[PATCH] ipw2x00: expend Copyright to 2006
[safe/jmp/linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.1.4"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         down(&priv->adapter_sem);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         up(&priv->adapter_sem);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         down(&priv->adapter_sem);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         up(&priv->adapter_sem);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* If the interrupt is enabled, turn it off... */
1702         spin_lock_irqsave(&priv->low_lock, flags);
1703         ipw2100_disable_interrupts(priv);
1704
1705         /* Reset any fatal_error conditions */
1706         ipw2100_reset_fatalerror(priv);
1707         spin_unlock_irqrestore(&priv->low_lock, flags);
1708
1709         if (priv->status & STATUS_POWERED ||
1710             (priv->status & STATUS_RESET_PENDING)) {
1711                 /* Power cycle the card ... */
1712                 if (ipw2100_power_cycle_adapter(priv)) {
1713                         printk(KERN_WARNING DRV_NAME
1714                                ": %s: Could not cycle adapter.\n",
1715                                priv->net_dev->name);
1716                         rc = 1;
1717                         goto exit;
1718                 }
1719         } else
1720                 priv->status |= STATUS_POWERED;
1721
1722         /* Load the firmware, start the clocks, etc. */
1723         if (ipw2100_start_adapter(priv)) {
1724                 printk(KERN_ERR DRV_NAME
1725                        ": %s: Failed to start the firmware.\n",
1726                        priv->net_dev->name);
1727                 rc = 1;
1728                 goto exit;
1729         }
1730
1731         ipw2100_initialize_ordinals(priv);
1732
1733         /* Determine capabilities of this particular HW configuration */
1734         if (ipw2100_get_hw_features(priv)) {
1735                 printk(KERN_ERR DRV_NAME
1736                        ": %s: Failed to determine HW features.\n",
1737                        priv->net_dev->name);
1738                 rc = 1;
1739                 goto exit;
1740         }
1741
1742         /* Initialize the geo */
1743         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1744                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1745                 return 0;
1746         }
1747         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1748
1749         lock = LOCK_NONE;
1750         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1751                 printk(KERN_ERR DRV_NAME
1752                        ": %s: Failed to clear ordinal lock.\n",
1753                        priv->net_dev->name);
1754                 rc = 1;
1755                 goto exit;
1756         }
1757
1758         priv->status &= ~STATUS_SCANNING;
1759
1760         if (rf_kill_active(priv)) {
1761                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1762                        priv->net_dev->name);
1763
1764                 if (priv->stop_rf_kill) {
1765                         priv->stop_rf_kill = 0;
1766                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1767                 }
1768
1769                 deferred = 1;
1770         }
1771
1772         /* Turn on the interrupt so that commands can be processed */
1773         ipw2100_enable_interrupts(priv);
1774
1775         /* Send all of the commands that must be sent prior to
1776          * HOST_COMPLETE */
1777         if (ipw2100_adapter_setup(priv)) {
1778                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1779                        priv->net_dev->name);
1780                 rc = 1;
1781                 goto exit;
1782         }
1783
1784         if (!deferred) {
1785                 /* Enable the adapter - sends HOST_COMPLETE */
1786                 if (ipw2100_enable_adapter(priv)) {
1787                         printk(KERN_ERR DRV_NAME ": "
1788                                "%s: failed in call to enable adapter.\n",
1789                                priv->net_dev->name);
1790                         ipw2100_hw_stop_adapter(priv);
1791                         rc = 1;
1792                         goto exit;
1793                 }
1794
1795                 /* Start a scan . . . */
1796                 ipw2100_set_scan_options(priv);
1797                 ipw2100_start_scan(priv);
1798         }
1799
1800       exit:
1801         return rc;
1802 }
1803
1804 /* Called by register_netdev() */
1805 static int ipw2100_net_init(struct net_device *dev)
1806 {
1807         struct ipw2100_priv *priv = ieee80211_priv(dev);
1808         return ipw2100_up(priv, 1);
1809 }
1810
1811 static void ipw2100_down(struct ipw2100_priv *priv)
1812 {
1813         unsigned long flags;
1814         union iwreq_data wrqu = {
1815                 .ap_addr = {
1816                             .sa_family = ARPHRD_ETHER}
1817         };
1818         int associated = priv->status & STATUS_ASSOCIATED;
1819
1820         /* Kill the RF switch timer */
1821         if (!priv->stop_rf_kill) {
1822                 priv->stop_rf_kill = 1;
1823                 cancel_delayed_work(&priv->rf_kill);
1824         }
1825
1826         /* Kill the firmare hang check timer */
1827         if (!priv->stop_hang_check) {
1828                 priv->stop_hang_check = 1;
1829                 cancel_delayed_work(&priv->hang_check);
1830         }
1831
1832         /* Kill any pending resets */
1833         if (priv->status & STATUS_RESET_PENDING)
1834                 cancel_delayed_work(&priv->reset_work);
1835
1836         /* Make sure the interrupt is on so that FW commands will be
1837          * processed correctly */
1838         spin_lock_irqsave(&priv->low_lock, flags);
1839         ipw2100_enable_interrupts(priv);
1840         spin_unlock_irqrestore(&priv->low_lock, flags);
1841
1842         if (ipw2100_hw_stop_adapter(priv))
1843                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1844                        priv->net_dev->name);
1845
1846         /* Do not disable the interrupt until _after_ we disable
1847          * the adaptor.  Otherwise the CARD_DISABLE command will never
1848          * be ack'd by the firmware */
1849         spin_lock_irqsave(&priv->low_lock, flags);
1850         ipw2100_disable_interrupts(priv);
1851         spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1854         if (priv->config & CFG_C3_DISABLED) {
1855                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1856                 acpi_set_cstate_limit(priv->cstate_limit);
1857                 priv->config &= ~CFG_C3_DISABLED;
1858         }
1859 #endif
1860
1861         /* We have to signal any supplicant if we are disassociating */
1862         if (associated)
1863                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866         netif_carrier_off(priv->net_dev);
1867         netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1871 {
1872         unsigned long flags;
1873         union iwreq_data wrqu = {
1874                 .ap_addr = {
1875                             .sa_family = ARPHRD_ETHER}
1876         };
1877         int associated = priv->status & STATUS_ASSOCIATED;
1878
1879         spin_lock_irqsave(&priv->low_lock, flags);
1880         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1881         priv->resets++;
1882         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1883         priv->status |= STATUS_SECURITY_UPDATED;
1884
1885         /* Force a power cycle even if interface hasn't been opened
1886          * yet */
1887         cancel_delayed_work(&priv->reset_work);
1888         priv->status |= STATUS_RESET_PENDING;
1889         spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891         down(&priv->action_sem);
1892         /* stop timed checks so that they don't interfere with reset */
1893         priv->stop_hang_check = 1;
1894         cancel_delayed_work(&priv->hang_check);
1895
1896         /* We have to signal any supplicant if we are disassociating */
1897         if (associated)
1898                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900         ipw2100_up(priv, 0);
1901         up(&priv->action_sem);
1902
1903 }
1904
1905 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1906 {
1907
1908 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1909         int ret, len, essid_len;
1910         char essid[IW_ESSID_MAX_SIZE];
1911         u32 txrate;
1912         u32 chan;
1913         char *txratename;
1914         u8 bssid[ETH_ALEN];
1915
1916         /*
1917          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1918          *      an actual MAC of the AP. Seems like FW sets this
1919          *      address too late. Read it later and expose through
1920          *      /proc or schedule a later task to query and update
1921          */
1922
1923         essid_len = IW_ESSID_MAX_SIZE;
1924         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1925                                   essid, &essid_len);
1926         if (ret) {
1927                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1928                                __LINE__);
1929                 return;
1930         }
1931
1932         len = sizeof(u32);
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1934         if (ret) {
1935                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1936                                __LINE__);
1937                 return;
1938         }
1939
1940         len = sizeof(u32);
1941         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1942         if (ret) {
1943                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944                                __LINE__);
1945                 return;
1946         }
1947         len = ETH_ALEN;
1948         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1949         if (ret) {
1950                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951                                __LINE__);
1952                 return;
1953         }
1954         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1955
1956         switch (txrate) {
1957         case TX_RATE_1_MBIT:
1958                 txratename = "1Mbps";
1959                 break;
1960         case TX_RATE_2_MBIT:
1961                 txratename = "2Mbsp";
1962                 break;
1963         case TX_RATE_5_5_MBIT:
1964                 txratename = "5.5Mbps";
1965                 break;
1966         case TX_RATE_11_MBIT:
1967                 txratename = "11Mbps";
1968                 break;
1969         default:
1970                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1971                 txratename = "unknown rate";
1972                 break;
1973         }
1974
1975         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1976                        MAC_FMT ")\n",
1977                        priv->net_dev->name, escape_essid(essid, essid_len),
1978                        txratename, chan, MAC_ARG(bssid));
1979
1980         /* now we copy read ssid into dev */
1981         if (!(priv->config & CFG_STATIC_ESSID)) {
1982                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1983                 memcpy(priv->essid, essid, priv->essid_len);
1984         }
1985         priv->channel = chan;
1986         memcpy(priv->bssid, bssid, ETH_ALEN);
1987
1988         priv->status |= STATUS_ASSOCIATING;
1989         priv->connect_start = get_seconds();
1990
1991         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1992 }
1993
1994 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1995                              int length, int batch_mode)
1996 {
1997         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1998         struct host_command cmd = {
1999                 .host_command = SSID,
2000                 .host_command_sequence = 0,
2001                 .host_command_length = ssid_len
2002         };
2003         int err;
2004
2005         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2006
2007         if (ssid_len)
2008                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2009
2010         if (!batch_mode) {
2011                 err = ipw2100_disable_adapter(priv);
2012                 if (err)
2013                         return err;
2014         }
2015
2016         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2017          * disable auto association -- so we cheat by setting a bogus SSID */
2018         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2019                 int i;
2020                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2021                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2022                         bogus[i] = 0x18 + i;
2023                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2024         }
2025
2026         /* NOTE:  We always send the SSID command even if the provided ESSID is
2027          * the same as what we currently think is set. */
2028
2029         err = ipw2100_hw_send_command(priv, &cmd);
2030         if (!err) {
2031                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2032                 memcpy(priv->essid, essid, ssid_len);
2033                 priv->essid_len = ssid_len;
2034         }
2035
2036         if (!batch_mode) {
2037                 if (ipw2100_enable_adapter(priv))
2038                         err = -EIO;
2039         }
2040
2041         return err;
2042 }
2043
2044 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2045 {
2046         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2047                   "disassociated: '%s' " MAC_FMT " \n",
2048                   escape_essid(priv->essid, priv->essid_len),
2049                   MAC_ARG(priv->bssid));
2050
2051         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2052
2053         if (priv->status & STATUS_STOPPING) {
2054                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2055                 return;
2056         }
2057
2058         memset(priv->bssid, 0, ETH_ALEN);
2059         memset(priv->ieee->bssid, 0, ETH_ALEN);
2060
2061         netif_carrier_off(priv->net_dev);
2062         netif_stop_queue(priv->net_dev);
2063
2064         if (!(priv->status & STATUS_RUNNING))
2065                 return;
2066
2067         if (priv->status & STATUS_SECURITY_UPDATED)
2068                 queue_work(priv->workqueue, &priv->security_work);
2069
2070         queue_work(priv->workqueue, &priv->wx_event_work);
2071 }
2072
2073 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2074 {
2075         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2076                        priv->net_dev->name);
2077
2078         /* RF_KILL is now enabled (else we wouldn't be here) */
2079         priv->status |= STATUS_RF_KILL_HW;
2080
2081 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2082         if (priv->config & CFG_C3_DISABLED) {
2083                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2084                 acpi_set_cstate_limit(priv->cstate_limit);
2085                 priv->config &= ~CFG_C3_DISABLED;
2086         }
2087 #endif
2088
2089         /* Make sure the RF Kill check timer is running */
2090         priv->stop_rf_kill = 0;
2091         cancel_delayed_work(&priv->rf_kill);
2092         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2093 }
2094
2095 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2096 {
2097         IPW_DEBUG_SCAN("scan complete\n");
2098         /* Age the scan results... */
2099         priv->ieee->scans++;
2100         priv->status &= ~STATUS_SCANNING;
2101 }
2102
2103 #ifdef CONFIG_IPW2100_DEBUG
2104 #define IPW2100_HANDLER(v, f) { v, f, # v }
2105 struct ipw2100_status_indicator {
2106         int status;
2107         void (*cb) (struct ipw2100_priv * priv, u32 status);
2108         char *name;
2109 };
2110 #else
2111 #define IPW2100_HANDLER(v, f) { v, f }
2112 struct ipw2100_status_indicator {
2113         int status;
2114         void (*cb) (struct ipw2100_priv * priv, u32 status);
2115 };
2116 #endif                          /* CONFIG_IPW2100_DEBUG */
2117
2118 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2119 {
2120         IPW_DEBUG_SCAN("Scanning...\n");
2121         priv->status |= STATUS_SCANNING;
2122 }
2123
2124 static const struct ipw2100_status_indicator status_handlers[] = {
2125         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2126         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2127         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2128         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2129         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2130         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2131         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2132         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2133         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2134         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2136         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2137         IPW2100_HANDLER(-1, NULL)
2138 };
2139
2140 static void isr_status_change(struct ipw2100_priv *priv, int status)
2141 {
2142         int i;
2143
2144         if (status == IPW_STATE_SCANNING &&
2145             priv->status & STATUS_ASSOCIATED &&
2146             !(priv->status & STATUS_SCANNING)) {
2147                 IPW_DEBUG_INFO("Scan detected while associated, with "
2148                                "no scan request.  Restarting firmware.\n");
2149
2150                 /* Wake up any sleeping jobs */
2151                 schedule_reset(priv);
2152         }
2153
2154         for (i = 0; status_handlers[i].status != -1; i++) {
2155                 if (status == status_handlers[i].status) {
2156                         IPW_DEBUG_NOTIF("Status change: %s\n",
2157                                         status_handlers[i].name);
2158                         if (status_handlers[i].cb)
2159                                 status_handlers[i].cb(priv, status);
2160                         priv->wstats.status = status;
2161                         return;
2162                 }
2163         }
2164
2165         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2166 }
2167
2168 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2169                                     struct ipw2100_cmd_header *cmd)
2170 {
2171 #ifdef CONFIG_IPW2100_DEBUG
2172         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2173                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2174                              command_types[cmd->host_command_reg],
2175                              cmd->host_command_reg);
2176         }
2177 #endif
2178         if (cmd->host_command_reg == HOST_COMPLETE)
2179                 priv->status |= STATUS_ENABLED;
2180
2181         if (cmd->host_command_reg == CARD_DISABLE)
2182                 priv->status &= ~STATUS_ENABLED;
2183
2184         priv->status &= ~STATUS_CMD_ACTIVE;
2185
2186         wake_up_interruptible(&priv->wait_command_queue);
2187 }
2188
2189 #ifdef CONFIG_IPW2100_DEBUG
2190 static const char *frame_types[] = {
2191         "COMMAND_STATUS_VAL",
2192         "STATUS_CHANGE_VAL",
2193         "P80211_DATA_VAL",
2194         "P8023_DATA_VAL",
2195         "HOST_NOTIFICATION_VAL"
2196 };
2197 #endif
2198
2199 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2200                                     struct ipw2100_rx_packet *packet)
2201 {
2202         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2203         if (!packet->skb)
2204                 return -ENOMEM;
2205
2206         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2207         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2208                                           sizeof(struct ipw2100_rx),
2209                                           PCI_DMA_FROMDEVICE);
2210         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2211          *       dma_addr */
2212
2213         return 0;
2214 }
2215
2216 #define SEARCH_ERROR   0xffffffff
2217 #define SEARCH_FAIL    0xfffffffe
2218 #define SEARCH_SUCCESS 0xfffffff0
2219 #define SEARCH_DISCARD 0
2220 #define SEARCH_SNAPSHOT 1
2221
2222 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2223 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2224 {
2225         int i;
2226         if (!priv->snapshot[0])
2227                 return;
2228         for (i = 0; i < 0x30; i++)
2229                 kfree(priv->snapshot[i]);
2230         priv->snapshot[0] = NULL;
2231 }
2232
2233 #ifdef CONFIG_IPW2100_DEBUG_C3
2234 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2235 {
2236         int i;
2237         if (priv->snapshot[0])
2238                 return 1;
2239         for (i = 0; i < 0x30; i++) {
2240                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2241                 if (!priv->snapshot[i]) {
2242                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2243                                        "buffer %d\n", priv->net_dev->name, i);
2244                         while (i > 0)
2245                                 kfree(priv->snapshot[--i]);
2246                         priv->snapshot[0] = NULL;
2247                         return 0;
2248                 }
2249         }
2250
2251         return 1;
2252 }
2253
2254 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2255                                     size_t len, int mode)
2256 {
2257         u32 i, j;
2258         u32 tmp;
2259         u8 *s, *d;
2260         u32 ret;
2261
2262         s = in_buf;
2263         if (mode == SEARCH_SNAPSHOT) {
2264                 if (!ipw2100_snapshot_alloc(priv))
2265                         mode = SEARCH_DISCARD;
2266         }
2267
2268         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2269                 read_nic_dword(priv->net_dev, i, &tmp);
2270                 if (mode == SEARCH_SNAPSHOT)
2271                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2272                 if (ret == SEARCH_FAIL) {
2273                         d = (u8 *) & tmp;
2274                         for (j = 0; j < 4; j++) {
2275                                 if (*s != *d) {
2276                                         s = in_buf;
2277                                         continue;
2278                                 }
2279
2280                                 s++;
2281                                 d++;
2282
2283                                 if ((s - in_buf) == len)
2284                                         ret = (i + j) - len + 1;
2285                         }
2286                 } else if (mode == SEARCH_DISCARD)
2287                         return ret;
2288         }
2289
2290         return ret;
2291 }
2292 #endif
2293
2294 /*
2295  *
2296  * 0) Disconnect the SKB from the firmware (just unmap)
2297  * 1) Pack the ETH header into the SKB
2298  * 2) Pass the SKB to the network stack
2299  *
2300  * When packet is provided by the firmware, it contains the following:
2301  *
2302  * .  ieee80211_hdr
2303  * .  ieee80211_snap_hdr
2304  *
2305  * The size of the constructed ethernet
2306  *
2307  */
2308 #ifdef CONFIG_IPW2100_RX_DEBUG
2309 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2310 #endif
2311
2312 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2313 {
2314 #ifdef CONFIG_IPW2100_DEBUG_C3
2315         struct ipw2100_status *status = &priv->status_queue.drv[i];
2316         u32 match, reg;
2317         int j;
2318 #endif
2319 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2320         int limit;
2321 #endif
2322
2323         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2324                        i * sizeof(struct ipw2100_status));
2325
2326 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2327         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2328         limit = acpi_get_cstate_limit();
2329         if (limit > 2) {
2330                 priv->cstate_limit = limit;
2331                 acpi_set_cstate_limit(2);
2332                 priv->config |= CFG_C3_DISABLED;
2333         }
2334 #endif
2335
2336 #ifdef CONFIG_IPW2100_DEBUG_C3
2337         /* Halt the fimrware so we can get a good image */
2338         write_register(priv->net_dev, IPW_REG_RESET_REG,
2339                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2340         j = 5;
2341         do {
2342                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2343                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2344
2345                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2346                         break;
2347         } while (j--);
2348
2349         match = ipw2100_match_buf(priv, (u8 *) status,
2350                                   sizeof(struct ipw2100_status),
2351                                   SEARCH_SNAPSHOT);
2352         if (match < SEARCH_SUCCESS)
2353                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2354                                "offset 0x%06X, length %d:\n",
2355                                priv->net_dev->name, match,
2356                                sizeof(struct ipw2100_status));
2357         else
2358                 IPW_DEBUG_INFO("%s: No DMA status match in "
2359                                "Firmware.\n", priv->net_dev->name);
2360
2361         printk_buf((u8 *) priv->status_queue.drv,
2362                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2363 #endif
2364
2365         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2366         priv->ieee->stats.rx_errors++;
2367         schedule_reset(priv);
2368 }
2369
2370 static void isr_rx(struct ipw2100_priv *priv, int i,
2371                           struct ieee80211_rx_stats *stats)
2372 {
2373         struct ipw2100_status *status = &priv->status_queue.drv[i];
2374         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2375
2376         IPW_DEBUG_RX("Handler...\n");
2377
2378         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2379                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2380                                "  Dropping.\n",
2381                                priv->net_dev->name,
2382                                status->frame_size, skb_tailroom(packet->skb));
2383                 priv->ieee->stats.rx_errors++;
2384                 return;
2385         }
2386
2387         if (unlikely(!netif_running(priv->net_dev))) {
2388                 priv->ieee->stats.rx_errors++;
2389                 priv->wstats.discard.misc++;
2390                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2391                 return;
2392         }
2393 #ifdef CONFIG_IPW2100_MONITOR
2394         if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2395                      priv->config & CFG_CRC_CHECK &&
2396                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2397                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2398                 priv->ieee->stats.rx_errors++;
2399                 return;
2400         }
2401 #endif
2402
2403         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404                      !(priv->status & STATUS_ASSOCIATED))) {
2405                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406                 priv->wstats.discard.misc++;
2407                 return;
2408         }
2409
2410         pci_unmap_single(priv->pci_dev,
2411                          packet->dma_addr,
2412                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414         skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef CONFIG_IPW2100_RX_DEBUG
2417         /* Make a copy of the frame so we can dump it to the logs if
2418          * ieee80211_rx fails */
2419         memcpy(packet_data, packet->skb->data,
2420                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2422
2423         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef CONFIG_IPW2100_RX_DEBUG
2425                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426                                priv->net_dev->name);
2427                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429                 priv->ieee->stats.rx_errors++;
2430
2431                 /* ieee80211_rx failed, so it didn't free the SKB */
2432                 dev_kfree_skb_any(packet->skb);
2433                 packet->skb = NULL;
2434         }
2435
2436         /* We need to allocate a new SKB and attach it to the RDB. */
2437         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438                 printk(KERN_WARNING DRV_NAME ": "
2439                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2440                        "adapter.\n", priv->net_dev->name);
2441                 /* TODO: schedule adapter shutdown */
2442                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2443         }
2444
2445         /* Update the RDB entry */
2446         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2447 }
2448
2449 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2450 {
2451         struct ipw2100_status *status = &priv->status_queue.drv[i];
2452         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2453         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2454
2455         switch (frame_type) {
2456         case COMMAND_STATUS_VAL:
2457                 return (status->frame_size != sizeof(u->rx_data.command));
2458         case STATUS_CHANGE_VAL:
2459                 return (status->frame_size != sizeof(u->rx_data.status));
2460         case HOST_NOTIFICATION_VAL:
2461                 return (status->frame_size < sizeof(u->rx_data.notification));
2462         case P80211_DATA_VAL:
2463         case P8023_DATA_VAL:
2464 #ifdef CONFIG_IPW2100_MONITOR
2465                 return 0;
2466 #else
2467                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2468                 case IEEE80211_FTYPE_MGMT:
2469                 case IEEE80211_FTYPE_CTL:
2470                         return 0;
2471                 case IEEE80211_FTYPE_DATA:
2472                         return (status->frame_size >
2473                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2474                 }
2475 #endif
2476         }
2477
2478         return 1;
2479 }
2480
2481 /*
2482  * ipw2100 interrupts are disabled at this point, and the ISR
2483  * is the only code that calls this method.  So, we do not need
2484  * to play with any locks.
2485  *
2486  * RX Queue works as follows:
2487  *
2488  * Read index - firmware places packet in entry identified by the
2489  *              Read index and advances Read index.  In this manner,
2490  *              Read index will always point to the next packet to
2491  *              be filled--but not yet valid.
2492  *
2493  * Write index - driver fills this entry with an unused RBD entry.
2494  *               This entry has not filled by the firmware yet.
2495  *
2496  * In between the W and R indexes are the RBDs that have been received
2497  * but not yet processed.
2498  *
2499  * The process of handling packets will start at WRITE + 1 and advance
2500  * until it reaches the READ index.
2501  *
2502  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2503  *
2504  */
2505 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2506 {
2507         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2508         struct ipw2100_status_queue *sq = &priv->status_queue;
2509         struct ipw2100_rx_packet *packet;
2510         u16 frame_type;
2511         u32 r, w, i, s;
2512         struct ipw2100_rx *u;
2513         struct ieee80211_rx_stats stats = {
2514                 .mac_time = jiffies,
2515         };
2516
2517         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2518         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2519
2520         if (r >= rxq->entries) {
2521                 IPW_DEBUG_RX("exit - bad read index\n");
2522                 return;
2523         }
2524
2525         i = (rxq->next + 1) % rxq->entries;
2526         s = i;
2527         while (i != r) {
2528                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2529                    r, rxq->next, i); */
2530
2531                 packet = &priv->rx_buffers[i];
2532
2533                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2534                  * the correct values */
2535                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2536                                             sq->nic +
2537                                             sizeof(struct ipw2100_status) * i,
2538                                             sizeof(struct ipw2100_status),
2539                                             PCI_DMA_FROMDEVICE);
2540
2541                 /* Sync the DMA for the RX buffer so CPU is sure to get
2542                  * the correct values */
2543                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2544                                             sizeof(struct ipw2100_rx),
2545                                             PCI_DMA_FROMDEVICE);
2546
2547                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2548                         ipw2100_corruption_detected(priv, i);
2549                         goto increment;
2550                 }
2551
2552                 u = packet->rxp;
2553                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2554                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2555                 stats.len = sq->drv[i].frame_size;
2556
2557                 stats.mask = 0;
2558                 if (stats.rssi != 0)
2559                         stats.mask |= IEEE80211_STATMASK_RSSI;
2560                 stats.freq = IEEE80211_24GHZ_BAND;
2561
2562                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2563                              priv->net_dev->name, frame_types[frame_type],
2564                              stats.len);
2565
2566                 switch (frame_type) {
2567                 case COMMAND_STATUS_VAL:
2568                         /* Reset Rx watchdog */
2569                         isr_rx_complete_command(priv, &u->rx_data.command);
2570                         break;
2571
2572                 case STATUS_CHANGE_VAL:
2573                         isr_status_change(priv, u->rx_data.status);
2574                         break;
2575
2576                 case P80211_DATA_VAL:
2577                 case P8023_DATA_VAL:
2578 #ifdef CONFIG_IPW2100_MONITOR
2579                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2580                                 isr_rx(priv, i, &stats);
2581                                 break;
2582                         }
2583 #endif
2584                         if (stats.len < sizeof(u->rx_data.header))
2585                                 break;
2586                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2587                         case IEEE80211_FTYPE_MGMT:
2588                                 ieee80211_rx_mgt(priv->ieee,
2589                                                  &u->rx_data.header, &stats);
2590                                 break;
2591
2592                         case IEEE80211_FTYPE_CTL:
2593                                 break;
2594
2595                         case IEEE80211_FTYPE_DATA:
2596                                 isr_rx(priv, i, &stats);
2597                                 break;
2598
2599                         }
2600                         break;
2601                 }
2602
2603               increment:
2604                 /* clear status field associated with this RBD */
2605                 rxq->drv[i].status.info.field = 0;
2606
2607                 i = (i + 1) % rxq->entries;
2608         }
2609
2610         if (i != s) {
2611                 /* backtrack one entry, wrapping to end if at 0 */
2612                 rxq->next = (i ? i : rxq->entries) - 1;
2613
2614                 write_register(priv->net_dev,
2615                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2616         }
2617 }
2618
2619 /*
2620  * __ipw2100_tx_process
2621  *
2622  * This routine will determine whether the next packet on
2623  * the fw_pend_list has been processed by the firmware yet.
2624  *
2625  * If not, then it does nothing and returns.
2626  *
2627  * If so, then it removes the item from the fw_pend_list, frees
2628  * any associated storage, and places the item back on the
2629  * free list of its source (either msg_free_list or tx_free_list)
2630  *
2631  * TX Queue works as follows:
2632  *
2633  * Read index - points to the next TBD that the firmware will
2634  *              process.  The firmware will read the data, and once
2635  *              done processing, it will advance the Read index.
2636  *
2637  * Write index - driver fills this entry with an constructed TBD
2638  *               entry.  The Write index is not advanced until the
2639  *               packet has been configured.
2640  *
2641  * In between the W and R indexes are the TBDs that have NOT been
2642  * processed.  Lagging behind the R index are packets that have
2643  * been processed but have not been freed by the driver.
2644  *
2645  * In order to free old storage, an internal index will be maintained
2646  * that points to the next packet to be freed.  When all used
2647  * packets have been freed, the oldest index will be the same as the
2648  * firmware's read index.
2649  *
2650  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2651  *
2652  * Because the TBD structure can not contain arbitrary data, the
2653  * driver must keep an internal queue of cached allocations such that
2654  * it can put that data back into the tx_free_list and msg_free_list
2655  * for use by future command and data packets.
2656  *
2657  */
2658 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2659 {
2660         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2661         struct ipw2100_bd *tbd;
2662         struct list_head *element;
2663         struct ipw2100_tx_packet *packet;
2664         int descriptors_used;
2665         int e, i;
2666         u32 r, w, frag_num = 0;
2667
2668         if (list_empty(&priv->fw_pend_list))
2669                 return 0;
2670
2671         element = priv->fw_pend_list.next;
2672
2673         packet = list_entry(element, struct ipw2100_tx_packet, list);
2674         tbd = &txq->drv[packet->index];
2675
2676         /* Determine how many TBD entries must be finished... */
2677         switch (packet->type) {
2678         case COMMAND:
2679                 /* COMMAND uses only one slot; don't advance */
2680                 descriptors_used = 1;
2681                 e = txq->oldest;
2682                 break;
2683
2684         case DATA:
2685                 /* DATA uses two slots; advance and loop position. */
2686                 descriptors_used = tbd->num_fragments;
2687                 frag_num = tbd->num_fragments - 1;
2688                 e = txq->oldest + frag_num;
2689                 e %= txq->entries;
2690                 break;
2691
2692         default:
2693                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2694                        priv->net_dev->name);
2695                 return 0;
2696         }
2697
2698         /* if the last TBD is not done by NIC yet, then packet is
2699          * not ready to be released.
2700          *
2701          */
2702         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2703                       &r);
2704         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2705                       &w);
2706         if (w != txq->next)
2707                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2708                        priv->net_dev->name);
2709
2710         /*
2711          * txq->next is the index of the last packet written txq->oldest is
2712          * the index of the r is the index of the next packet to be read by
2713          * firmware
2714          */
2715
2716         /*
2717          * Quick graphic to help you visualize the following
2718          * if / else statement
2719          *
2720          * ===>|                     s---->|===============
2721          *                               e>|
2722          * | a | b | c | d | e | f | g | h | i | j | k | l
2723          *       r---->|
2724          *               w
2725          *
2726          * w - updated by driver
2727          * r - updated by firmware
2728          * s - start of oldest BD entry (txq->oldest)
2729          * e - end of oldest BD entry
2730          *
2731          */
2732         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2733                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2734                 return 0;
2735         }
2736
2737         list_del(element);
2738         DEC_STAT(&priv->fw_pend_stat);
2739
2740 #ifdef CONFIG_IPW2100_DEBUG
2741         {
2742                 int i = txq->oldest;
2743                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2744                              &txq->drv[i],
2745                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2746                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2747
2748                 if (packet->type == DATA) {
2749                         i = (i + 1) % txq->entries;
2750
2751                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2752                                      &txq->drv[i],
2753                                      (u32) (txq->nic + i *
2754                                             sizeof(struct ipw2100_bd)),
2755                                      (u32) txq->drv[i].host_addr,
2756                                      txq->drv[i].buf_length);
2757                 }
2758         }
2759 #endif
2760
2761         switch (packet->type) {
2762         case DATA:
2763                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2764                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2765                                "Expecting DATA TBD but pulled "
2766                                "something else: ids %d=%d.\n",
2767                                priv->net_dev->name, txq->oldest, packet->index);
2768
2769                 /* DATA packet; we have to unmap and free the SKB */
2770                 for (i = 0; i < frag_num; i++) {
2771                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2772
2773                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2774                                      (packet->index + 1 + i) % txq->entries,
2775                                      tbd->host_addr, tbd->buf_length);
2776
2777                         pci_unmap_single(priv->pci_dev,
2778                                          tbd->host_addr,
2779                                          tbd->buf_length, PCI_DMA_TODEVICE);
2780                 }
2781
2782                 ieee80211_txb_free(packet->info.d_struct.txb);
2783                 packet->info.d_struct.txb = NULL;
2784
2785                 list_add_tail(element, &priv->tx_free_list);
2786                 INC_STAT(&priv->tx_free_stat);
2787
2788                 /* We have a free slot in the Tx queue, so wake up the
2789                  * transmit layer if it is stopped. */
2790                 if (priv->status & STATUS_ASSOCIATED)
2791                         netif_wake_queue(priv->net_dev);
2792
2793                 /* A packet was processed by the hardware, so update the
2794                  * watchdog */
2795                 priv->net_dev->trans_start = jiffies;
2796
2797                 break;
2798
2799         case COMMAND:
2800                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2801                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2802                                "Expecting COMMAND TBD but pulled "
2803                                "something else: ids %d=%d.\n",
2804                                priv->net_dev->name, txq->oldest, packet->index);
2805
2806 #ifdef CONFIG_IPW2100_DEBUG
2807                 if (packet->info.c_struct.cmd->host_command_reg <
2808                     sizeof(command_types) / sizeof(*command_types))
2809                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2810                                      command_types[packet->info.c_struct.cmd->
2811                                                    host_command_reg],
2812                                      packet->info.c_struct.cmd->
2813                                      host_command_reg,
2814                                      packet->info.c_struct.cmd->cmd_status_reg);
2815 #endif
2816
2817                 list_add_tail(element, &priv->msg_free_list);
2818                 INC_STAT(&priv->msg_free_stat);
2819                 break;
2820         }
2821
2822         /* advance oldest used TBD pointer to start of next entry */
2823         txq->oldest = (e + 1) % txq->entries;
2824         /* increase available TBDs number */
2825         txq->available += descriptors_used;
2826         SET_STAT(&priv->txq_stat, txq->available);
2827
2828         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2829                      jiffies - packet->jiffy_start);
2830
2831         return (!list_empty(&priv->fw_pend_list));
2832 }
2833
2834 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2835 {
2836         int i = 0;
2837
2838         while (__ipw2100_tx_process(priv) && i < 200)
2839                 i++;
2840
2841         if (i == 200) {
2842                 printk(KERN_WARNING DRV_NAME ": "
2843                        "%s: Driver is running slow (%d iters).\n",
2844                        priv->net_dev->name, i);
2845         }
2846 }
2847
2848 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2849 {
2850         struct list_head *element;
2851         struct ipw2100_tx_packet *packet;
2852         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2853         struct ipw2100_bd *tbd;
2854         int next = txq->next;
2855
2856         while (!list_empty(&priv->msg_pend_list)) {
2857                 /* if there isn't enough space in TBD queue, then
2858                  * don't stuff a new one in.
2859                  * NOTE: 3 are needed as a command will take one,
2860                  *       and there is a minimum of 2 that must be
2861                  *       maintained between the r and w indexes
2862                  */
2863                 if (txq->available <= 3) {
2864                         IPW_DEBUG_TX("no room in tx_queue\n");
2865                         break;
2866                 }
2867
2868                 element = priv->msg_pend_list.next;
2869                 list_del(element);
2870                 DEC_STAT(&priv->msg_pend_stat);
2871
2872                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2873
2874                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2875                              &txq->drv[txq->next],
2876                              (void *)(txq->nic + txq->next *
2877                                       sizeof(struct ipw2100_bd)));
2878
2879                 packet->index = txq->next;
2880
2881                 tbd = &txq->drv[txq->next];
2882
2883                 /* initialize TBD */
2884                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2885                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2886                 /* not marking number of fragments causes problems
2887                  * with f/w debug version */
2888                 tbd->num_fragments = 1;
2889                 tbd->status.info.field =
2890                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2891                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2892
2893                 /* update TBD queue counters */
2894                 txq->next++;
2895                 txq->next %= txq->entries;
2896                 txq->available--;
2897                 DEC_STAT(&priv->txq_stat);
2898
2899                 list_add_tail(element, &priv->fw_pend_list);
2900                 INC_STAT(&priv->fw_pend_stat);
2901         }
2902
2903         if (txq->next != next) {
2904                 /* kick off the DMA by notifying firmware the
2905                  * write index has moved; make sure TBD stores are sync'd */
2906                 wmb();
2907                 write_register(priv->net_dev,
2908                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2909                                txq->next);
2910         }
2911 }
2912
2913 /*
2914  * ipw2100_tx_send_data
2915  *
2916  */
2917 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2918 {
2919         struct list_head *element;
2920         struct ipw2100_tx_packet *packet;
2921         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2922         struct ipw2100_bd *tbd;
2923         int next = txq->next;
2924         int i = 0;
2925         struct ipw2100_data_header *ipw_hdr;
2926         struct ieee80211_hdr_3addr *hdr;
2927
2928         while (!list_empty(&priv->tx_pend_list)) {
2929                 /* if there isn't enough space in TBD queue, then
2930                  * don't stuff a new one in.
2931                  * NOTE: 4 are needed as a data will take two,
2932                  *       and there is a minimum of 2 that must be
2933                  *       maintained between the r and w indexes
2934                  */
2935                 element = priv->tx_pend_list.next;
2936                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2937
2938                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2939                              IPW_MAX_BDS)) {
2940                         /* TODO: Support merging buffers if more than
2941                          * IPW_MAX_BDS are used */
2942                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
2943                                        "Increase fragmentation level.\n",
2944                                        priv->net_dev->name);
2945                 }
2946
2947                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2948                         IPW_DEBUG_TX("no room in tx_queue\n");
2949                         break;
2950                 }
2951
2952                 list_del(element);
2953                 DEC_STAT(&priv->tx_pend_stat);
2954
2955                 tbd = &txq->drv[txq->next];
2956
2957                 packet->index = txq->next;
2958
2959                 ipw_hdr = packet->info.d_struct.data;
2960                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2961                     fragments[0]->data;
2962
2963                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2964                         /* To DS: Addr1 = BSSID, Addr2 = SA,
2965                            Addr3 = DA */
2966                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2967                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2968                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2969                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
2970                            Addr3 = BSSID */
2971                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2972                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2973                 }
2974
2975                 ipw_hdr->host_command_reg = SEND;
2976                 ipw_hdr->host_command_reg1 = 0;
2977
2978                 /* For now we only support host based encryption */
2979                 ipw_hdr->needs_encryption = 0;
2980                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2981                 if (packet->info.d_struct.txb->nr_frags > 1)
2982                         ipw_hdr->fragment_size =
2983                             packet->info.d_struct.txb->frag_size -
2984                             IEEE80211_3ADDR_LEN;
2985                 else
2986                         ipw_hdr->fragment_size = 0;
2987
2988                 tbd->host_addr = packet->info.d_struct.data_phys;
2989                 tbd->buf_length = sizeof(struct ipw2100_data_header);
2990                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2991                 tbd->status.info.field =
2992                     IPW_BD_STATUS_TX_FRAME_802_3 |
2993                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994                 txq->next++;
2995                 txq->next %= txq->entries;
2996
2997                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2998                              packet->index, tbd->host_addr, tbd->buf_length);
2999 #ifdef CONFIG_IPW2100_DEBUG
3000                 if (packet->info.d_struct.txb->nr_frags > 1)
3001                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3002                                        packet->info.d_struct.txb->nr_frags);
3003 #endif
3004
3005                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3006                         tbd = &txq->drv[txq->next];
3007                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3008                                 tbd->status.info.field =
3009                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3010                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3011                         else
3012                                 tbd->status.info.field =
3013                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3014                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3015
3016                         tbd->buf_length = packet->info.d_struct.txb->
3017                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3018
3019                         tbd->host_addr = pci_map_single(priv->pci_dev,
3020                                                         packet->info.d_struct.
3021                                                         txb->fragments[i]->
3022                                                         data +
3023                                                         IEEE80211_3ADDR_LEN,
3024                                                         tbd->buf_length,
3025                                                         PCI_DMA_TODEVICE);
3026
3027                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3028                                      txq->next, tbd->host_addr,
3029                                      tbd->buf_length);
3030
3031                         pci_dma_sync_single_for_device(priv->pci_dev,
3032                                                        tbd->host_addr,
3033                                                        tbd->buf_length,
3034                                                        PCI_DMA_TODEVICE);
3035
3036                         txq->next++;
3037                         txq->next %= txq->entries;
3038                 }
3039
3040                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3041                 SET_STAT(&priv->txq_stat, txq->available);
3042
3043                 list_add_tail(element, &priv->fw_pend_list);
3044                 INC_STAT(&priv->fw_pend_stat);
3045         }
3046
3047         if (txq->next != next) {
3048                 /* kick off the DMA by notifying firmware the
3049                  * write index has moved; make sure TBD stores are sync'd */
3050                 write_register(priv->net_dev,
3051                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3052                                txq->next);
3053         }
3054         return;
3055 }
3056
3057 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3058 {
3059         struct net_device *dev = priv->net_dev;
3060         unsigned long flags;
3061         u32 inta, tmp;
3062
3063         spin_lock_irqsave(&priv->low_lock, flags);
3064         ipw2100_disable_interrupts(priv);
3065
3066         read_register(dev, IPW_REG_INTA, &inta);
3067
3068         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3069                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3070
3071         priv->in_isr++;
3072         priv->interrupts++;
3073
3074         /* We do not loop and keep polling for more interrupts as this
3075          * is frowned upon and doesn't play nicely with other potentially
3076          * chained IRQs */
3077         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3078                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3079
3080         if (inta & IPW2100_INTA_FATAL_ERROR) {
3081                 printk(KERN_WARNING DRV_NAME
3082                        ": Fatal interrupt. Scheduling firmware restart.\n");
3083                 priv->inta_other++;
3084                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3085
3086                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3087                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3088                                priv->net_dev->name, priv->fatal_error);
3089
3090                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3091                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3092                                priv->net_dev->name, tmp);
3093
3094                 /* Wake up any sleeping jobs */
3095                 schedule_reset(priv);
3096         }
3097
3098         if (inta & IPW2100_INTA_PARITY_ERROR) {
3099                 printk(KERN_ERR DRV_NAME
3100                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3101                 priv->inta_other++;
3102                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3103         }
3104
3105         if (inta & IPW2100_INTA_RX_TRANSFER) {
3106                 IPW_DEBUG_ISR("RX interrupt\n");
3107
3108                 priv->rx_interrupts++;
3109
3110                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3111
3112                 __ipw2100_rx_process(priv);
3113                 __ipw2100_tx_complete(priv);
3114         }
3115
3116         if (inta & IPW2100_INTA_TX_TRANSFER) {
3117                 IPW_DEBUG_ISR("TX interrupt\n");
3118
3119                 priv->tx_interrupts++;
3120
3121                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3122
3123                 __ipw2100_tx_complete(priv);
3124                 ipw2100_tx_send_commands(priv);
3125                 ipw2100_tx_send_data(priv);
3126         }
3127
3128         if (inta & IPW2100_INTA_TX_COMPLETE) {
3129                 IPW_DEBUG_ISR("TX complete\n");
3130                 priv->inta_other++;
3131                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3132
3133                 __ipw2100_tx_complete(priv);
3134         }
3135
3136         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3137                 /* ipw2100_handle_event(dev); */
3138                 priv->inta_other++;
3139                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3140         }
3141
3142         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3143                 IPW_DEBUG_ISR("FW init done interrupt\n");
3144                 priv->inta_other++;
3145
3146                 read_register(dev, IPW_REG_INTA, &tmp);
3147                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3148                            IPW2100_INTA_PARITY_ERROR)) {
3149                         write_register(dev, IPW_REG_INTA,
3150                                        IPW2100_INTA_FATAL_ERROR |
3151                                        IPW2100_INTA_PARITY_ERROR);
3152                 }
3153
3154                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3155         }
3156
3157         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3158                 IPW_DEBUG_ISR("Status change interrupt\n");
3159                 priv->inta_other++;
3160                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3161         }
3162
3163         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3164                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3165                 priv->inta_other++;
3166                 write_register(dev, IPW_REG_INTA,
3167                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3168         }
3169
3170         priv->in_isr--;
3171         ipw2100_enable_interrupts(priv);
3172
3173         spin_unlock_irqrestore(&priv->low_lock, flags);
3174
3175         IPW_DEBUG_ISR("exit\n");
3176 }
3177
3178 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3179 {
3180         struct ipw2100_priv *priv = data;
3181         u32 inta, inta_mask;
3182
3183         if (!data)
3184                 return IRQ_NONE;
3185
3186         spin_lock(&priv->low_lock);
3187
3188         /* We check to see if we should be ignoring interrupts before
3189          * we touch the hardware.  During ucode load if we try and handle
3190          * an interrupt we can cause keyboard problems as well as cause
3191          * the ucode to fail to initialize */
3192         if (!(priv->status & STATUS_INT_ENABLED)) {
3193                 /* Shared IRQ */
3194                 goto none;
3195         }
3196
3197         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3198         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3199
3200         if (inta == 0xFFFFFFFF) {
3201                 /* Hardware disappeared */
3202                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3203                 goto none;
3204         }
3205
3206         inta &= IPW_INTERRUPT_MASK;
3207
3208         if (!(inta & inta_mask)) {
3209                 /* Shared interrupt */
3210                 goto none;
3211         }
3212
3213         /* We disable the hardware interrupt here just to prevent unneeded
3214          * calls to be made.  We disable this again within the actual
3215          * work tasklet, so if another part of the code re-enables the
3216          * interrupt, that is fine */
3217         ipw2100_disable_interrupts(priv);
3218
3219         tasklet_schedule(&priv->irq_tasklet);
3220         spin_unlock(&priv->low_lock);
3221
3222         return IRQ_HANDLED;
3223       none:
3224         spin_unlock(&priv->low_lock);
3225         return IRQ_NONE;
3226 }
3227
3228 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3229                       int pri)
3230 {
3231         struct ipw2100_priv *priv = ieee80211_priv(dev);
3232         struct list_head *element;
3233         struct ipw2100_tx_packet *packet;
3234         unsigned long flags;
3235
3236         spin_lock_irqsave(&priv->low_lock, flags);
3237
3238         if (!(priv->status & STATUS_ASSOCIATED)) {
3239                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3240                 priv->ieee->stats.tx_carrier_errors++;
3241                 netif_stop_queue(dev);
3242                 goto fail_unlock;
3243         }
3244
3245         if (list_empty(&priv->tx_free_list))
3246                 goto fail_unlock;
3247
3248         element = priv->tx_free_list.next;
3249         packet = list_entry(element, struct ipw2100_tx_packet, list);
3250
3251         packet->info.d_struct.txb = txb;
3252
3253         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3254         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3255
3256         packet->jiffy_start = jiffies;
3257
3258         list_del(element);
3259         DEC_STAT(&priv->tx_free_stat);
3260
3261         list_add_tail(element, &priv->tx_pend_list);
3262         INC_STAT(&priv->tx_pend_stat);
3263
3264         ipw2100_tx_send_data(priv);
3265
3266         spin_unlock_irqrestore(&priv->low_lock, flags);
3267         return 0;
3268
3269       fail_unlock:
3270         netif_stop_queue(dev);
3271         spin_unlock_irqrestore(&priv->low_lock, flags);
3272         return 1;
3273 }
3274
3275 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3276 {
3277         int i, j, err = -EINVAL;
3278         void *v;
3279         dma_addr_t p;
3280
3281         priv->msg_buffers =
3282             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3283                                                 sizeof(struct
3284                                                        ipw2100_tx_packet),
3285                                                 GFP_KERNEL);
3286         if (!priv->msg_buffers) {
3287                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3288                        "buffers.\n", priv->net_dev->name);
3289                 return -ENOMEM;
3290         }
3291
3292         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3293                 v = pci_alloc_consistent(priv->pci_dev,
3294                                          sizeof(struct ipw2100_cmd_header), &p);
3295                 if (!v) {
3296                         printk(KERN_ERR DRV_NAME ": "
3297                                "%s: PCI alloc failed for msg "
3298                                "buffers.\n", priv->net_dev->name);
3299                         err = -ENOMEM;
3300                         break;
3301                 }
3302
3303                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3304
3305                 priv->msg_buffers[i].type = COMMAND;
3306                 priv->msg_buffers[i].info.c_struct.cmd =
3307                     (struct ipw2100_cmd_header *)v;
3308                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3309         }
3310
3311         if (i == IPW_COMMAND_POOL_SIZE)
3312                 return 0;
3313
3314         for (j = 0; j < i; j++) {
3315                 pci_free_consistent(priv->pci_dev,
3316                                     sizeof(struct ipw2100_cmd_header),
3317                                     priv->msg_buffers[j].info.c_struct.cmd,
3318                                     priv->msg_buffers[j].info.c_struct.
3319                                     cmd_phys);
3320         }
3321
3322         kfree(priv->msg_buffers);
3323         priv->msg_buffers = NULL;
3324
3325         return err;
3326 }
3327
3328 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3329 {
3330         int i;
3331
3332         INIT_LIST_HEAD(&priv->msg_free_list);
3333         INIT_LIST_HEAD(&priv->msg_pend_list);
3334
3335         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3336                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3337         SET_STAT(&priv->msg_free_stat, i);
3338
3339         return 0;
3340 }
3341
3342 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3343 {
3344         int i;
3345
3346         if (!priv->msg_buffers)
3347                 return;
3348
3349         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3350                 pci_free_consistent(priv->pci_dev,
3351                                     sizeof(struct ipw2100_cmd_header),
3352                                     priv->msg_buffers[i].info.c_struct.cmd,
3353                                     priv->msg_buffers[i].info.c_struct.
3354                                     cmd_phys);
3355         }
3356
3357         kfree(priv->msg_buffers);
3358         priv->msg_buffers = NULL;
3359 }
3360
3361 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3362                         char *buf)
3363 {
3364         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3365         char *out = buf;
3366         int i, j;
3367         u32 val;
3368
3369         for (i = 0; i < 16; i++) {
3370                 out += sprintf(out, "[%08X] ", i * 16);
3371                 for (j = 0; j < 16; j += 4) {
3372                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3373                         out += sprintf(out, "%08X ", val);
3374                 }
3375                 out += sprintf(out, "\n");
3376         }
3377
3378         return out - buf;
3379 }
3380
3381 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3382
3383 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3384                         char *buf)
3385 {
3386         struct ipw2100_priv *p = d->driver_data;
3387         return sprintf(buf, "0x%08x\n", (int)p->config);
3388 }
3389
3390 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3391
3392 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3393                            char *buf)
3394 {
3395         struct ipw2100_priv *p = d->driver_data;
3396         return sprintf(buf, "0x%08x\n", (int)p->status);
3397 }
3398
3399 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3400
3401 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3402                                char *buf)
3403 {
3404         struct ipw2100_priv *p = d->driver_data;
3405         return sprintf(buf, "0x%08x\n", (int)p->capability);
3406 }
3407
3408 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3409
3410 #define IPW2100_REG(x) { IPW_ ##x, #x }
3411 static const struct {
3412         u32 addr;
3413         const char *name;
3414 } hw_data[] = {
3415 IPW2100_REG(REG_GP_CNTRL),
3416             IPW2100_REG(REG_GPIO),
3417             IPW2100_REG(REG_INTA),
3418             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3419 #define IPW2100_NIC(x, s) { x, #x, s }
3420 static const struct {
3421         u32 addr;
3422         const char *name;
3423         size_t size;
3424 } nic_data[] = {
3425 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3426             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3427 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3428 static const struct {
3429         u8 index;
3430         const char *name;
3431         const char *desc;
3432 } ord_data[] = {
3433 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3434             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3435                                 "successful Host Tx's (MSDU)"),
3436             IPW2100_ORD(STAT_TX_DIR_DATA,
3437                                 "successful Directed Tx's (MSDU)"),
3438             IPW2100_ORD(STAT_TX_DIR_DATA1,
3439                                 "successful Directed Tx's (MSDU) @ 1MB"),
3440             IPW2100_ORD(STAT_TX_DIR_DATA2,
3441                                 "successful Directed Tx's (MSDU) @ 2MB"),
3442             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3443                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3444             IPW2100_ORD(STAT_TX_DIR_DATA11,
3445                                 "successful Directed Tx's (MSDU) @ 11MB"),
3446             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3447                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3448             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3449                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3450             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3451                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3452             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3453                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3454             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3455             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3456             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3457             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3458             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3459             IPW2100_ORD(STAT_TX_ASSN_RESP,
3460                                 "successful Association response Tx's"),
3461             IPW2100_ORD(STAT_TX_REASSN,
3462                                 "successful Reassociation Tx's"),
3463             IPW2100_ORD(STAT_TX_REASSN_RESP,
3464                                 "successful Reassociation response Tx's"),
3465             IPW2100_ORD(STAT_TX_PROBE,
3466                                 "probes successfully transmitted"),
3467             IPW2100_ORD(STAT_TX_PROBE_RESP,
3468                                 "probe responses successfully transmitted"),
3469             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3470             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3471             IPW2100_ORD(STAT_TX_DISASSN,
3472                                 "successful Disassociation TX"),
3473             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3474             IPW2100_ORD(STAT_TX_DEAUTH,
3475                                 "successful Deauthentication TX"),
3476             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3477                                 "Total successful Tx data bytes"),
3478             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3479             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3480             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3481             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3482             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3483             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3484             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3485                                 "times max tries in a hop failed"),
3486             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3487                                 "times disassociation failed"),
3488             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3489             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3490             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3491             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3492             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3493             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3494             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3495                                 "directed packets at 5.5MB"),
3496             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3497             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3498             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3499                                 "nondirected packets at 1MB"),
3500             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3501                                 "nondirected packets at 2MB"),
3502             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3503                                 "nondirected packets at 5.5MB"),
3504             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3505                                 "nondirected packets at 11MB"),
3506             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3507             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3508                                                                     "Rx CTS"),
3509             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3510             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3511             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3512             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3513             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3514             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3515             IPW2100_ORD(STAT_RX_REASSN_RESP,
3516                                 "Reassociation response Rx's"),
3517             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3518             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3519             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3520             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3521             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3522             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3523             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3524             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3525                                 "Total rx data bytes received"),
3526             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3527             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3528             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3529             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3530             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3531             IPW2100_ORD(STAT_RX_DUPLICATE1,
3532                                 "duplicate rx packets at 1MB"),
3533             IPW2100_ORD(STAT_RX_DUPLICATE2,
3534                                 "duplicate rx packets at 2MB"),
3535             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3536                                 "duplicate rx packets at 5.5MB"),
3537             IPW2100_ORD(STAT_RX_DUPLICATE11,
3538                                 "duplicate rx packets at 11MB"),
3539             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3540             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3541             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3542             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3543             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3544                                 "rx frames with invalid protocol"),
3545             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3546             IPW2100_ORD(STAT_RX_NO_BUFFER,
3547                                 "rx frames rejected due to no buffer"),
3548             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3549                                 "rx frames dropped due to missing fragment"),
3550             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3551                                 "rx frames dropped due to non-sequential fragment"),
3552             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3553                                 "rx frames dropped due to unmatched 1st frame"),
3554             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3555                                 "rx frames dropped due to uncompleted frame"),
3556             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3557                                 "ICV errors during decryption"),
3558             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3559             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3560             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3561                                 "poll response timeouts"),
3562             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3563                                 "timeouts waiting for last {broad,multi}cast pkt"),
3564             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3565             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3566             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3567             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3568             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3569                                 "current calculation of % missed beacons"),
3570             IPW2100_ORD(STAT_PERCENT_RETRIES,
3571                                 "current calculation of % missed tx retries"),
3572             IPW2100_ORD(ASSOCIATED_AP_PTR,
3573                                 "0 if not associated, else pointer to AP table entry"),
3574             IPW2100_ORD(AVAILABLE_AP_CNT,
3575                                 "AP's decsribed in the AP table"),
3576             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3577             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3578             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3579             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3580                                 "failures due to response fail"),
3581             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3582             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3583             IPW2100_ORD(STAT_ROAM_INHIBIT,
3584                                 "times roaming was inhibited due to activity"),
3585             IPW2100_ORD(RSSI_AT_ASSN,
3586                                 "RSSI of associated AP at time of association"),
3587             IPW2100_ORD(STAT_ASSN_CAUSE1,
3588                                 "reassociation: no probe response or TX on hop"),
3589             IPW2100_ORD(STAT_ASSN_CAUSE2,
3590                                 "reassociation: poor tx/rx quality"),
3591             IPW2100_ORD(STAT_ASSN_CAUSE3,
3592                                 "reassociation: tx/rx quality (excessive AP load"),
3593             IPW2100_ORD(STAT_ASSN_CAUSE4,
3594                                 "reassociation: AP RSSI level"),
3595             IPW2100_ORD(STAT_ASSN_CAUSE5,
3596                                 "reassociations due to load leveling"),
3597             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3598             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3599                                 "times authentication response failed"),
3600             IPW2100_ORD(STATION_TABLE_CNT,
3601                                 "entries in association table"),
3602             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3603             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3604             IPW2100_ORD(COUNTRY_CODE,
3605                                 "IEEE country code as recv'd from beacon"),
3606             IPW2100_ORD(COUNTRY_CHANNELS,
3607                                 "channels suported by country"),
3608             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3609             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3610             IPW2100_ORD(ANTENNA_DIVERSITY,
3611                                 "TRUE if antenna diversity is disabled"),
3612             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3613             IPW2100_ORD(OUR_FREQ,
3614                                 "current radio freq lower digits - channel ID"),
3615             IPW2100_ORD(RTC_TIME, "current RTC time"),
3616             IPW2100_ORD(PORT_TYPE, "operating mode"),
3617             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3618             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3619             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3620             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3621             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3622             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3623             IPW2100_ORD(CAPABILITIES,
3624                                 "Management frame capability field"),
3625             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3626             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3627             IPW2100_ORD(RTS_THRESHOLD,
3628                                 "Min packet length for RTS handshaking"),
3629             IPW2100_ORD(INT_MODE, "International mode"),
3630             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3631                                 "protocol frag threshold"),
3632             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3633                                 "EEPROM offset in SRAM"),
3634             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3635                                 "EEPROM size in SRAM"),
3636             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3637             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3638                                 "EEPROM IBSS 11b channel set"),
3639             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3640             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3641             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3642             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3643             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3644
3645 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3646                               char *buf)
3647 {
3648         int i;
3649         struct ipw2100_priv *priv = dev_get_drvdata(d);
3650         struct net_device *dev = priv->net_dev;
3651         char *out = buf;
3652         u32 val = 0;
3653
3654         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3655
3656         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3657                 read_register(dev, hw_data[i].addr, &val);
3658                 out += sprintf(out, "%30s [%08X] : %08X\n",
3659                                hw_data[i].name, hw_data[i].addr, val);
3660         }
3661
3662         return out - buf;
3663 }
3664
3665 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3666
3667 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3668                              char *buf)
3669 {
3670         struct ipw2100_priv *priv = dev_get_drvdata(d);
3671         struct net_device *dev = priv->net_dev;
3672         char *out = buf;
3673         int i;
3674
3675         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3676
3677         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3678                 u8 tmp8;
3679                 u16 tmp16;
3680                 u32 tmp32;
3681
3682                 switch (nic_data[i].size) {
3683                 case 1:
3684                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3685                         out += sprintf(out, "%30s [%08X] : %02X\n",
3686                                        nic_data[i].name, nic_data[i].addr,
3687                                        tmp8);
3688                         break;
3689                 case 2:
3690                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3691                         out += sprintf(out, "%30s [%08X] : %04X\n",
3692                                        nic_data[i].name, nic_data[i].addr,
3693                                        tmp16);
3694                         break;
3695                 case 4:
3696                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3697                         out += sprintf(out, "%30s [%08X] : %08X\n",
3698                                        nic_data[i].name, nic_data[i].addr,
3699                                        tmp32);
3700                         break;
3701                 }
3702         }
3703         return out - buf;
3704 }
3705
3706 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3707
3708 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3709                            char *buf)
3710 {
3711         struct ipw2100_priv *priv = dev_get_drvdata(d);
3712         struct net_device *dev = priv->net_dev;
3713         static unsigned long loop = 0;
3714         int len = 0;
3715         u32 buffer[4];
3716         int i;
3717         char line[81];
3718
3719         if (loop >= 0x30000)
3720                 loop = 0;
3721
3722         /* sysfs provides us PAGE_SIZE buffer */
3723         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3724
3725                 if (priv->snapshot[0])
3726                         for (i = 0; i < 4; i++)
3727                                 buffer[i] =
3728                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3729                 else
3730                         for (i = 0; i < 4; i++)
3731                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3732
3733                 if (priv->dump_raw)
3734                         len += sprintf(buf + len,
3735                                        "%c%c%c%c"
3736                                        "%c%c%c%c"
3737                                        "%c%c%c%c"
3738                                        "%c%c%c%c",
3739                                        ((u8 *) buffer)[0x0],
3740                                        ((u8 *) buffer)[0x1],
3741                                        ((u8 *) buffer)[0x2],
3742                                        ((u8 *) buffer)[0x3],
3743                                        ((u8 *) buffer)[0x4],
3744                                        ((u8 *) buffer)[0x5],
3745                                        ((u8 *) buffer)[0x6],
3746                                        ((u8 *) buffer)[0x7],
3747                                        ((u8 *) buffer)[0x8],
3748                                        ((u8 *) buffer)[0x9],
3749                                        ((u8 *) buffer)[0xa],
3750                                        ((u8 *) buffer)[0xb],
3751                                        ((u8 *) buffer)[0xc],
3752                                        ((u8 *) buffer)[0xd],
3753                                        ((u8 *) buffer)[0xe],
3754                                        ((u8 *) buffer)[0xf]);
3755                 else
3756                         len += sprintf(buf + len, "%s\n",
3757                                        snprint_line(line, sizeof(line),
3758                                                     (u8 *) buffer, 16, loop));
3759                 loop += 16;
3760         }
3761
3762         return len;
3763 }
3764
3765 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3766                             const char *buf, size_t count)
3767 {
3768         struct ipw2100_priv *priv = dev_get_drvdata(d);
3769         struct net_device *dev = priv->net_dev;
3770         const char *p = buf;
3771
3772         (void)dev;              /* kill unused-var warning for debug-only code */
3773
3774         if (count < 1)
3775                 return count;
3776
3777         if (p[0] == '1' ||
3778             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3779                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3780                                dev->name);
3781                 priv->dump_raw = 1;
3782
3783         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3784                                    tolower(p[1]) == 'f')) {
3785                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3786                                dev->name);
3787                 priv->dump_raw = 0;
3788
3789         } else if (tolower(p[0]) == 'r') {
3790                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3791                 ipw2100_snapshot_free(priv);
3792
3793         } else
3794                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3795                                "reset = clear memory snapshot\n", dev->name);
3796
3797         return count;
3798 }
3799
3800 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3801
3802 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3803                              char *buf)
3804 {
3805         struct ipw2100_priv *priv = dev_get_drvdata(d);
3806         u32 val = 0;
3807         int len = 0;
3808         u32 val_len;
3809         static int loop = 0;
3810
3811         if (priv->status & STATUS_RF_KILL_MASK)
3812                 return 0;
3813
3814         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3815                 loop = 0;
3816
3817         /* sysfs provides us PAGE_SIZE buffer */
3818         while (len < PAGE_SIZE - 128 &&
3819                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3820
3821                 val_len = sizeof(u32);
3822
3823                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3824                                         &val_len))
3825                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3826                                        ord_data[loop].index,
3827                                        ord_data[loop].desc);
3828                 else
3829                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3830                                        ord_data[loop].index, val,
3831                                        ord_data[loop].desc);
3832                 loop++;
3833         }
3834
3835         return len;
3836 }
3837
3838 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3839
3840 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3841                           char *buf)
3842 {
3843         struct ipw2100_priv *priv = dev_get_drvdata(d);
3844         char *out = buf;
3845
3846         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3847                        priv->interrupts, priv->tx_interrupts,
3848                        priv->rx_interrupts, priv->inta_other);
3849         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3850         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3851 #ifdef CONFIG_IPW2100_DEBUG
3852         out += sprintf(out, "packet mismatch image: %s\n",
3853                        priv->snapshot[0] ? "YES" : "NO");
3854 #endif
3855
3856         return out - buf;
3857 }
3858
3859 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3860
3861 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3862 {
3863         int err;
3864
3865         if (mode == priv->ieee->iw_mode)
3866                 return 0;
3867
3868         err = ipw2100_disable_adapter(priv);
3869         if (err) {
3870                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3871                        priv->net_dev->name, err);
3872                 return err;
3873         }
3874
3875         switch (mode) {
3876         case IW_MODE_INFRA:
3877                 priv->net_dev->type = ARPHRD_ETHER;
3878                 break;
3879         case IW_MODE_ADHOC:
3880                 priv->net_dev->type = ARPHRD_ETHER;
3881                 break;
3882 #ifdef CONFIG_IPW2100_MONITOR
3883         case IW_MODE_MONITOR:
3884                 priv->last_mode = priv->ieee->iw_mode;
3885                 priv->net_dev->type = ARPHRD_IEEE80211;
3886                 break;
3887 #endif                          /* CONFIG_IPW2100_MONITOR */
3888         }
3889
3890         priv->ieee->iw_mode = mode;
3891
3892 #ifdef CONFIG_PM
3893         /* Indicate ipw2100_download_firmware download firmware
3894          * from disk instead of memory. */
3895         ipw2100_firmware.version = 0;
3896 #endif
3897
3898         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3899         priv->reset_backoff = 0;
3900         schedule_reset(priv);
3901
3902         return 0;
3903 }
3904
3905 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3906                               char *buf)
3907 {
3908         struct ipw2100_priv *priv = dev_get_drvdata(d);
3909         int len = 0;
3910
3911 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3912
3913         if (priv->status & STATUS_ASSOCIATED)
3914                 len += sprintf(buf + len, "connected: %lu\n",
3915                                get_seconds() - priv->connect_start);
3916         else
3917                 len += sprintf(buf + len, "not connected\n");
3918
3919         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3920         DUMP_VAR(status, "08lx");
3921         DUMP_VAR(config, "08lx");
3922         DUMP_VAR(capability, "08lx");
3923
3924         len +=
3925             sprintf(buf + len, "last_rtc: %lu\n",
3926                     (unsigned long)priv->last_rtc);
3927
3928         DUMP_VAR(fatal_error, "d");
3929         DUMP_VAR(stop_hang_check, "d");
3930         DUMP_VAR(stop_rf_kill, "d");
3931         DUMP_VAR(messages_sent, "d");
3932
3933         DUMP_VAR(tx_pend_stat.value, "d");
3934         DUMP_VAR(tx_pend_stat.hi, "d");
3935
3936         DUMP_VAR(tx_free_stat.value, "d");
3937         DUMP_VAR(tx_free_stat.lo, "d");
3938
3939         DUMP_VAR(msg_free_stat.value, "d");
3940         DUMP_VAR(msg_free_stat.lo, "d");
3941
3942         DUMP_VAR(msg_pend_stat.value, "d");
3943         DUMP_VAR(msg_pend_stat.hi, "d");
3944
3945         DUMP_VAR(fw_pend_stat.value, "d");
3946         DUMP_VAR(fw_pend_stat.hi, "d");
3947
3948         DUMP_VAR(txq_stat.value, "d");
3949         DUMP_VAR(txq_stat.lo, "d");
3950
3951         DUMP_VAR(ieee->scans, "d");
3952         DUMP_VAR(reset_backoff, "d");
3953
3954         return len;
3955 }
3956
3957 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3958
3959 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3960                             char *buf)
3961 {
3962         struct ipw2100_priv *priv = dev_get_drvdata(d);
3963         char essid[IW_ESSID_MAX_SIZE + 1];
3964         u8 bssid[ETH_ALEN];
3965         u32 chan = 0;
3966         char *out = buf;
3967         int length;
3968         int ret;
3969
3970         if (priv->status & STATUS_RF_KILL_MASK)
3971                 return 0;
3972
3973         memset(essid, 0, sizeof(essid));
3974         memset(bssid, 0, sizeof(bssid));
3975
3976         length = IW_ESSID_MAX_SIZE;
3977         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3978         if (ret)
3979                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3980                                __LINE__);
3981
3982         length = sizeof(bssid);
3983         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3984                                   bssid, &length);
3985         if (ret)
3986                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3987                                __LINE__);
3988
3989         length = sizeof(u32);
3990         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3991         if (ret)
3992                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3993                                __LINE__);
3994
3995         out += sprintf(out, "ESSID: %s\n", essid);
3996         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
3997                        bssid[0], bssid[1], bssid[2],
3998                        bssid[3], bssid[4], bssid[5]);
3999         out += sprintf(out, "Channel: %d\n", chan);
4000
4001         return out - buf;
4002 }
4003
4004 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4005
4006 #ifdef CONFIG_IPW2100_DEBUG
4007 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4008 {
4009         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4010 }
4011
4012 static ssize_t store_debug_level(struct device_driver *d,
4013                                  const char *buf, size_t count)
4014 {
4015         char *p = (char *)buf;
4016         u32 val;
4017
4018         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4019                 p++;
4020                 if (p[0] == 'x' || p[0] == 'X')
4021                         p++;
4022                 val = simple_strtoul(p, &p, 16);
4023         } else
4024                 val = simple_strtoul(p, &p, 10);
4025         if (p == buf)
4026                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4027         else
4028                 ipw2100_debug_level = val;
4029
4030         return strnlen(buf, count);
4031 }
4032
4033 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4034                    store_debug_level);
4035 #endif                          /* CONFIG_IPW2100_DEBUG */
4036
4037 static ssize_t show_fatal_error(struct device *d,
4038                                 struct device_attribute *attr, char *buf)
4039 {
4040         struct ipw2100_priv *priv = dev_get_drvdata(d);
4041         char *out = buf;
4042         int i;
4043
4044         if (priv->fatal_error)
4045                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4046         else
4047                 out += sprintf(out, "0\n");
4048
4049         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4050                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4051                                         IPW2100_ERROR_QUEUE])
4052                         continue;
4053
4054                 out += sprintf(out, "%d. 0x%08X\n", i,
4055                                priv->fatal_errors[(priv->fatal_index - i) %
4056                                                   IPW2100_ERROR_QUEUE]);
4057         }
4058
4059         return out - buf;
4060 }
4061
4062 static ssize_t store_fatal_error(struct device *d,
4063                                  struct device_attribute *attr, const char *buf,
4064                                  size_t count)
4065 {
4066         struct ipw2100_priv *priv = dev_get_drvdata(d);
4067         schedule_reset(priv);
4068         return count;
4069 }
4070
4071 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4072                    store_fatal_error);
4073
4074 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4075                              char *buf)
4076 {
4077         struct ipw2100_priv *priv = dev_get_drvdata(d);
4078         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4079 }
4080
4081 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4082                               const char *buf, size_t count)
4083 {
4084         struct ipw2100_priv *priv = dev_get_drvdata(d);
4085         struct net_device *dev = priv->net_dev;
4086         char buffer[] = "00000000";
4087         unsigned long len =
4088             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4089         unsigned long val;
4090         char *p = buffer;
4091
4092         (void)dev;              /* kill unused-var warning for debug-only code */
4093
4094         IPW_DEBUG_INFO("enter\n");
4095
4096         strncpy(buffer, buf, len);
4097         buffer[len] = 0;
4098
4099         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4100                 p++;
4101                 if (p[0] == 'x' || p[0] == 'X')
4102                         p++;
4103                 val = simple_strtoul(p, &p, 16);
4104         } else
4105                 val = simple_strtoul(p, &p, 10);
4106         if (p == buffer) {
4107                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4108         } else {
4109                 priv->ieee->scan_age = val;
4110                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4111         }
4112
4113         IPW_DEBUG_INFO("exit\n");
4114         return len;
4115 }
4116
4117 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4118
4119 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4120                             char *buf)
4121 {
4122         /* 0 - RF kill not enabled
4123            1 - SW based RF kill active (sysfs)
4124            2 - HW based RF kill active
4125            3 - Both HW and SW baed RF kill active */
4126         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4127         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4128             (rf_kill_active(priv) ? 0x2 : 0x0);
4129         return sprintf(buf, "%i\n", val);
4130 }
4131
4132 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4133 {
4134         if ((disable_radio ? 1 : 0) ==
4135             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4136                 return 0;
4137
4138         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4139                           disable_radio ? "OFF" : "ON");
4140
4141         down(&priv->action_sem);
4142
4143         if (disable_radio) {
4144                 priv->status |= STATUS_RF_KILL_SW;
4145                 ipw2100_down(priv);
4146         } else {
4147                 priv->status &= ~STATUS_RF_KILL_SW;
4148                 if (rf_kill_active(priv)) {
4149                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4150                                           "disabled by HW switch\n");
4151                         /* Make sure the RF_KILL check timer is running */
4152                         priv->stop_rf_kill = 0;
4153                         cancel_delayed_work(&priv->rf_kill);
4154                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4155                 } else
4156                         schedule_reset(priv);
4157         }
4158
4159         up(&priv->action_sem);
4160         return 1;
4161 }
4162
4163 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4164                              const char *buf, size_t count)
4165 {
4166         struct ipw2100_priv *priv = dev_get_drvdata(d);
4167         ipw_radio_kill_sw(priv, buf[0] == '1');
4168         return count;
4169 }
4170
4171 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4172
4173 static struct attribute *ipw2100_sysfs_entries[] = {
4174         &dev_attr_hardware.attr,
4175         &dev_attr_registers.attr,
4176         &dev_attr_ordinals.attr,
4177         &dev_attr_pci.attr,
4178         &dev_attr_stats.attr,
4179         &dev_attr_internals.attr,
4180         &dev_attr_bssinfo.attr,
4181         &dev_attr_memory.attr,
4182         &dev_attr_scan_age.attr,
4183         &dev_attr_fatal_error.attr,
4184         &dev_attr_rf_kill.attr,
4185         &dev_attr_cfg.attr,
4186         &dev_attr_status.attr,
4187         &dev_attr_capability.attr,
4188         NULL,
4189 };
4190
4191 static struct attribute_group ipw2100_attribute_group = {
4192         .attrs = ipw2100_sysfs_entries,
4193 };
4194
4195 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4196 {
4197         struct ipw2100_status_queue *q = &priv->status_queue;
4198
4199         IPW_DEBUG_INFO("enter\n");
4200
4201         q->size = entries * sizeof(struct ipw2100_status);
4202         q->drv =
4203             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4204                                                           q->size, &q->nic);
4205         if (!q->drv) {
4206                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4207                 return -ENOMEM;
4208         }
4209
4210         memset(q->drv, 0, q->size);
4211
4212         IPW_DEBUG_INFO("exit\n");
4213
4214         return 0;
4215 }
4216
4217 static void status_queue_free(struct ipw2100_priv *priv)
4218 {
4219         IPW_DEBUG_INFO("enter\n");
4220
4221         if (priv->status_queue.drv) {
4222                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4223                                     priv->status_queue.drv,
4224                                     priv->status_queue.nic);
4225                 priv->status_queue.drv = NULL;
4226         }
4227
4228         IPW_DEBUG_INFO("exit\n");
4229 }
4230
4231 static int bd_queue_allocate(struct ipw2100_priv *priv,
4232                              struct ipw2100_bd_queue *q, int entries)
4233 {
4234         IPW_DEBUG_INFO("enter\n");
4235
4236         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4237
4238         q->entries = entries;
4239         q->size = entries * sizeof(struct ipw2100_bd);
4240         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4241         if (!q->drv) {
4242                 IPW_DEBUG_INFO
4243                     ("can't allocate shared memory for buffer descriptors\n");
4244                 return -ENOMEM;
4245         }
4246         memset(q->drv, 0, q->size);
4247
4248         IPW_DEBUG_INFO("exit\n");
4249
4250         return 0;
4251 }
4252
4253 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4254 {
4255         IPW_DEBUG_INFO("enter\n");
4256
4257         if (!q)
4258                 return;
4259
4260         if (q->drv) {
4261                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4262                 q->drv = NULL;
4263         }
4264
4265         IPW_DEBUG_INFO("exit\n");
4266 }
4267
4268 static void bd_queue_initialize(struct ipw2100_priv *priv,
4269                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4270                                 u32 r, u32 w)
4271 {
4272         IPW_DEBUG_INFO("enter\n");
4273
4274         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4275                        (u32) q->nic);
4276
4277         write_register(priv->net_dev, base, q->nic);
4278         write_register(priv->net_dev, size, q->entries);
4279         write_register(priv->net_dev, r, q->oldest);
4280         write_register(priv->net_dev, w, q->next);
4281
4282         IPW_DEBUG_INFO("exit\n");
4283 }
4284
4285 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4286 {
4287         if (priv->workqueue) {
4288                 priv->stop_rf_kill = 1;
4289                 priv->stop_hang_check = 1;
4290                 cancel_delayed_work(&priv->reset_work);
4291                 cancel_delayed_work(&priv->security_work);
4292                 cancel_delayed_work(&priv->wx_event_work);
4293                 cancel_delayed_work(&priv->hang_check);
4294                 cancel_delayed_work(&priv->rf_kill);
4295                 destroy_workqueue(priv->workqueue);
4296                 priv->workqueue = NULL;
4297         }
4298 }
4299
4300 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4301 {
4302         int i, j, err = -EINVAL;
4303         void *v;
4304         dma_addr_t p;
4305
4306         IPW_DEBUG_INFO("enter\n");
4307
4308         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4309         if (err) {
4310                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4311                                 priv->net_dev->name);
4312                 return err;
4313         }
4314
4315         priv->tx_buffers =
4316             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4317                                                 sizeof(struct
4318                                                        ipw2100_tx_packet),
4319                                                 GFP_ATOMIC);
4320         if (!priv->tx_buffers) {
4321                 printk(KERN_ERR DRV_NAME
4322                        ": %s: alloc failed form tx buffers.\n",
4323                        priv->net_dev->name);
4324                 bd_queue_free(priv, &priv->tx_queue);
4325                 return -ENOMEM;
4326         }
4327
4328         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4329                 v = pci_alloc_consistent(priv->pci_dev,
4330                                          sizeof(struct ipw2100_data_header),
4331                                          &p);
4332                 if (!v) {
4333                         printk(KERN_ERR DRV_NAME
4334                                ": %s: PCI alloc failed for tx " "buffers.\n",
4335                                priv->net_dev->name);
4336                         err = -ENOMEM;
4337                         break;
4338                 }
4339
4340                 priv->tx_buffers[i].type = DATA;
4341                 priv->tx_buffers[i].info.d_struct.data =
4342                     (struct ipw2100_data_header *)v;
4343                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4344                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4345         }
4346
4347         if (i == TX_PENDED_QUEUE_LENGTH)
4348                 return 0;
4349
4350         for (j = 0; j < i; j++) {
4351                 pci_free_consistent(priv->pci_dev,
4352                                     sizeof(struct ipw2100_data_header),
4353                                     priv->tx_buffers[j].info.d_struct.data,
4354                                     priv->tx_buffers[j].info.d_struct.
4355                                     data_phys);
4356         }
4357
4358         kfree(priv->tx_buffers);
4359         priv->tx_buffers = NULL;
4360
4361         return err;
4362 }
4363
4364 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4365 {
4366         int i;
4367
4368         IPW_DEBUG_INFO("enter\n");
4369
4370         /*
4371          * reinitialize packet info lists
4372          */
4373         INIT_LIST_HEAD(&priv->fw_pend_list);
4374         INIT_STAT(&priv->fw_pend_stat);
4375
4376         /*
4377          * reinitialize lists
4378          */
4379         INIT_LIST_HEAD(&priv->tx_pend_list);
4380         INIT_LIST_HEAD(&priv->tx_free_list);
4381         INIT_STAT(&priv->tx_pend_stat);
4382         INIT_STAT(&priv->tx_free_stat);
4383
4384         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4385                 /* We simply drop any SKBs that have been queued for
4386                  * transmit */
4387                 if (priv->tx_buffers[i].info.d_struct.txb) {
4388                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4389                                            txb);
4390                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4391                 }
4392
4393                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4394         }
4395
4396         SET_STAT(&priv->tx_free_stat, i);
4397
4398         priv->tx_queue.oldest = 0;
4399         priv->tx_queue.available = priv->tx_queue.entries;
4400         priv->tx_queue.next = 0;
4401         INIT_STAT(&priv->txq_stat);
4402         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4403
4404         bd_queue_initialize(priv, &priv->tx_queue,
4405                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4406                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4407                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4408                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4409
4410         IPW_DEBUG_INFO("exit\n");
4411
4412 }
4413
4414 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4415 {
4416         int i;
4417
4418         IPW_DEBUG_INFO("enter\n");
4419
4420         bd_queue_free(priv, &priv->tx_queue);
4421
4422         if (!priv->tx_buffers)
4423                 return;
4424
4425         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4426                 if (priv->tx_buffers[i].info.d_struct.txb) {
4427                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4428                                            txb);
4429                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4430                 }
4431                 if (priv->tx_buffers[i].info.d_struct.data)
4432                         pci_free_consistent(priv->pci_dev,
4433                                             sizeof(struct ipw2100_data_header),
4434                                             priv->tx_buffers[i].info.d_struct.
4435                                             data,
4436                                             priv->tx_buffers[i].info.d_struct.
4437                                             data_phys);
4438         }
4439
4440         kfree(priv->tx_buffers);
4441         priv->tx_buffers = NULL;
4442
4443         IPW_DEBUG_INFO("exit\n");
4444 }
4445
4446 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4447 {
4448         int i, j, err = -EINVAL;
4449
4450         IPW_DEBUG_INFO("enter\n");
4451
4452         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4453         if (err) {
4454                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4455                 return err;
4456         }
4457
4458         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4459         if (err) {
4460                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4461                 bd_queue_free(priv, &priv->rx_queue);
4462                 return err;
4463         }
4464
4465         /*
4466          * allocate packets
4467          */
4468         priv->rx_buffers = (struct ipw2100_rx_packet *)
4469             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4470                     GFP_KERNEL);
4471         if (!priv->rx_buffers) {
4472                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4473
4474                 bd_queue_free(priv, &priv->rx_queue);
4475
4476                 status_queue_free(priv);
4477
4478                 return -ENOMEM;
4479         }
4480
4481         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4482                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4483
4484                 err = ipw2100_alloc_skb(priv, packet);
4485                 if (unlikely(err)) {
4486                         err = -ENOMEM;
4487                         break;
4488                 }
4489
4490                 /* The BD holds the cache aligned address */
4491                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4492                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4493                 priv->status_queue.drv[i].status_fields = 0;
4494         }
4495
4496         if (i == RX_QUEUE_LENGTH)
4497                 return 0;
4498
4499         for (j = 0; j < i; j++) {
4500                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4501                                  sizeof(struct ipw2100_rx_packet),
4502                                  PCI_DMA_FROMDEVICE);
4503                 dev_kfree_skb(priv->rx_buffers[j].skb);
4504         }
4505
4506         kfree(priv->rx_buffers);
4507         priv->rx_buffers = NULL;
4508
4509         bd_queue_free(priv, &priv->rx_queue);
4510
4511         status_queue_free(priv);
4512
4513         return err;
4514 }
4515
4516 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4517 {
4518         IPW_DEBUG_INFO("enter\n");
4519
4520         priv->rx_queue.oldest = 0;
4521         priv->rx_queue.available = priv->rx_queue.entries - 1;
4522         priv->rx_queue.next = priv->rx_queue.entries - 1;
4523
4524         INIT_STAT(&priv->rxq_stat);
4525         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4526
4527         bd_queue_initialize(priv, &priv->rx_queue,
4528                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4529                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4530                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4531                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4532
4533         /* set up the status queue */
4534         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4535                        priv->status_queue.nic);
4536
4537         IPW_DEBUG_INFO("exit\n");
4538 }
4539
4540 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4541 {
4542         int i;
4543
4544         IPW_DEBUG_INFO("enter\n");
4545
4546         bd_queue_free(priv, &priv->rx_queue);
4547         status_queue_free(priv);
4548
4549         if (!priv->rx_buffers)
4550                 return;
4551
4552         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4553                 if (priv->rx_buffers[i].rxp) {
4554                         pci_unmap_single(priv->pci_dev,
4555                                          priv->rx_buffers[i].dma_addr,
4556                                          sizeof(struct ipw2100_rx),
4557                                          PCI_DMA_FROMDEVICE);
4558                         dev_kfree_skb(priv->rx_buffers[i].skb);
4559                 }
4560         }
4561
4562         kfree(priv->rx_buffers);
4563         priv->rx_buffers = NULL;
4564
4565         IPW_DEBUG_INFO("exit\n");
4566 }
4567
4568 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4569 {
4570         u32 length = ETH_ALEN;
4571         u8 mac[ETH_ALEN];
4572
4573         int err;
4574
4575         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4576         if (err) {
4577                 IPW_DEBUG_INFO("MAC address read failed\n");
4578                 return -EIO;
4579         }
4580         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4581                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4582
4583         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4584
4585         return 0;
4586 }
4587
4588 /********************************************************************
4589  *
4590  * Firmware Commands
4591  *
4592  ********************************************************************/
4593
4594 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4595 {
4596         struct host_command cmd = {
4597                 .host_command = ADAPTER_ADDRESS,
4598                 .host_command_sequence = 0,
4599                 .host_command_length = ETH_ALEN
4600         };
4601         int err;
4602
4603         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4604
4605         IPW_DEBUG_INFO("enter\n");
4606
4607         if (priv->config & CFG_CUSTOM_MAC) {
4608                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4609                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4610         } else
4611                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4612                        ETH_ALEN);
4613
4614         err = ipw2100_hw_send_command(priv, &cmd);
4615
4616         IPW_DEBUG_INFO("exit\n");
4617         return err;
4618 }
4619
4620 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4621                                  int batch_mode)
4622 {
4623         struct host_command cmd = {
4624                 .host_command = PORT_TYPE,
4625                 .host_command_sequence = 0,
4626                 .host_command_length = sizeof(u32)
4627         };
4628         int err;
4629
4630         switch (port_type) {
4631         case IW_MODE_INFRA:
4632                 cmd.host_command_parameters[0] = IPW_BSS;
4633                 break;
4634         case IW_MODE_ADHOC:
4635                 cmd.host_command_parameters[0] = IPW_IBSS;
4636                 break;
4637         }
4638
4639         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4640                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4641
4642         if (!batch_mode) {
4643                 err = ipw2100_disable_adapter(priv);
4644                 if (err) {
4645                         printk(KERN_ERR DRV_NAME
4646                                ": %s: Could not disable adapter %d\n",
4647                                priv->net_dev->name, err);
4648                         return err;
4649                 }
4650         }
4651
4652         /* send cmd to firmware */
4653         err = ipw2100_hw_send_command(priv, &cmd);
4654
4655         if (!batch_mode)
4656                 ipw2100_enable_adapter(priv);
4657
4658         return err;
4659 }
4660
4661 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4662                                int batch_mode)
4663 {
4664         struct host_command cmd = {
4665                 .host_command = CHANNEL,
4666                 .host_command_sequence = 0,
4667                 .host_command_length = sizeof(u32)
4668         };
4669         int err;
4670
4671         cmd.host_command_parameters[0] = channel;
4672
4673         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4674
4675         /* If BSS then we don't support channel selection */
4676         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4677                 return 0;
4678
4679         if ((channel != 0) &&
4680             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4681                 return -EINVAL;
4682
4683         if (!batch_mode) {
4684                 err = ipw2100_disable_adapter(priv);
4685                 if (err)
4686                         return err;
4687         }
4688
4689         err = ipw2100_hw_send_command(priv, &cmd);
4690         if (err) {
4691                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4692                 return err;
4693         }
4694
4695         if (channel)
4696                 priv->config |= CFG_STATIC_CHANNEL;
4697         else
4698                 priv->config &= ~CFG_STATIC_CHANNEL;
4699
4700         priv->channel = channel;
4701
4702         if (!batch_mode) {
4703                 err = ipw2100_enable_adapter(priv);
4704                 if (err)
4705                         return err;
4706         }
4707
4708         return 0;
4709 }
4710
4711 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4712 {
4713         struct host_command cmd = {
4714                 .host_command = SYSTEM_CONFIG,
4715                 .host_command_sequence = 0,
4716                 .host_command_length = 12,
4717         };
4718         u32 ibss_mask, len = sizeof(u32);
4719         int err;
4720
4721         /* Set system configuration */
4722
4723         if (!batch_mode) {
4724                 err = ipw2100_disable_adapter(priv);
4725                 if (err)
4726                         return err;
4727         }
4728
4729         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4730                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4731
4732         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4733             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4734
4735         if (!(priv->config & CFG_LONG_PREAMBLE))
4736                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4737
4738         err = ipw2100_get_ordinal(priv,
4739                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4740                                   &ibss_mask, &len);
4741         if (err)
4742                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4743
4744         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4745         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4746
4747         /* 11b only */
4748         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4749
4750         err = ipw2100_hw_send_command(priv, &cmd);
4751         if (err)
4752                 return err;
4753
4754 /* If IPv6 is configured in the kernel then we don't want to filter out all
4755  * of the multicast packets as IPv6 needs some. */
4756 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4757         cmd.host_command = ADD_MULTICAST;
4758         cmd.host_command_sequence = 0;
4759         cmd.host_command_length = 0;
4760
4761         ipw2100_hw_send_command(priv, &cmd);
4762 #endif
4763         if (!batch_mode) {
4764                 err = ipw2100_enable_adapter(priv);
4765                 if (err)
4766                         return err;
4767         }
4768
4769         return 0;
4770 }
4771
4772 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4773                                 int batch_mode)
4774 {
4775         struct host_command cmd = {
4776                 .host_command = BASIC_TX_RATES,
4777                 .host_command_sequence = 0,
4778                 .host_command_length = 4
4779         };
4780         int err;
4781
4782         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4783
4784         if (!batch_mode) {
4785                 err = ipw2100_disable_adapter(priv);
4786                 if (err)
4787                         return err;
4788         }
4789
4790         /* Set BASIC TX Rate first */
4791         ipw2100_hw_send_command(priv, &cmd);
4792
4793         /* Set TX Rate */
4794         cmd.host_command = TX_RATES;
4795         ipw2100_hw_send_command(priv, &cmd);
4796
4797         /* Set MSDU TX Rate */
4798         cmd.host_command = MSDU_TX_RATES;
4799         ipw2100_hw_send_command(priv, &cmd);
4800
4801         if (!batch_mode) {
4802                 err = ipw2100_enable_adapter(priv);
4803                 if (err)
4804                         return err;
4805         }
4806
4807         priv->tx_rates = rate;
4808
4809         return 0;
4810 }
4811
4812 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4813 {
4814         struct host_command cmd = {
4815                 .host_command = POWER_MODE,
4816                 .host_command_sequence = 0,
4817                 .host_command_length = 4
4818         };
4819         int err;
4820
4821         cmd.host_command_parameters[0] = power_level;
4822
4823         err = ipw2100_hw_send_command(priv, &cmd);
4824         if (err)
4825                 return err;
4826
4827         if (power_level == IPW_POWER_MODE_CAM)
4828                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4829         else
4830                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4831
4832 #ifdef CONFIG_IPW2100_TX_POWER
4833         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4834                 /* Set beacon interval */
4835                 cmd.host_command = TX_POWER_INDEX;
4836                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4837
4838                 err = ipw2100_hw_send_command(priv, &cmd);
4839                 if (err)
4840                         return err;
4841         }
4842 #endif
4843
4844         return 0;
4845 }
4846
4847 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4848 {
4849         struct host_command cmd = {
4850                 .host_command = RTS_THRESHOLD,
4851                 .host_command_sequence = 0,
4852                 .host_command_length = 4
4853         };
4854         int err;
4855
4856         if (threshold & RTS_DISABLED)
4857                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4858         else
4859                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4860
4861         err = ipw2100_hw_send_command(priv, &cmd);
4862         if (err)
4863                 return err;
4864
4865         priv->rts_threshold = threshold;
4866
4867         return 0;
4868 }
4869
4870 #if 0
4871 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4872                                         u32 threshold, int batch_mode)
4873 {
4874         struct host_command cmd = {
4875                 .host_command = FRAG_THRESHOLD,
4876                 .host_command_sequence = 0,
4877                 .host_command_length = 4,
4878                 .host_command_parameters[0] = 0,
4879         };
4880         int err;
4881
4882         if (!batch_mode) {
4883                 err = ipw2100_disable_adapter(priv);
4884                 if (err)
4885                         return err;
4886         }
4887
4888         if (threshold == 0)
4889                 threshold = DEFAULT_FRAG_THRESHOLD;
4890         else {
4891                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4892                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4893         }
4894
4895         cmd.host_command_parameters[0] = threshold;
4896
4897         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4898
4899         err = ipw2100_hw_send_command(priv, &cmd);
4900
4901         if (!batch_mode)
4902                 ipw2100_enable_adapter(priv);
4903
4904         if (!err)
4905                 priv->frag_threshold = threshold;
4906
4907         return err;
4908 }
4909 #endif
4910
4911 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4912 {
4913         struct host_command cmd = {
4914                 .host_command = SHORT_RETRY_LIMIT,
4915                 .host_command_sequence = 0,
4916                 .host_command_length = 4
4917         };
4918         int err;
4919
4920         cmd.host_command_parameters[0] = retry;
4921
4922         err = ipw2100_hw_send_command(priv, &cmd);
4923         if (err)
4924                 return err;
4925
4926         priv->short_retry_limit = retry;
4927
4928         return 0;
4929 }
4930
4931 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4932 {
4933         struct host_command cmd = {
4934                 .host_command = LONG_RETRY_LIMIT,
4935                 .host_command_sequence = 0,
4936                 .host_command_length = 4
4937         };
4938         int err;
4939
4940         cmd.host_command_parameters[0] = retry;
4941
4942         err = ipw2100_hw_send_command(priv, &cmd);
4943         if (err)
4944                 return err;
4945
4946         priv->long_retry_limit = retry;
4947
4948         return 0;
4949 }
4950
4951 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4952                                        int batch_mode)
4953 {
4954         struct host_command cmd = {
4955                 .host_command = MANDATORY_BSSID,
4956                 .host_command_sequence = 0,
4957                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4958         };
4959         int err;
4960
4961 #ifdef CONFIG_IPW2100_DEBUG
4962         if (bssid != NULL)
4963                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4964                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4965                              bssid[5]);
4966         else
4967                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4968 #endif
4969         /* if BSSID is empty then we disable mandatory bssid mode */
4970         if (bssid != NULL)
4971                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4972
4973         if (!batch_mode) {
4974                 err = ipw2100_disable_adapter(priv);
4975                 if (err)
4976                         return err;
4977         }
4978
4979         err = ipw2100_hw_send_command(priv, &cmd);
4980
4981         if (!batch_mode)
4982                 ipw2100_enable_adapter(priv);
4983
4984         return err;
4985 }
4986
4987 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4988 {
4989         struct host_command cmd = {
4990                 .host_command = DISASSOCIATION_BSSID,
4991                 .host_command_sequence = 0,
4992                 .host_command_length = ETH_ALEN
4993         };
4994         int err;
4995         int len;
4996
4997         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4998
4999         len = ETH_ALEN;
5000         /* The Firmware currently ignores the BSSID and just disassociates from
5001          * the currently associated AP -- but in the off chance that a future
5002          * firmware does use the BSSID provided here, we go ahead and try and
5003          * set it to the currently associated AP's BSSID */
5004         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5005
5006         err = ipw2100_hw_send_command(priv, &cmd);
5007
5008         return err;
5009 }
5010
5011 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5012                               struct ipw2100_wpa_assoc_frame *, int)
5013     __attribute__ ((unused));
5014
5015 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5016                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5017                               int batch_mode)
5018 {
5019         struct host_command cmd = {
5020                 .host_command = SET_WPA_IE,
5021                 .host_command_sequence = 0,
5022                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5023         };
5024         int err;
5025
5026         IPW_DEBUG_HC("SET_WPA_IE\n");
5027
5028         if (!batch_mode) {
5029                 err = ipw2100_disable_adapter(priv);
5030                 if (err)
5031                         return err;
5032         }
5033
5034         memcpy(cmd.host_command_parameters, wpa_frame,
5035                sizeof(struct ipw2100_wpa_assoc_frame));
5036
5037         err = ipw2100_hw_send_command(priv, &cmd);
5038
5039         if (!batch_mode) {
5040                 if (ipw2100_enable_adapter(priv))
5041                         err = -EIO;
5042         }
5043
5044         return err;
5045 }
5046
5047 struct security_info_params {
5048         u32 allowed_ciphers;
5049         u16 version;
5050         u8 auth_mode;
5051         u8 replay_counters_number;
5052         u8 unicast_using_group;
5053 } __attribute__ ((packed));
5054
5055 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5056                                             int auth_mode,
5057                                             int security_level,
5058                                             int unicast_using_group,
5059                                             int batch_mode)
5060 {
5061         struct host_command cmd = {
5062                 .host_command = SET_SECURITY_INFORMATION,
5063                 .host_command_sequence = 0,
5064                 .host_command_length = sizeof(struct security_info_params)
5065         };
5066         struct security_info_params *security =
5067             (struct security_info_params *)&cmd.host_command_parameters;
5068         int err;
5069         memset(security, 0, sizeof(*security));
5070
5071         /* If shared key AP authentication is turned on, then we need to
5072          * configure the firmware to try and use it.
5073          *
5074          * Actual data encryption/decryption is handled by the host. */
5075         security->auth_mode = auth_mode;
5076         security->unicast_using_group = unicast_using_group;
5077
5078         switch (security_level) {
5079         default:
5080         case SEC_LEVEL_0:
5081                 security->allowed_ciphers = IPW_NONE_CIPHER;
5082                 break;
5083         case SEC_LEVEL_1:
5084                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5085                     IPW_WEP104_CIPHER;
5086                 break;
5087         case SEC_LEVEL_2:
5088                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5089                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5090                 break;
5091         case SEC_LEVEL_2_CKIP:
5092                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5093                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5094                 break;
5095         case SEC_LEVEL_3:
5096                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5097                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5098                 break;
5099         }
5100
5101         IPW_DEBUG_HC
5102             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5103              security->auth_mode, security->allowed_ciphers, security_level);
5104
5105         security->replay_counters_number = 0;
5106
5107         if (!batch_mode) {
5108                 err = ipw2100_disable_adapter(priv);
5109                 if (err)
5110                         return err;
5111         }
5112
5113         err = ipw2100_hw_send_command(priv, &cmd);
5114
5115         if (!batch_mode)
5116                 ipw2100_enable_adapter(priv);
5117
5118         return err;
5119 }
5120
5121 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5122 {
5123         struct host_command cmd = {
5124                 .host_command = TX_POWER_INDEX,
5125                 .host_command_sequence = 0,
5126                 .host_command_length = 4
5127         };
5128         int err = 0;
5129         u32 tmp = tx_power;
5130
5131         if (tx_power != IPW_TX_POWER_DEFAULT)
5132                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5133                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5134
5135         cmd.host_command_parameters[0] = tmp;
5136
5137         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5138                 err = ipw2100_hw_send_command(priv, &cmd);
5139         if (!err)
5140                 priv->tx_power = tx_power;
5141
5142         return 0;
5143 }
5144
5145 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5146                                             u32 interval, int batch_mode)
5147 {
5148         struct host_command cmd = {
5149                 .host_command = BEACON_INTERVAL,
5150                 .host_command_sequence = 0,
5151                 .host_command_length = 4
5152         };
5153         int err;
5154
5155         cmd.host_command_parameters[0] = interval;
5156
5157         IPW_DEBUG_INFO("enter\n");
5158
5159         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5160                 if (!batch_mode) {
5161                         err = ipw2100_disable_adapter(priv);
5162                         if (err)
5163                                 return err;
5164                 }
5165
5166                 ipw2100_hw_send_command(priv, &cmd);
5167
5168                 if (!batch_mode) {
5169                         err = ipw2100_enable_adapter(priv);
5170                         if (err)
5171                                 return err;
5172                 }
5173         }
5174
5175         IPW_DEBUG_INFO("exit\n");
5176
5177         return 0;
5178 }
5179
5180 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5181 {
5182         ipw2100_tx_initialize(priv);
5183         ipw2100_rx_initialize(priv);
5184         ipw2100_msg_initialize(priv);
5185 }
5186
5187 void ipw2100_queues_free(struct ipw2100_priv *priv)
5188 {
5189         ipw2100_tx_free(priv);
5190         ipw2100_rx_free(priv);
5191         ipw2100_msg_free(priv);
5192 }
5193
5194 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5195 {
5196         if (ipw2100_tx_allocate(priv) ||
5197             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5198                 goto fail;
5199
5200         return 0;
5201
5202       fail:
5203         ipw2100_tx_free(priv);
5204         ipw2100_rx_free(priv);
5205         ipw2100_msg_free(priv);
5206         return -ENOMEM;
5207 }
5208
5209 #define IPW_PRIVACY_CAPABLE 0x0008
5210
5211 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5212                                  int batch_mode)
5213 {
5214         struct host_command cmd = {
5215                 .host_command = WEP_FLAGS,
5216                 .host_command_sequence = 0,
5217                 .host_command_length = 4
5218         };
5219         int err;
5220
5221         cmd.host_command_parameters[0] = flags;
5222
5223         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5224
5225         if (!batch_mode) {
5226                 err = ipw2100_disable_adapter(priv);
5227                 if (err) {
5228                         printk(KERN_ERR DRV_NAME
5229                                ": %s: Could not disable adapter %d\n",
5230                                priv->net_dev->name, err);
5231                         return err;
5232                 }
5233         }
5234
5235         /* send cmd to firmware */
5236         err = ipw2100_hw_send_command(priv, &cmd);
5237
5238         if (!batch_mode)
5239                 ipw2100_enable_adapter(priv);
5240
5241         return err;
5242 }
5243
5244 struct ipw2100_wep_key {
5245         u8 idx;
5246         u8 len;
5247         u8 key[13];
5248 };
5249
5250 /* Macros to ease up priting WEP keys */
5251 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5252 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5253 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5254 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5255
5256 /**
5257  * Set a the wep key
5258  *
5259  * @priv: struct to work on
5260  * @idx: index of the key we want to set
5261  * @key: ptr to the key data to set
5262  * @len: length of the buffer at @key
5263  * @batch_mode: FIXME perform the operation in batch mode, not
5264  *              disabling the device.
5265  *
5266  * @returns 0 if OK, < 0 errno code on error.
5267  *
5268  * Fill out a command structure with the new wep key, length an
5269  * index and send it down the wire.
5270  */
5271 static int ipw2100_set_key(struct ipw2100_priv *priv,
5272                            int idx, char *key, int len, int batch_mode)
5273 {
5274         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5275         struct host_command cmd = {
5276                 .host_command = WEP_KEY_INFO,
5277                 .host_command_sequence = 0,
5278                 .host_command_length = sizeof(struct ipw2100_wep_key),
5279         };
5280         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5281         int err;
5282
5283         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5284                      idx, keylen, len);
5285
5286         /* NOTE: We don't check cached values in case the firmware was reset
5287          * or some other problem is occuring.  If the user is setting the key,
5288          * then we push the change */
5289
5290         wep_key->idx = idx;
5291         wep_key->len = keylen;
5292
5293         if (keylen) {
5294                 memcpy(wep_key->key, key, len);
5295                 memset(wep_key->key + len, 0, keylen - len);
5296         }
5297
5298         /* Will be optimized out on debug not being configured in */
5299         if (keylen == 0)
5300                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5301                               priv->net_dev->name, wep_key->idx);
5302         else if (keylen == 5)
5303                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5304                               priv->net_dev->name, wep_key->idx, wep_key->len,
5305                               WEP_STR_64(wep_key->key));
5306         else
5307                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5308                               "\n",
5309                               priv->net_dev->name, wep_key->idx, wep_key->len,
5310                               WEP_STR_128(wep_key->key));
5311
5312         if (!batch_mode) {
5313                 err = ipw2100_disable_adapter(priv);
5314                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5315                 if (err) {
5316                         printk(KERN_ERR DRV_NAME
5317                                ": %s: Could not disable adapter %d\n",
5318                                priv->net_dev->name, err);
5319                         return err;
5320                 }
5321         }
5322
5323         /* send cmd to firmware */
5324         err = ipw2100_hw_send_command(priv, &cmd);
5325
5326         if (!batch_mode) {
5327                 int err2 = ipw2100_enable_adapter(priv);
5328                 if (err == 0)
5329                         err = err2;
5330         }
5331         return err;
5332 }
5333
5334 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5335                                  int idx, int batch_mode)
5336 {
5337         struct host_command cmd = {
5338                 .host_command = WEP_KEY_INDEX,
5339                 .host_command_sequence = 0,
5340                 .host_command_length = 4,
5341                 .host_command_parameters = {idx},
5342         };
5343         int err;
5344
5345         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5346
5347         if (idx < 0 || idx > 3)
5348                 return -EINVAL;
5349
5350         if (!batch_mode) {
5351                 err = ipw2100_disable_adapter(priv);
5352                 if (err) {
5353                         printk(KERN_ERR DRV_NAME
5354                                ": %s: Could not disable adapter %d\n",
5355                                priv->net_dev->name, err);
5356                         return err;
5357                 }
5358         }
5359
5360         /* send cmd to firmware */
5361         err = ipw2100_hw_send_command(priv, &cmd);
5362
5363         if (!batch_mode)
5364                 ipw2100_enable_adapter(priv);
5365
5366         return err;
5367 }
5368
5369 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5370 {
5371         int i, err, auth_mode, sec_level, use_group;
5372
5373         if (!(priv->status & STATUS_RUNNING))
5374                 return 0;
5375
5376         if (!batch_mode) {
5377                 err = ipw2100_disable_adapter(priv);
5378                 if (err)
5379                         return err;
5380         }
5381
5382         if (!priv->ieee->sec.enabled) {
5383                 err =
5384                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5385                                                      SEC_LEVEL_0, 0, 1);
5386         } else {
5387                 auth_mode = IPW_AUTH_OPEN;
5388                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5389                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5390                                 auth_mode = IPW_AUTH_SHARED;
5391                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5392                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5393                 }
5394
5395                 sec_level = SEC_LEVEL_0;
5396                 if (priv->ieee->sec.flags & SEC_LEVEL)
5397                         sec_level = priv->ieee->sec.level;
5398
5399                 use_group = 0;
5400                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5401                         use_group = priv->ieee->sec.unicast_uses_group;
5402
5403                 err =
5404                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5405                                                      use_group, 1);
5406         }
5407
5408         if (err)
5409                 goto exit;
5410
5411         if (priv->ieee->sec.enabled) {
5412                 for (i = 0; i < 4; i++) {
5413                         if (!(priv->ieee->sec.flags & (1 << i))) {
5414                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5415                                 priv->ieee->sec.key_sizes[i] = 0;
5416                         } else {
5417                                 err = ipw2100_set_key(priv, i,
5418                                                       priv->ieee->sec.keys[i],
5419                                                       priv->ieee->sec.
5420                                                       key_sizes[i], 1);
5421                                 if (err)
5422                                         goto exit;
5423                         }
5424                 }
5425
5426                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5427         }
5428
5429         /* Always enable privacy so the Host can filter WEP packets if
5430          * encrypted data is sent up */
5431         err =
5432             ipw2100_set_wep_flags(priv,
5433                                   priv->ieee->sec.
5434                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5435         if (err)
5436                 goto exit;
5437
5438         priv->status &= ~STATUS_SECURITY_UPDATED;
5439
5440       exit:
5441         if (!batch_mode)
5442                 ipw2100_enable_adapter(priv);
5443
5444         return err;
5445 }
5446
5447 static void ipw2100_security_work(struct ipw2100_priv *priv)
5448 {
5449         /* If we happen to have reconnected before we get a chance to
5450          * process this, then update the security settings--which causes
5451          * a disassociation to occur */
5452         if (!(priv->status & STATUS_ASSOCIATED) &&
5453             priv->status & STATUS_SECURITY_UPDATED)
5454                 ipw2100_configure_security(priv, 0);
5455 }
5456
5457 static void shim__set_security(struct net_device *dev,
5458                                struct ieee80211_security *sec)
5459 {
5460         struct ipw2100_priv *priv = ieee80211_priv(dev);
5461         int i, force_update = 0;
5462
5463         down(&priv->action_sem);
5464         if (!(priv->status & STATUS_INITIALIZED))
5465                 goto done;
5466
5467         for (i = 0; i < 4; i++) {
5468                 if (sec->flags & (1 << i)) {
5469                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5470                         if (sec->key_sizes[i] == 0)
5471                                 priv->ieee->sec.flags &= ~(1 << i);
5472                         else
5473                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5474                                        sec->key_sizes[i]);
5475                         if (sec->level == SEC_LEVEL_1) {
5476                                 priv->ieee->sec.flags |= (1 << i);
5477                                 priv->status |= STATUS_SECURITY_UPDATED;
5478                         } else
5479                                 priv->ieee->sec.flags &= ~(1 << i);
5480                 }
5481         }
5482
5483         if ((sec->flags & SEC_ACTIVE_KEY) &&
5484             priv->ieee->sec.active_key != sec->active_key) {
5485                 if (sec->active_key <= 3) {
5486                         priv->ieee->sec.active_key = sec->active_key;
5487                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5488                 } else
5489                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5490
5491                 priv->status |= STATUS_SECURITY_UPDATED;
5492         }
5493
5494         if ((sec->flags & SEC_AUTH_MODE) &&
5495             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5496                 priv->ieee->sec.auth_mode = sec->auth_mode;
5497                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5498                 priv->status |= STATUS_SECURITY_UPDATED;
5499         }
5500
5501         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5502                 priv->ieee->sec.flags |= SEC_ENABLED;
5503                 priv->ieee->sec.enabled = sec->enabled;
5504                 priv->status |= STATUS_SECURITY_UPDATED;
5505                 force_update = 1;
5506         }
5507
5508         if (sec->flags & SEC_ENCRYPT)
5509                 priv->ieee->sec.encrypt = sec->encrypt;
5510
5511         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5512                 priv->ieee->sec.level = sec->level;
5513                 priv->ieee->sec.flags |= SEC_LEVEL;
5514                 priv->status |= STATUS_SECURITY_UPDATED;
5515         }
5516
5517         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5518                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5519                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5520                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5521                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5522                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5523                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5524                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5525                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5526                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5527
5528 /* As a temporary work around to enable WPA until we figure out why
5529  * wpa_supplicant toggles the security capability of the driver, which
5530  * forces a disassocation with force_update...
5531  *
5532  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5533         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5534                 ipw2100_configure_security(priv, 0);
5535       done:
5536         up(&priv->action_sem);
5537 }
5538
5539 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5540 {
5541         int err;
5542         int batch_mode = 1;
5543         u8 *bssid;
5544
5545         IPW_DEBUG_INFO("enter\n");
5546
5547         err = ipw2100_disable_adapter(priv);
5548         if (err)
5549                 return err;
5550 #ifdef CONFIG_IPW2100_MONITOR
5551         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5552                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5553                 if (err)
5554                         return err;
5555
5556                 IPW_DEBUG_INFO("exit\n");
5557
5558                 return 0;
5559         }
5560 #endif                          /* CONFIG_IPW2100_MONITOR */
5561
5562         err = ipw2100_read_mac_address(priv);
5563         if (err)
5564                 return -EIO;
5565
5566         err = ipw2100_set_mac_address(priv, batch_mode);
5567         if (err)
5568                 return err;
5569
5570         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5571         if (err)
5572                 return err;
5573
5574         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5575                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5576                 if (err)
5577                         return err;
5578         }
5579
5580         err = ipw2100_system_config(priv, batch_mode);
5581         if (err)
5582                 return err;
5583
5584         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5585         if (err)
5586                 return err;
5587
5588         /* Default to power mode OFF */
5589         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5590         if (err)
5591                 return err;
5592
5593         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5594         if (err)
5595                 return err;
5596
5597         if (priv->config & CFG_STATIC_BSSID)
5598                 bssid = priv->bssid;
5599         else
5600                 bssid = NULL;
5601         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5602         if (err)
5603                 return err;
5604
5605         if (priv->config & CFG_STATIC_ESSID)
5606                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5607                                         batch_mode);
5608         else
5609                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5610         if (err)
5611                 return err;
5612
5613         err = ipw2100_configure_security(priv, batch_mode);
5614         if (err)
5615                 return err;
5616
5617         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5618                 err =
5619                     ipw2100_set_ibss_beacon_interval(priv,
5620                                                      priv->beacon_interval,
5621                                                      batch_mode);
5622                 if (err)
5623                         return err;
5624
5625                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5626                 if (err)
5627                         return err;
5628         }
5629
5630         /*
5631            err = ipw2100_set_fragmentation_threshold(
5632            priv, priv->frag_threshold, batch_mode);
5633            if (err)
5634            return err;
5635          */
5636
5637         IPW_DEBUG_INFO("exit\n");
5638
5639         return 0;
5640 }
5641
5642 /*************************************************************************
5643  *
5644  * EXTERNALLY CALLED METHODS
5645  *
5646  *************************************************************************/
5647
5648 /* This method is called by the network layer -- not to be confused with
5649  * ipw2100_set_mac_address() declared above called by this driver (and this
5650  * method as well) to talk to the firmware */
5651 static int ipw2100_set_address(struct net_device *dev, void *p)
5652 {
5653         struct ipw2100_priv *priv = ieee80211_priv(dev);
5654         struct sockaddr *addr = p;
5655         int err = 0;
5656
5657         if (!is_valid_ether_addr(addr->sa_data))
5658                 return -EADDRNOTAVAIL;
5659
5660         down(&priv->action_sem);
5661
5662         priv->config |= CFG_CUSTOM_MAC;
5663         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5664
5665         err = ipw2100_set_mac_address(priv, 0);
5666         if (err)
5667                 goto done;
5668
5669         priv->reset_backoff = 0;
5670         up(&priv->action_sem);
5671         ipw2100_reset_adapter(priv);
5672         return 0;
5673
5674       done:
5675         up(&priv->action_sem);
5676         return err;
5677 }
5678
5679 static int ipw2100_open(struct net_device *dev)
5680 {
5681         struct ipw2100_priv *priv = ieee80211_priv(dev);
5682         unsigned long flags;
5683         IPW_DEBUG_INFO("dev->open\n");
5684
5685         spin_lock_irqsave(&priv->low_lock, flags);
5686         if (priv->status & STATUS_ASSOCIATED) {
5687                 netif_carrier_on(dev);
5688                 netif_start_queue(dev);
5689         }
5690         spin_unlock_irqrestore(&priv->low_lock, flags);
5691
5692         return 0;
5693 }
5694
5695 static int ipw2100_close(struct net_device *dev)
5696 {
5697         struct ipw2100_priv *priv = ieee80211_priv(dev);
5698         unsigned long flags;
5699         struct list_head *element;
5700         struct ipw2100_tx_packet *packet;
5701
5702         IPW_DEBUG_INFO("enter\n");
5703
5704         spin_lock_irqsave(&priv->low_lock, flags);
5705
5706         if (priv->status & STATUS_ASSOCIATED)
5707                 netif_carrier_off(dev);
5708         netif_stop_queue(dev);
5709
5710         /* Flush the TX queue ... */
5711         while (!list_empty(&priv->tx_pend_list)) {
5712                 element = priv->tx_pend_list.next;
5713                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5714
5715                 list_del(element);
5716                 DEC_STAT(&priv->tx_pend_stat);
5717
5718                 ieee80211_txb_free(packet->info.d_struct.txb);
5719                 packet->info.d_struct.txb = NULL;
5720
5721                 list_add_tail(element, &priv->tx_free_list);
5722                 INC_STAT(&priv->tx_free_stat);
5723         }
5724         spin_unlock_irqrestore(&priv->low_lock, flags);
5725
5726         IPW_DEBUG_INFO("exit\n");
5727
5728         return 0;
5729 }
5730
5731 /*
5732  * TODO:  Fix this function... its just wrong
5733  */
5734 static void ipw2100_tx_timeout(struct net_device *dev)
5735 {
5736         struct ipw2100_priv *priv = ieee80211_priv(dev);
5737
5738         priv->ieee->stats.tx_errors++;
5739
5740 #ifdef CONFIG_IPW2100_MONITOR
5741         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5742                 return;
5743 #endif
5744
5745         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5746                        dev->name);
5747         schedule_reset(priv);
5748 }
5749
5750 /*
5751  * TODO: reimplement it so that it reads statistics
5752  *       from the adapter using ordinal tables
5753  *       instead of/in addition to collecting them
5754  *       in the driver
5755  */
5756 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5757 {
5758         struct ipw2100_priv *priv = ieee80211_priv(dev);
5759
5760         return &priv->ieee->stats;
5761 }
5762
5763 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5764 {
5765         /* This is called when wpa_supplicant loads and closes the driver
5766          * interface. */
5767         priv->ieee->wpa_enabled = value;
5768         return 0;
5769 }
5770
5771 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5772 {
5773
5774         struct ieee80211_device *ieee = priv->ieee;
5775         struct ieee80211_security sec = {
5776                 .flags = SEC_AUTH_MODE,
5777         };
5778         int ret = 0;
5779
5780         if (value & IW_AUTH_ALG_SHARED_KEY) {
5781                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5782                 ieee->open_wep = 0;
5783         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5784                 sec.auth_mode = WLAN_AUTH_OPEN;
5785                 ieee->open_wep = 1;
5786         } else if (value & IW_AUTH_ALG_LEAP) {
5787                 sec.auth_mode = WLAN_AUTH_LEAP;
5788                 ieee->open_wep = 1;
5789         } else
5790                 return -EINVAL;
5791
5792         if (ieee->set_security)
5793                 ieee->set_security(ieee->dev, &sec);
5794         else
5795                 ret = -EOPNOTSUPP;
5796
5797         return ret;
5798 }
5799
5800 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5801                                     char *wpa_ie, int wpa_ie_len)
5802 {
5803
5804         struct ipw2100_wpa_assoc_frame frame;
5805
5806         frame.fixed_ie_mask = 0;
5807
5808         /* copy WPA IE */
5809         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5810         frame.var_ie_len = wpa_ie_len;
5811
5812         /* make sure WPA is enabled */
5813         ipw2100_wpa_enable(priv, 1);
5814         ipw2100_set_wpa_ie(priv, &frame, 0);
5815 }
5816
5817 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5818                                     struct ethtool_drvinfo *info)
5819 {
5820         struct ipw2100_priv *priv = ieee80211_priv(dev);
5821         char fw_ver[64], ucode_ver[64];
5822
5823         strcpy(info->driver, DRV_NAME);
5824         strcpy(info->version, DRV_VERSION);
5825
5826         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5827         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5828
5829         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5830                  fw_ver, priv->eeprom_version, ucode_ver);
5831
5832         strcpy(info->bus_info, pci_name(priv->pci_dev));
5833 }
5834
5835 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5836 {
5837         struct ipw2100_priv *priv = ieee80211_priv(dev);
5838         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5839 }
5840
5841 static struct ethtool_ops ipw2100_ethtool_ops = {
5842         .get_link = ipw2100_ethtool_get_link,
5843         .get_drvinfo = ipw_ethtool_get_drvinfo,
5844 };
5845
5846 static void ipw2100_hang_check(void *adapter)
5847 {
5848         struct ipw2100_priv *priv = adapter;
5849         unsigned long flags;
5850         u32 rtc = 0xa5a5a5a5;
5851         u32 len = sizeof(rtc);
5852         int restart = 0;
5853
5854         spin_lock_irqsave(&priv->low_lock, flags);
5855
5856         if (priv->fatal_error != 0) {
5857                 /* If fatal_error is set then we need to restart */
5858                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5859                                priv->net_dev->name);
5860
5861                 restart = 1;
5862         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5863                    (rtc == priv->last_rtc)) {
5864                 /* Check if firmware is hung */
5865                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5866                                priv->net_dev->name);
5867
5868                 restart = 1;
5869         }
5870
5871         if (restart) {
5872                 /* Kill timer */
5873                 priv->stop_hang_check = 1;
5874                 priv->hangs++;
5875
5876                 /* Restart the NIC */
5877                 schedule_reset(priv);
5878         }
5879
5880         priv->last_rtc = rtc;
5881
5882         if (!priv->stop_hang_check)
5883                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5884
5885         spin_unlock_irqrestore(&priv->low_lock, flags);
5886 }
5887
5888 static void ipw2100_rf_kill(void *adapter)
5889 {
5890         struct ipw2100_priv *priv = adapter;
5891         unsigned long flags;
5892
5893         spin_lock_irqsave(&priv->low_lock, flags);
5894
5895         if (rf_kill_active(priv)) {
5896                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5897                 if (!priv->stop_rf_kill)
5898                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5899                 goto exit_unlock;
5900         }
5901
5902         /* RF Kill is now disabled, so bring the device back up */
5903
5904         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5905                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5906                                   "device\n");
5907                 schedule_reset(priv);
5908         } else
5909                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5910                                   "enabled\n");
5911
5912       exit_unlock:
5913         spin_unlock_irqrestore(&priv->low_lock, flags);
5914 }
5915
5916 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5917
5918 /* Look into using netdev destructor to shutdown ieee80211? */
5919
5920 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5921                                                void __iomem * base_addr,
5922                                                unsigned long mem_start,
5923                                                unsigned long mem_len)
5924 {
5925         struct ipw2100_priv *priv;
5926         struct net_device *dev;
5927
5928         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
5929         if (!dev)
5930                 return NULL;
5931         priv = ieee80211_priv(dev);
5932         priv->ieee = netdev_priv(dev);
5933         priv->pci_dev = pci_dev;
5934         priv->net_dev = dev;
5935
5936         priv->ieee->hard_start_xmit = ipw2100_tx;
5937         priv->ieee->set_security = shim__set_security;
5938
5939         priv->ieee->perfect_rssi = -20;
5940         priv->ieee->worst_rssi = -85;
5941
5942         dev->open = ipw2100_open;
5943         dev->stop = ipw2100_close;
5944         dev->init = ipw2100_net_init;
5945         dev->get_stats = ipw2100_stats;
5946         dev->ethtool_ops = &ipw2100_ethtool_ops;
5947         dev->tx_timeout = ipw2100_tx_timeout;
5948         dev->wireless_handlers = &ipw2100_wx_handler_def;
5949         priv->wireless_data.ieee80211 = priv->ieee;
5950         dev->wireless_data = &priv->wireless_data;
5951         dev->set_mac_address = ipw2100_set_address;
5952         dev->watchdog_timeo = 3 * HZ;
5953         dev->irq = 0;
5954
5955         dev->base_addr = (unsigned long)base_addr;
5956         dev->mem_start = mem_start;
5957         dev->mem_end = dev->mem_start + mem_len - 1;
5958
5959         /* NOTE: We don't use the wireless_handlers hook
5960          * in dev as the system will start throwing WX requests
5961          * to us before we're actually initialized and it just
5962          * ends up causing problems.  So, we just handle
5963          * the WX extensions through the ipw2100_ioctl interface */
5964
5965         /* memset() puts everything to 0, so we only have explicitely set
5966          * those values that need to be something else */
5967
5968         /* If power management is turned on, default to AUTO mode */
5969         priv->power_mode = IPW_POWER_AUTO;
5970
5971 #ifdef CONFIG_IPW2100_MONITOR
5972         priv->config |= CFG_CRC_CHECK;
5973 #endif
5974         priv->ieee->wpa_enabled = 0;
5975         priv->ieee->drop_unencrypted = 0;
5976         priv->ieee->privacy_invoked = 0;
5977         priv->ieee->ieee802_1x = 1;
5978
5979         /* Set module parameters */
5980         switch (mode) {
5981         case 1:
5982                 priv->ieee->iw_mode = IW_MODE_ADHOC;
5983                 break;
5984 #ifdef CONFIG_IPW2100_MONITOR
5985         case 2:
5986                 priv->ieee->iw_mode = IW_MODE_MONITOR;
5987                 break;
5988 #endif
5989         default:
5990         case 0:
5991                 priv->ieee->iw_mode = IW_MODE_INFRA;
5992                 break;
5993         }
5994
5995         if (disable == 1)
5996                 priv->status |= STATUS_RF_KILL_SW;
5997
5998         if (channel != 0 &&
5999             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6000                 priv->config |= CFG_STATIC_CHANNEL;
6001                 priv->channel = channel;
6002         }
6003
6004         if (associate)
6005                 priv->config |= CFG_ASSOCIATE;
6006
6007         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6008         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6009         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6010         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6011         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6012         priv->tx_power = IPW_TX_POWER_DEFAULT;
6013         priv->tx_rates = DEFAULT_TX_RATES;
6014
6015         strcpy(priv->nick, "ipw2100");
6016
6017         spin_lock_init(&priv->low_lock);
6018         sema_init(&priv->action_sem, 1);
6019         sema_init(&priv->adapter_sem, 1);
6020
6021         init_waitqueue_head(&priv->wait_command_queue);
6022
6023         netif_carrier_off(dev);
6024
6025         INIT_LIST_HEAD(&priv->msg_free_list);
6026         INIT_LIST_HEAD(&priv->msg_pend_list);
6027         INIT_STAT(&priv->msg_free_stat);
6028         INIT_STAT(&priv->msg_pend_stat);
6029
6030         INIT_LIST_HEAD(&priv->tx_free_list);
6031         INIT_LIST_HEAD(&priv->tx_pend_list);
6032         INIT_STAT(&priv->tx_free_stat);
6033         INIT_STAT(&priv->tx_pend_stat);
6034
6035         INIT_LIST_HEAD(&priv->fw_pend_list);
6036         INIT_STAT(&priv->fw_pend_stat);
6037
6038         priv->workqueue = create_workqueue(DRV_NAME);
6039
6040         INIT_WORK(&priv->reset_work,
6041                   (void (*)(void *))ipw2100_reset_adapter, priv);
6042         INIT_WORK(&priv->security_work,
6043                   (void (*)(void *))ipw2100_security_work, priv);
6044         INIT_WORK(&priv->wx_event_work,
6045                   (void (*)(void *))ipw2100_wx_event_work, priv);
6046         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6047         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6048
6049         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6050                      ipw2100_irq_tasklet, (unsigned long)priv);
6051
6052         /* NOTE:  We do not start the deferred work for status checks yet */
6053         priv->stop_rf_kill = 1;
6054         priv->stop_hang_check = 1;
6055
6056         return dev;
6057 }
6058
6059 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6060                                 const struct pci_device_id *ent)
6061 {
6062         unsigned long mem_start, mem_len, mem_flags;
6063         void __iomem *base_addr = NULL;
6064         struct net_device *dev = NULL;
6065         struct ipw2100_priv *priv = NULL;
6066         int err = 0;
6067         int registered = 0;
6068         u32 val;
6069
6070         IPW_DEBUG_INFO("enter\n");
6071
6072         mem_start = pci_resource_start(pci_dev, 0);
6073         mem_len = pci_resource_len(pci_dev, 0);
6074         mem_flags = pci_resource_flags(pci_dev, 0);
6075
6076         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6077                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6078                 err = -ENODEV;
6079                 goto fail;
6080         }
6081
6082         base_addr = ioremap_nocache(mem_start, mem_len);
6083         if (!base_addr) {
6084                 printk(KERN_WARNING DRV_NAME
6085                        "Error calling ioremap_nocache.\n");
6086                 err = -EIO;
6087                 goto fail;
6088         }
6089
6090         /* allocate and initialize our net_device */
6091         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6092         if (!dev) {
6093                 printk(KERN_WARNING DRV_NAME
6094                        "Error calling ipw2100_alloc_device.\n");
6095                 err = -ENOMEM;
6096                 goto fail;
6097         }
6098
6099         /* set up PCI mappings for device */
6100         err = pci_enable_device(pci_dev);
6101         if (err) {
6102                 printk(KERN_WARNING DRV_NAME
6103                        "Error calling pci_enable_device.\n");
6104                 return err;
6105         }
6106
6107         priv = ieee80211_priv(dev);
6108
6109         pci_set_master(pci_dev);
6110         pci_set_drvdata(pci_dev, priv);
6111
6112         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6113         if (err) {
6114                 printk(KERN_WARNING DRV_NAME
6115                        "Error calling pci_set_dma_mask.\n");
6116                 pci_disable_device(pci_dev);
6117                 return err;
6118         }
6119
6120         err = pci_request_regions(pci_dev, DRV_NAME);
6121         if (err) {
6122                 printk(KERN_WARNING DRV_NAME
6123                        "Error calling pci_request_regions.\n");
6124                 pci_disable_device(pci_dev);
6125                 return err;
6126         }
6127
6128         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6129          * PCI Tx retries from interfering with C3 CPU state */
6130         pci_read_config_dword(pci_dev, 0x40, &val);
6131         if ((val & 0x0000ff00) != 0)
6132                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6133
6134         pci_set_power_state(pci_dev, PCI_D0);
6135
6136         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6137                 printk(KERN_WARNING DRV_NAME
6138                        "Device not found via register read.\n");
6139                 err = -ENODEV;
6140                 goto fail;
6141         }
6142
6143         SET_NETDEV_DEV(dev, &pci_dev->dev);
6144
6145         /* Force interrupts to be shut off on the device */
6146         priv->status |= STATUS_INT_ENABLED;
6147         ipw2100_disable_interrupts(priv);
6148
6149         /* Allocate and initialize the Tx/Rx queues and lists */
6150         if (ipw2100_queues_allocate(priv)) {
6151                 printk(KERN_WARNING DRV_NAME
6152                        "Error calilng ipw2100_queues_allocate.\n");
6153                 err = -ENOMEM;
6154                 goto fail;
6155         }
6156         ipw2100_queues_initialize(priv);
6157
6158         err = request_irq(pci_dev->irq,
6159                           ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6160         if (err) {
6161                 printk(KERN_WARNING DRV_NAME
6162                        "Error calling request_irq: %d.\n", pci_dev->irq);
6163                 goto fail;
6164         }
6165         dev->irq = pci_dev->irq;
6166
6167         IPW_DEBUG_INFO("Attempting to register device...\n");
6168
6169         SET_MODULE_OWNER(dev);
6170
6171         printk(KERN_INFO DRV_NAME
6172                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6173
6174         /* Bring up the interface.  Pre 0.46, after we registered the
6175          * network device we would call ipw2100_up.  This introduced a race
6176          * condition with newer hotplug configurations (network was coming
6177          * up and making calls before the device was initialized).
6178          *
6179          * If we called ipw2100_up before we registered the device, then the
6180          * device name wasn't registered.  So, we instead use the net_dev->init
6181          * member to call a function that then just turns and calls ipw2100_up.
6182          * net_dev->init is called after name allocation but before the
6183          * notifier chain is called */
6184         down(&priv->action_sem);
6185         err = register_netdev(dev);
6186         if (err) {
6187                 printk(KERN_WARNING DRV_NAME
6188                        "Error calling register_netdev.\n");
6189                 goto fail_unlock;
6190         }
6191         registered = 1;
6192
6193         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6194
6195         /* perform this after register_netdev so that dev->name is set */
6196         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6197
6198         /* If the RF Kill switch is disabled, go ahead and complete the
6199          * startup sequence */
6200         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6201                 /* Enable the adapter - sends HOST_COMPLETE */
6202                 if (ipw2100_enable_adapter(priv)) {
6203                         printk(KERN_WARNING DRV_NAME
6204                                ": %s: failed in call to enable adapter.\n",
6205                                priv->net_dev->name);
6206                         ipw2100_hw_stop_adapter(priv);
6207                         err = -EIO;
6208                         goto fail_unlock;
6209                 }
6210
6211                 /* Start a scan . . . */
6212                 ipw2100_set_scan_options(priv);
6213                 ipw2100_start_scan(priv);
6214         }
6215
6216         IPW_DEBUG_INFO("exit\n");
6217
6218         priv->status |= STATUS_INITIALIZED;
6219
6220         up(&priv->action_sem);
6221
6222         return 0;
6223
6224       fail_unlock:
6225         up(&priv->action_sem);
6226
6227       fail:
6228         if (dev) {
6229                 if (registered)
6230                         unregister_netdev(dev);
6231
6232                 ipw2100_hw_stop_adapter(priv);
6233
6234                 ipw2100_disable_interrupts(priv);
6235
6236                 if (dev->irq)
6237                         free_irq(dev->irq, priv);
6238
6239                 ipw2100_kill_workqueue(priv);
6240
6241                 /* These are safe to call even if they weren't allocated */
6242                 ipw2100_queues_free(priv);
6243                 sysfs_remove_group(&pci_dev->dev.kobj,
6244                                    &ipw2100_attribute_group);
6245
6246                 free_ieee80211(dev);
6247                 pci_set_drvdata(pci_dev, NULL);
6248         }
6249
6250         if (base_addr)
6251                 iounmap(base_addr);
6252
6253         pci_release_regions(pci_dev);
6254         pci_disable_device(pci_dev);
6255
6256         return err;
6257 }
6258
6259 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6260 {
6261         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6262         struct net_device *dev;
6263
6264         if (priv) {
6265                 down(&priv->action_sem);
6266
6267                 priv->status &= ~STATUS_INITIALIZED;
6268
6269                 dev = priv->net_dev;
6270                 sysfs_remove_group(&pci_dev->dev.kobj,
6271                                    &ipw2100_attribute_group);
6272
6273 #ifdef CONFIG_PM
6274                 if (ipw2100_firmware.version)
6275                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6276 #endif
6277                 /* Take down the hardware */
6278                 ipw2100_down(priv);
6279
6280                 /* Release the semaphore so that the network subsystem can
6281                  * complete any needed calls into the driver... */
6282                 up(&priv->action_sem);
6283
6284                 /* Unregister the device first - this results in close()
6285                  * being called if the device is open.  If we free storage
6286                  * first, then close() will crash. */
6287                 unregister_netdev(dev);
6288
6289                 /* ipw2100_down will ensure that there is no more pending work
6290                  * in the workqueue's, so we can safely remove them now. */
6291                 ipw2100_kill_workqueue(priv);
6292
6293                 ipw2100_queues_free(priv);
6294
6295                 /* Free potential debugging firmware snapshot */
6296                 ipw2100_snapshot_free(priv);
6297
6298                 if (dev->irq)
6299                         free_irq(dev->irq, priv);
6300
6301                 if (dev->base_addr)
6302                         iounmap((void __iomem *)dev->base_addr);
6303
6304                 free_ieee80211(dev);
6305         }
6306
6307         pci_release_regions(pci_dev);
6308         pci_disable_device(pci_dev);
6309
6310         IPW_DEBUG_INFO("exit\n");
6311 }
6312
6313 #ifdef CONFIG_PM
6314 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6315 {
6316         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6317         struct net_device *dev = priv->net_dev;
6318
6319         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6320
6321         down(&priv->action_sem);
6322         if (priv->status & STATUS_INITIALIZED) {
6323                 /* Take down the device; powers it off, etc. */
6324                 ipw2100_down(priv);
6325         }
6326
6327         /* Remove the PRESENT state of the device */
6328         netif_device_detach(dev);
6329
6330         pci_save_state(pci_dev);
6331         pci_disable_device(pci_dev);
6332         pci_set_power_state(pci_dev, PCI_D3hot);
6333
6334         up(&priv->action_sem);
6335
6336         return 0;
6337 }
6338
6339 static int ipw2100_resume(struct pci_dev *pci_dev)
6340 {
6341         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6342         struct net_device *dev = priv->net_dev;
6343         u32 val;
6344
6345         if (IPW2100_PM_DISABLED)
6346                 return 0;
6347
6348         down(&priv->action_sem);
6349
6350         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6351
6352         pci_set_power_state(pci_dev, PCI_D0);
6353         pci_enable_device(pci_dev);
6354         pci_restore_state(pci_dev);
6355
6356         /*
6357          * Suspend/Resume resets the PCI configuration space, so we have to
6358          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6359          * from interfering with C3 CPU state. pci_restore_state won't help
6360          * here since it only restores the first 64 bytes pci config header.
6361          */
6362         pci_read_config_dword(pci_dev, 0x40, &val);
6363         if ((val & 0x0000ff00) != 0)
6364                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6365
6366         /* Set the device back into the PRESENT state; this will also wake
6367          * the queue of needed */
6368         netif_device_attach(dev);
6369
6370         /* Bring the device back up */
6371         if (!(priv->status & STATUS_RF_KILL_SW))
6372                 ipw2100_up(priv, 0);
6373
6374         up(&priv->action_sem);
6375
6376         return 0;
6377 }
6378 #endif
6379
6380 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6381
6382 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6383         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6384         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6385         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6386         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6387         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6388         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6389         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6390         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6391         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6392         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6393         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6394         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6395         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6396
6397         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6398         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6399         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6400         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6401         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6402
6403         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6404         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6405         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6406         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6407         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6408         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6409         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6410
6411         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6412
6413         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6414         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6415         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6416         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6417         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6418         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6419         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6420
6421         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6422         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6423         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6424         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6425         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6426         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6427
6428         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6429         {0,},
6430 };
6431
6432 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6433
6434 static struct pci_driver ipw2100_pci_driver = {
6435         .name = DRV_NAME,
6436         .id_table = ipw2100_pci_id_table,
6437         .probe = ipw2100_pci_init_one,
6438         .remove = __devexit_p(ipw2100_pci_remove_one),
6439 #ifdef CONFIG_PM
6440         .suspend = ipw2100_suspend,
6441         .resume = ipw2100_resume,
6442 #endif
6443 };
6444
6445 /**
6446  * Initialize the ipw2100 driver/module
6447  *
6448  * @returns 0 if ok, < 0 errno node con error.
6449  *
6450  * Note: we cannot init the /proc stuff until the PCI driver is there,
6451  * or we risk an unlikely race condition on someone accessing
6452  * uninitialized data in the PCI dev struct through /proc.
6453  */
6454 static int __init ipw2100_init(void)
6455 {
6456         int ret;
6457
6458         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6459         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6460
6461         ret = pci_module_init(&ipw2100_pci_driver);
6462
6463 #ifdef CONFIG_IPW2100_DEBUG
6464         ipw2100_debug_level = debug;
6465         driver_create_file(&ipw2100_pci_driver.driver,
6466                            &driver_attr_debug_level);
6467 #endif
6468
6469         return ret;
6470 }
6471
6472 /**
6473  * Cleanup ipw2100 driver registration
6474  */
6475 static void __exit ipw2100_exit(void)
6476 {
6477         /* FIXME: IPG: check that we have no instances of the devices open */
6478 #ifdef CONFIG_IPW2100_DEBUG
6479         driver_remove_file(&ipw2100_pci_driver.driver,
6480                            &driver_attr_debug_level);
6481 #endif
6482         pci_unregister_driver(&ipw2100_pci_driver);
6483 }
6484
6485 module_init(ipw2100_init);
6486 module_exit(ipw2100_exit);
6487
6488 #define WEXT_USECHANNELS 1
6489
6490 static const long ipw2100_frequencies[] = {
6491         2412, 2417, 2422, 2427,
6492         2432, 2437, 2442, 2447,
6493         2452, 2457, 2462, 2467,
6494         2472, 2484
6495 };
6496
6497 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6498                     sizeof(ipw2100_frequencies[0]))
6499
6500 static const long ipw2100_rates_11b[] = {
6501         1000000,
6502         2000000,
6503         5500000,
6504         11000000
6505 };
6506
6507 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6508
6509 static int ipw2100_wx_get_name(struct net_device *dev,
6510                                struct iw_request_info *info,
6511                                union iwreq_data *wrqu, char *extra)
6512 {
6513         /*
6514          * This can be called at any time.  No action lock required
6515          */
6516
6517         struct ipw2100_priv *priv = ieee80211_priv(dev);
6518         if (!(priv->status & STATUS_ASSOCIATED))
6519                 strcpy(wrqu->name, "unassociated");
6520         else
6521                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6522
6523         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6524         return 0;
6525 }
6526
6527 static int ipw2100_wx_set_freq(struct net_device *dev,
6528                                struct iw_request_info *info,
6529                                union iwreq_data *wrqu, char *extra)
6530 {
6531         struct ipw2100_priv *priv = ieee80211_priv(dev);
6532         struct iw_freq *fwrq = &wrqu->freq;
6533         int err = 0;
6534
6535         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6536                 return -EOPNOTSUPP;
6537
6538         down(&priv->action_sem);
6539         if (!(priv->status & STATUS_INITIALIZED)) {
6540                 err = -EIO;
6541                 goto done;
6542         }
6543
6544         /* if setting by freq convert to channel */
6545         if (fwrq->e == 1) {
6546                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6547                         int f = fwrq->m / 100000;
6548                         int c = 0;
6549
6550                         while ((c < REG_MAX_CHANNEL) &&
6551                                (f != ipw2100_frequencies[c]))
6552                                 c++;
6553
6554                         /* hack to fall through */
6555                         fwrq->e = 0;
6556                         fwrq->m = c + 1;
6557                 }
6558         }
6559
6560         if (fwrq->e > 0 || fwrq->m > 1000) {
6561                 err = -EOPNOTSUPP;
6562                 goto done;
6563         } else {                /* Set the channel */
6564                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6565                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6566         }
6567
6568       done:
6569         up(&priv->action_sem);
6570         return err;
6571 }
6572
6573 static int ipw2100_wx_get_freq(struct net_device *dev,
6574                                struct iw_request_info *info,
6575                                union iwreq_data *wrqu, char *extra)
6576 {
6577         /*
6578          * This can be called at any time.  No action lock required
6579          */
6580
6581         struct ipw2100_priv *priv = ieee80211_priv(dev);
6582
6583         wrqu->freq.e = 0;
6584
6585         /* If we are associated, trying to associate, or have a statically
6586          * configured CHANNEL then return that; otherwise return ANY */
6587         if (priv->config & CFG_STATIC_CHANNEL ||
6588             priv->status & STATUS_ASSOCIATED)
6589                 wrqu->freq.m = priv->channel;
6590         else
6591                 wrqu->freq.m = 0;
6592
6593         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6594         return 0;
6595
6596 }
6597
6598 static int ipw2100_wx_set_mode(struct net_device *dev,
6599                                struct iw_request_info *info,
6600                                union iwreq_data *wrqu, char *extra)
6601 {
6602         struct ipw2100_priv *priv = ieee80211_priv(dev);
6603         int err = 0;
6604
6605         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6606
6607         if (wrqu->mode == priv->ieee->iw_mode)
6608                 return 0;
6609
6610         down(&priv->action_sem);
6611         if (!(priv->status & STATUS_INITIALIZED)) {
6612                 err = -EIO;
6613                 goto done;
6614         }
6615
6616         switch (wrqu->mode) {
6617 #ifdef CONFIG_IPW2100_MONITOR
6618         case IW_MODE_MONITOR:
6619                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6620                 break;
6621 #endif                          /* CONFIG_IPW2100_MONITOR */
6622         case IW_MODE_ADHOC:
6623                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6624                 break;
6625         case IW_MODE_INFRA:
6626         case IW_MODE_AUTO:
6627         default:
6628                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6629                 break;
6630         }
6631
6632       done:
6633         up(&priv->action_sem);
6634         return err;
6635 }
6636
6637 static int ipw2100_wx_get_mode(struct net_device *dev,
6638                                struct iw_request_info *info,
6639                                union iwreq_data *wrqu, char *extra)
6640 {
6641         /*
6642          * This can be called at any time.  No action lock required
6643          */
6644
6645         struct ipw2100_priv *priv = ieee80211_priv(dev);
6646
6647         wrqu->mode = priv->ieee->iw_mode;
6648         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6649
6650         return 0;
6651 }
6652
6653 #define POWER_MODES 5
6654
6655 /* Values are in microsecond */
6656 static const s32 timeout_duration[POWER_MODES] = {
6657         350000,
6658         250000,
6659         75000,
6660         37000,
6661         25000,
6662 };
6663
6664 static const s32 period_duration[POWER_MODES] = {
6665         400000,
6666         700000,
6667         1000000,
6668         1000000,
6669         1000000
6670 };
6671
6672 static int ipw2100_wx_get_range(struct net_device *dev,
6673                                 struct iw_request_info *info,
6674                                 union iwreq_data *wrqu, char *extra)
6675 {
6676         /*
6677          * This can be called at any time.  No action lock required
6678          */
6679
6680         struct ipw2100_priv *priv = ieee80211_priv(dev);
6681         struct iw_range *range = (struct iw_range *)extra;
6682         u16 val;
6683         int i, level;
6684
6685         wrqu->data.length = sizeof(*range);
6686         memset(range, 0, sizeof(*range));
6687
6688         /* Let's try to keep this struct in the same order as in
6689          * linux/include/wireless.h
6690          */
6691
6692         /* TODO: See what values we can set, and remove the ones we can't
6693          * set, or fill them with some default data.
6694          */
6695
6696         /* ~5 Mb/s real (802.11b) */
6697         range->throughput = 5 * 1000 * 1000;
6698
6699 //      range->sensitivity;     /* signal level threshold range */
6700
6701         range->max_qual.qual = 100;
6702         /* TODO: Find real max RSSI and stick here */
6703         range->max_qual.level = 0;
6704         range->max_qual.noise = 0;
6705         range->max_qual.updated = 7;    /* Updated all three */
6706
6707         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6708         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6709         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6710         range->avg_qual.noise = 0;
6711         range->avg_qual.updated = 7;    /* Updated all three */
6712
6713         range->num_bitrates = RATE_COUNT;
6714
6715         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6716                 range->bitrate[i] = ipw2100_rates_11b[i];
6717         }
6718
6719         range->min_rts = MIN_RTS_THRESHOLD;
6720         range->max_rts = MAX_RTS_THRESHOLD;
6721         range->min_frag = MIN_FRAG_THRESHOLD;
6722         range->max_frag = MAX_FRAG_THRESHOLD;
6723
6724         range->min_pmp = period_duration[0];    /* Minimal PM period */
6725         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6726         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6727         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6728
6729         /* How to decode max/min PM period */
6730         range->pmp_flags = IW_POWER_PERIOD;
6731         /* How to decode max/min PM period */
6732         range->pmt_flags = IW_POWER_TIMEOUT;
6733         /* What PM options are supported */
6734         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6735
6736         range->encoding_size[0] = 5;
6737         range->encoding_size[1] = 13;   /* Different token sizes */
6738         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6739         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6740 //      range->encoding_login_index;            /* token index for login token */
6741
6742         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6743                 range->txpower_capa = IW_TXPOW_DBM;
6744                 range->num_txpower = IW_MAX_TXPOWER;
6745                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6746                      i < IW_MAX_TXPOWER;
6747                      i++, level -=
6748                      ((IPW_TX_POWER_MAX_DBM -
6749                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6750                         range->txpower[i] = level / 16;
6751         } else {
6752                 range->txpower_capa = 0;
6753                 range->num_txpower = 0;
6754         }
6755
6756         /* Set the Wireless Extension versions */
6757         range->we_version_compiled = WIRELESS_EXT;
6758         range->we_version_source = 18;
6759
6760 //      range->retry_capa;      /* What retry options are supported */
6761 //      range->retry_flags;     /* How to decode max/min retry limit */
6762 //      range->r_time_flags;    /* How to decode max/min retry life */
6763 //      range->min_retry;       /* Minimal number of retries */
6764 //      range->max_retry;       /* Maximal number of retries */
6765 //      range->min_r_time;      /* Minimal retry lifetime */
6766 //      range->max_r_time;      /* Maximal retry lifetime */
6767
6768         range->num_channels = FREQ_COUNT;
6769
6770         val = 0;
6771         for (i = 0; i < FREQ_COUNT; i++) {
6772                 // TODO: Include only legal frequencies for some countries
6773 //              if (local->channel_mask & (1 << i)) {
6774                 range->freq[val].i = i + 1;
6775                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6776                 range->freq[val].e = 1;
6777                 val++;
6778 //              }
6779                 if (val == IW_MAX_FREQUENCIES)
6780                         break;
6781         }
6782         range->num_frequency = val;
6783
6784         /* Event capability (kernel + driver) */
6785         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6786                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6787         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6788
6789         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6790                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6791
6792         IPW_DEBUG_WX("GET Range\n");
6793
6794         return 0;
6795 }
6796
6797 static int ipw2100_wx_set_wap(struct net_device *dev,
6798                               struct iw_request_info *info,
6799                               union iwreq_data *wrqu, char *extra)
6800 {
6801         struct ipw2100_priv *priv = ieee80211_priv(dev);
6802         int err = 0;
6803
6804         static const unsigned char any[] = {
6805                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6806         };
6807         static const unsigned char off[] = {
6808                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6809         };
6810
6811         // sanity checks
6812         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6813                 return -EINVAL;
6814
6815         down(&priv->action_sem);
6816         if (!(priv->status & STATUS_INITIALIZED)) {
6817                 err = -EIO;
6818                 goto done;
6819         }
6820
6821         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6822             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6823                 /* we disable mandatory BSSID association */
6824                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6825                 priv->config &= ~CFG_STATIC_BSSID;
6826                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6827                 goto done;
6828         }
6829
6830         priv->config |= CFG_STATIC_BSSID;
6831         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6832
6833         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6834
6835         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6836                      wrqu->ap_addr.sa_data[0] & 0xff,
6837                      wrqu->ap_addr.sa_data[1] & 0xff,
6838                      wrqu->ap_addr.sa_data[2] & 0xff,
6839                      wrqu->ap_addr.sa_data[3] & 0xff,
6840                      wrqu->ap_addr.sa_data[4] & 0xff,
6841                      wrqu->ap_addr.sa_data[5] & 0xff);
6842
6843       done:
6844         up(&priv->action_sem);
6845         return err;
6846 }
6847
6848 static int ipw2100_wx_get_wap(struct net_device *dev,
6849                               struct iw_request_info *info,
6850                               union iwreq_data *wrqu, char *extra)
6851 {
6852         /*
6853          * This can be called at any time.  No action lock required
6854          */
6855
6856         struct ipw2100_priv *priv = ieee80211_priv(dev);
6857
6858         /* If we are associated, trying to associate, or have a statically
6859          * configured BSSID then return that; otherwise return ANY */
6860         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6861                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6862                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6863         } else
6864                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6865
6866         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6867                      MAC_ARG(wrqu->ap_addr.sa_data));
6868         return 0;
6869 }
6870
6871 static int ipw2100_wx_set_essid(struct net_device *dev,
6872                                 struct iw_request_info *info,
6873                                 union iwreq_data *wrqu, char *extra)
6874 {
6875         struct ipw2100_priv *priv = ieee80211_priv(dev);
6876         char *essid = "";       /* ANY */
6877         int length = 0;
6878         int err = 0;
6879
6880         down(&priv->action_sem);
6881         if (!(priv->status & STATUS_INITIALIZED)) {
6882                 err = -EIO;
6883                 goto done;
6884         }
6885
6886         if (wrqu->essid.flags && wrqu->essid.length) {
6887                 length = wrqu->essid.length - 1;
6888                 essid = extra;
6889         }
6890
6891         if (length == 0) {
6892                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6893                 priv->config &= ~CFG_STATIC_ESSID;
6894                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6895                 goto done;
6896         }
6897
6898         length = min(length, IW_ESSID_MAX_SIZE);
6899
6900         priv->config |= CFG_STATIC_ESSID;
6901
6902         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6903                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6904                 err = 0;
6905                 goto done;
6906         }
6907
6908         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6909                      length);
6910
6911         priv->essid_len = length;
6912         memcpy(priv->essid, essid, priv->essid_len);
6913
6914         err = ipw2100_set_essid(priv, essid, length, 0);
6915
6916       done:
6917         up(&priv->action_sem);
6918         return err;
6919 }
6920
6921 static int ipw2100_wx_get_essid(struct net_device *dev,
6922                                 struct iw_request_info *info,
6923                                 union iwreq_data *wrqu, char *extra)
6924 {
6925         /*
6926          * This can be called at any time.  No action lock required
6927          */
6928
6929         struct ipw2100_priv *priv = ieee80211_priv(dev);
6930
6931         /* If we are associated, trying to associate, or have a statically
6932          * configured ESSID then return that; otherwise return ANY */
6933         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6934                 IPW_DEBUG_WX("Getting essid: '%s'\n",
6935                              escape_essid(priv->essid, priv->essid_len));
6936                 memcpy(extra, priv->essid, priv->essid_len);
6937                 wrqu->essid.length = priv->essid_len;
6938                 wrqu->essid.flags = 1;  /* active */
6939         } else {
6940                 IPW_DEBUG_WX("Getting essid: ANY\n");
6941                 wrqu->essid.length = 0;
6942                 wrqu->essid.flags = 0;  /* active */
6943         }
6944
6945         return 0;
6946 }
6947
6948 static int ipw2100_wx_set_nick(struct net_device *dev,
6949                                struct iw_request_info *info,
6950                                union iwreq_data *wrqu, char *extra)
6951 {
6952         /*
6953          * This can be called at any time.  No action lock required
6954          */
6955
6956         struct ipw2100_priv *priv = ieee80211_priv(dev);
6957
6958         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
6959                 return -E2BIG;
6960
6961         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
6962         memset(priv->nick, 0, sizeof(priv->nick));
6963         memcpy(priv->nick, extra, wrqu->data.length);
6964
6965         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
6966
6967         return 0;
6968 }
6969
6970 static int ipw2100_wx_get_nick(struct net_device *dev,
6971                                struct iw_request_info *info,
6972                                union iwreq_data *wrqu, char *extra)
6973 {
6974         /*
6975          * This can be called at any time.  No action lock required
6976          */
6977
6978         struct ipw2100_priv *priv = ieee80211_priv(dev);
6979
6980         wrqu->data.length = strlen(priv->nick) + 1;
6981         memcpy(extra, priv->nick, wrqu->data.length);
6982         wrqu->data.flags = 1;   /* active */
6983
6984         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
6985
6986         return 0;
6987 }
6988
6989 static int ipw2100_wx_set_rate(struct net_device *dev,
6990                                struct iw_request_info *info,
6991                                union iwreq_data *wrqu, char *extra)
6992 {
6993         struct ipw2100_priv *priv = ieee80211_priv(dev);
6994         u32 target_rate = wrqu->bitrate.value;
6995         u32 rate;
6996         int err = 0;
6997
6998         down(&priv->action_sem);
6999         if (!(priv->status & STATUS_INITIALIZED)) {
7000                 err = -EIO;
7001                 goto done;
7002         }
7003
7004         rate = 0;
7005
7006         if (target_rate == 1000000 ||
7007             (!wrqu->bitrate.fixed && target_rate > 1000000))
7008                 rate |= TX_RATE_1_MBIT;
7009         if (target_rate == 2000000 ||
7010             (!wrqu->bitrate.fixed && target_rate > 2000000))
7011                 rate |= TX_RATE_2_MBIT;
7012         if (target_rate == 5500000 ||
7013             (!wrqu->bitrate.fixed && target_rate > 5500000))
7014                 rate |= TX_RATE_5_5_MBIT;
7015         if (target_rate == 11000000 ||
7016             (!wrqu->bitrate.fixed && target_rate > 11000000))
7017                 rate |= TX_RATE_11_MBIT;
7018         if (rate == 0)
7019                 rate = DEFAULT_TX_RATES;
7020
7021         err = ipw2100_set_tx_rates(priv, rate, 0);
7022
7023         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7024       done:
7025         up(&priv->action_sem);
7026         return err;
7027 }
7028
7029 static int ipw2100_wx_get_rate(struct net_device *dev,
7030                                struct iw_request_info *info,
7031                                union iwreq_data *wrqu, char *extra)
7032 {
7033         struct ipw2100_priv *priv = ieee80211_priv(dev);
7034         int val;
7035         int len = sizeof(val);
7036         int err = 0;
7037
7038         if (!(priv->status & STATUS_ENABLED) ||
7039             priv->status & STATUS_RF_KILL_MASK ||
7040             !(priv->status & STATUS_ASSOCIATED)) {
7041                 wrqu->bitrate.value = 0;
7042                 return 0;
7043         }
7044
7045         down(&priv->action_sem);
7046         if (!(priv->status & STATUS_INITIALIZED)) {
7047                 err = -EIO;
7048                 goto done;
7049         }
7050
7051         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7052         if (err) {
7053                 IPW_DEBUG_WX("failed querying ordinals.\n");
7054                 return err;
7055         }
7056
7057         switch (val & TX_RATE_MASK) {
7058         case TX_RATE_1_MBIT:
7059                 wrqu->bitrate.value = 1000000;
7060                 break;
7061         case TX_RATE_2_MBIT:
7062                 wrqu->bitrate.value = 2000000;
7063                 break;
7064         case TX_RATE_5_5_MBIT:
7065                 wrqu->bitrate.value = 5500000;
7066                 break;
7067         case TX_RATE_11_MBIT:
7068                 wrqu->bitrate.value = 11000000;
7069                 break;
7070         default:
7071                 wrqu->bitrate.value = 0;
7072         }
7073
7074         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7075
7076       done:
7077         up(&priv->action_sem);
7078         return err;
7079 }
7080
7081 static int ipw2100_wx_set_rts(struct net_device *dev,
7082                               struct iw_request_info *info,
7083                               union iwreq_data *wrqu, char *extra)
7084 {
7085         struct ipw2100_priv *priv = ieee80211_priv(dev);
7086         int value, err;
7087
7088         /* Auto RTS not yet supported */
7089         if (wrqu->rts.fixed == 0)
7090                 return -EINVAL;
7091
7092         down(&priv->action_sem);
7093         if (!(priv->status & STATUS_INITIALIZED)) {
7094                 err = -EIO;
7095                 goto done;
7096         }
7097
7098         if (wrqu->rts.disabled)
7099                 value = priv->rts_threshold | RTS_DISABLED;
7100         else {
7101                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7102                         err = -EINVAL;
7103                         goto done;
7104                 }
7105                 value = wrqu->rts.value;
7106         }
7107
7108         err = ipw2100_set_rts_threshold(priv, value);
7109
7110         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7111       done:
7112         up(&priv->action_sem);
7113         return err;
7114 }
7115
7116 static int ipw2100_wx_get_rts(struct net_device *dev,
7117                               struct iw_request_info *info,
7118                               union iwreq_data *wrqu, char *extra)
7119 {
7120         /*
7121          * This can be called at any time.  No action lock required
7122          */
7123
7124         struct ipw2100_priv *priv = ieee80211_priv(dev);
7125
7126         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7127         wrqu->rts.fixed = 1;    /* no auto select */
7128
7129         /* If RTS is set to the default value, then it is disabled */
7130         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7131
7132         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7133
7134         return 0;
7135 }
7136
7137 static int ipw2100_wx_set_txpow(struct net_device *dev,
7138                                 struct iw_request_info *info,
7139                                 union iwreq_data *wrqu, char *extra)
7140 {
7141         struct ipw2100_priv *priv = ieee80211_priv(dev);
7142         int err = 0, value;
7143         
7144         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7145                 return -EINPROGRESS;
7146
7147         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7148                 return 0;
7149
7150         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7151                 return -EINVAL;
7152
7153         if (wrqu->txpower.fixed == 0)
7154                 value = IPW_TX_POWER_DEFAULT;
7155         else {
7156                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7157                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7158                         return -EINVAL;
7159
7160                 value = wrqu->txpower.value;
7161         }
7162
7163         down(&priv->action_sem);
7164         if (!(priv->status & STATUS_INITIALIZED)) {
7165                 err = -EIO;
7166                 goto done;
7167         }
7168
7169         err = ipw2100_set_tx_power(priv, value);
7170
7171         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7172
7173       done:
7174         up(&priv->action_sem);
7175         return err;
7176 }
7177
7178 static int ipw2100_wx_get_txpow(struct net_device *dev,
7179                                 struct iw_request_info *info,
7180                                 union iwreq_data *wrqu, char *extra)
7181 {
7182         /*
7183          * This can be called at any time.  No action lock required
7184          */
7185
7186         struct ipw2100_priv *priv = ieee80211_priv(dev);
7187
7188         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7189
7190         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7191                 wrqu->txpower.fixed = 0;
7192                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7193         } else {
7194                 wrqu->txpower.fixed = 1;
7195                 wrqu->txpower.value = priv->tx_power;
7196         }
7197
7198         wrqu->txpower.flags = IW_TXPOW_DBM;
7199
7200         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7201
7202         return 0;
7203 }
7204
7205 static int ipw2100_wx_set_frag(struct net_device *dev,
7206                                struct iw_request_info *info,
7207                                union iwreq_data *wrqu, char *extra)
7208 {
7209         /*
7210          * This can be called at any time.  No action lock required
7211          */
7212
7213         struct ipw2100_priv *priv = ieee80211_priv(dev);
7214
7215         if (!wrqu->frag.fixed)
7216                 return -EINVAL;
7217
7218         if (wrqu->frag.disabled) {
7219                 priv->frag_threshold |= FRAG_DISABLED;
7220                 priv->ieee->fts = DEFAULT_FTS;
7221         } else {
7222                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7223                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7224                         return -EINVAL;
7225
7226                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7227                 priv->frag_threshold = priv->ieee->fts;
7228         }
7229
7230         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7231
7232         return 0;
7233 }
7234
7235 static int ipw2100_wx_get_frag(struct net_device *dev,
7236                                struct iw_request_info *info,
7237                                union iwreq_data *wrqu, char *extra)
7238 {
7239         /*
7240          * This can be called at any time.  No action lock required
7241          */
7242
7243         struct ipw2100_priv *priv = ieee80211_priv(dev);
7244         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7245         wrqu->frag.fixed = 0;   /* no auto select */
7246         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7247
7248         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7249
7250         return 0;
7251 }
7252
7253 static int ipw2100_wx_set_retry(struct net_device *dev,
7254                                 struct iw_request_info *info,
7255                                 union iwreq_data *wrqu, char *extra)
7256 {
7257         struct ipw2100_priv *priv = ieee80211_priv(dev);
7258         int err = 0;
7259
7260         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7261                 return -EINVAL;
7262
7263         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7264                 return 0;
7265
7266         down(&priv->action_sem);
7267         if (!(priv->status & STATUS_INITIALIZED)) {
7268                 err = -EIO;
7269                 goto done;
7270         }
7271
7272         if (wrqu->retry.flags & IW_RETRY_MIN) {
7273                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7274                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7275                              wrqu->retry.value);
7276                 goto done;
7277         }
7278
7279         if (wrqu->retry.flags & IW_RETRY_MAX) {
7280                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7281                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7282                              wrqu->retry.value);
7283                 goto done;
7284         }
7285
7286         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7287         if (!err)
7288                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7289
7290         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7291
7292       done:
7293         up(&priv->action_sem);
7294         return err;
7295 }
7296
7297 static int ipw2100_wx_get_retry(struct net_device *dev,
7298                                 struct iw_request_info *info,
7299                                 union iwreq_data *wrqu, char *extra)
7300 {
7301         /*
7302          * This can be called at any time.  No action lock required
7303          */
7304
7305         struct ipw2100_priv *priv = ieee80211_priv(dev);
7306
7307         wrqu->retry.disabled = 0;       /* can't be disabled */
7308
7309         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7310                 return -EINVAL;
7311
7312         if (wrqu->retry.flags & IW_RETRY_MAX) {
7313                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7314                 wrqu->retry.value = priv->long_retry_limit;
7315         } else {
7316                 wrqu->retry.flags =
7317                     (priv->short_retry_limit !=
7318                      priv->long_retry_limit) ?
7319                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7320
7321                 wrqu->retry.value = priv->short_retry_limit;
7322         }
7323
7324         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7325
7326         return 0;
7327 }
7328
7329 static int ipw2100_wx_set_scan(struct net_device *dev,
7330                                struct iw_request_info *info,
7331                                union iwreq_data *wrqu, char *extra)
7332 {
7333         struct ipw2100_priv *priv = ieee80211_priv(dev);
7334         int err = 0;
7335
7336         down(&priv->action_sem);
7337         if (!(priv->status & STATUS_INITIALIZED)) {
7338                 err = -EIO;
7339                 goto done;
7340         }
7341
7342         IPW_DEBUG_WX("Initiating scan...\n");
7343         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7344                 IPW_DEBUG_WX("Start scan failed.\n");
7345
7346                 /* TODO: Mark a scan as pending so when hardware initialized
7347                  *       a scan starts */
7348         }
7349
7350       done:
7351         up(&priv->action_sem);
7352         return err;
7353 }
7354
7355 static int ipw2100_wx_get_scan(struct net_device *dev,
7356                                struct iw_request_info *info,
7357                                union iwreq_data *wrqu, char *extra)
7358 {
7359         /*
7360          * This can be called at any time.  No action lock required
7361          */
7362
7363         struct ipw2100_priv *priv = ieee80211_priv(dev);
7364         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7365 }
7366
7367 /*
7368  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7369  */
7370 static int ipw2100_wx_set_encode(struct net_device *dev,
7371                                  struct iw_request_info *info,
7372                                  union iwreq_data *wrqu, char *key)
7373 {
7374         /*
7375          * No check of STATUS_INITIALIZED required
7376          */
7377
7378         struct ipw2100_priv *priv = ieee80211_priv(dev);
7379         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7380 }
7381
7382 static int ipw2100_wx_get_encode(struct net_device *dev,
7383                                  struct iw_request_info *info,
7384                                  union iwreq_data *wrqu, char *key)
7385 {
7386         /*
7387          * This can be called at any time.  No action lock required
7388          */
7389
7390         struct ipw2100_priv *priv = ieee80211_priv(dev);
7391         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7392 }
7393
7394 static int ipw2100_wx_set_power(struct net_device *dev,
7395                                 struct iw_request_info *info,
7396                                 union iwreq_data *wrqu, char *extra)
7397 {
7398         struct ipw2100_priv *priv = ieee80211_priv(dev);
7399         int err = 0;
7400
7401         down(&priv->action_sem);
7402         if (!(priv->status & STATUS_INITIALIZED)) {
7403                 err = -EIO;
7404                 goto done;
7405         }
7406
7407         if (wrqu->power.disabled) {
7408                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7409                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7410                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7411                 goto done;
7412         }
7413
7414         switch (wrqu->power.flags & IW_POWER_MODE) {
7415         case IW_POWER_ON:       /* If not specified */
7416         case IW_POWER_MODE:     /* If set all mask */
7417         case IW_POWER_ALL_R:    /* If explicitely state all */
7418                 break;
7419         default:                /* Otherwise we don't support it */
7420                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7421                              wrqu->power.flags);
7422                 err = -EOPNOTSUPP;
7423                 goto done;
7424         }
7425
7426         /* If the user hasn't specified a power management mode yet, default
7427          * to BATTERY */
7428         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7429         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7430
7431         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7432
7433       done:
7434         up(&priv->action_sem);
7435         return err;
7436
7437 }
7438
7439 static int ipw2100_wx_get_power(struct net_device *dev,
7440                                 struct iw_request_info *info,
7441                                 union iwreq_data *wrqu, char *extra)
7442 {
7443         /*
7444          * This can be called at any time.  No action lock required
7445          */
7446
7447         struct ipw2100_priv *priv = ieee80211_priv(dev);
7448
7449         if (!(priv->power_mode & IPW_POWER_ENABLED))
7450                 wrqu->power.disabled = 1;
7451         else {
7452                 wrqu->power.disabled = 0;
7453                 wrqu->power.flags = 0;
7454         }
7455
7456         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7457
7458         return 0;
7459 }
7460
7461 /*
7462  * WE-18 WPA support
7463  */
7464
7465 /* SIOCSIWGENIE */
7466 static int ipw2100_wx_set_genie(struct net_device *dev,
7467                                 struct iw_request_info *info,
7468                                 union iwreq_data *wrqu, char *extra)
7469 {
7470
7471         struct ipw2100_priv *priv = ieee80211_priv(dev);
7472         struct ieee80211_device *ieee = priv->ieee;
7473         u8 *buf;
7474
7475         if (!ieee->wpa_enabled)
7476                 return -EOPNOTSUPP;
7477
7478         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7479             (wrqu->data.length && extra == NULL))
7480                 return -EINVAL;
7481
7482         if (wrqu->data.length) {
7483                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7484                 if (buf == NULL)
7485                         return -ENOMEM;
7486
7487                 memcpy(buf, extra, wrqu->data.length);
7488                 kfree(ieee->wpa_ie);
7489                 ieee->wpa_ie = buf;
7490                 ieee->wpa_ie_len = wrqu->data.length;
7491         } else {
7492                 kfree(ieee->wpa_ie);
7493                 ieee->wpa_ie = NULL;
7494                 ieee->wpa_ie_len = 0;
7495         }
7496
7497         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7498
7499         return 0;
7500 }
7501
7502 /* SIOCGIWGENIE */
7503 static int ipw2100_wx_get_genie(struct net_device *dev,
7504                                 struct iw_request_info *info,
7505                                 union iwreq_data *wrqu, char *extra)
7506 {
7507         struct ipw2100_priv *priv = ieee80211_priv(dev);
7508         struct ieee80211_device *ieee = priv->ieee;
7509
7510         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7511                 wrqu->data.length = 0;
7512                 return 0;
7513         }
7514
7515         if (wrqu->data.length < ieee->wpa_ie_len)
7516                 return -E2BIG;
7517
7518         wrqu->data.length = ieee->wpa_ie_len;
7519         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7520
7521         return 0;
7522 }
7523
7524 /* SIOCSIWAUTH */
7525 static int ipw2100_wx_set_auth(struct net_device *dev,
7526                                struct iw_request_info *info,
7527                                union iwreq_data *wrqu, char *extra)
7528 {
7529         struct ipw2100_priv *priv = ieee80211_priv(dev);
7530         struct ieee80211_device *ieee = priv->ieee;
7531         struct iw_param *param = &wrqu->param;
7532         struct ieee80211_crypt_data *crypt;
7533         unsigned long flags;
7534         int ret = 0;
7535
7536         switch (param->flags & IW_AUTH_INDEX) {
7537         case IW_AUTH_WPA_VERSION:
7538         case IW_AUTH_CIPHER_PAIRWISE:
7539         case IW_AUTH_CIPHER_GROUP:
7540         case IW_AUTH_KEY_MGMT:
7541                 /*
7542                  * ipw2200 does not use these parameters
7543                  */
7544                 break;
7545
7546         case IW_AUTH_TKIP_COUNTERMEASURES:
7547                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7548                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7549                         break;
7550
7551                 flags = crypt->ops->get_flags(crypt->priv);
7552
7553                 if (param->value)
7554                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7555                 else
7556                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7557
7558                 crypt->ops->set_flags(flags, crypt->priv);
7559
7560                 break;
7561
7562         case IW_AUTH_DROP_UNENCRYPTED:{
7563                         /* HACK:
7564                          *
7565                          * wpa_supplicant calls set_wpa_enabled when the driver
7566                          * is loaded and unloaded, regardless of if WPA is being
7567                          * used.  No other calls are made which can be used to
7568                          * determine if encryption will be used or not prior to
7569                          * association being expected.  If encryption is not being
7570                          * used, drop_unencrypted is set to false, else true -- we
7571                          * can use this to determine if the CAP_PRIVACY_ON bit should
7572                          * be set.
7573                          */
7574                         struct ieee80211_security sec = {
7575                                 .flags = SEC_ENABLED,
7576                                 .enabled = param->value,
7577                         };
7578                         priv->ieee->drop_unencrypted = param->value;
7579                         /* We only change SEC_LEVEL for open mode. Others
7580                          * are set by ipw_wpa_set_encryption.
7581                          */
7582                         if (!param->value) {
7583                                 sec.flags |= SEC_LEVEL;
7584                                 sec.level = SEC_LEVEL_0;
7585                         } else {
7586                                 sec.flags |= SEC_LEVEL;
7587                                 sec.level = SEC_LEVEL_1;
7588                         }
7589                         if (priv->ieee->set_security)
7590                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7591                         break;
7592                 }
7593
7594         case IW_AUTH_80211_AUTH_ALG:
7595                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7596                 break;
7597
7598         case IW_AUTH_WPA_ENABLED:
7599                 ret = ipw2100_wpa_enable(priv, param->value);
7600                 break;
7601
7602         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7603                 ieee->ieee802_1x = param->value;
7604                 break;
7605
7606                 //case IW_AUTH_ROAMING_CONTROL:
7607         case IW_AUTH_PRIVACY_INVOKED:
7608                 ieee->privacy_invoked = param->value;
7609                 break;
7610
7611         default:
7612                 return -EOPNOTSUPP;
7613         }
7614         return ret;
7615 }
7616
7617 /* SIOCGIWAUTH */
7618 static int ipw2100_wx_get_auth(struct net_device *dev,
7619                                struct iw_request_info *info,
7620                                union iwreq_data *wrqu, char *extra)
7621 {
7622         struct ipw2100_priv *priv = ieee80211_priv(dev);
7623         struct ieee80211_device *ieee = priv->ieee;
7624         struct ieee80211_crypt_data *crypt;
7625         struct iw_param *param = &wrqu->param;
7626         int ret = 0;
7627
7628         switch (param->flags & IW_AUTH_INDEX) {
7629         case IW_AUTH_WPA_VERSION:
7630         case IW_AUTH_CIPHER_PAIRWISE:
7631         case IW_AUTH_CIPHER_GROUP:
7632         case IW_AUTH_KEY_MGMT:
7633                 /*
7634                  * wpa_supplicant will control these internally
7635                  */
7636                 ret = -EOPNOTSUPP;
7637                 break;
7638
7639         case IW_AUTH_TKIP_COUNTERMEASURES:
7640                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7641                 if (!crypt || !crypt->ops->get_flags) {
7642                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7643                                           "crypt not set!\n");
7644                         break;
7645                 }
7646
7647                 param->value = (crypt->ops->get_flags(crypt->priv) &
7648                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7649
7650                 break;
7651
7652         case IW_AUTH_DROP_UNENCRYPTED:
7653                 param->value = ieee->drop_unencrypted;
7654                 break;
7655
7656         case IW_AUTH_80211_AUTH_ALG:
7657                 param->value = priv->ieee->sec.auth_mode;
7658                 break;
7659
7660         case IW_AUTH_WPA_ENABLED:
7661                 param->value = ieee->wpa_enabled;
7662                 break;
7663
7664         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7665                 param->value = ieee->ieee802_1x;
7666                 break;
7667
7668         case IW_AUTH_ROAMING_CONTROL:
7669         case IW_AUTH_PRIVACY_INVOKED:
7670                 param->value = ieee->privacy_invoked;
7671                 break;
7672
7673         default:
7674                 return -EOPNOTSUPP;
7675         }
7676         return 0;
7677 }
7678
7679 /* SIOCSIWENCODEEXT */
7680 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7681                                     struct iw_request_info *info,
7682                                     union iwreq_data *wrqu, char *extra)
7683 {
7684         struct ipw2100_priv *priv = ieee80211_priv(dev);
7685         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7686 }
7687
7688 /* SIOCGIWENCODEEXT */
7689 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7690                                     struct iw_request_info *info,
7691                                     union iwreq_data *wrqu, char *extra)
7692 {
7693         struct ipw2100_priv *priv = ieee80211_priv(dev);
7694         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7695 }
7696
7697 /* SIOCSIWMLME */
7698 static int ipw2100_wx_set_mlme(struct net_device *dev,
7699                                struct iw_request_info *info,
7700                                union iwreq_data *wrqu, char *extra)
7701 {
7702         struct ipw2100_priv *priv = ieee80211_priv(dev);
7703         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7704         u16 reason;
7705
7706         reason = cpu_to_le16(mlme->reason_code);
7707
7708         switch (mlme->cmd) {
7709         case IW_MLME_DEAUTH:
7710                 // silently ignore
7711                 break;
7712
7713         case IW_MLME_DISASSOC:
7714                 ipw2100_disassociate_bssid(priv);
7715                 break;
7716
7717         default:
7718                 return -EOPNOTSUPP;
7719         }
7720         return 0;
7721 }
7722
7723 /*
7724  *
7725  * IWPRIV handlers
7726  *
7727  */
7728 #ifdef CONFIG_IPW2100_MONITOR
7729 static int ipw2100_wx_set_promisc(struct net_device *dev,
7730                                   struct iw_request_info *info,
7731                                   union iwreq_data *wrqu, char *extra)
7732 {
7733         struct ipw2100_priv *priv = ieee80211_priv(dev);
7734         int *parms = (int *)extra;
7735         int enable = (parms[0] > 0);
7736         int err = 0;
7737
7738         down(&priv->action_sem);
7739         if (!(priv->status & STATUS_INITIALIZED)) {
7740                 err = -EIO;
7741                 goto done;
7742         }
7743
7744         if (enable) {
7745                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7746                         err = ipw2100_set_channel(priv, parms[1], 0);
7747                         goto done;
7748                 }
7749                 priv->channel = parms[1];
7750                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7751         } else {
7752                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7753                         err = ipw2100_switch_mode(priv, priv->last_mode);
7754         }
7755       done:
7756         up(&priv->action_sem);
7757         return err;
7758 }
7759
7760 static int ipw2100_wx_reset(struct net_device *dev,
7761                             struct iw_request_info *info,
7762                             union iwreq_data *wrqu, char *extra)
7763 {
7764         struct ipw2100_priv *priv = ieee80211_priv(dev);
7765         if (priv->status & STATUS_INITIALIZED)
7766                 schedule_reset(priv);
7767         return 0;
7768 }
7769
7770 #endif
7771
7772 static int ipw2100_wx_set_powermode(struct net_device *dev,
7773                                     struct iw_request_info *info,
7774                                     union iwreq_data *wrqu, char *extra)
7775 {
7776         struct ipw2100_priv *priv = ieee80211_priv(dev);
7777         int err = 0, mode = *(int *)extra;
7778
7779         down(&priv->action_sem);
7780         if (!(priv->status & STATUS_INITIALIZED)) {
7781                 err = -EIO;
7782                 goto done;
7783         }
7784
7785         if ((mode < 1) || (mode > POWER_MODES))
7786                 mode = IPW_POWER_AUTO;
7787
7788         if (priv->power_mode != mode)
7789                 err = ipw2100_set_power_mode(priv, mode);
7790       done:
7791         up(&priv->action_sem);
7792         return err;
7793 }
7794
7795 #define MAX_POWER_STRING 80
7796 static int ipw2100_wx_get_powermode(struct net_device *dev,
7797                                     struct iw_request_info *info,
7798                                     union iwreq_data *wrqu, char *extra)
7799 {
7800         /*
7801          * This can be called at any time.  No action lock required
7802          */
7803
7804         struct ipw2100_priv *priv = ieee80211_priv(dev);
7805         int level = IPW_POWER_LEVEL(priv->power_mode);
7806         s32 timeout, period;
7807
7808         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7809                 snprintf(extra, MAX_POWER_STRING,
7810                          "Power save level: %d (Off)", level);
7811         } else {
7812                 switch (level) {
7813                 case IPW_POWER_MODE_CAM:
7814                         snprintf(extra, MAX_POWER_STRING,
7815                                  "Power save level: %d (None)", level);
7816                         break;
7817                 case IPW_POWER_AUTO:
7818                         snprintf(extra, MAX_POWER_STRING,
7819                                  "Power save level: %d (Auto)", 0);
7820                         break;
7821                 default:
7822                         timeout = timeout_duration[level - 1] / 1000;
7823                         period = period_duration[level - 1] / 1000;
7824                         snprintf(extra, MAX_POWER_STRING,
7825                                  "Power save level: %d "
7826                                  "(Timeout %dms, Period %dms)",
7827                                  level, timeout, period);
7828                 }
7829         }
7830
7831         wrqu->data.length = strlen(extra) + 1;
7832
7833         return 0;
7834 }
7835
7836 static int ipw2100_wx_set_preamble(struct net_device *dev,
7837                                    struct iw_request_info *info,
7838                                    union iwreq_data *wrqu, char *extra)
7839 {
7840         struct ipw2100_priv *priv = ieee80211_priv(dev);
7841         int err, mode = *(int *)extra;
7842
7843         down(&priv->action_sem);
7844         if (!(priv->status & STATUS_INITIALIZED)) {
7845                 err = -EIO;
7846                 goto done;
7847         }
7848
7849         if (mode == 1)
7850                 priv->config |= CFG_LONG_PREAMBLE;
7851         else if (mode == 0)
7852                 priv->config &= ~CFG_LONG_PREAMBLE;
7853         else {
7854                 err = -EINVAL;
7855                 goto done;
7856         }
7857
7858         err = ipw2100_system_config(priv, 0);
7859
7860       done:
7861         up(&priv->action_sem);
7862         return err;
7863 }
7864
7865 static int ipw2100_wx_get_preamble(struct net_device *dev,
7866                                    struct iw_request_info *info,
7867                                    union iwreq_data *wrqu, char *extra)
7868 {
7869         /*
7870          * This can be called at any time.  No action lock required
7871          */
7872
7873         struct ipw2100_priv *priv = ieee80211_priv(dev);
7874
7875         if (priv->config & CFG_LONG_PREAMBLE)
7876                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7877         else
7878                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7879
7880         return 0;
7881 }
7882
7883 #ifdef CONFIG_IPW2100_MONITOR
7884 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7885                                     struct iw_request_info *info,
7886                                     union iwreq_data *wrqu, char *extra)
7887 {
7888         struct ipw2100_priv *priv = ieee80211_priv(dev);
7889         int err, mode = *(int *)extra;
7890
7891         down(&priv->action_sem);
7892         if (!(priv->status & STATUS_INITIALIZED)) {
7893                 err = -EIO;
7894                 goto done;
7895         }
7896
7897         if (mode == 1)
7898                 priv->config |= CFG_CRC_CHECK;
7899         else if (mode == 0)
7900                 priv->config &= ~CFG_CRC_CHECK;
7901         else {
7902                 err = -EINVAL;
7903                 goto done;
7904         }
7905         err = 0;
7906
7907       done:
7908         up(&priv->action_sem);
7909         return err;
7910 }
7911
7912 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7913                                     struct iw_request_info *info,
7914                                     union iwreq_data *wrqu, char *extra)
7915 {
7916         /*
7917          * This can be called at any time.  No action lock required
7918          */
7919
7920         struct ipw2100_priv *priv = ieee80211_priv(dev);
7921
7922         if (priv->config & CFG_CRC_CHECK)
7923                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7924         else
7925                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7926
7927         return 0;
7928 }
7929 #endif                          /* CONFIG_IPW2100_MONITOR */
7930
7931 static iw_handler ipw2100_wx_handlers[] = {
7932         NULL,                   /* SIOCSIWCOMMIT */
7933         ipw2100_wx_get_name,    /* SIOCGIWNAME */
7934         NULL,                   /* SIOCSIWNWID */
7935         NULL,                   /* SIOCGIWNWID */
7936         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
7937         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
7938         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
7939         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
7940         NULL,                   /* SIOCSIWSENS */
7941         NULL,                   /* SIOCGIWSENS */
7942         NULL,                   /* SIOCSIWRANGE */
7943         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
7944         NULL,                   /* SIOCSIWPRIV */
7945         NULL,                   /* SIOCGIWPRIV */
7946         NULL,                   /* SIOCSIWSTATS */
7947         NULL,                   /* SIOCGIWSTATS */
7948         NULL,                   /* SIOCSIWSPY */
7949         NULL,                   /* SIOCGIWSPY */
7950         NULL,                   /* SIOCGIWTHRSPY */
7951         NULL,                   /* SIOCWIWTHRSPY */
7952         ipw2100_wx_set_wap,     /* SIOCSIWAP */
7953         ipw2100_wx_get_wap,     /* SIOCGIWAP */
7954         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
7955         NULL,                   /* SIOCGIWAPLIST -- deprecated */
7956         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
7957         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
7958         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
7959         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
7960         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
7961         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
7962         NULL,                   /* -- hole -- */
7963         NULL,                   /* -- hole -- */
7964         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
7965         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
7966         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
7967         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
7968         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
7969         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
7970         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
7971         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
7972         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
7973         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
7974         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
7975         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
7976         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
7977         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
7978         NULL,                   /* -- hole -- */
7979         NULL,                   /* -- hole -- */
7980         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
7981         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
7982         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
7983         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
7984         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
7985         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
7986         NULL,                   /* SIOCSIWPMKSA */
7987 };
7988
7989 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
7990 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
7991 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
7992 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
7993 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
7994 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
7995 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
7996 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
7997
7998 static const struct iw_priv_args ipw2100_private_args[] = {
7999
8000 #ifdef CONFIG_IPW2100_MONITOR
8001         {
8002          IPW2100_PRIV_SET_MONITOR,
8003          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8004         {
8005          IPW2100_PRIV_RESET,
8006          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8007 #endif                          /* CONFIG_IPW2100_MONITOR */
8008
8009         {
8010          IPW2100_PRIV_SET_POWER,
8011          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8012         {
8013          IPW2100_PRIV_GET_POWER,
8014          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8015          "get_power"},
8016         {
8017          IPW2100_PRIV_SET_LONGPREAMBLE,
8018          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8019         {
8020          IPW2100_PRIV_GET_LONGPREAMBLE,
8021          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8022 #ifdef CONFIG_IPW2100_MONITOR
8023         {
8024          IPW2100_PRIV_SET_CRC_CHECK,
8025          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8026         {
8027          IPW2100_PRIV_GET_CRC_CHECK,
8028          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8029 #endif                          /* CONFIG_IPW2100_MONITOR */
8030 };
8031
8032 static iw_handler ipw2100_private_handler[] = {
8033 #ifdef CONFIG_IPW2100_MONITOR
8034         ipw2100_wx_set_promisc,
8035         ipw2100_wx_reset,
8036 #else                           /* CONFIG_IPW2100_MONITOR */
8037         NULL,
8038         NULL,
8039 #endif                          /* CONFIG_IPW2100_MONITOR */
8040         ipw2100_wx_set_powermode,
8041         ipw2100_wx_get_powermode,
8042         ipw2100_wx_set_preamble,
8043         ipw2100_wx_get_preamble,
8044 #ifdef CONFIG_IPW2100_MONITOR
8045         ipw2100_wx_set_crc_check,
8046         ipw2100_wx_get_crc_check,
8047 #else                           /* CONFIG_IPW2100_MONITOR */
8048         NULL,
8049         NULL,
8050 #endif                          /* CONFIG_IPW2100_MONITOR */
8051 };
8052
8053 /*
8054  * Get wireless statistics.
8055  * Called by /proc/net/wireless
8056  * Also called by SIOCGIWSTATS
8057  */
8058 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8059 {
8060         enum {
8061                 POOR = 30,
8062                 FAIR = 60,
8063                 GOOD = 80,
8064                 VERY_GOOD = 90,
8065                 EXCELLENT = 95,
8066                 PERFECT = 100
8067         };
8068         int rssi_qual;
8069         int tx_qual;
8070         int beacon_qual;
8071
8072         struct ipw2100_priv *priv = ieee80211_priv(dev);
8073         struct iw_statistics *wstats;
8074         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8075         u32 ord_len = sizeof(u32);
8076
8077         if (!priv)
8078                 return (struct iw_statistics *)NULL;
8079
8080         wstats = &priv->wstats;
8081
8082         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8083          * ipw2100_wx_wireless_stats seems to be called before fw is
8084          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8085          * and associated; if not associcated, the values are all meaningless
8086          * anyway, so set them all to NULL and INVALID */
8087         if (!(priv->status & STATUS_ASSOCIATED)) {
8088                 wstats->miss.beacon = 0;
8089                 wstats->discard.retries = 0;
8090                 wstats->qual.qual = 0;
8091                 wstats->qual.level = 0;
8092                 wstats->qual.noise = 0;
8093                 wstats->qual.updated = 7;
8094                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8095                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8096                 return wstats;
8097         }
8098
8099         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8100                                 &missed_beacons, &ord_len))
8101                 goto fail_get_ordinal;
8102
8103         /* If we don't have a connection the quality and level is 0 */
8104         if (!(priv->status & STATUS_ASSOCIATED)) {
8105                 wstats->qual.qual = 0;
8106                 wstats->qual.level = 0;
8107         } else {
8108                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8109                                         &rssi, &ord_len))
8110                         goto fail_get_ordinal;
8111                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8112                 if (rssi < 10)
8113                         rssi_qual = rssi * POOR / 10;
8114                 else if (rssi < 15)
8115                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8116                 else if (rssi < 20)
8117                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8118                 else if (rssi < 30)
8119                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8120                             10 + GOOD;
8121                 else
8122                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8123                             10 + VERY_GOOD;
8124
8125                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8126                                         &tx_retries, &ord_len))
8127                         goto fail_get_ordinal;
8128
8129                 if (tx_retries > 75)
8130                         tx_qual = (90 - tx_retries) * POOR / 15;
8131                 else if (tx_retries > 70)
8132                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8133                 else if (tx_retries > 65)
8134                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8135                 else if (tx_retries > 50)
8136                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8137                             15 + GOOD;
8138                 else
8139                         tx_qual = (50 - tx_retries) *
8140                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8141
8142                 if (missed_beacons > 50)
8143                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8144                 else if (missed_beacons > 40)
8145                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8146                             10 + POOR;
8147                 else if (missed_beacons > 32)
8148                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8149                             18 + FAIR;
8150                 else if (missed_beacons > 20)
8151                         beacon_qual = (32 - missed_beacons) *
8152                             (VERY_GOOD - GOOD) / 20 + GOOD;
8153                 else
8154                         beacon_qual = (20 - missed_beacons) *
8155                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8156
8157                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8158
8159 #ifdef CONFIG_IPW2100_DEBUG
8160                 if (beacon_qual == quality)
8161                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8162                 else if (tx_qual == quality)
8163                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8164                 else if (quality != 100)
8165                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8166                 else
8167                         IPW_DEBUG_WX("Quality not clamped.\n");
8168 #endif
8169
8170                 wstats->qual.qual = quality;
8171                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8172         }
8173
8174         wstats->qual.noise = 0;
8175         wstats->qual.updated = 7;
8176         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8177
8178         /* FIXME: this is percent and not a # */
8179         wstats->miss.beacon = missed_beacons;
8180
8181         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8182                                 &tx_failures, &ord_len))
8183                 goto fail_get_ordinal;
8184         wstats->discard.retries = tx_failures;
8185
8186         return wstats;
8187
8188       fail_get_ordinal:
8189         IPW_DEBUG_WX("failed querying ordinals.\n");
8190
8191         return (struct iw_statistics *)NULL;
8192 }
8193
8194 static struct iw_handler_def ipw2100_wx_handler_def = {
8195         .standard = ipw2100_wx_handlers,
8196         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8197         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8198         .num_private_args = sizeof(ipw2100_private_args) /
8199             sizeof(struct iw_priv_args),
8200         .private = (iw_handler *) ipw2100_private_handler,
8201         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8202         .get_wireless_stats = ipw2100_wx_wireless_stats,
8203 };
8204
8205 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8206 {
8207         union iwreq_data wrqu;
8208         int len = ETH_ALEN;
8209
8210         if (priv->status & STATUS_STOPPING)
8211                 return;
8212
8213         down(&priv->action_sem);
8214
8215         IPW_DEBUG_WX("enter\n");
8216
8217         up(&priv->action_sem);
8218
8219         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8220
8221         /* Fetch BSSID from the hardware */
8222         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8223             priv->status & STATUS_RF_KILL_MASK ||
8224             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8225                                 &priv->bssid, &len)) {
8226                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8227         } else {
8228                 /* We now have the BSSID, so can finish setting to the full
8229                  * associated state */
8230                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8231                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8232                 priv->status &= ~STATUS_ASSOCIATING;
8233                 priv->status |= STATUS_ASSOCIATED;
8234                 netif_carrier_on(priv->net_dev);
8235                 netif_wake_queue(priv->net_dev);
8236         }
8237
8238         if (!(priv->status & STATUS_ASSOCIATED)) {
8239                 IPW_DEBUG_WX("Configuring ESSID\n");
8240                 down(&priv->action_sem);
8241                 /* This is a disassociation event, so kick the firmware to
8242                  * look for another AP */
8243                 if (priv->config & CFG_STATIC_ESSID)
8244                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8245                                           0);
8246                 else
8247                         ipw2100_set_essid(priv, NULL, 0, 0);
8248                 up(&priv->action_sem);
8249         }
8250
8251         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8252 }
8253
8254 #define IPW2100_FW_MAJOR_VERSION 1
8255 #define IPW2100_FW_MINOR_VERSION 3
8256
8257 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8258 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8259
8260 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8261                              IPW2100_FW_MAJOR_VERSION)
8262
8263 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8264 "." __stringify(IPW2100_FW_MINOR_VERSION)
8265
8266 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8267
8268 /*
8269
8270 BINARY FIRMWARE HEADER FORMAT
8271
8272 offset      length   desc
8273 0           2        version
8274 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8275 4           4        fw_len
8276 8           4        uc_len
8277 C           fw_len   firmware data
8278 12 + fw_len uc_len   microcode data
8279
8280 */
8281
8282 struct ipw2100_fw_header {
8283         short version;
8284         short mode;
8285         unsigned int fw_size;
8286         unsigned int uc_size;
8287 } __attribute__ ((packed));
8288
8289 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8290 {
8291         struct ipw2100_fw_header *h =
8292             (struct ipw2100_fw_header *)fw->fw_entry->data;
8293
8294         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8295                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8296                        "(detected version id of %u). "
8297                        "See Documentation/networking/README.ipw2100\n",
8298                        h->version);
8299                 return 1;
8300         }
8301
8302         fw->version = h->version;
8303         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8304         fw->fw.size = h->fw_size;
8305         fw->uc.data = fw->fw.data + h->fw_size;
8306         fw->uc.size = h->uc_size;
8307
8308         return 0;
8309 }
8310
8311 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8312                                 struct ipw2100_fw *fw)
8313 {
8314         char *fw_name;
8315         int rc;
8316
8317         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8318                        priv->net_dev->name);
8319
8320         switch (priv->ieee->iw_mode) {
8321         case IW_MODE_ADHOC:
8322                 fw_name = IPW2100_FW_NAME("-i");
8323                 break;
8324 #ifdef CONFIG_IPW2100_MONITOR
8325         case IW_MODE_MONITOR:
8326                 fw_name = IPW2100_FW_NAME("-p");
8327                 break;
8328 #endif
8329         case IW_MODE_INFRA:
8330         default:
8331                 fw_name = IPW2100_FW_NAME("");
8332                 break;
8333         }
8334
8335         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8336
8337         if (rc < 0) {
8338                 printk(KERN_ERR DRV_NAME ": "
8339                        "%s: Firmware '%s' not available or load failed.\n",
8340                        priv->net_dev->name, fw_name);
8341                 return rc;
8342         }
8343         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8344                        fw->fw_entry->size);
8345
8346         ipw2100_mod_firmware_load(fw);
8347
8348         return 0;
8349 }
8350
8351 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8352                                      struct ipw2100_fw *fw)
8353 {
8354         fw->version = 0;
8355         if (fw->fw_entry)
8356                 release_firmware(fw->fw_entry);
8357         fw->fw_entry = NULL;
8358 }
8359
8360 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8361                                  size_t max)
8362 {
8363         char ver[MAX_FW_VERSION_LEN];
8364         u32 len = MAX_FW_VERSION_LEN;
8365         u32 tmp;
8366         int i;
8367         /* firmware version is an ascii string (max len of 14) */
8368         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8369                 return -EIO;
8370         tmp = max;
8371         if (len >= max)
8372                 len = max - 1;
8373         for (i = 0; i < len; i++)
8374                 buf[i] = ver[i];
8375         buf[i] = '\0';
8376         return tmp;
8377 }
8378
8379 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8380                                     size_t max)
8381 {
8382         u32 ver;
8383         u32 len = sizeof(ver);
8384         /* microcode version is a 32 bit integer */
8385         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8386                 return -EIO;
8387         return snprintf(buf, max, "%08X", ver);
8388 }
8389
8390 /*
8391  * On exit, the firmware will have been freed from the fw list
8392  */
8393 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8394 {
8395         /* firmware is constructed of N contiguous entries, each entry is
8396          * structured as:
8397          *
8398          * offset    sie         desc
8399          * 0         4           address to write to
8400          * 4         2           length of data run
8401          * 6         length      data
8402          */
8403         unsigned int addr;
8404         unsigned short len;
8405
8406         const unsigned char *firmware_data = fw->fw.data;
8407         unsigned int firmware_data_left = fw->fw.size;
8408
8409         while (firmware_data_left > 0) {
8410                 addr = *(u32 *) (firmware_data);
8411                 firmware_data += 4;
8412                 firmware_data_left -= 4;
8413
8414                 len = *(u16 *) (firmware_data);
8415                 firmware_data += 2;
8416                 firmware_data_left -= 2;
8417
8418                 if (len > 32) {
8419                         printk(KERN_ERR DRV_NAME ": "
8420                                "Invalid firmware run-length of %d bytes\n",
8421                                len);
8422                         return -EINVAL;
8423                 }
8424
8425                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8426                 firmware_data += len;
8427                 firmware_data_left -= len;
8428         }
8429
8430         return 0;
8431 }
8432
8433 struct symbol_alive_response {
8434         u8 cmd_id;
8435         u8 seq_num;
8436         u8 ucode_rev;
8437         u8 eeprom_valid;
8438         u16 valid_flags;
8439         u8 IEEE_addr[6];
8440         u16 flags;
8441         u16 pcb_rev;
8442         u16 clock_settle_time;  // 1us LSB
8443         u16 powerup_settle_time;        // 1us LSB
8444         u16 hop_settle_time;    // 1us LSB
8445         u8 date[3];             // month, day, year
8446         u8 time[2];             // hours, minutes
8447         u8 ucode_valid;
8448 };
8449
8450 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8451                                   struct ipw2100_fw *fw)
8452 {
8453         struct net_device *dev = priv->net_dev;
8454         const unsigned char *microcode_data = fw->uc.data;
8455         unsigned int microcode_data_left = fw->uc.size;
8456         void __iomem *reg = (void __iomem *)dev->base_addr;
8457
8458         struct symbol_alive_response response;
8459         int i, j;
8460         u8 data;
8461
8462         /* Symbol control */
8463         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8464         readl(reg);
8465         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8466         readl(reg);
8467
8468         /* HW config */
8469         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8470         readl(reg);
8471         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8472         readl(reg);
8473
8474         /* EN_CS_ACCESS bit to reset control store pointer */
8475         write_nic_byte(dev, 0x210000, 0x40);
8476         readl(reg);
8477         write_nic_byte(dev, 0x210000, 0x0);
8478         readl(reg);
8479         write_nic_byte(dev, 0x210000, 0x40);
8480         readl(reg);
8481
8482         /* copy microcode from buffer into Symbol */
8483
8484         while (microcode_data_left > 0) {
8485                 write_nic_byte(dev, 0x210010, *microcode_data++);
8486                 write_nic_byte(dev, 0x210010, *microcode_data++);
8487                 microcode_data_left -= 2;
8488         }
8489
8490         /* EN_CS_ACCESS bit to reset the control store pointer */
8491         write_nic_byte(dev, 0x210000, 0x0);
8492         readl(reg);
8493
8494         /* Enable System (Reg 0)
8495          * first enable causes garbage in RX FIFO */
8496         write_nic_byte(dev, 0x210000, 0x0);
8497         readl(reg);
8498         write_nic_byte(dev, 0x210000, 0x80);
8499         readl(reg);
8500
8501         /* Reset External Baseband Reg */
8502         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8503         readl(reg);
8504         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8505         readl(reg);
8506
8507         /* HW Config (Reg 5) */
8508         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8509         readl(reg);
8510         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8511         readl(reg);
8512
8513         /* Enable System (Reg 0)
8514          * second enable should be OK */
8515         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8516         readl(reg);
8517         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8518
8519         /* check Symbol is enabled - upped this from 5 as it wasn't always
8520          * catching the update */
8521         for (i = 0; i < 10; i++) {
8522                 udelay(10);
8523
8524                 /* check Dino is enabled bit */
8525                 read_nic_byte(dev, 0x210000, &data);
8526                 if (data & 0x1)
8527                         break;
8528         }
8529
8530         if (i == 10) {
8531                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8532                        dev->name);
8533                 return -EIO;
8534         }
8535
8536         /* Get Symbol alive response */
8537         for (i = 0; i < 30; i++) {
8538                 /* Read alive response structure */
8539                 for (j = 0;
8540                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8541                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8542
8543                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8544                         break;
8545                 udelay(10);
8546         }
8547
8548         if (i == 30) {
8549                 printk(KERN_ERR DRV_NAME
8550                        ": %s: No response from Symbol - hw not alive\n",
8551                        dev->name);
8552                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8553                 return -EIO;
8554         }
8555
8556         return 0;
8557 }