                                             IPW_RSSI_TO_DBM,
7846                                         .signal =
7847                                             le16_to_cpu(pkt->u.frame.signal),
7848                                         .noise =
7849                                             le16_to_cpu(pkt->u.frame.noise),
7850                                         .rate = pkt->u.frame.rate,
7851                                         .mac_time = jiffies,
7852                                         .received_channel =
7853                                             pkt->u.frame.received_channel,
7854                                         .freq =
7855                                             (pkt->u.frame.
7856                                              control & (1 << 0)) ?
7857                                             IEEE80211_24GHZ_BAND :
7858                                             IEEE80211_52GHZ_BAND,
7859                                         .len = le16_to_cpu(pkt->u.frame.length),
7860                                 };
7861
7862                                 if (stats.rssi != 0)
7863                                         stats.mask |= IEEE80211_STATMASK_RSSI;
7864                                 if (stats.signal != 0)
7865                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
7866                                 if (stats.noise != 0)
7867                                         stats.mask |= IEEE80211_STATMASK_NOISE;
7868                                 if (stats.rate != 0)
7869                                         stats.mask |= IEEE80211_STATMASK_RATE;
7870
7871                                 priv->rx_packets++;
7872
7873 #ifdef CONFIG_IPW2200_MONITOR
7874                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7875 #ifdef CONFIG_IEEE80211_RADIOTAP
7876                                         ipw_handle_data_packet_monitor(priv,
7877                                                                        rxb,
7878                                                                        &stats);
7879 #else
7880                                         ipw_handle_data_packet(priv, rxb,
7881                                                                &stats);
7882 #endif
7883                                         break;
7884                                 }
7885 #endif
7886
7887                                 header =
7888                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
7889                                                                    data +
7890                                                                    IPW_RX_FRAME_SIZE);
7891                                 /* TODO: Check Ad-Hoc dest/source and make sure
7892                                  * that we are actually parsing these packets
7893                                  * correctly -- we should probably use the
7894                                  * frame control of the packet and disregard
7895                                  * the current iw_mode */
7896
7897                                 network_packet =
7898                                     is_network_packet(priv, header);
7899                                 if (network_packet && priv->assoc_network) {
7900                                         priv->assoc_network->stats.rssi =
7901                                             stats.rssi;
7902                                         average_add(&priv->average_rssi,
7903                                                     stats.rssi);
7904                                         priv->last_rx_rssi = stats.rssi;
7905                                 }
7906
7907                                 IPW_DEBUG_RX("Frame: len=%u\n",
7908                                              le16_to_cpu(pkt->u.frame.length));
7909
7910                                 if (le16_to_cpu(pkt->u.frame.length) <
7911                                     frame_hdr_len(header)) {
7912                                         IPW_DEBUG_DROP
7913                                             ("Received packet is too small. "
7914                                              "Dropping.\n");
7915                                         priv->ieee->stats.rx_errors++;
7916                                         priv->wstats.discard.misc++;
7917                                         break;
7918                                 }
7919
7920                                 switch (WLAN_FC_GET_TYPE
7921                                         (le16_to_cpu(header->frame_ctl))) {
7922
7923                                 case IEEE80211_FTYPE_MGMT:
7924                                         ipw_handle_mgmt_packet(priv, rxb,
7925                                                                &stats);
7926                                         break;
7927
7928                                 case IEEE80211_FTYPE_CTL:
7929                                         break;
7930
7931                                 case IEEE80211_FTYPE_DATA:
7932                                         if (unlikely(!network_packet ||
7933                                                      is_duplicate_packet(priv,
7934                                                                          header)))
7935                                         {
7936                                                 IPW_DEBUG_DROP("Dropping: "
7937                                                                MAC_FMT ", "
7938                                                                MAC_FMT ", "
7939                                                                MAC_FMT "\n",
7940                                                                MAC_ARG(header->
7941                                                                        addr1),
7942                                                                MAC_ARG(header->
7943                                                                        addr2),
7944                                                                MAC_ARG(header->
7945                                                                        addr3));
7946                                                 break;
7947                                         }
7948
7949                                         ipw_handle_data_packet(priv, rxb,
7950                                                                &stats);
7951
7952                                         break;
7953                                 }
7954                                 break;
7955                         }
7956
7957                 case RX_HOST_NOTIFICATION_TYPE:{
7958                                 IPW_DEBUG_RX
7959                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
7960                                      pkt->u.notification.subtype,
7961                                      pkt->u.notification.flags,
7962                                      pkt->u.notification.size);
7963                                 ipw_rx_notification(priv, &pkt->u.notification);
7964                                 break;
7965                         }
7966
7967                 default:
7968                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
7969                                      pkt->header.message_type);
7970                         break;
7971                 }
7972
7973                 /* For now we just don't re-use anything.  We can tweak this
7974                  * later to try and re-use notification packets and SKBs that
7975                  * fail to Rx correctly */
7976                 if (rxb->skb != NULL) {
7977                         dev_kfree_skb_any(rxb->skb);
7978                         rxb->skb = NULL;
7979                 }
7980
7981                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
7982                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
7983                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
7984
7985                 i = (i + 1) % RX_QUEUE_SIZE;
7986         }
7987
7988         /* Backtrack one entry */
7989         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
7990
7991         ipw_rx_queue_restock(priv);
7992 }
7993
7994 #define DEFAULT_RTS_THRESHOLD     2304U
7995 #define MIN_RTS_THRESHOLD         1U
7996 #define MAX_RTS_THRESHOLD         2304U
7997 #define DEFAULT_BEACON_INTERVAL   100U
7998 #define DEFAULT_SHORT_RETRY_LIMIT 7U
7999 #define DEFAULT_LONG_RETRY_LIMIT  4U
8000
8001 static int ipw_sw_reset(struct ipw_priv *priv, int init)
8002 {
8003         int band, modulation;
8004         int old_mode = priv->ieee->iw_mode;
8005
8006         /* Initialize module parameter values here */
8007         priv->config = 0;
8008
8009         /* We default to disabling the LED code as right now it causes
8010          * too many systems to lock up... */
8011         if (!led)
8012                 priv->config |= CFG_NO_LED;
8013
8014         if (associate)
8015                 priv->config |= CFG_ASSOCIATE;
8016         else
8017                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8018
8019         if (auto_create)
8020                 priv->config |= CFG_ADHOC_CREATE;
8021         else
8022                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8023
8024         if (disable) {
8025                 priv->status |= STATUS_RF_KILL_SW;
8026                 IPW_DEBUG_INFO("Radio disabled.\n");
8027         }
8028
8029         if (channel != 0) {
8030                 priv->config |= CFG_STATIC_CHANNEL;
8031                 priv->channel = channel;
8032                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8033                 /* TODO: Validate that provided channel is in range */
8034         }
8035 #ifdef CONFIG_IPW_QOS
8036         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8037                      burst_duration_CCK, burst_duration_OFDM);
8038 #endif                          /* CONFIG_IPW_QOS */
8039
8040         switch (mode) {
8041         case 1:
8042                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8043                 priv->net_dev->type = ARPHRD_ETHER;
8044
8045                 break;
8046 #ifdef CONFIG_IPW2200_MONITOR
8047         case 2:
8048                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8049 #ifdef CONFIG_IEEE80211_RADIOTAP
8050                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8051 #else
8052                 priv->net_dev->type = ARPHRD_IEEE80211;
8053 #endif
8054                 break;
8055 #endif
8056         default:
8057         case 0:
8058                 priv->net_dev->type = ARPHRD_ETHER;
8059                 priv->ieee->iw_mode = IW_MODE_INFRA;
8060                 break;
8061         }
8062
8063         if (hwcrypto) {
8064                 priv->ieee->host_encrypt = 0;
8065                 priv->ieee->host_encrypt_msdu = 0;
8066                 priv->ieee->host_decrypt = 0;
8067                 priv->ieee->host_mc_decrypt = 0;
8068         }
8069         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8070
8071         /* IPW2200/2915 is abled to do hardware fragmentation. */
8072         priv->ieee->host_open_frag = 0;
8073
8074         if ((priv->pci_dev->device == 0x4223) ||
8075             (priv->pci_dev->device == 0x4224)) {
8076                 if (init)
8077                         printk(KERN_INFO DRV_NAME
8078                                ": Detected Intel PRO/Wireless 2915ABG Network "
8079                                "Connection\n");
8080                 priv->ieee->abg_true = 1;
8081                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8082                 modulation = IEEE80211_OFDM_MODULATION |
8083                     IEEE80211_CCK_MODULATION;
8084                 priv->adapter = IPW_2915ABG;
8085                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8086         } else {
8087                 if (init)
8088                         printk(KERN_INFO DRV_NAME
8089                                ": Detected Intel PRO/Wireless 2200BG Network "
8090                                "Connection\n");
8091
8092                 priv->ieee->abg_true = 0;
8093                 band = IEEE80211_24GHZ_BAND;
8094                 modulation = IEEE80211_OFDM_MODULATION |
8095                     IEEE80211_CCK_MODULATION;
8096                 priv->adapter = IPW_2200BG;
8097                 priv->ieee->mode = IEEE_G | IEEE_B;
8098         }
8099
8100         priv->ieee->freq_band = band;
8101         priv->ieee->modulation = modulation;
8102
8103         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8104
8105         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8106         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8107
8108         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8109         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8110         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8111
8112         /* If power management is turned on, default to AC mode */
8113         priv->power_mode = IPW_POWER_AC;
8114         priv->tx_power = IPW_TX_POWER_DEFAULT;
8115
8116         return old_mode == priv->ieee->iw_mode;
8117 }
8118
8119 /*
8120  * This file defines the Wireless Extension handlers.  It does not
8121  * define any methods of hardware manipulation and relies on the
8122  * functions defined in ipw_main to provide the HW interaction.
8123  *
8124  * The exception to this is the use of the ipw_get_ordinal()
8125  * function used to poll the hardware vs. making unecessary calls.
8126  *
8127  */
8128
8129 static int ipw_wx_get_name(struct net_device *dev,
8130                            struct iw_request_info *info,
8131                            union iwreq_data *wrqu, char *extra)
8132 {
8133         struct ipw_priv *priv = ieee80211_priv(dev);
8134         down(&priv->sem);
8135         if (priv->status & STATUS_RF_KILL_MASK)
8136                 strcpy(wrqu->name, "radio off");
8137         else if (!(priv->status & STATUS_ASSOCIATED))
8138                 strcpy(wrqu->name, "unassociated");
8139         else
8140                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8141                          ipw_modes[priv->assoc_request.ieee_mode]);
8142         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8143         up(&priv->sem);
8144         return 0;
8145 }
8146
8147 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8148 {
8149         if (channel == 0) {
8150                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8151                 priv->config &= ~CFG_STATIC_CHANNEL;
8152                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8153                                 "parameters.\n");
8154                 ipw_associate(priv);
8155                 return 0;
8156         }
8157
8158         priv->config |= CFG_STATIC_CHANNEL;
8159
8160         if (priv->channel == channel) {
8161                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8162                                channel);
8163                 return 0;
8164         }
8165
8166         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8167         priv->channel = channel;
8168
8169 #ifdef CONFIG_IPW2200_MONITOR
8170         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8171                 int i;
8172                 if (priv->status & STATUS_SCANNING) {
8173                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8174                                        "channel change.\n");
8175                         ipw_abort_scan(priv);
8176                 }
8177
8178                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8179                         udelay(10);
8180
8181                 if (priv->status & STATUS_SCANNING)
8182                         IPW_DEBUG_SCAN("Still scanning...\n");
8183                 else
8184                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8185                                        1000 - i);
8186
8187                 return 0;
8188         }
8189 #endif                          /* CONFIG_IPW2200_MONITOR */
8190
8191         /* Network configuration changed -- force [re]association */
8192         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8193         if (!ipw_disassociate(priv))
8194                 ipw_associate(priv);
8195
8196         return 0;
8197 }
8198
8199 static int ipw_wx_set_freq(struct net_device *dev,
8200                            struct iw_request_info *info,
8201                            union iwreq_data *wrqu, char *extra)
8202 {
8203         struct ipw_priv *priv = ieee80211_priv(dev);
8204         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8205         struct iw_freq *fwrq = &wrqu->freq;
8206         int ret = 0, i;
8207         u8 channel, flags;
8208         int band;
8209
8210         if (fwrq->m == 0) {
8211                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8212                 down(&priv->sem);
8213                 ret = ipw_set_channel(priv, 0);
8214                 up(&priv->sem);
8215                 return ret;
8216         }
8217         /* if setting by freq convert to channel */
8218         if (fwrq->e == 1) {
8219                 channel = ipw_freq_to_channel(priv->ieee, fwrq->m);
8220                 if (channel == 0)
8221                         return -EINVAL;
8222         } else
8223                 channel = fwrq->m;
8224
8225         if (!(band = ipw_is_valid_channel(priv->ieee, channel)))
8226                 return -EINVAL;
8227
8228         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8229                 i = ipw_channel_to_index(priv->ieee, channel);
8230                 if (i == -1)
8231                         return -EINVAL;
8232
8233                 flags = (band == IEEE80211_24GHZ_BAND) ?
8234                     geo->bg[i].flags : geo->a[i].flags;
8235                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8236                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8237                         return -EINVAL;
8238                 }
8239         }
8240
8241         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8242         down(&priv->sem);
8243         ret = ipw_set_channel(priv, channel);
8244         up(&priv->sem);
8245         return ret;
8246 }
8247
8248 static int ipw_wx_get_freq(struct net_device *dev,
8249                            struct iw_request_info *info,
8250                            union iwreq_data *wrqu, char *extra)
8251 {
8252         struct ipw_priv *priv = ieee80211_priv(dev);
8253
8254         wrqu->freq.e = 0;
8255
8256         /* If we are associated, trying to associate, or have a statically
8257          * configured CHANNEL then return that; otherwise return ANY */
8258         down(&priv->sem);
8259         if (priv->config & CFG_STATIC_CHANNEL ||
8260             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8261                 wrqu->freq.m = priv->channel;
8262         else
8263                 wrqu->freq.m = 0;
8264
8265         up(&priv->sem);
8266         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8267         return 0;
8268 }
8269
8270 static int ipw_wx_set_mode(struct net_device *dev,
8271                            struct iw_request_info *info,
8272                            union iwreq_data *wrqu, char *extra)
8273 {
8274         struct ipw_priv *priv = ieee80211_priv(dev);
8275         int err = 0;
8276
8277         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8278
8279         switch (wrqu->mode) {
8280 #ifdef CONFIG_IPW2200_MONITOR
8281         case IW_MODE_MONITOR:
8282 #endif
8283         case IW_MODE_ADHOC:
8284         case IW_MODE_INFRA:
8285                 break;
8286         case IW_MODE_AUTO:
8287                 wrqu->mode = IW_MODE_INFRA;
8288                 break;
8289         default:
8290                 return -EINVAL;
8291         }
8292         if (wrqu->mode == priv->ieee->iw_mode)
8293                 return 0;
8294
8295         down(&priv->sem);
8296
8297         ipw_sw_reset(priv, 0);
8298
8299 #ifdef CONFIG_IPW2200_MONITOR
8300         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8301                 priv->net_dev->type = ARPHRD_ETHER;
8302
8303         if (wrqu->mode == IW_MODE_MONITOR)
8304 #ifdef CONFIG_IEEE80211_RADIOTAP
8305                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8306 #else
8307                 priv->net_dev->type = ARPHRD_IEEE80211;
8308 #endif
8309 #endif                          /* CONFIG_IPW2200_MONITOR */
8310
8311         /* Free the existing firmware and reset the fw_loaded
8312          * flag so ipw_load() will bring in the new firmawre */
8313         free_firmware();
8314
8315         priv->ieee->iw_mode = wrqu->mode;
8316
8317         queue_work(priv->workqueue, &priv->adapter_restart);
8318         up(&priv->sem);
8319         return err;
8320 }
8321
8322 static int ipw_wx_get_mode(struct net_device *dev,
8323                            struct iw_request_info *info,
8324                            union iwreq_data *wrqu, char *extra)
8325 {
8326         struct ipw_priv *priv = ieee80211_priv(dev);
8327         down(&priv->sem);
8328         wrqu->mode = priv->ieee->iw_mode;
8329         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8330         up(&priv->sem);
8331         return 0;
8332 }
8333
8334 /* Values are in microsecond */
8335 static const s32 timeout_duration[] = {
8336         350000,
8337         250000,
8338         75000,
8339         37000,
8340         25000,
8341 };
8342
8343 static const s32 period_duration[] = {
8344         400000,
8345         700000,
8346         1000000,
8347         1000000,
8348         1000000
8349 };
8350
8351 static int ipw_wx_get_range(struct net_device *dev,
8352                             struct iw_request_info *info,
8353                             union iwreq_data *wrqu, char *extra)
8354 {
8355         struct ipw_priv *priv = ieee80211_priv(dev);
8356         struct iw_range *range = (struct iw_range *)extra;
8357         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8358         int i = 0, j;
8359
8360         wrqu->data.length = sizeof(*range);
8361         memset(range, 0, sizeof(*range));
8362
8363         /* 54Mbs == ~27 Mb/s real (802.11g) */
8364         range->throughput = 27 * 1000 * 1000;
8365
8366         range->max_qual.qual = 100;
8367         /* TODO: Find real max RSSI and stick here */
8368         range->max_qual.level = 0;
8369         range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8370         range->max_qual.updated = 7;    /* Updated all three */
8371
8372         range->avg_qual.qual = 70;
8373         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8374         range->avg_qual.level = 0;      /* FIXME to real average level */
8375         range->avg_qual.noise = 0;
8376         range->avg_qual.updated = 7;    /* Updated all three */
8377         down(&priv->sem);
8378         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8379
8380         for (i = 0; i < range->num_bitrates; i++)
8381                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8382                     500000;
8383
8384         range->max_rts = DEFAULT_RTS_THRESHOLD;
8385         range->min_frag = MIN_FRAG_THRESHOLD;
8386         range->max_frag = MAX_FRAG_THRESHOLD;
8387
8388         range->encoding_size[0] = 5;
8389         range->encoding_size[1] = 13;
8390         range->num_encoding_sizes = 2;
8391         range->max_encoding_tokens = WEP_KEYS;
8392
8393         /* Set the Wireless Extension versions */
8394         range->we_version_compiled = WIRELESS_EXT;
8395         range->we_version_source = 16;
8396
8397         i = 0;
8398         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8399                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8400                      i++, j++) {
8401                         range->freq[i].i = geo->bg[j].channel;
8402                         range->freq[i].m = geo->bg[j].freq * 100000;
8403                         range->freq[i].e = 1;
8404                 }
8405         }
8406
8407         if (priv->ieee->mode & IEEE_A) {
8408                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8409                      i++, j++) {
8410                         range->freq[i].i = geo->a[j].channel;
8411                         range->freq[i].m = geo->a[j].freq * 100000;
8412                         range->freq[i].e = 1;
8413                 }
8414         }
8415
8416         range->num_channels = i;
8417         range->num_frequency = i;
8418
8419         up(&priv->sem);
8420
8421         /* Event capability (kernel + driver) */
8422         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8423                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8424                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8425         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8426
8427         IPW_DEBUG_WX("GET Range\n");
8428         return 0;
8429 }
8430
8431 static int ipw_wx_set_wap(struct net_device *dev,
8432                           struct iw_request_info *info,
8433                           union iwreq_data *wrqu, char *extra)
8434 {
8435         struct ipw_priv *priv = ieee80211_priv(dev);
8436
8437         static const unsigned char any[] = {
8438                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8439         };
8440         static const unsigned char off[] = {
8441                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8442         };
8443
8444         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8445                 return -EINVAL;
8446         down(&priv->sem);
8447         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8448             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8449                 /* we disable mandatory BSSID association */
8450                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8451                 priv->config &= ~CFG_STATIC_BSSID;
8452                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8453                                 "parameters.\n");
8454                 ipw_associate(priv);
8455                 up(&priv->sem);
8456                 return 0;
8457         }
8458
8459         priv->config |= CFG_STATIC_BSSID;
8460         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8461                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8462                 up(&priv->sem);
8463                 return 0;
8464         }
8465
8466         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8467                      MAC_ARG(wrqu->ap_addr.sa_data));
8468
8469         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8470
8471         /* Network configuration changed -- force [re]association */
8472         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8473         if (!ipw_disassociate(priv))
8474                 ipw_associate(priv);
8475
8476         up(&priv->sem);
8477         return 0;
8478 }
8479
8480 static int ipw_wx_get_wap(struct net_device *dev,
8481                           struct iw_request_info *info,
8482                           union iwreq_data *wrqu, char *extra)
8483 {
8484         struct ipw_priv *priv = ieee80211_priv(dev);
8485         /* If we are associated, trying to associate, or have a statically
8486          * configured BSSID then return that; otherwise return ANY */
8487         down(&priv->sem);
8488         if (priv->config & CFG_STATIC_BSSID ||
8489             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8490                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8491                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8492         } else
8493                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8494
8495         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8496                      MAC_ARG(wrqu->ap_addr.sa_data));
8497         up(&priv->sem);
8498         return 0;
8499 }
8500
8501 static int ipw_wx_set_essid(struct net_device *dev,
8502                             struct iw_request_info *info,
8503                             union iwreq_data *wrqu, char *extra)
8504 {
8505         struct ipw_priv *priv = ieee80211_priv(dev);
8506         char *essid = "";       /* ANY */
8507         int length = 0;
8508         down(&priv->sem);
8509         if (wrqu->essid.flags && wrqu->essid.length) {
8510                 length = wrqu->essid.length - 1;
8511                 essid = extra;
8512         }
8513         if (length == 0) {
8514                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8515                 if ((priv->config & CFG_STATIC_ESSID) &&
8516                     !(priv->status & (STATUS_ASSOCIATED |
8517                                       STATUS_ASSOCIATING))) {
8518                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8519                                         "parameters.\n");
8520                         priv->config &= ~CFG_STATIC_ESSID;
8521                         ipw_associate(priv);
8522                 }
8523                 up(&priv->sem);
8524                 return 0;
8525         }
8526
8527         length = min(length, IW_ESSID_MAX_SIZE);
8528
8529         priv->config |= CFG_STATIC_ESSID;
8530
8531         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8532                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8533                 up(&priv->sem);
8534                 return 0;
8535         }
8536
8537         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8538                      length);
8539
8540         priv->essid_len = length;
8541         memcpy(priv->essid, essid, priv->essid_len);
8542
8543         /* Network configuration changed -- force [re]association */
8544         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8545         if (!ipw_disassociate(priv))
8546                 ipw_associate(priv);
8547
8548         up(&priv->sem);
8549         return 0;
8550 }
8551
8552 static int ipw_wx_get_essid(struct net_device *dev,
8553                             struct iw_request_info *info,
8554                             union iwreq_data *wrqu, char *extra)
8555 {
8556         struct ipw_priv *priv = ieee80211_priv(dev);
8557
8558         /* If we are associated, trying to associate, or have a statically
8559          * configured ESSID then return that; otherwise return ANY */
8560         down(&priv->sem);
8561         if (priv->config & CFG_STATIC_ESSID ||
8562             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8563                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8564                              escape_essid(priv->essid, priv->essid_len));
8565                 memcpy(extra, priv->essid, priv->essid_len);
8566                 wrqu->essid.length = priv->essid_len;
8567                 wrqu->essid.flags = 1;  /* active */
8568         } else {
8569                 IPW_DEBUG_WX("Getting essid: ANY\n");
8570                 wrqu->essid.length = 0;
8571                 wrqu->essid.flags = 0;  /* active */
8572         }
8573         up(&priv->sem);
8574         return 0;
8575 }
8576
8577 static int ipw_wx_set_nick(struct net_device *dev,
8578                            struct iw_request_info *info,
8579                            union iwreq_data *wrqu, char *extra)
8580 {
8581         struct ipw_priv *priv = ieee80211_priv(dev);
8582
8583         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8584         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8585                 return -E2BIG;
8586         down(&priv->sem);
8587         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8588         memset(priv->nick, 0, sizeof(priv->nick));
8589         memcpy(priv->nick, extra, wrqu->data.length);
8590         IPW_DEBUG_TRACE("<<\n");
8591         up(&priv->sem);
8592         return 0;
8593
8594 }
8595
8596 static int ipw_wx_get_nick(struct net_device *dev,
8597                            struct iw_request_info *info,
8598                            union iwreq_data *wrqu, char *extra)
8599 {
8600         struct ipw_priv *priv = ieee80211_priv(dev);
8601         IPW_DEBUG_WX("Getting nick\n");
8602         down(&priv->sem);
8603         wrqu->data.length = strlen(priv->nick) + 1;
8604         memcpy(extra, priv->nick, wrqu->data.length);
8605         wrqu->data.flags = 1;   /* active */
8606         up(&priv->sem);
8607         return 0;
8608 }
8609
8610 static int ipw_wx_set_rate(struct net_device *dev,
8611                            struct iw_request_info *info,
8612                            union iwreq_data *wrqu, char *extra)
8613 {
8614         /* TODO: We should use semaphores or locks for access to priv */
8615         struct ipw_priv *priv = ieee80211_priv(dev);
8616         u32 target_rate = wrqu->bitrate.value;
8617         u32 fixed, mask;
8618
8619         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8620         /* value = X, fixed = 1 means only rate X */
8621         /* value = X, fixed = 0 means all rates lower equal X */
8622
8623         if (target_rate == -1) {
8624                 fixed = 0;
8625                 mask = IEEE80211_DEFAULT_RATES_MASK;
8626                 /* Now we should reassociate */
8627                 goto apply;
8628         }
8629
8630         mask = 0;
8631         fixed = wrqu->bitrate.fixed;
8632
8633         if (target_rate == 1000000 || !fixed)
8634                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8635         if (target_rate == 1000000)
8636                 goto apply;
8637
8638         if (target_rate == 2000000 || !fixed)
8639                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8640         if (target_rate == 2000000)
8641                 goto apply;
8642
8643         if (target_rate == 5500000 || !fixed)
8644                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8645         if (target_rate == 5500000)
8646                 goto apply;
8647
8648         if (target_rate == 6000000 || !fixed)
8649                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8650         if (target_rate == 6000000)
8651                 goto apply;
8652
8653         if (target_rate == 9000000 || !fixed)
8654                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8655         if (target_rate == 9000000)
8656                 goto apply;
8657
8658         if (target_rate == 11000000 || !fixed)
8659                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8660         if (target_rate == 11000000)
8661                 goto apply;
8662
8663         if (target_rate == 12000000 || !fixed)
8664                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8665         if (target_rate == 12000000)
8666                 goto apply;
8667
8668         if (target_rate == 18000000 || !fixed)
8669                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8670         if (target_rate == 18000000)
8671                 goto apply;
8672
8673         if (target_rate == 24000000 || !fixed)
8674                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8675         if (target_rate == 24000000)
8676                 goto apply;
8677
8678         if (target_rate == 36000000 || !fixed)
8679                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8680         if (target_rate == 36000000)
8681                 goto apply;
8682
8683         if (target_rate == 48000000 || !fixed)
8684                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8685         if (target_rate == 48000000)
8686                 goto apply;
8687
8688         if (target_rate == 54000000 || !fixed)
8689                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8690         if (target_rate == 54000000)
8691                 goto apply;
8692
8693         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8694         return -EINVAL;
8695
8696       apply:
8697         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8698                      mask, fixed ? "fixed" : "sub-rates");
8699         down(&priv->sem);
8700         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8701                 priv->config &= ~CFG_FIXED_RATE;
8702                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8703         } else
8704                 priv->config |= CFG_FIXED_RATE;
8705
8706         if (priv->rates_mask == mask) {
8707                 IPW_DEBUG_WX("Mask set to current mask.\n");
8708                 up(&priv->sem);
8709                 return 0;
8710         }
8711
8712         priv->rates_mask = mask;
8713
8714         /* Network configuration changed -- force [re]association */
8715         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8716         if (!ipw_disassociate(priv))
8717                 ipw_associate(priv);
8718
8719         up(&priv->sem);
8720         return 0;
8721 }
8722
8723 static int ipw_wx_get_rate(struct net_device *dev,
8724                            struct iw_request_info *info,
8725                            union iwreq_data *wrqu, char *extra)
8726 {
8727         struct ipw_priv *priv = ieee80211_priv(dev);
8728         down(&priv->sem);
8729         wrqu->bitrate.value = priv->last_rate;
8730         up(&priv->sem);
8731         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8732         return 0;
8733 }
8734
8735 static int ipw_wx_set_rts(struct net_device *dev,
8736                           struct iw_request_info *info,
8737                           union iwreq_data *wrqu, char *extra)
8738 {
8739         struct ipw_priv *priv = ieee80211_priv(dev);
8740         down(&priv->sem);
8741         if (wrqu->rts.disabled)
8742                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8743         else {
8744                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8745                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8746                         up(&priv->sem);
8747                         return -EINVAL;
8748                 }
8749                 priv->rts_threshold = wrqu->rts.value;
8750         }
8751
8752         ipw_send_rts_threshold(priv, priv->rts_threshold);
8753         up(&priv->sem);
8754         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8755         return 0;
8756 }
8757
8758 static int ipw_wx_get_rts(struct net_device *dev,
8759                           struct iw_request_info *info,
8760                           union iwreq_data *wrqu, char *extra)
8761 {
8762         struct ipw_priv *priv = ieee80211_priv(dev);
8763         down(&priv->sem);
8764         wrqu->rts.value = priv->rts_threshold;
8765         wrqu->rts.fixed = 0;    /* no auto select */
8766         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8767         up(&priv->sem);
8768         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8769         return 0;
8770 }
8771
8772 static int ipw_wx_set_txpow(struct net_device *dev,
8773                             struct iw_request_info *info,
8774                             union iwreq_data *wrqu, char *extra)
8775 {
8776         struct ipw_priv *priv = ieee80211_priv(dev);
8777         int err = 0;
8778
8779         down(&priv->sem);
8780         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8781                 err = -EINPROGRESS;
8782                 goto out;
8783         }
8784
8785         if (!wrqu->power.fixed)
8786                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8787
8788         if (wrqu->power.flags != IW_TXPOW_DBM) {
8789                 err = -EINVAL;
8790                 goto out;
8791         }
8792
8793         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8794             (wrqu->power.value < IPW_TX_POWER_MIN)) {
8795                 err = -EINVAL;
8796                 goto out;
8797         }
8798
8799         priv->tx_power = wrqu->power.value;
8800         err = ipw_set_tx_power(priv);
8801       out:
8802         up(&priv->sem);
8803         return err;
8804 }
8805
8806 static int ipw_wx_get_txpow(struct net_device *dev,
8807                             struct iw_request_info *info,
8808                             union iwreq_data *wrqu, char *extra)
8809 {
8810         struct ipw_priv *priv = ieee80211_priv(dev);
8811         down(&priv->sem);
8812         wrqu->power.value = priv->tx_power;
8813         wrqu->power.fixed = 1;
8814         wrqu->power.flags = IW_TXPOW_DBM;
8815         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8816         up(&priv->sem);
8817
8818         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8819                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8820
8821         return 0;
8822 }
8823
8824 static int ipw_wx_set_frag(struct net_device *dev,
8825                            struct iw_request_info *info,
8826                            union iwreq_data *wrqu, char *extra)
8827 {
8828         struct ipw_priv *priv = ieee80211_priv(dev);
8829         down(&priv->sem);
8830         if (wrqu->frag.disabled)
8831                 priv->ieee->fts = DEFAULT_FTS;
8832         else {
8833                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8834                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8835                         up(&priv->sem);
8836                         return -EINVAL;
8837                 }
8838
8839                 priv->ieee->fts = wrqu->frag.value & ~0x1;
8840         }
8841
8842         ipw_send_frag_threshold(priv, wrqu->frag.value);
8843         up(&priv->sem);
8844         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8845         return 0;
8846 }
8847
8848 static int ipw_wx_get_frag(struct net_device *dev,
8849                            struct iw_request_info *info,
8850                            union iwreq_data *wrqu, char *extra)
8851 {
8852         struct ipw_priv *priv = ieee80211_priv(dev);
8853         down(&priv->sem);
8854         wrqu->frag.value = priv->ieee->fts;
8855         wrqu->frag.fixed = 0;   /* no auto select */
8856         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8857         up(&priv->sem);
8858         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8859
8860         return 0;
8861 }
8862
8863 static int ipw_wx_set_retry(struct net_device *dev,
8864                             struct iw_request_info *info,
8865                             union iwreq_data *wrqu, char *extra)
8866 {
8867         struct ipw_priv *priv = ieee80211_priv(dev);
8868
8869         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8870                 return -EINVAL;
8871
8872         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8873                 return 0;
8874
8875         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8876                 return -EINVAL;
8877
8878         down(&priv->sem);
8879         if (wrqu->retry.flags & IW_RETRY_MIN)
8880                 priv->short_retry_limit = (u8) wrqu->retry.value;
8881         else if (wrqu->retry.flags & IW_RETRY_MAX)
8882                 priv->long_retry_limit = (u8) wrqu->retry.value;
8883         else {
8884                 priv->short_retry_limit = (u8) wrqu->retry.value;
8885                 priv->long_retry_limit = (u8) wrqu->retry.value;
8886         }
8887
8888         ipw_send_retry_limit(priv, priv->short_retry_limit,
8889                              priv->long_retry_limit);
8890         up(&priv->sem);
8891         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8892                      priv->short_retry_limit, priv->long_retry_limit);
8893         return 0;
8894 }
8895
8896 static int ipw_wx_get_retry(struct net_device *dev,
8897                             struct iw_request_info *info,
8898                             union iwreq_data *wrqu, char *extra)
8899 {
8900         struct ipw_priv *priv = ieee80211_priv(dev);
8901
8902         down(&priv->sem);
8903         wrqu->retry.disabled = 0;
8904
8905         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8906                 up(&priv->sem);
8907                 return -EINVAL;
8908         }
8909
8910         if (wrqu->retry.flags & IW_RETRY_MAX) {
8911                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8912                 wrqu->retry.value = priv->long_retry_limit;
8913         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8914                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8915                 wrqu->retry.value = priv->short_retry_limit;
8916         } else {
8917                 wrqu->retry.flags = IW_RETRY_LIMIT;
8918                 wrqu->retry.value = priv->short_retry_limit;
8919         }
8920         up(&priv->sem);
8921
8922         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8923
8924         return 0;
8925 }
8926
8927 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8928                                    int essid_len)
8929 {
8930         struct ipw_scan_request_ext scan;
8931         int err = 0, scan_type;
8932
8933         down(&priv->sem);
8934
8935         if (priv->status & STATUS_RF_KILL_MASK) {
8936                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
8937                 priv->status |= STATUS_SCAN_PENDING;
8938                 goto done;
8939         }
8940
8941         IPW_DEBUG_HC("starting request direct scan!\n");
8942
8943         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
8944                 err = wait_event_interruptible(priv->wait_state,
8945                                                !(priv->
8946                                                  status & (STATUS_SCANNING |
8947                                                            STATUS_SCAN_ABORTING)));
8948                 if (err) {
8949                         IPW_DEBUG_HC("aborting direct scan");
8950                         goto done;
8951                 }
8952         }
8953         memset(&scan, 0, sizeof(scan));
8954
8955         if (priv->config & CFG_SPEED_SCAN)
8956                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8957                     cpu_to_le16(30);
8958         else
8959                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8960                     cpu_to_le16(20);
8961
8962         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
8963             cpu_to_le16(20);
8964         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
8965         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
8966
8967         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
8968
8969         err = ipw_send_ssid(priv, essid, essid_len);
8970         if (err) {
8971                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
8972                 goto done;
8973         }
8974         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
8975
8976         ipw_add_scan_channels(priv, &scan, scan_type);
8977
8978         err = ipw_send_scan_request_ext(priv, &scan);
8979         if (err) {
8980                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
8981                 goto done;
8982         }
8983
8984         priv->status |= STATUS_SCANNING;
8985
8986       done:
8987         up(&priv->sem);
8988         return err;
8989 }
8990
8991 static int ipw_wx_set_scan(struct net_device *dev,
8992                            struct iw_request_info *info,
8993                            union iwreq_data *wrqu, char *extra)
8994 {
8995         struct ipw_priv *priv = ieee80211_priv(dev);
8996         struct iw_scan_req *req = NULL;
8997         if (wrqu->data.length
8998             && wrqu->data.length == sizeof(struct iw_scan_req)) {
8999                 req = (struct iw_scan_req *)extra;
9000                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9001                         ipw_request_direct_scan(priv, req->essid,
9002                                                 req->essid_len);
9003                         return 0;
9004                 }
9005         }
9006
9007         IPW_DEBUG_WX("Start scan\n");
9008
9009         queue_work(priv->workqueue, &priv->request_scan);
9010
9011         return 0;
9012 }
9013
9014 static int ipw_wx_get_scan(struct net_device *dev,
9015                            struct iw_request_info *info,
9016                            union iwreq_data *wrqu, char *extra)
9017 {
9018         struct ipw_priv *priv = ieee80211_priv(dev);
9019         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9020 }
9021
9022 static int ipw_wx_set_encode(struct net_device *dev,
9023                              struct iw_request_info *info,
9024                              union iwreq_data *wrqu, char *key)
9025 {
9026         struct ipw_priv *priv = ieee80211_priv(dev);
9027         int ret;
9028         u32 cap = priv->capability;
9029
9030         down(&priv->sem);
9031         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9032
9033         /* In IBSS mode, we need to notify the firmware to update
9034          * the beacon info after we changed the capability. */
9035         if (cap != priv->capability &&
9036             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9037             priv->status & STATUS_ASSOCIATED)
9038                 ipw_disassociate(priv);
9039
9040         up(&priv->sem);
9041         return ret;
9042 }
9043
9044 static int ipw_wx_get_encode(struct net_device *dev,
9045                              struct iw_request_info *info,
9046                              union iwreq_data *wrqu, char *key)
9047 {
9048         struct ipw_priv *priv = ieee80211_priv(dev);
9049         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9050 }
9051
9052 static int ipw_wx_set_power(struct net_device *dev,
9053                             struct iw_request_info *info,
9054                             union iwreq_data *wrqu, char *extra)
9055 {
9056         struct ipw_priv *priv = ieee80211_priv(dev);
9057         int err;
9058         down(&priv->sem);
9059         if (wrqu->power.disabled) {
9060                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9061                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9062                 if (err) {
9063                         IPW_DEBUG_WX("failed setting power mode.\n");
9064                         up(&priv->sem);
9065                         return err;
9066                 }
9067                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9068                 up(&priv->sem);
9069                 return 0;
9070         }
9071
9072         switch (wrqu->power.flags & IW_POWER_MODE) {
9073         case IW_POWER_ON:       /* If not specified */
9074         case IW_POWER_MODE:     /* If set all mask */
9075         case IW_POWER_ALL_R:    /* If explicitely state all */
9076                 break;
9077         default:                /* Otherwise we don't support it */
9078                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9079                              wrqu->power.flags);
9080                 up(&priv->sem);
9081                 return -EOPNOTSUPP;
9082         }
9083
9084         /* If the user hasn't specified a power management mode yet, default
9085          * to BATTERY */
9086         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9087                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9088         else
9089                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9090         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9091         if (err) {
9092                 IPW_DEBUG_WX("failed setting power mode.\n");
9093                 up(&priv->sem);
9094                 return err;
9095         }
9096
9097         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9098         up(&priv->sem);
9099         return 0;
9100 }
9101
9102 static int ipw_wx_get_power(struct net_device *dev,
9103                             struct iw_request_info *info,
9104                             union iwreq_data *wrqu, char *extra)
9105 {
9106         struct ipw_priv *priv = ieee80211_priv(dev);
9107         down(&priv->sem);
9108         if (!(priv->power_mode & IPW_POWER_ENABLED))
9109                 wrqu->power.disabled = 1;
9110         else
9111                 wrqu->power.disabled = 0;
9112
9113         up(&priv->sem);
9114         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9115
9116         return 0;
9117 }
9118
9119 static int ipw_wx_set_powermode(struct net_device *dev,
9120                                 struct iw_request_info *info,
9121                                 union iwreq_data *wrqu, char *extra)
9122 {
9123         struct ipw_priv *priv = ieee80211_priv(dev);
9124         int mode = *(int *)extra;
9125         int err;
9126         down(&priv->sem);
9127         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9128                 mode = IPW_POWER_AC;
9129                 priv->power_mode = mode;
9130         } else {
9131                 priv->power_mode = IPW_POWER_ENABLED | mode;
9132         }
9133
9134         if (priv->power_mode != mode) {
9135                 err = ipw_send_power_mode(priv, mode);
9136
9137                 if (err) {
9138                         IPW_DEBUG_WX("failed setting power mode.\n");
9139                         up(&priv->sem);
9140                         return err;
9141                 }
9142         }
9143         up(&priv->sem);
9144         return 0;
9145 }
9146
9147 #define MAX_WX_STRING 80
9148 static int ipw_wx_get_powermode(struct net_device *dev,
9149                                 struct iw_request_info *info,
9150                                 union iwreq_data *wrqu, char *extra)
9151 {
9152         struct ipw_priv *priv = ieee80211_priv(dev);
9153         int level = IPW_POWER_LEVEL(priv->power_mode);
9154         char *p = extra;
9155
9156         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9157
9158         switch (level) {
9159         case IPW_POWER_AC:
9160                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9161                 break;
9162         case IPW_POWER_BATTERY:
9163                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9164                 break;
9165         default:
9166                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9167                               "(Timeout %dms, Period %dms)",
9168                               timeout_duration[level - 1] / 1000,
9169                               period_duration[level - 1] / 1000);
9170         }
9171
9172         if (!(priv->power_mode & IPW_POWER_ENABLED))
9173                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9174
9175         wrqu->data.length = p - extra + 1;
9176
9177         return 0;
9178 }
9179
9180 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9181                                     struct iw_request_info *info,
9182                                     union iwreq_data *wrqu, char *extra)
9183 {
9184         struct ipw_priv *priv = ieee80211_priv(dev);
9185         int mode = *(int *)extra;
9186         u8 band = 0, modulation = 0;
9187
9188         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9189                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9190                 return -EINVAL;
9191         }
9192         down(&priv->sem);
9193         if (priv->adapter == IPW_2915ABG) {
9194                 priv->ieee->abg_true = 1;
9195                 if (mode & IEEE_A) {
9196                         band |= IEEE80211_52GHZ_BAND;
9197                         modulation |= IEEE80211_OFDM_MODULATION;
9198                 } else
9199                         priv->ieee->abg_true = 0;
9200         } else {
9201                 if (mode & IEEE_A) {
9202                         IPW_WARNING("Attempt to set 2200BG into "
9203                                     "802.11a mode\n");
9204                         up(&priv->sem);
9205                         return -EINVAL;
9206                 }
9207
9208                 priv->ieee->abg_true = 0;
9209         }
9210
9211         if (mode & IEEE_B) {
9212                 band |= IEEE80211_24GHZ_BAND;
9213                 modulation |= IEEE80211_CCK_MODULATION;
9214         } else
9215                 priv->ieee->abg_true = 0;
9216
9217         if (mode & IEEE_G) {
9218                 band |= IEEE80211_24GHZ_BAND;
9219                 modulation |= IEEE80211_OFDM_MODULATION;
9220         } else
9221                 priv->ieee->abg_true = 0;
9222
9223         priv->ieee->mode = mode;
9224         priv->ieee->freq_band = band;
9225         priv->ieee->modulation = modulation;
9226         init_supported_rates(priv, &priv->rates);
9227
9228         /* Network configuration changed -- force [re]association */
9229         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9230         if (!ipw_disassociate(priv)) {
9231                 ipw_send_supported_rates(priv, &priv->rates);
9232                 ipw_associate(priv);
9233         }
9234
9235         /* Update the band LEDs */
9236         ipw_led_band_on(priv);
9237
9238         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9239                      mode & IEEE_A ? 'a' : '.',
9240                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9241         up(&priv->sem);
9242         return 0;
9243 }
9244
9245 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9246                                     struct iw_request_info *info,
9247                                     union iwreq_data *wrqu, char *extra)
9248 {
9249         struct ipw_priv *priv = ieee80211_priv(dev);
9250         down(&priv->sem);
9251         switch (priv->ieee->mode) {
9252         case IEEE_A:
9253                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9254                 break;
9255         case IEEE_B:
9256                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9257                 break;
9258         case IEEE_A | IEEE_B:
9259                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9260                 break;
9261         case IEEE_G:
9262                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9263                 break;
9264         case IEEE_A | IEEE_G:
9265                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9266                 break;
9267         case IEEE_B | IEEE_G:
9268                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9269                 break;
9270         case IEEE_A | IEEE_B | IEEE_G:
9271                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9272                 break;
9273         default:
9274                 strncpy(extra, "unknown", MAX_WX_STRING);
9275                 break;
9276         }
9277
9278         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9279
9280         wrqu->data.length = strlen(extra) + 1;
9281         up(&priv->sem);
9282
9283         return 0;
9284 }
9285
9286 static int ipw_wx_set_preamble(struct net_device *dev,
9287                                struct iw_request_info *info,
9288                                union iwreq_data *wrqu, char *extra)
9289 {
9290         struct ipw_priv *priv = ieee80211_priv(dev);
9291         int mode = *(int *)extra;
9292         down(&priv->sem);
9293         /* Switching from SHORT -> LONG requires a disassociation */
9294         if (mode == 1) {
9295                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9296                         priv->config |= CFG_PREAMBLE_LONG;
9297
9298                         /* Network configuration changed -- force [re]association */
9299                         IPW_DEBUG_ASSOC
9300                             ("[re]association triggered due to preamble change.\n");
9301                         if (!ipw_disassociate(priv))
9302                                 ipw_associate(priv);
9303                 }
9304                 goto done;
9305         }
9306
9307         if (mode == 0) {
9308                 priv->config &= ~CFG_PREAMBLE_LONG;
9309                 goto done;
9310         }
9311         up(&priv->sem);
9312         return -EINVAL;
9313
9314       done:
9315         up(&priv->sem);
9316         return 0;
9317 }
9318
9319 static int ipw_wx_get_preamble(struct net_device *dev,
9320                                struct iw_request_info *info,
9321                                union iwreq_data *wrqu, char *extra)
9322 {
9323         struct ipw_priv *priv = ieee80211_priv(dev);
9324         down(&priv->sem);
9325         if (priv->config & CFG_PREAMBLE_LONG)
9326                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9327         else
9328                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9329         up(&priv->sem);
9330         return 0;
9331 }
9332
9333 #ifdef CONFIG_IPW2200_MONITOR
9334 static int ipw_wx_set_monitor(struct net_device *dev,
9335                               struct iw_request_info *info,
9336                               union iwreq_data *wrqu, char *extra)
9337 {
9338         struct ipw_priv *priv = ieee80211_priv(dev);
9339         int *parms = (int *)extra;
9340         int enable = (parms[0] > 0);
9341         down(&priv->sem);
9342         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9343         if (enable) {
9344                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9345 #ifdef CONFIG_IEEE80211_RADIOTAP
9346                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9347 #else
9348                         priv->net_dev->type = ARPHRD_IEEE80211;
9349 #endif
9350                         queue_work(priv->workqueue, &priv->adapter_restart);
9351                 }
9352
9353                 ipw_set_channel(priv, parms[1]);
9354         } else {
9355                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9356                         up(&priv->sem);
9357                         return 0;
9358                 }
9359                 priv->net_dev->type = ARPHRD_ETHER;
9360                 queue_work(priv->workqueue, &priv->adapter_restart);
9361         }
9362         up(&priv->sem);
9363         return 0;
9364 }
9365
9366 #endif                          // CONFIG_IPW2200_MONITOR
9367
9368 static int ipw_wx_reset(struct net_device *dev,
9369                         struct iw_request_info *info,
9370                         union iwreq_data *wrqu, char *extra)
9371 {
9372         struct ipw_priv *priv = ieee80211_priv(dev);
9373         IPW_DEBUG_WX("RESET\n");
9374         queue_work(priv->workqueue, &priv->adapter_restart);
9375         return 0;
9376 }
9377
9378 static int ipw_wx_sw_reset(struct net_device *dev,
9379                            struct iw_request_info *info,
9380                            union iwreq_data *wrqu, char *extra)
9381 {
9382         struct ipw_priv *priv = ieee80211_priv(dev);
9383         union iwreq_data wrqu_sec = {
9384                 .encoding = {
9385                              .flags = IW_ENCODE_DISABLED,
9386                              },
9387         };
9388         int ret;
9389
9390         IPW_DEBUG_WX("SW_RESET\n");
9391
9392         down(&priv->sem);
9393
9394         ret = ipw_sw_reset(priv, 0);
9395         if (!ret) {
9396                 free_firmware();
9397                 ipw_adapter_restart(priv);
9398         }
9399
9400         /* The SW reset bit might have been toggled on by the 'disable'
9401          * module parameter, so take appropriate action */
9402         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9403
9404         up(&priv->sem);
9405         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9406         down(&priv->sem);
9407
9408         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9409                 /* Configuration likely changed -- force [re]association */
9410                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9411                                 "reset.\n");
9412                 if (!ipw_disassociate(priv))
9413                         ipw_associate(priv);
9414         }
9415
9416         up(&priv->sem);
9417
9418         return 0;
9419 }
9420
9421 /* Rebase the WE IOCTLs to zero for the handler array */
9422 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9423 static iw_handler ipw_wx_handlers[] = {
9424         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9425         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9426         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9427         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9428         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9429         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9430         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9431         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9432         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9433         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9434         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9435         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9436         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9437         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9438         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9439         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9440         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9441         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9442         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9443         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9444         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9445         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9446         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9447         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9448         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9449         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9450         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9451         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9452         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9453         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9454         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9455         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9456         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9457         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9458         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9459         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9460         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9461         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9462         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9463 };
9464
9465 enum {
9466         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9467         IPW_PRIV_GET_POWER,
9468         IPW_PRIV_SET_MODE,
9469         IPW_PRIV_GET_MODE,
9470         IPW_PRIV_SET_PREAMBLE,
9471         IPW_PRIV_GET_PREAMBLE,
9472         IPW_PRIV_RESET,
9473         IPW_PRIV_SW_RESET,
9474 #ifdef CONFIG_IPW2200_MONITOR
9475         IPW_PRIV_SET_MONITOR,
9476 #endif
9477 };
9478
9479 static struct iw_priv_args ipw_priv_args[] = {
9480         {
9481          .cmd = IPW_PRIV_SET_POWER,
9482          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9483          .name = "set_power"},
9484         {
9485          .cmd = IPW_PRIV_GET_POWER,
9486          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9487          .name = "get_power"},
9488         {
9489          .cmd = IPW_PRIV_SET_MODE,
9490          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9491          .name = "set_mode"},
9492         {
9493          .cmd = IPW_PRIV_GET_MODE,
9494          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9495          .name = "get_mode"},
9496         {
9497          .cmd = IPW_PRIV_SET_PREAMBLE,
9498          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9499          .name = "set_preamble"},
9500         {
9501          .cmd = IPW_PRIV_GET_PREAMBLE,
9502          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9503          .name = "get_preamble"},
9504         {
9505          IPW_PRIV_RESET,
9506          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9507         {
9508          IPW_PRIV_SW_RESET,
9509          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9510 #ifdef CONFIG_IPW2200_MONITOR
9511         {
9512          IPW_PRIV_SET_MONITOR,
9513          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9514 #endif                          /* CONFIG_IPW2200_MONITOR */
9515 };
9516
9517 static iw_handler ipw_priv_handler[] = {
9518         ipw_wx_set_powermode,
9519         ipw_wx_get_powermode,
9520         ipw_wx_set_wireless_mode,
9521         ipw_wx_get_wireless_mode,
9522         ipw_wx_set_preamble,
9523         ipw_wx_get_preamble,
9524         ipw_wx_reset,
9525         ipw_wx_sw_reset,
9526 #ifdef CONFIG_IPW2200_MONITOR
9527         ipw_wx_set_monitor,
9528 #endif
9529 };
9530
9531 static struct iw_handler_def ipw_wx_handler_def = {
9532         .standard = ipw_wx_handlers,
9533         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9534         .num_private = ARRAY_SIZE(ipw_priv_handler),
9535         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9536         .private = ipw_priv_handler,
9537         .private_args = ipw_priv_args,
9538         .get_wireless_stats = ipw_get_wireless_stats,
9539 };
9540
9541 /*
9542  * Get wireless statistics.
9543  * Called by /proc/net/wireless
9544  * Also called by SIOCGIWSTATS
9545  */
9546 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9547 {
9548         struct ipw_priv *priv = ieee80211_priv(dev);
9549         struct iw_statistics *wstats;
9550
9551         wstats = &priv->wstats;
9552
9553         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9554          * netdev->get_wireless_stats seems to be called before fw is
9555          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9556          * and associated; if not associcated, the values are all meaningless
9557          * anyway, so set them all to NULL and INVALID */
9558         if (!(priv->status & STATUS_ASSOCIATED)) {
9559                 wstats->miss.beacon = 0;
9560                 wstats->discard.retries = 0;
9561                 wstats->qual.qual = 0;
9562                 wstats->qual.level = 0;
9563                 wstats->qual.noise = 0;
9564                 wstats->qual.updated = 7;
9565                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9566                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9567                 return wstats;
9568         }
9569
9570         wstats->qual.qual = priv->quality;
9571         wstats->qual.level = average_value(&priv->average_rssi);
9572         wstats->qual.noise = average_value(&priv->average_noise);
9573         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9574             IW_QUAL_NOISE_UPDATED;
9575
9576         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9577         wstats->discard.retries = priv->last_tx_failures;
9578         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9579
9580 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9581         goto fail_get_ordinal;
9582         wstats->discard.retries += tx_retry; */
9583
9584         return wstats;
9585 }
9586
9587 /* net device stuff */
9588
9589 static inline void init_sys_config(struct ipw_sys_config *sys_config)
9590 {
9591         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9592         sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
9593         sys_config->answer_broadcast_ssid_probe = 0;
9594         sys_config->accept_all_data_frames = 0;
9595         sys_config->accept_non_directed_frames = 1;
9596         sys_config->exclude_unicast_unencrypted = 0;
9597         sys_config->disable_unicast_decryption = 1;
9598         sys_config->exclude_multicast_unencrypted = 0;
9599         sys_config->disable_multicast_decryption = 1;
9600         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
9601         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9602         sys_config->dot11g_auto_detection = 0;
9603         sys_config->enable_cts_to_self = 0;
9604         sys_config->bt_coexist_collision_thr = 0;
9605         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9606 }
9607
9608 static int ipw_net_open(struct net_device *dev)
9609 {
9610         struct ipw_priv *priv = ieee80211_priv(dev);
9611         IPW_DEBUG_INFO("dev->open\n");
9612         /* we should be verifying the device is ready to be opened */
9613         down(&priv->sem);
9614         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9615             (priv->status & STATUS_ASSOCIATED))
9616                 netif_start_queue(dev);
9617         up(&priv->sem);
9618         return 0;
9619 }
9620
9621 static int ipw_net_stop(struct net_device *dev)
9622 {
9623         IPW_DEBUG_INFO("dev->close\n");
9624         netif_stop_queue(dev);
9625         return 0;
9626 }
9627
9628 /*
9629 todo:
9630
9631 modify to send one tfd per fragment instead of using chunking.  otherwise
9632 we need to heavily modify the ieee80211_skb_to_txb.
9633 */
9634
9635 static inline int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9636                              int pri)
9637 {
9638         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9639             txb->fragments[0]->data;
9640         int i = 0;
9641         struct tfd_frame *tfd;
9642 #ifdef CONFIG_IPW_QOS
9643         int tx_id = ipw_get_tx_queue_number(priv, pri);
9644         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9645 #else
9646         struct clx2_tx_queue *txq = &priv->txq[0];
9647 #endif
9648         struct clx2_queue *q = &txq->q;
9649         u8 id, hdr_len, unicast;
9650         u16 remaining_bytes;
9651         int fc;
9652
9653         /* If there isn't room in the queue, we return busy and let the
9654          * network stack requeue the packet for us */
9655         if (ipw_queue_space(q) < q->high_mark)
9656                 return NETDEV_TX_BUSY;
9657
9658         switch (priv->ieee->iw_mode) {
9659         case IW_MODE_ADHOC:
9660                 hdr_len = IEEE80211_3ADDR_LEN;
9661                 unicast = !is_multicast_ether_addr(hdr->addr1);
9662                 id = ipw_find_station(priv, hdr->addr1);
9663                 if (id == IPW_INVALID_STATION) {
9664                         id = ipw_add_station(priv, hdr->addr1);
9665                         if (id == IPW_INVALID_STATION) {
9666                                 IPW_WARNING("Attempt to send data to "
9667                                             "invalid cell: " MAC_FMT "\n",
9668                                             MAC_ARG(hdr->addr1));
9669                                 goto drop;
9670                         }
9671                 }
9672                 break;
9673
9674         case IW_MODE_INFRA:
9675         default:
9676                 unicast = !is_multicast_ether_addr(hdr->addr3);
9677                 hdr_len = IEEE80211_3ADDR_LEN;
9678                 id = 0;
9679                 break;
9680         }
9681
9682         tfd = &txq->bd[q->first_empty];
9683         txq->txb[q->first_empty] = txb;
9684         memset(tfd, 0, sizeof(*tfd));
9685         tfd->u.data.station_number = id;
9686
9687         tfd->control_flags.message_type = TX_FRAME_TYPE;
9688         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9689
9690         tfd->u.data.cmd_id = DINO_CMD_TX;
9691         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9692         remaining_bytes = txb->payload_size;
9693
9694         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9695                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9696         else
9697                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9698
9699         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9700                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9701
9702         fc = le16_to_cpu(hdr->frame_ctl);
9703         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9704
9705         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9706
9707         if (likely(unicast))
9708                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9709
9710         if (txb->encrypted && !priv->ieee->host_encrypt) {
9711                 switch (priv->ieee->sec.level) {
9712                 case SEC_LEVEL_3:
9713                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9714                             IEEE80211_FCTL_PROTECTED;
9715                         /* XXX: ACK flag must be set for CCMP even if it
9716                          * is a multicast/broadcast packet, because CCMP
9717                          * group communication encrypted by GTK is
9718                          * actually done by the AP. */
9719                         if (!unicast)
9720                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9721
9722                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9723                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9724                         tfd->u.data.key_index = 0;
9725                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9726                         break;
9727                 case SEC_LEVEL_2:
9728                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9729                             IEEE80211_FCTL_PROTECTED;
9730                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9731                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9732                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9733                         break;
9734                 case SEC_LEVEL_1:
9735                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9736                             IEEE80211_FCTL_PROTECTED;
9737                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9738                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9739                             40)
9740                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9741                         else
9742                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9743                         break;
9744                 case SEC_LEVEL_0:
9745                         break;
9746                 default:
9747                         printk(KERN_ERR "Unknow security level %d\n",
9748                                priv->ieee->sec.level);
9749                         break;
9750                 }
9751         } else
9752                 /* No hardware encryption */
9753                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9754
9755 #ifdef CONFIG_IPW_QOS
9756         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9757 #endif                          /* CONFIG_IPW_QOS */
9758
9759         /* payload */
9760         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9761                                                  txb->nr_frags));
9762         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9763                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9764         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9765                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9766                                i, le32_to_cpu(tfd->u.data.num_chunks),
9767                                txb->fragments[i]->len - hdr_len);
9768                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9769                              i, tfd->u.data.num_chunks,
9770                              txb->fragments[i]->len - hdr_len);
9771                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9772                            txb->fragments[i]->len - hdr_len);
9773
9774                 tfd->u.data.chunk_ptr[i] =
9775                     cpu_to_le32(pci_map_single
9776                                 (priv->pci_dev,
9777                                  txb->fragments[i]->data + hdr_len,
9778                                  txb->fragments[i]->len - hdr_len,
9779                                  PCI_DMA_TODEVICE));
9780                 tfd->u.data.chunk_len[i] =
9781                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
9782         }
9783
9784         if (i != txb->nr_frags) {
9785                 struct sk_buff *skb;
9786                 u16 remaining_bytes = 0;
9787                 int j;
9788
9789                 for (j = i; j < txb->nr_frags; j++)
9790                         remaining_bytes += txb->fragments[j]->len - hdr_len;
9791
9792                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9793                        remaining_bytes);
9794                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9795                 if (skb != NULL) {
9796                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9797                         for (j = i; j < txb->nr_frags; j++) {
9798                                 int size = txb->fragments[j]->len - hdr_len;
9799
9800                                 printk(KERN_INFO "Adding frag %d %d...\n",
9801                                        j, size);
9802                                 memcpy(skb_put(skb, size),
9803                                        txb->fragments[j]->data + hdr_len, size);
9804                         }
9805                         dev_kfree_skb_any(txb->fragments[i]);
9806                         txb->fragments[i] = skb;
9807                         tfd->u.data.chunk_ptr[i] =
9808                             cpu_to_le32(pci_map_single
9809                                         (priv->pci_dev, skb->data,
9810                                          tfd->u.data.chunk_len[i],
9811                                          PCI_DMA_TODEVICE));
9812
9813                         tfd->u.data.num_chunks =
9814                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9815                                         1);
9816                 }
9817         }
9818
9819         /* kick DMA */
9820         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9821         ipw_write32(priv, q->reg_w, q->first_empty);
9822
9823         return NETDEV_TX_OK;
9824
9825       drop:
9826         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9827         ieee80211_txb_free(txb);
9828         return NETDEV_TX_OK;
9829 }
9830
9831 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9832 {
9833         struct ipw_priv *priv = ieee80211_priv(dev);
9834 #ifdef CONFIG_IPW_QOS
9835         int tx_id = ipw_get_tx_queue_number(priv, pri);
9836         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9837 #else
9838         struct clx2_tx_queue *txq = &priv->txq[0];
9839 #endif                          /* CONFIG_IPW_QOS */
9840
9841         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9842                 return 1;
9843
9844         return 0;
9845 }
9846
9847 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9848                                    struct net_device *dev, int pri)
9849 {
9850         struct ipw_priv *priv = ieee80211_priv(dev);
9851         unsigned long flags;
9852         int ret;
9853
9854         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9855         spin_lock_irqsave(&priv->lock, flags);
9856
9857         if (!(priv->status & STATUS_ASSOCIATED)) {
9858                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9859                 priv->ieee->stats.tx_carrier_errors++;
9860                 netif_stop_queue(dev);
9861                 goto fail_unlock;
9862         }
9863
9864         ret = ipw_tx_skb(priv, txb, pri);
9865         if (ret == NETDEV_TX_OK)
9866                 __ipw_led_activity_on(priv);
9867         spin_unlock_irqrestore(&priv->lock, flags);
9868
9869         return ret;
9870
9871       fail_unlock:
9872         spin_unlock_irqrestore(&priv->lock, flags);
9873         return 1;
9874 }
9875
9876 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9877 {
9878         struct ipw_priv *priv = ieee80211_priv(dev);
9879
9880         priv->ieee->stats.tx_packets = priv->tx_packets;
9881         priv->ieee->stats.rx_packets = priv->rx_packets;
9882         return &priv->ieee->stats;
9883 }
9884
9885 static void ipw_net_set_multicast_list(struct net_device *dev)
9886 {
9887
9888 }
9889
9890 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9891 {
9892         struct ipw_priv *priv = ieee80211_priv(dev);
9893         struct sockaddr *addr = p;
9894         if (!is_valid_ether_addr(addr->sa_data))
9895                 return -EADDRNOTAVAIL;
9896         down(&priv->sem);
9897         priv->config |= CFG_CUSTOM_MAC;
9898         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9899         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9900                priv->net_dev->name, MAC_ARG(priv->mac_addr));
9901         queue_work(priv->workqueue, &priv->adapter_restart);
9902         up(&priv->sem);
9903         return 0;
9904 }
9905
9906 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9907                                     struct ethtool_drvinfo *info)
9908 {
9909         struct ipw_priv *p = ieee80211_priv(dev);
9910         char vers[64];
9911         char date[32];
9912         u32 len;
9913
9914         strcpy(info->driver, DRV_NAME);
9915         strcpy(info->version, DRV_VERSION);
9916
9917         len = sizeof(vers);
9918         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9919         len = sizeof(date);
9920         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9921
9922         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9923                  vers, date);
9924         strcpy(info->bus_info, pci_name(p->pci_dev));
9925         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9926 }
9927
9928 static u32 ipw_ethtool_get_link(struct net_device *dev)
9929 {
9930         struct ipw_priv *priv = ieee80211_priv(dev);
9931         return (priv->status & STATUS_ASSOCIATED) != 0;
9932 }
9933
9934 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
9935 {
9936         return IPW_EEPROM_IMAGE_SIZE;
9937 }
9938
9939 static int ipw_ethtool_get_eeprom(struct net_device *dev,
9940                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9941 {
9942         struct ipw_priv *p = ieee80211_priv(dev);
9943
9944         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9945                 return -EINVAL;
9946         down(&p->sem);
9947         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
9948         up(&p->sem);
9949         return 0;
9950 }
9951
9952 static int ipw_ethtool_set_eeprom(struct net_device *dev,
9953                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9954 {
9955         struct ipw_priv *p = ieee80211_priv(dev);
9956         int i;
9957
9958         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9959                 return -EINVAL;
9960         down(&p->sem);
9961         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
9962         for (i = IPW_EEPROM_DATA;
9963              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
9964                 ipw_write8(p, i, p->eeprom[i]);
9965         up(&p->sem);
9966         return 0;
9967 }
9968
9969 static struct ethtool_ops ipw_ethtool_ops = {
9970         .get_link = ipw_ethtool_get_link,
9971         .get_drvinfo = ipw_ethtool_get_drvinfo,
9972         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
9973         .get_eeprom = ipw_ethtool_get_eeprom,
9974         .set_eeprom = ipw_ethtool_set_eeprom,
9975 };
9976
9977 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
9978 {
9979         struct ipw_priv *priv = data;
9980         u32 inta, inta_mask;
9981
9982         if (!priv)
9983                 return IRQ_NONE;
9984
9985         spin_lock(&priv->lock);
9986
9987         if (!(priv->status & STATUS_INT_ENABLED)) {
9988                 /* Shared IRQ */
9989                 goto none;
9990         }
9991
9992         inta = ipw_read32(priv, IPW_INTA_RW);
9993         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
9994
9995         if (inta == 0xFFFFFFFF) {
9996                 /* Hardware disappeared */
9997                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
9998                 goto none;
9999         }
10000
10001         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10002                 /* Shared interrupt */
10003                 goto none;
10004         }
10005
10006         /* tell the device to stop sending interrupts */
10007         ipw_disable_interrupts(priv);
10008
10009         /* ack current interrupts */
10010         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10011         ipw_write32(priv, IPW_INTA_RW, inta);
10012
10013         /* Cache INTA value for our tasklet */
10014         priv->isr_inta = inta;
10015
10016         tasklet_schedule(&priv->irq_tasklet);
10017
10018         spin_unlock(&priv->lock);
10019
10020         return IRQ_HANDLED;
10021       none:
10022         spin_unlock(&priv->lock);
10023         return IRQ_NONE;
10024 }
10025
10026 static void ipw_rf_kill(void *adapter)
10027 {
10028         struct ipw_priv *priv = adapter;
10029         unsigned long flags;
10030
10031         spin_lock_irqsave(&priv->lock, flags);
10032
10033         if (rf_kill_active(priv)) {
10034                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10035                 if (priv->workqueue)
10036                         queue_delayed_work(priv->workqueue,
10037                                            &priv->rf_kill, 2 * HZ);
10038                 goto exit_unlock;
10039         }
10040
10041         /* RF Kill is now disabled, so bring the device back up */
10042
10043         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10044                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10045                                   "device\n");
10046
10047                 /* we can not do an adapter restart while inside an irq lock */
10048                 queue_work(priv->workqueue, &priv->adapter_restart);
10049         } else
10050                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10051                                   "enabled\n");
10052
10053       exit_unlock:
10054         spin_unlock_irqrestore(&priv->lock, flags);
10055 }
10056
10057 static void ipw_bg_rf_kill(void *data)
10058 {
10059         struct ipw_priv *priv = data;
10060         down(&priv->sem);
10061         ipw_rf_kill(data);
10062         up(&priv->sem);
10063 }
10064
10065 void ipw_link_up(struct ipw_priv *priv)
10066 {
10067         priv->last_seq_num = -1;
10068         priv->last_frag_num = -1;
10069         priv->last_packet_time = 0;
10070
10071         netif_carrier_on(priv->net_dev);
10072         if (netif_queue_stopped(priv->net_dev)) {
10073                 IPW_DEBUG_NOTIF("waking queue\n");
10074                 netif_wake_queue(priv->net_dev);
10075         } else {
10076                 IPW_DEBUG_NOTIF("starting queue\n");
10077                 netif_start_queue(priv->net_dev);
10078         }
10079
10080         cancel_delayed_work(&priv->request_scan);
10081         ipw_reset_stats(priv);
10082         /* Ensure the rate is updated immediately */
10083         priv->last_rate = ipw_get_current_rate(priv);
10084         ipw_gather_stats(priv);
10085         ipw_led_link_up(priv);
10086         notify_wx_assoc_event(priv);
10087
10088         if (priv->config & CFG_BACKGROUND_SCAN)
10089                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10090 }
10091
10092 static void ipw_bg_link_up(void *data)
10093 {
10094         struct ipw_priv *priv = data;
10095         down(&priv->sem);
10096         ipw_link_up(data);
10097         up(&priv->sem);
10098 }
10099
10100 void ipw_link_down(struct ipw_priv *priv)
10101 {
10102         ipw_led_link_down(priv);
10103         netif_carrier_off(priv->net_dev);
10104         netif_stop_queue(priv->net_dev);
10105         notify_wx_assoc_event(priv);
10106
10107         /* Cancel any queued work ... */
10108         cancel_delayed_work(&priv->request_scan);
10109         cancel_delayed_work(&priv->adhoc_check);
10110         cancel_delayed_work(&priv->gather_stats);
10111
10112         ipw_reset_stats(priv);
10113
10114         if (!(priv->status & STATUS_EXIT_PENDING)) {
10115                 /* Queue up another scan... */
10116                 queue_work(priv->workqueue, &priv->request_scan);
10117         }
10118 }
10119
10120 static void ipw_bg_link_down(void *data)
10121 {
10122         struct ipw_priv *priv = data;
10123         down(&priv->sem);
10124         ipw_link_down(data);
10125         up(&priv->sem);
10126 }
10127
10128 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10129 {
10130         int ret = 0;
10131
10132         priv->workqueue = create_workqueue(DRV_NAME);
10133         init_waitqueue_head(&priv->wait_command_queue);
10134         init_waitqueue_head(&priv->wait_state);
10135
10136         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10137         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10138         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10139         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10140         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10141         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10142         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10143         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10144         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10145         INIT_WORK(&priv->request_scan,
10146                   (void (*)(void *))ipw_request_scan, priv);
10147         INIT_WORK(&priv->gather_stats,
10148                   (void (*)(void *))ipw_bg_gather_stats, priv);
10149         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10150         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10151         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10152         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10153         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10154         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10155                   priv);
10156         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10157                   priv);
10158         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10159                   priv);
10160         INIT_WORK(&priv->merge_networks,
10161                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10162
10163 #ifdef CONFIG_IPW_QOS
10164         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10165                   priv);
10166 #endif                          /* CONFIG_IPW_QOS */
10167
10168         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10169                      ipw_irq_tasklet, (unsigned long)priv);
10170
10171         return ret;
10172 }
10173
10174 static void shim__set_security(struct net_device *dev,
10175                                struct ieee80211_security *sec)
10176 {
10177         struct ipw_priv *priv = ieee80211_priv(dev);
10178         int i;
10179         for (i = 0; i < 4; i++) {
10180                 if (sec->flags & (1 << i)) {
10181                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10182                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10183                         if (sec->key_sizes[i] == 0)
10184                                 priv->ieee->sec.flags &= ~(1 << i);
10185                         else {
10186                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10187                                        sec->key_sizes[i]);
10188                                 priv->ieee->sec.flags |= (1 << i);
10189                         }
10190                         priv->status |= STATUS_SECURITY_UPDATED;
10191                 } else if (sec->level != SEC_LEVEL_1)
10192                         priv->ieee->sec.flags &= ~(1 << i);
10193         }
10194
10195         if (sec->flags & SEC_ACTIVE_KEY) {
10196                 if (sec->active_key <= 3) {
10197                         priv->ieee->sec.active_key = sec->active_key;
10198                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10199                 } else
10200                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10201                 priv->status |= STATUS_SECURITY_UPDATED;
10202         } else
10203                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10204
10205         if ((sec->flags & SEC_AUTH_MODE) &&
10206             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10207                 priv->ieee->sec.auth_mode = sec->auth_mode;
10208                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10209                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10210                         priv->capability |= CAP_SHARED_KEY;
10211                 else
10212                         priv->capability &= ~CAP_SHARED_KEY;
10213                 priv->status |= STATUS_SECURITY_UPDATED;
10214         }
10215
10216         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10217                 priv->ieee->sec.flags |= SEC_ENABLED;
10218                 priv->ieee->sec.enabled = sec->enabled;
10219                 priv->status |= STATUS_SECURITY_UPDATED;
10220                 if (sec->enabled)
10221                         priv->capability |= CAP_PRIVACY_ON;
10222                 else
10223                         priv->capability &= ~CAP_PRIVACY_ON;
10224         }
10225
10226         if (sec->flags & SEC_ENCRYPT)
10227                 priv->ieee->sec.encrypt = sec->encrypt;
10228
10229         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10230                 priv->ieee->sec.level = sec->level;
10231                 priv->ieee->sec.flags |= SEC_LEVEL;
10232                 priv->status |= STATUS_SECURITY_UPDATED;
10233         }
10234
10235         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10236                 ipw_set_hwcrypto_keys(priv);
10237
10238         /* To match current functionality of ipw2100 (which works well w/
10239          * various supplicants, we don't force a disassociate if the
10240          * privacy capability changes ... */
10241 #if 0
10242         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10243             (((priv->assoc_request.capability &
10244                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10245              (!(priv->assoc_request.capability &
10246                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10247                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10248                                 "change.\n");
10249                 ipw_disassociate(priv);
10250         }
10251 #endif
10252 }
10253
10254 static int init_supported_rates(struct ipw_priv *priv,
10255                                 struct ipw_supported_rates *rates)
10256 {
10257         /* TODO: Mask out rates based on priv->rates_mask */
10258
10259         memset(rates, 0, sizeof(*rates));
10260         /* configure supported rates */
10261         switch (priv->ieee->freq_band) {
10262         case IEEE80211_52GHZ_BAND:
10263                 rates->ieee_mode = IPW_A_MODE;
10264                 rates->purpose = IPW_RATE_CAPABILITIES;
10265                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10266                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10267                 break;
10268
10269         default:                /* Mixed or 2.4Ghz */
10270                 rates->ieee_mode = IPW_G_MODE;
10271                 rates->purpose = IPW_RATE_CAPABILITIES;
10272                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10273                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10274                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10275                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10276                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10277                 }
10278                 break;
10279         }
10280
10281         return 0;
10282 }
10283
10284 static int ipw_config(struct ipw_priv *priv)
10285 {
10286         /* This is only called from ipw_up, which resets/reloads the firmware
10287            so, we don't need to first disable the card before we configure
10288            it */
10289         if (ipw_set_tx_power(priv))
10290                 goto error;
10291
10292         /* initialize adapter address */
10293         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10294                 goto error;
10295
10296         /* set basic system config settings */
10297         init_sys_config(&priv->sys_config);
10298         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10299                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10300         else
10301                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10302
10303         if (ipw_send_system_config(priv, &priv->sys_config))
10304                 goto error;
10305
10306         init_supported_rates(priv, &priv->rates);
10307         if (ipw_send_supported_rates(priv, &priv->rates))
10308                 goto error;
10309
10310         /* Set request-to-send threshold */
10311         if (priv->rts_threshold) {
10312                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10313                         goto error;
10314         }
10315 #ifdef CONFIG_IPW_QOS
10316         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10317         ipw_qos_activate(priv, NULL);
10318 #endif                          /* CONFIG_IPW_QOS */
10319
10320         if (ipw_set_random_seed(priv))
10321                 goto error;
10322
10323         /* final state transition to the RUN state */
10324         if (ipw_send_host_complete(priv))
10325                 goto error;
10326
10327         priv->status |= STATUS_INIT;
10328
10329         ipw_led_init(priv);
10330         ipw_led_radio_on(priv);
10331         priv->notif_missed_beacons = 0;
10332
10333         /* Set hardware WEP key if it is configured. */
10334         if ((priv->capability & CAP_PRIVACY_ON) &&
10335             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10336             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10337                 ipw_set_hwcrypto_keys(priv);
10338
10339         return 0;
10340
10341       error:
10342         return -EIO;
10343 }
10344
10345 /*
10346  * NOTE:
10347  *
10348  * These tables have been tested in conjunction with the
10349  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10350  *
10351  * Altering this values, using it on other hardware, or in geographies
10352  * not intended for resale of the above mentioned Intel adapters has
10353  * not been tested.
10354  *
10355  */
10356 static const struct ieee80211_geo ipw_geos[] = {
10357         {                       /* Restricted */
10358          "---",
10359          .bg_channels = 11,
10360          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10361                 {2427, 4}, {2432, 5}, {2437, 6},
10362                 {2442, 7}, {2447, 8}, {2452, 9},
10363                 {2457, 10}, {2462, 11}},
10364          },
10365
10366         {                       /* Custom US/Canada */
10367          "ZZF",
10368          .bg_channels = 11,
10369          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10370                 {2427, 4}, {2432, 5}, {2437, 6},
10371                 {2442, 7}, {2447, 8}, {2452, 9},
10372                 {2457, 10}, {2462, 11}},
10373          .a_channels = 8,
10374          .a = {{5180, 36},
10375                {5200, 40},
10376                {5220, 44},
10377                {5240, 48},
10378                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10379                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10380                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10381                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10382          },
10383
10384         {                       /* Rest of World */
10385          "ZZD",
10386          .bg_channels = 13,
10387          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10388                 {2427, 4}, {2432, 5}, {2437, 6},
10389                 {2442, 7}, {2447, 8}, {2452, 9},
10390                 {2457, 10}, {2462, 11}, {2467, 12},
10391                 {2472, 13}},
10392          },
10393
10394         {                       /* Custom USA & Europe & High */
10395          "ZZA",
10396          .bg_channels = 11,
10397          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10398                 {2427, 4}, {2432, 5}, {2437, 6},
10399                 {2442, 7}, {2447, 8}, {2452, 9},
10400                 {2457, 10}, {2462, 11}},
10401          .a_channels = 13,
10402          .a = {{5180, 36},
10403                {5200, 40},
10404                {5220, 44},
10405                {5240, 48},
10406                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10407                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10408                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10409                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10410                {5745, 149},
10411                {5765, 153},
10412                {5785, 157},
10413                {5805, 161},
10414                {5825, 165}},
10415          },
10416
10417         {                       /* Custom NA & Europe */
10418          "ZZB",
10419          .bg_channels = 11,
10420          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10421                 {2427, 4}, {2432, 5}, {2437, 6},
10422                 {2442, 7}, {2447, 8}, {2452, 9},
10423                 {2457, 10}, {2462, 11}},
10424          .a_channels = 13,
10425          .a = {{5180, 36},
10426                {5200, 40},
10427                {5220, 44},
10428                {5240, 48},
10429                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10430                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10431                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10432                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10433                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10434                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10435                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10436                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10437                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10438          },
10439
10440         {                       /* Custom Japan */
10441          "ZZC",
10442          .bg_channels = 11,
10443          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10444                 {2427, 4}, {2432, 5}, {2437, 6},
10445                 {2442, 7}, {2447, 8}, {2452, 9},
10446                 {2457, 10}, {2462, 11}},
10447          .a_channels = 4,
10448          .a = {{5170, 34}, {5190, 38},
10449                {5210, 42}, {5230, 46}},
10450          },
10451
10452         {                       /* Custom */
10453          "ZZM",
10454          .bg_channels = 11,
10455          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10456                 {2427, 4}, {2432, 5}, {2437, 6},
10457                 {2442, 7}, {2447, 8}, {2452, 9},
10458                 {2457, 10}, {2462, 11}},
10459          },
10460
10461         {                       /* Europe */
10462          "ZZE",
10463          .bg_channels = 13,
10464          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10465                 {2427, 4}, {2432, 5}, {2437, 6},
10466                 {2442, 7}, {2447, 8}, {2452, 9},
10467                 {2457, 10}, {2462, 11}, {2467, 12},
10468                 {2472, 13}},
10469          .a_channels = 19,
10470          .a = {{5180, 36},
10471                {5200, 40},
10472                {5220, 44},
10473                {5240, 48},
10474                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10475                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10476                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10477                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10478                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10479                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10480                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10481                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10482                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10483                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10484                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10485                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10486                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10487                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10488                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10489          },
10490
10491         {                       /* Custom Japan */
10492          "ZZJ",
10493          .bg_channels = 14,
10494          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10495                 {2427, 4}, {2432, 5}, {2437, 6},
10496                 {2442, 7}, {2447, 8}, {2452, 9},
10497                 {2457, 10}, {2462, 11}, {2467, 12},
10498                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10499          .a_channels = 4,
10500          .a = {{5170, 34}, {5190, 38},
10501                {5210, 42}, {5230, 46}},
10502          },
10503
10504         {                       /* High Band */
10505          "ZZH",
10506          .bg_channels = 13,
10507          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10508                 {2427, 4}, {2432, 5}, {2437, 6},
10509                 {2442, 7}, {2447, 8}, {2452, 9},
10510                 {2457, 10}, {2462, 11},
10511                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10512                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10513          .a_channels = 4,
10514          .a = {{5745, 149}, {5765, 153},
10515                {5785, 157}, {5805, 161}},
10516          },
10517
10518         {                       /* Custom Europe */
10519          "ZZG",
10520          .bg_channels = 13,
10521          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10522                 {2427, 4}, {2432, 5}, {2437, 6},
10523                 {2442, 7}, {2447, 8}, {2452, 9},
10524                 {2457, 10}, {2462, 11},
10525                 {2467, 12}, {2472, 13}},
10526          .a_channels = 4,
10527          .a = {{5180, 36}, {5200, 40},
10528                {5220, 44}, {5240, 48}},
10529          },
10530
10531         {                       /* Europe */
10532          "ZZK",
10533          .bg_channels = 13,
10534          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10535                 {2427, 4}, {2432, 5}, {2437, 6},
10536                 {2442, 7}, {2447, 8}, {2452, 9},
10537                 {2457, 10}, {2462, 11},
10538                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10539                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10540          .a_channels = 24,
10541          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10542                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10543                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10544                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10545                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10546                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10547                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10548                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10549                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10550                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10551                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10552                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10553                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10554                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10555                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10556                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10557                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10558                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10559                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10560                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10561                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10562                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10563                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10564                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10565          },
10566
10567         {                       /* Europe */
10568          "ZZL",
10569          .bg_channels = 11,
10570          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10571                 {2427, 4}, {2432, 5}, {2437, 6},
10572                 {2442, 7}, {2447, 8}, {2452, 9},
10573                 {2457, 10}, {2462, 11}},
10574          .a_channels = 13,
10575          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10576                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10577                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10578                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10579                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10580                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10581                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10582                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10583                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10584                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10585                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10586                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10587                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10588          }
10589 };
10590
10591 /* GEO code borrowed from ieee80211_geo.c */
10592 static int ipw_is_valid_channel(struct ieee80211_device *ieee, u8 channel)
10593 {
10594         int i;
10595
10596         /* Driver needs to initialize the geography map before using
10597          * these helper functions */
10598         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10599
10600         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10601                 for (i = 0; i < ieee->geo.bg_channels; i++)
10602                         /* NOTE: If G mode is currently supported but
10603                          * this is a B only channel, we don't see it
10604                          * as valid. */
10605                         if ((ieee->geo.bg[i].channel == channel) &&
10606                             (!(ieee->mode & IEEE_G) ||
10607                              !(ieee->geo.bg[i].flags & IEEE80211_CH_B_ONLY)))
10608                                 return IEEE80211_24GHZ_BAND;
10609
10610         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10611                 for (i = 0; i < ieee->geo.a_channels; i++)
10612                         if (ieee->geo.a[i].channel == channel)
10613                                 return IEEE80211_52GHZ_BAND;
10614
10615         return 0;
10616 }
10617
10618 static int ipw_channel_to_index(struct ieee80211_device *ieee, u8 channel)
10619 {
10620         int i;
10621
10622         /* Driver needs to initialize the geography map before using
10623          * these helper functions */
10624         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10625
10626         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10627                 for (i = 0; i < ieee->geo.bg_channels; i++)
10628                         if (ieee->geo.bg[i].channel == channel)
10629                                 return i;
10630
10631         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10632                 for (i = 0; i < ieee->geo.a_channels; i++)
10633                         if (ieee->geo.a[i].channel == channel)
10634                                 return i;
10635
10636         return -1;
10637 }
10638
10639 static u8 ipw_freq_to_channel(struct ieee80211_device *ieee, u32 freq)
10640 {
10641         int i;
10642
10643         /* Driver needs to initialize the geography map before using
10644          * these helper functions */
10645         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10646
10647         freq /= 100000;
10648
10649         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10650                 for (i = 0; i < ieee->geo.bg_channels; i++)
10651                         if (ieee->geo.bg[i].freq == freq)
10652                                 return ieee->geo.bg[i].channel;
10653
10654         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10655                 for (i = 0; i < ieee->geo.a_channels; i++)
10656                         if (ieee->geo.a[i].freq == freq)
10657                                 return ieee->geo.a[i].channel;
10658
10659         return 0;
10660 }
10661
10662 static int ipw_set_geo(struct ieee80211_device *ieee,
10663                        const struct ieee80211_geo *geo)
10664 {
10665         memcpy(ieee->geo.name, geo->name, 3);
10666         ieee->geo.name[3] = '\0';
10667         ieee->geo.bg_channels = geo->bg_channels;
10668         ieee->geo.a_channels = geo->a_channels;
10669         memcpy(ieee->geo.bg, geo->bg, geo->bg_channels *
10670                sizeof(struct ieee80211_channel));
10671         memcpy(ieee->geo.a, geo->a, ieee->geo.a_channels *
10672                sizeof(struct ieee80211_channel));
10673         return 0;
10674 }
10675
10676 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *ieee)
10677 {
10678         return &ieee->geo;
10679 }
10680
10681 #define MAX_HW_RESTARTS 5
10682 static int ipw_up(struct ipw_priv *priv)
10683 {
10684         int rc, i, j;
10685
10686         if (priv->status & STATUS_EXIT_PENDING)
10687                 return -EIO;
10688
10689         if (cmdlog && !priv->cmdlog) {
10690                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10691                                        GFP_KERNEL);
10692                 if (priv->cmdlog == NULL) {
10693                         IPW_ERROR("Error allocating %d command log entries.\n",
10694                                   cmdlog);
10695                 } else {
10696                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10697                         priv->cmdlog_len = cmdlog;
10698                 }
10699         }
10700
10701         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10702                 /* Load the microcode, firmware, and eeprom.
10703                  * Also start the clocks. */
10704                 rc = ipw_load(priv);
10705                 if (rc) {
10706                         IPW_ERROR("Unable to load firmware: %d\n", rc);
10707                         return rc;
10708                 }
10709
10710                 ipw_init_ordinals(priv);
10711                 if (!(priv->config & CFG_CUSTOM_MAC))
10712                         eeprom_parse_mac(priv, priv->mac_addr);
10713                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10714
10715                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10716                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10717                                     ipw_geos[j].name, 3))
10718                                 break;
10719                 }
10720                 if (j == ARRAY_SIZE(ipw_geos))
10721                         j = 0;
10722                 if (ipw_set_geo(priv->ieee, &ipw_geos[j])) {
10723                         IPW_WARNING("Could not set geography.");
10724                         return 0;
10725                 }
10726
10727                 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
10728                                j, priv->ieee->geo.name);
10729
10730                 if (priv->status & STATUS_RF_KILL_SW) {
10731                         IPW_WARNING("Radio disabled by module parameter.\n");
10732                         return 0;
10733                 } else if (rf_kill_active(priv)) {
10734                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10735                                     "Kill switch must be turned off for "
10736                                     "wireless networking to work.\n");
10737                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10738                                            2 * HZ);
10739                         return 0;
10740                 }
10741
10742                 rc = ipw_config(priv);
10743                 if (!rc) {
10744                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
10745
10746                         /* If configure to try and auto-associate, kick
10747                          * off a scan. */
10748                         queue_work(priv->workqueue, &priv->request_scan);
10749
10750                         return 0;
10751                 }
10752
10753                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10754                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10755                                i, MAX_HW_RESTARTS);
10756
10757                 /* We had an error bringing up the hardware, so take it
10758                  * all the way back down so we can try again */
10759                 ipw_down(priv);
10760         }
10761
10762         /* tried to restart and config the device for as long as our
10763          * patience could withstand */
10764         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10765
10766         return -EIO;
10767 }
10768
10769 static void ipw_bg_up(void *data)
10770 {
10771         struct ipw_priv *priv = data;
10772         down(&priv->sem);
10773         ipw_up(data);
10774         up(&priv->sem);
10775 }
10776
10777 static void ipw_deinit(struct ipw_priv *priv)
10778 {
10779         int i;
10780
10781         if (priv->status & STATUS_SCANNING) {
10782                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10783                 ipw_abort_scan(priv);
10784         }
10785
10786         if (priv->status & STATUS_ASSOCIATED) {
10787                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10788                 ipw_disassociate(priv);
10789         }
10790
10791         ipw_led_shutdown(priv);
10792
10793         /* Wait up to 1s for status to change to not scanning and not
10794          * associated (disassociation can take a while for a ful 802.11
10795          * exchange */
10796         for (i = 1000; i && (priv->status &
10797                              (STATUS_DISASSOCIATING |
10798                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10799                 udelay(10);
10800
10801         if (priv->status & (STATUS_DISASSOCIATING |
10802                             STATUS_ASSOCIATED | STATUS_SCANNING))
10803                 IPW_DEBUG_INFO("Still associated or scanning...\n");
10804         else
10805                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10806
10807         /* Attempt to disable the card */
10808         ipw_send_card_disable(priv, 0);
10809
10810         priv->status &= ~STATUS_INIT;
10811 }
10812
10813 static void ipw_down(struct ipw_priv *priv)
10814 {
10815         int exit_pending = priv->status & STATUS_EXIT_PENDING;
10816
10817         priv->status |= STATUS_EXIT_PENDING;
10818
10819         if (ipw_is_init(priv))
10820                 ipw_deinit(priv);
10821
10822         /* Wipe out the EXIT_PENDING status bit if we are not actually
10823          * exiting the module */
10824         if (!exit_pending)
10825                 priv->status &= ~STATUS_EXIT_PENDING;
10826
10827         /* tell the device to stop sending interrupts */
10828         ipw_disable_interrupts(priv);
10829
10830         /* Clear all bits but the RF Kill */
10831         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10832         netif_carrier_off(priv->net_dev);
10833         netif_stop_queue(priv->net_dev);
10834
10835         ipw_stop_nic(priv);
10836
10837         ipw_led_radio_off(priv);
10838 }
10839
10840 static void ipw_bg_down(void *data)
10841 {
10842         struct ipw_priv *priv = data;
10843         down(&priv->sem);
10844         ipw_down(data);
10845         up(&priv->sem);
10846 }
10847
10848 /* Called by register_netdev() */
10849 static int ipw_net_init(struct net_device *dev)
10850 {
10851         struct ipw_priv *priv = ieee80211_priv(dev);
10852         down(&priv->sem);
10853
10854         if (ipw_up(priv)) {
10855                 up(&priv->sem);
10856                 return -EIO;
10857         }
10858
10859         up(&priv->sem);
10860         return 0;
10861 }
10862
10863 /* PCI driver stuff */
10864 static struct pci_device_id card_ids[] = {
10865         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10866         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10867         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10868         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10869         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10870         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10871         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10872         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10873         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10874         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10875         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10876         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10877         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10878         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10879         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10880         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10881         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10882         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10883         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10884         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10885         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10886         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10887
10888         /* required last entry */
10889         {0,}
10890 };
10891
10892 MODULE_DEVICE_TABLE(pci, card_ids);
10893
10894 static struct attribute *ipw_sysfs_entries[] = {
10895         &dev_attr_rf_kill.attr,
10896         &dev_attr_direct_dword.attr,
10897         &dev_attr_indirect_byte.attr,
10898         &dev_attr_indirect_dword.attr,
10899         &dev_attr_mem_gpio_reg.attr,
10900         &dev_attr_command_event_reg.attr,
10901         &dev_attr_nic_type.attr,
10902         &dev_attr_status.attr,
10903         &dev_attr_cfg.attr,
10904         &dev_attr_error.attr,
10905         &dev_attr_event_log.attr,
10906         &dev_attr_cmd_log.attr,
10907         &dev_attr_eeprom_delay.attr,
10908         &dev_attr_ucode_version.attr,
10909         &dev_attr_rtc.attr,
10910         &dev_attr_scan_age.attr,
10911         &dev_attr_led.attr,
10912         &dev_attr_speed_scan.attr,
10913         &dev_attr_net_stats.attr,
10914         NULL
10915 };
10916
10917 static struct attribute_group ipw_attribute_group = {
10918         .name = NULL,           /* put in device directory */
10919         .attrs = ipw_sysfs_entries,
10920 };
10921
10922 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10923 {
10924         int err = 0;
10925         struct net_device *net_dev;
10926         void __iomem *base;
10927         u32 length, val;
10928         struct ipw_priv *priv;
10929         int i;
10930
10931         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
10932         if (net_dev == NULL) {
10933                 err = -ENOMEM;
10934                 goto out;
10935         }
10936
10937         priv = ieee80211_priv(net_dev);
10938         priv->ieee = netdev_priv(net_dev);
10939
10940         priv->net_dev = net_dev;
10941         priv->pci_dev = pdev;
10942 #ifdef CONFIG_IPW_DEBUG
10943         ipw_debug_level = debug;
10944 #endif
10945         spin_lock_init(&priv->lock);
10946         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
10947                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
10948
10949         init_MUTEX(&priv->sem);
10950         if (pci_enable_device(pdev)) {
10951                 err = -ENODEV;
10952                 goto out_free_ieee80211;
10953         }
10954
10955         pci_set_master(pdev);
10956
10957         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
10958         if (!err)
10959                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
10960         if (err) {
10961                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
10962                 goto out_pci_disable_device;
10963         }
10964
10965         pci_set_drvdata(pdev, priv);
10966
10967         err = pci_request_regions(pdev, DRV_NAME);
10968         if (err)
10969                 goto out_pci_disable_device;
10970
10971         /* We disable the RETRY_TIMEOUT register (0x41) to keep
10972          * PCI Tx retries from interfering with C3 CPU state */
10973         pci_read_config_dword(pdev, 0x40, &val);
10974         if ((val & 0x0000ff00) != 0)
10975                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
10976
10977         length = pci_resource_len(pdev, 0);
10978         priv->hw_len = length;
10979
10980         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
10981         if (!base) {
10982                 err = -ENODEV;
10983                 goto out_pci_release_regions;
10984         }
10985
10986         priv->hw_base = base;
10987         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
10988         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
10989
10990         err = ipw_setup_deferred_work(priv);
10991         if (err) {
10992                 IPW_ERROR("Unable to setup deferred work\n");
10993                 goto out_iounmap;
10994         }
10995
10996         ipw_sw_reset(priv, 1);
10997
10998         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
10999         if (err) {
11000                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11001                 goto out_destroy_workqueue;
11002         }
11003
11004         SET_MODULE_OWNER(net_dev);
11005         SET_NETDEV_DEV(net_dev, &pdev->dev);
11006
11007         down(&priv->sem);
11008
11009         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11010         priv->ieee->set_security = shim__set_security;
11011         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11012
11013 #ifdef CONFIG_IPW_QOS
11014         priv->ieee->handle_probe_response = ipw_handle_beacon;
11015         priv->ieee->handle_beacon = ipw_handle_probe_response;
11016         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11017 #endif                          /* CONFIG_IPW_QOS */
11018
11019         priv->ieee->perfect_rssi = -20;
11020         priv->ieee->worst_rssi = -85;
11021
11022         net_dev->open = ipw_net_open;
11023         net_dev->stop = ipw_net_stop;
11024         net_dev->init = ipw_net_init;
11025         net_dev->get_stats = ipw_net_get_stats;
11026         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11027         net_dev->set_mac_address = ipw_net_set_mac_address;
11028         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11029         priv->wireless_data.ieee80211 = priv->ieee;
11030         net_dev->wireless_data = &priv->wireless_data;
11031         net_dev->wireless_handlers = &ipw_wx_handler_def;
11032         net_dev->ethtool_ops = &ipw_ethtool_ops;
11033         net_dev->irq = pdev->irq;
11034         net_dev->base_addr = (unsigned long)priv->hw_base;
11035         net_dev->mem_start = pci_resource_start(pdev, 0);
11036         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11037
11038         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11039         if (err) {
11040                 IPW_ERROR("failed to create sysfs device attributes\n");
11041                 up(&priv->sem);
11042                 goto out_release_irq;
11043         }
11044
11045         up(&priv->sem);
11046         err = register_netdev(net_dev);
11047         if (err) {
11048                 IPW_ERROR("failed to register network device\n");
11049                 goto out_remove_sysfs;
11050         }
11051         return 0;
11052
11053       out_remove_sysfs:
11054         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11055       out_release_irq:
11056         free_irq(pdev->irq, priv);
11057       out_destroy_workqueue:
11058         destroy_workqueue(priv->workqueue);
11059         priv->workqueue = NULL;
11060       out_iounmap:
11061         iounmap(priv->hw_base);
11062       out_pci_release_regions:
11063         pci_release_regions(pdev);
11064       out_pci_disable_device:
11065         pci_disable_device(pdev);
11066         pci_set_drvdata(pdev, NULL);
11067       out_free_ieee80211:
11068         free_ieee80211(priv->net_dev);
11069       out:
11070         return err;
11071 }
11072
11073 static void ipw_pci_remove(struct pci_dev *pdev)
11074 {
11075         struct ipw_priv *priv = pci_get_drvdata(pdev);
11076         struct list_head *p, *q;
11077         int i;
11078
11079         if (!priv)
11080                 return;
11081
11082         down(&priv->sem);
11083
11084         priv->status |= STATUS_EXIT_PENDING;
11085         ipw_down(priv);
11086         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11087
11088         up(&priv->sem);
11089
11090         unregister_netdev(priv->net_dev);
11091
11092         if (priv->rxq) {
11093                 ipw_rx_queue_free(priv, priv->rxq);
11094                 priv->rxq = NULL;
11095         }
11096         ipw_tx_queue_free(priv);
11097
11098         if (priv->cmdlog) {
11099                 kfree(priv->cmdlog);
11100                 priv->cmdlog = NULL;
11101         }
11102         /* ipw_down will ensure that there is no more pending work
11103          * in the workqueue's, so we can safely remove them now. */
11104         cancel_delayed_work(&priv->adhoc_check);
11105         cancel_delayed_work(&priv->gather_stats);
11106         cancel_delayed_work(&priv->request_scan);
11107         cancel_delayed_work(&priv->rf_kill);
11108         cancel_delayed_work(&priv->scan_check);
11109         destroy_workqueue(priv->workqueue);
11110         priv->workqueue = NULL;
11111
11112         /* Free MAC hash list for ADHOC */
11113         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11114                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11115                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11116                         list_del(p);
11117                 }
11118         }
11119
11120         if (priv->error) {
11121                 ipw_free_error_log(priv->error);
11122                 priv->error = NULL;
11123         }
11124
11125         free_irq(pdev->irq, priv);
11126         iounmap(priv->hw_base);
11127         pci_release_regions(pdev);
11128         pci_disable_device(pdev);
11129         pci_set_drvdata(pdev, NULL);
11130         free_ieee80211(priv->net_dev);
11131         free_firmware();
11132 }
11133
11134 #ifdef CONFIG_PM
11135 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11136 {
11137         struct ipw_priv *priv = pci_get_drvdata(pdev);
11138         struct net_device *dev = priv->net_dev;
11139
11140         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11141
11142         /* Take down the device; powers it off, etc. */
11143         ipw_down(priv);
11144
11145         /* Remove the PRESENT state of the device */
11146         netif_device_detach(dev);
11147
11148         pci_save_state(pdev);
11149         pci_disable_device(pdev);
11150         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11151
11152         return 0;
11153 }
11154
11155 static int ipw_pci_resume(struct pci_dev *pdev)
11156 {
11157         struct ipw_priv *priv = pci_get_drvdata(pdev);
11158         struct net_device *dev = priv->net_dev;
11159         u32 val;
11160
11161         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11162
11163         pci_set_power_state(pdev, PCI_D0);
11164         pci_enable_device(pdev);
11165         pci_restore_state(pdev);
11166
11167         /*
11168          * Suspend/Resume resets the PCI configuration space, so we have to
11169          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11170          * from interfering with C3 CPU state. pci_restore_state won't help
11171          * here since it only restores the first 64 bytes pci config header.
11172          */
11173         pci_read_config_dword(pdev, 0x40, &val);
11174         if ((val & 0x0000ff00) != 0)
11175                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11176
11177         /* Set the device back into the PRESENT state; this will also wake
11178          * the queue of needed */
11179         netif_device_attach(dev);
11180
11181         /* Bring the device back up */
11182         queue_work(priv->workqueue, &priv->up);
11183
11184         return 0;
11185 }
11186 #endif
11187
11188 /* driver initialization stuff */
11189 static struct pci_driver ipw_driver = {
11190         .name = DRV_NAME,
11191         .id_table = card_ids,
11192         .probe = ipw_pci_probe,
11193         .remove = __devexit_p(ipw_pci_remove),
11194 #ifdef CONFIG_PM
11195         .suspend = ipw_pci_suspend,
11196         .resume = ipw_pci_resume,
11197 #endif
11198 };
11199
11200 static int __init ipw_init(void)
11201 {
11202         int ret;
11203
11204         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11205         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11206
11207         ret = pci_module_init(&ipw_driver);
11208         if (ret) {
11209                 IPW_ERROR("Unable to initialize PCI module\n");
11210                 return ret;
11211         }
11212
11213         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11214         if (ret) {
11215                 IPW_ERROR("Unable to create driver sysfs file\n");
11216                 pci_unregister_driver(&ipw_driver);
11217                 return ret;
11218         }
11219
11220         return ret;
11221 }
11222
11223 static void __exit ipw_exit(void)
11224 {
11225         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11226         pci_unregister_driver(&ipw_driver);
11227 }
11228
11229 module_param(disable, int, 0444);
11230 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11231
11232 module_param(associate, int, 0444);
11233 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11234
11235 module_param(auto_create, int, 0444);
11236 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11237
11238 module_param(led, int, 0444);
11239 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11240
11241 module_param(debug, int, 0444);
11242 MODULE_PARM_DESC(debug, "debug output mask");
11243
11244 module_param(channel, int, 0444);
11245 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11246
11247 #ifdef CONFIG_IPW_QOS
11248 module_param(qos_enable, int, 0444);
11249 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11250
11251 module_param(qos_burst_enable, int, 0444);
11252 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11253
11254 module_param(qos_no_ack_mask, int, 0444);
11255 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11256
11257 module_param(burst_duration_CCK, int, 0444);
11258 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11259
11260 module_param(burst_duration_OFDM, int, 0444);
11261 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11262 #endif                          /* CONFIG_IPW_QOS */
11263
11264 #ifdef CONFIG_IPW2200_MONITOR
11265 module_param(mode, int, 0444);
11266 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11267 #else
11268 module_param(mode, int, 0444);
11269 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11270 #endif
11271
11272 module_param(hwcrypto, int, 0444);
11273 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default on)");
11274
11275 module_param(cmdlog, int, 0444);
11276 MODULE_PARM_DESC(cmdlog,
11277                  "allocate a ring buffer for logging firmware commands");
11278
11279 module_exit(ipw_exit);
11280 module_init(ipw_init);