atheros: put atheros wireless drivers into ath/
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 /*
235  * Set/change channels.  If the channel is really being changed, it's done
236  * by reseting the chip.  To accomplish this we must first cleanup any pending
237  * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240                     struct ath9k_channel *hchan)
241 {
242         struct ath_hw *ah = sc->sc_ah;
243         bool fastcc = true, stopped;
244         struct ieee80211_channel *channel = hw->conf.channel;
245         int r;
246
247         if (sc->sc_flags & SC_OP_INVALID)
248                 return -EIO;
249
250         ath9k_ps_wakeup(sc);
251
252         /*
253          * This is only performed if the channel settings have
254          * actually changed.
255          *
256          * To switch channels clear any pending DMA operations;
257          * wait long enough for the RX fifo to drain, reset the
258          * hardware at the new frequency, and then re-enable
259          * the relevant bits of the h/w.
260          */
261         ath9k_hw_set_interrupts(ah, 0);
262         ath_drain_all_txq(sc, false);
263         stopped = ath_stoprecv(sc);
264
265         /* XXX: do not flush receive queue here. We don't want
266          * to flush data frames already in queue because of
267          * changing channel. */
268
269         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270                 fastcc = false;
271
272         DPRINTF(sc, ATH_DBG_CONFIG,
273                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274                 sc->sc_ah->curchan->channel,
275                 channel->center_freq, sc->tx_chan_width);
276
277         spin_lock_bh(&sc->sc_resetlock);
278
279         r = ath9k_hw_reset(ah, hchan, fastcc);
280         if (r) {
281                 DPRINTF(sc, ATH_DBG_FATAL,
282                         "Unable to reset channel (%u Mhz) "
283                         "reset status %u\n",
284                         channel->center_freq, r);
285                 spin_unlock_bh(&sc->sc_resetlock);
286                 return r;
287         }
288         spin_unlock_bh(&sc->sc_resetlock);
289
290         sc->sc_flags &= ~SC_OP_FULL_RESET;
291
292         if (ath_startrecv(sc) != 0) {
293                 DPRINTF(sc, ATH_DBG_FATAL,
294                         "Unable to restart recv logic\n");
295                 return -EIO;
296         }
297
298         ath_cache_conf_rate(sc, &hw->conf);
299         ath_update_txpow(sc);
300         ath9k_hw_set_interrupts(ah, sc->imask);
301         ath9k_ps_restore(sc);
302         return 0;
303 }
304
305 /*
306  *  This routine performs the periodic noise floor calibration function
307  *  that is used to adjust and optimize the chip performance.  This
308  *  takes environmental changes (location, temperature) into account.
309  *  When the task is complete, it reschedules itself depending on the
310  *  appropriate interval that was calculated.
311  */
312 static void ath_ani_calibrate(unsigned long data)
313 {
314         struct ath_softc *sc = (struct ath_softc *)data;
315         struct ath_hw *ah = sc->sc_ah;
316         bool longcal = false;
317         bool shortcal = false;
318         bool aniflag = false;
319         unsigned int timestamp = jiffies_to_msecs(jiffies);
320         u32 cal_interval, short_cal_interval;
321
322         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
324
325         /*
326         * don't calibrate when we're scanning.
327         * we are most likely not on our home channel.
328         */
329         if (sc->sc_flags & SC_OP_SCANNING)
330                 goto set_timer;
331
332         /* Long calibration runs independently of short calibration. */
333         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
334                 longcal = true;
335                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
336                 sc->ani.longcal_timer = timestamp;
337         }
338
339         /* Short calibration applies only while caldone is false */
340         if (!sc->ani.caldone) {
341                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
342                         shortcal = true;
343                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
344                         sc->ani.shortcal_timer = timestamp;
345                         sc->ani.resetcal_timer = timestamp;
346                 }
347         } else {
348                 if ((timestamp - sc->ani.resetcal_timer) >=
349                     ATH_RESTART_CALINTERVAL) {
350                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
351                         if (sc->ani.caldone)
352                                 sc->ani.resetcal_timer = timestamp;
353                 }
354         }
355
356         /* Verify whether we must check ANI */
357         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
358                 aniflag = true;
359                 sc->ani.checkani_timer = timestamp;
360         }
361
362         /* Skip all processing if there's nothing to do. */
363         if (longcal || shortcal || aniflag) {
364                 /* Call ANI routine if necessary */
365                 if (aniflag)
366                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
367
368                 /* Perform calibration if necessary */
369                 if (longcal || shortcal) {
370                         bool iscaldone = false;
371
372                         if (ath9k_hw_calibrate(ah, ah->curchan,
373                                                sc->rx_chainmask, longcal,
374                                                &iscaldone)) {
375                                 if (longcal)
376                                         sc->ani.noise_floor =
377                                                 ath9k_hw_getchan_noise(ah,
378                                                                ah->curchan);
379
380                                 DPRINTF(sc, ATH_DBG_ANI,
381                                         "calibrate chan %u/%x nf: %d\n",
382                                         ah->curchan->channel,
383                                         ah->curchan->channelFlags,
384                                         sc->ani.noise_floor);
385                         } else {
386                                 DPRINTF(sc, ATH_DBG_ANY,
387                                         "calibrate chan %u/%x failed\n",
388                                         ah->curchan->channel,
389                                         ah->curchan->channelFlags);
390                         }
391                         sc->ani.caldone = iscaldone;
392                 }
393         }
394
395 set_timer:
396         /*
397         * Set timer interval based on previous results.
398         * The interval must be the shortest necessary to satisfy ANI,
399         * short calibration and long calibration.
400         */
401         cal_interval = ATH_LONG_CALINTERVAL;
402         if (sc->sc_ah->config.enable_ani)
403                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
404         if (!sc->ani.caldone)
405                 cal_interval = min(cal_interval, (u32)short_cal_interval);
406
407         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
408 }
409
410 /*
411  * Update tx/rx chainmask. For legacy association,
412  * hard code chainmask to 1x1, for 11n association, use
413  * the chainmask configuration, for bt coexistence, use
414  * the chainmask configuration even in legacy mode.
415  */
416 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
417 {
418         if (is_ht ||
419             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
420                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
421                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
422         } else {
423                 sc->tx_chainmask = 1;
424                 sc->rx_chainmask = 1;
425         }
426
427         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
428                 sc->tx_chainmask, sc->rx_chainmask);
429 }
430
431 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
432 {
433         struct ath_node *an;
434
435         an = (struct ath_node *)sta->drv_priv;
436
437         if (sc->sc_flags & SC_OP_TXAGGR) {
438                 ath_tx_node_init(sc, an);
439                 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
440                                      sta->ht_cap.ampdu_factor);
441                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
442         }
443 }
444
445 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
446 {
447         struct ath_node *an = (struct ath_node *)sta->drv_priv;
448
449         if (sc->sc_flags & SC_OP_TXAGGR)
450                 ath_tx_node_cleanup(sc, an);
451 }
452
453 static void ath9k_tasklet(unsigned long data)
454 {
455         struct ath_softc *sc = (struct ath_softc *)data;
456         u32 status = sc->intrstatus;
457
458         if (status & ATH9K_INT_FATAL) {
459                 ath_reset(sc, false);
460                 return;
461         }
462
463         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
464                 spin_lock_bh(&sc->rx.rxflushlock);
465                 ath_rx_tasklet(sc, 0);
466                 spin_unlock_bh(&sc->rx.rxflushlock);
467         }
468
469         if (status & ATH9K_INT_TX)
470                 ath_tx_tasklet(sc);
471
472         /* re-enable hardware interrupt */
473         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
474 }
475
476 irqreturn_t ath_isr(int irq, void *dev)
477 {
478 #define SCHED_INTR (                            \
479                 ATH9K_INT_FATAL |               \
480                 ATH9K_INT_RXORN |               \
481                 ATH9K_INT_RXEOL |               \
482                 ATH9K_INT_RX |                  \
483                 ATH9K_INT_TX |                  \
484                 ATH9K_INT_BMISS |               \
485                 ATH9K_INT_CST |                 \
486                 ATH9K_INT_TSFOOR)
487
488         struct ath_softc *sc = dev;
489         struct ath_hw *ah = sc->sc_ah;
490         enum ath9k_int status;
491         bool sched = false;
492
493         /*
494          * The hardware is not ready/present, don't
495          * touch anything. Note this can happen early
496          * on if the IRQ is shared.
497          */
498         if (sc->sc_flags & SC_OP_INVALID)
499                 return IRQ_NONE;
500
501         ath9k_ps_wakeup(sc);
502
503         /* shared irq, not for us */
504
505         if (!ath9k_hw_intrpend(ah)) {
506                 ath9k_ps_restore(sc);
507                 return IRQ_NONE;
508         }
509
510         /*
511          * Figure out the reason(s) for the interrupt.  Note
512          * that the hal returns a pseudo-ISR that may include
513          * bits we haven't explicitly enabled so we mask the
514          * value to insure we only process bits we requested.
515          */
516         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
517         status &= sc->imask;    /* discard unasked-for bits */
518
519         /*
520          * If there are no status bits set, then this interrupt was not
521          * for me (should have been caught above).
522          */
523         if (!status) {
524                 ath9k_ps_restore(sc);
525                 return IRQ_NONE;
526         }
527
528         /* Cache the status */
529         sc->intrstatus = status;
530
531         if (status & SCHED_INTR)
532                 sched = true;
533
534         /*
535          * If a FATAL or RXORN interrupt is received, we have to reset the
536          * chip immediately.
537          */
538         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
539                 goto chip_reset;
540
541         if (status & ATH9K_INT_SWBA)
542                 tasklet_schedule(&sc->bcon_tasklet);
543
544         if (status & ATH9K_INT_TXURN)
545                 ath9k_hw_updatetxtriglevel(ah, true);
546
547         if (status & ATH9K_INT_MIB) {
548                 /*
549                  * Disable interrupts until we service the MIB
550                  * interrupt; otherwise it will continue to
551                  * fire.
552                  */
553                 ath9k_hw_set_interrupts(ah, 0);
554                 /*
555                  * Let the hal handle the event. We assume
556                  * it will clear whatever condition caused
557                  * the interrupt.
558                  */
559                 ath9k_hw_procmibevent(ah, &sc->nodestats);
560                 ath9k_hw_set_interrupts(ah, sc->imask);
561         }
562
563         if (status & ATH9K_INT_TIM_TIMER) {
564                 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
565                         /* Clear RxAbort bit so that we can
566                          * receive frames */
567                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
568                         ath9k_hw_setrxabort(ah, 0);
569                         sched = true;
570                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
571                 }
572         }
573
574 chip_reset:
575
576         ath9k_ps_restore(sc);
577         ath_debug_stat_interrupt(sc, status);
578
579         if (sched) {
580                 /* turn off every interrupt except SWBA */
581                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
582                 tasklet_schedule(&sc->intr_tq);
583         }
584
585         return IRQ_HANDLED;
586
587 #undef SCHED_INTR
588 }
589
590 static u32 ath_get_extchanmode(struct ath_softc *sc,
591                                struct ieee80211_channel *chan,
592                                enum nl80211_channel_type channel_type)
593 {
594         u32 chanmode = 0;
595
596         switch (chan->band) {
597         case IEEE80211_BAND_2GHZ:
598                 switch(channel_type) {
599                 case NL80211_CHAN_NO_HT:
600                 case NL80211_CHAN_HT20:
601                         chanmode = CHANNEL_G_HT20;
602                         break;
603                 case NL80211_CHAN_HT40PLUS:
604                         chanmode = CHANNEL_G_HT40PLUS;
605                         break;
606                 case NL80211_CHAN_HT40MINUS:
607                         chanmode = CHANNEL_G_HT40MINUS;
608                         break;
609                 }
610                 break;
611         case IEEE80211_BAND_5GHZ:
612                 switch(channel_type) {
613                 case NL80211_CHAN_NO_HT:
614                 case NL80211_CHAN_HT20:
615                         chanmode = CHANNEL_A_HT20;
616                         break;
617                 case NL80211_CHAN_HT40PLUS:
618                         chanmode = CHANNEL_A_HT40PLUS;
619                         break;
620                 case NL80211_CHAN_HT40MINUS:
621                         chanmode = CHANNEL_A_HT40MINUS;
622                         break;
623                 }
624                 break;
625         default:
626                 break;
627         }
628
629         return chanmode;
630 }
631
632 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
633                            struct ath9k_keyval *hk, const u8 *addr,
634                            bool authenticator)
635 {
636         const u8 *key_rxmic;
637         const u8 *key_txmic;
638
639         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
640         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
641
642         if (addr == NULL) {
643                 /*
644                  * Group key installation - only two key cache entries are used
645                  * regardless of splitmic capability since group key is only
646                  * used either for TX or RX.
647                  */
648                 if (authenticator) {
649                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
650                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
651                 } else {
652                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
653                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
654                 }
655                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
656         }
657         if (!sc->splitmic) {
658                 /* TX and RX keys share the same key cache entry. */
659                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
660                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
661                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
662         }
663
664         /* Separate key cache entries for TX and RX */
665
666         /* TX key goes at first index, RX key at +32. */
667         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
668         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
669                 /* TX MIC entry failed. No need to proceed further */
670                 DPRINTF(sc, ATH_DBG_FATAL,
671                         "Setting TX MIC Key Failed\n");
672                 return 0;
673         }
674
675         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
676         /* XXX delete tx key on failure? */
677         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
678 }
679
680 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
681 {
682         int i;
683
684         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
685                 if (test_bit(i, sc->keymap) ||
686                     test_bit(i + 64, sc->keymap))
687                         continue; /* At least one part of TKIP key allocated */
688                 if (sc->splitmic &&
689                     (test_bit(i + 32, sc->keymap) ||
690                      test_bit(i + 64 + 32, sc->keymap)))
691                         continue; /* At least one part of TKIP key allocated */
692
693                 /* Found a free slot for a TKIP key */
694                 return i;
695         }
696         return -1;
697 }
698
699 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
700 {
701         int i;
702
703         /* First, try to find slots that would not be available for TKIP. */
704         if (sc->splitmic) {
705                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
706                         if (!test_bit(i, sc->keymap) &&
707                             (test_bit(i + 32, sc->keymap) ||
708                              test_bit(i + 64, sc->keymap) ||
709                              test_bit(i + 64 + 32, sc->keymap)))
710                                 return i;
711                         if (!test_bit(i + 32, sc->keymap) &&
712                             (test_bit(i, sc->keymap) ||
713                              test_bit(i + 64, sc->keymap) ||
714                              test_bit(i + 64 + 32, sc->keymap)))
715                                 return i + 32;
716                         if (!test_bit(i + 64, sc->keymap) &&
717                             (test_bit(i , sc->keymap) ||
718                              test_bit(i + 32, sc->keymap) ||
719                              test_bit(i + 64 + 32, sc->keymap)))
720                                 return i + 64;
721                         if (!test_bit(i + 64 + 32, sc->keymap) &&
722                             (test_bit(i, sc->keymap) ||
723                              test_bit(i + 32, sc->keymap) ||
724                              test_bit(i + 64, sc->keymap)))
725                                 return i + 64 + 32;
726                 }
727         } else {
728                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
729                         if (!test_bit(i, sc->keymap) &&
730                             test_bit(i + 64, sc->keymap))
731                                 return i;
732                         if (test_bit(i, sc->keymap) &&
733                             !test_bit(i + 64, sc->keymap))
734                                 return i + 64;
735                 }
736         }
737
738         /* No partially used TKIP slots, pick any available slot */
739         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
740                 /* Do not allow slots that could be needed for TKIP group keys
741                  * to be used. This limitation could be removed if we know that
742                  * TKIP will not be used. */
743                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
744                         continue;
745                 if (sc->splitmic) {
746                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
747                                 continue;
748                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
749                                 continue;
750                 }
751
752                 if (!test_bit(i, sc->keymap))
753                         return i; /* Found a free slot for a key */
754         }
755
756         /* No free slot found */
757         return -1;
758 }
759
760 static int ath_key_config(struct ath_softc *sc,
761                           struct ieee80211_vif *vif,
762                           struct ieee80211_sta *sta,
763                           struct ieee80211_key_conf *key)
764 {
765         struct ath9k_keyval hk;
766         const u8 *mac = NULL;
767         int ret = 0;
768         int idx;
769
770         memset(&hk, 0, sizeof(hk));
771
772         switch (key->alg) {
773         case ALG_WEP:
774                 hk.kv_type = ATH9K_CIPHER_WEP;
775                 break;
776         case ALG_TKIP:
777                 hk.kv_type = ATH9K_CIPHER_TKIP;
778                 break;
779         case ALG_CCMP:
780                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
781                 break;
782         default:
783                 return -EOPNOTSUPP;
784         }
785
786         hk.kv_len = key->keylen;
787         memcpy(hk.kv_val, key->key, key->keylen);
788
789         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
790                 /* For now, use the default keys for broadcast keys. This may
791                  * need to change with virtual interfaces. */
792                 idx = key->keyidx;
793         } else if (key->keyidx) {
794                 if (WARN_ON(!sta))
795                         return -EOPNOTSUPP;
796                 mac = sta->addr;
797
798                 if (vif->type != NL80211_IFTYPE_AP) {
799                         /* Only keyidx 0 should be used with unicast key, but
800                          * allow this for client mode for now. */
801                         idx = key->keyidx;
802                 } else
803                         return -EIO;
804         } else {
805                 if (WARN_ON(!sta))
806                         return -EOPNOTSUPP;
807                 mac = sta->addr;
808
809                 if (key->alg == ALG_TKIP)
810                         idx = ath_reserve_key_cache_slot_tkip(sc);
811                 else
812                         idx = ath_reserve_key_cache_slot(sc);
813                 if (idx < 0)
814                         return -ENOSPC; /* no free key cache entries */
815         }
816
817         if (key->alg == ALG_TKIP)
818                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
819                                       vif->type == NL80211_IFTYPE_AP);
820         else
821                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
822
823         if (!ret)
824                 return -EIO;
825
826         set_bit(idx, sc->keymap);
827         if (key->alg == ALG_TKIP) {
828                 set_bit(idx + 64, sc->keymap);
829                 if (sc->splitmic) {
830                         set_bit(idx + 32, sc->keymap);
831                         set_bit(idx + 64 + 32, sc->keymap);
832                 }
833         }
834
835         return idx;
836 }
837
838 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
839 {
840         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
841         if (key->hw_key_idx < IEEE80211_WEP_NKID)
842                 return;
843
844         clear_bit(key->hw_key_idx, sc->keymap);
845         if (key->alg != ALG_TKIP)
846                 return;
847
848         clear_bit(key->hw_key_idx + 64, sc->keymap);
849         if (sc->splitmic) {
850                 clear_bit(key->hw_key_idx + 32, sc->keymap);
851                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
852         }
853 }
854
855 static void setup_ht_cap(struct ath_softc *sc,
856                          struct ieee80211_sta_ht_cap *ht_info)
857 {
858 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
859 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
860
861         ht_info->ht_supported = true;
862         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
863                        IEEE80211_HT_CAP_SM_PS |
864                        IEEE80211_HT_CAP_SGI_40 |
865                        IEEE80211_HT_CAP_DSSSCCK40;
866
867         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
868         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
869
870         /* set up supported mcs set */
871         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
872
873         switch(sc->rx_chainmask) {
874         case 1:
875                 ht_info->mcs.rx_mask[0] = 0xff;
876                 break;
877         case 3:
878         case 5:
879         case 7:
880         default:
881                 ht_info->mcs.rx_mask[0] = 0xff;
882                 ht_info->mcs.rx_mask[1] = 0xff;
883                 break;
884         }
885
886         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
887 }
888
889 static void ath9k_bss_assoc_info(struct ath_softc *sc,
890                                  struct ieee80211_vif *vif,
891                                  struct ieee80211_bss_conf *bss_conf)
892 {
893         struct ath_vif *avp = (void *)vif->drv_priv;
894
895         if (bss_conf->assoc) {
896                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
897                         bss_conf->aid, sc->curbssid);
898
899                 /* New association, store aid */
900                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
901                         sc->curaid = bss_conf->aid;
902                         ath9k_hw_write_associd(sc);
903                 }
904
905                 /* Configure the beacon */
906                 ath_beacon_config(sc, vif);
907
908                 /* Reset rssi stats */
909                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
910                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
911                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
912                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
913
914                 /* Start ANI */
915                 mod_timer(&sc->ani.timer,
916                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
917         } else {
918                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
919                 sc->curaid = 0;
920         }
921 }
922
923 /********************************/
924 /*       LED functions          */
925 /********************************/
926
927 static void ath_led_blink_work(struct work_struct *work)
928 {
929         struct ath_softc *sc = container_of(work, struct ath_softc,
930                                             ath_led_blink_work.work);
931
932         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
933                 return;
934
935         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
936             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
937                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
938         else
939                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
940                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
941
942         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
943                            (sc->sc_flags & SC_OP_LED_ON) ?
944                            msecs_to_jiffies(sc->led_off_duration) :
945                            msecs_to_jiffies(sc->led_on_duration));
946
947         sc->led_on_duration = sc->led_on_cnt ?
948                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
949                         ATH_LED_ON_DURATION_IDLE;
950         sc->led_off_duration = sc->led_off_cnt ?
951                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
952                         ATH_LED_OFF_DURATION_IDLE;
953         sc->led_on_cnt = sc->led_off_cnt = 0;
954         if (sc->sc_flags & SC_OP_LED_ON)
955                 sc->sc_flags &= ~SC_OP_LED_ON;
956         else
957                 sc->sc_flags |= SC_OP_LED_ON;
958 }
959
960 static void ath_led_brightness(struct led_classdev *led_cdev,
961                                enum led_brightness brightness)
962 {
963         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
964         struct ath_softc *sc = led->sc;
965
966         switch (brightness) {
967         case LED_OFF:
968                 if (led->led_type == ATH_LED_ASSOC ||
969                     led->led_type == ATH_LED_RADIO) {
970                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
971                                 (led->led_type == ATH_LED_RADIO));
972                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
973                         if (led->led_type == ATH_LED_RADIO)
974                                 sc->sc_flags &= ~SC_OP_LED_ON;
975                 } else {
976                         sc->led_off_cnt++;
977                 }
978                 break;
979         case LED_FULL:
980                 if (led->led_type == ATH_LED_ASSOC) {
981                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
982                         queue_delayed_work(sc->hw->workqueue,
983                                            &sc->ath_led_blink_work, 0);
984                 } else if (led->led_type == ATH_LED_RADIO) {
985                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
986                         sc->sc_flags |= SC_OP_LED_ON;
987                 } else {
988                         sc->led_on_cnt++;
989                 }
990                 break;
991         default:
992                 break;
993         }
994 }
995
996 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
997                             char *trigger)
998 {
999         int ret;
1000
1001         led->sc = sc;
1002         led->led_cdev.name = led->name;
1003         led->led_cdev.default_trigger = trigger;
1004         led->led_cdev.brightness_set = ath_led_brightness;
1005
1006         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1007         if (ret)
1008                 DPRINTF(sc, ATH_DBG_FATAL,
1009                         "Failed to register led:%s", led->name);
1010         else
1011                 led->registered = 1;
1012         return ret;
1013 }
1014
1015 static void ath_unregister_led(struct ath_led *led)
1016 {
1017         if (led->registered) {
1018                 led_classdev_unregister(&led->led_cdev);
1019                 led->registered = 0;
1020         }
1021 }
1022
1023 static void ath_deinit_leds(struct ath_softc *sc)
1024 {
1025         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1026         ath_unregister_led(&sc->assoc_led);
1027         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1028         ath_unregister_led(&sc->tx_led);
1029         ath_unregister_led(&sc->rx_led);
1030         ath_unregister_led(&sc->radio_led);
1031         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1032 }
1033
1034 static void ath_init_leds(struct ath_softc *sc)
1035 {
1036         char *trigger;
1037         int ret;
1038
1039         /* Configure gpio 1 for output */
1040         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1041                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1042         /* LED off, active low */
1043         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1044
1045         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1046
1047         trigger = ieee80211_get_radio_led_name(sc->hw);
1048         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1049                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1050         ret = ath_register_led(sc, &sc->radio_led, trigger);
1051         sc->radio_led.led_type = ATH_LED_RADIO;
1052         if (ret)
1053                 goto fail;
1054
1055         trigger = ieee80211_get_assoc_led_name(sc->hw);
1056         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1057                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1058         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1059         sc->assoc_led.led_type = ATH_LED_ASSOC;
1060         if (ret)
1061                 goto fail;
1062
1063         trigger = ieee80211_get_tx_led_name(sc->hw);
1064         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1065                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1066         ret = ath_register_led(sc, &sc->tx_led, trigger);
1067         sc->tx_led.led_type = ATH_LED_TX;
1068         if (ret)
1069                 goto fail;
1070
1071         trigger = ieee80211_get_rx_led_name(sc->hw);
1072         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1073                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1074         ret = ath_register_led(sc, &sc->rx_led, trigger);
1075         sc->rx_led.led_type = ATH_LED_RX;
1076         if (ret)
1077                 goto fail;
1078
1079         return;
1080
1081 fail:
1082         ath_deinit_leds(sc);
1083 }
1084
1085 void ath_radio_enable(struct ath_softc *sc)
1086 {
1087         struct ath_hw *ah = sc->sc_ah;
1088         struct ieee80211_channel *channel = sc->hw->conf.channel;
1089         int r;
1090
1091         ath9k_ps_wakeup(sc);
1092         spin_lock_bh(&sc->sc_resetlock);
1093
1094         r = ath9k_hw_reset(ah, ah->curchan, false);
1095
1096         if (r) {
1097                 DPRINTF(sc, ATH_DBG_FATAL,
1098                         "Unable to reset channel %u (%uMhz) ",
1099                         "reset status %u\n",
1100                         channel->center_freq, r);
1101         }
1102         spin_unlock_bh(&sc->sc_resetlock);
1103
1104         ath_update_txpow(sc);
1105         if (ath_startrecv(sc) != 0) {
1106                 DPRINTF(sc, ATH_DBG_FATAL,
1107                         "Unable to restart recv logic\n");
1108                 return;
1109         }
1110
1111         if (sc->sc_flags & SC_OP_BEACONS)
1112                 ath_beacon_config(sc, NULL);    /* restart beacons */
1113
1114         /* Re-Enable  interrupts */
1115         ath9k_hw_set_interrupts(ah, sc->imask);
1116
1117         /* Enable LED */
1118         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1119                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1120         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1121
1122         ieee80211_wake_queues(sc->hw);
1123         ath9k_ps_restore(sc);
1124 }
1125
1126 void ath_radio_disable(struct ath_softc *sc)
1127 {
1128         struct ath_hw *ah = sc->sc_ah;
1129         struct ieee80211_channel *channel = sc->hw->conf.channel;
1130         int r;
1131
1132         ath9k_ps_wakeup(sc);
1133         ieee80211_stop_queues(sc->hw);
1134
1135         /* Disable LED */
1136         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1137         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1138
1139         /* Disable interrupts */
1140         ath9k_hw_set_interrupts(ah, 0);
1141
1142         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1143         ath_stoprecv(sc);               /* turn off frame recv */
1144         ath_flushrecv(sc);              /* flush recv queue */
1145
1146         spin_lock_bh(&sc->sc_resetlock);
1147         r = ath9k_hw_reset(ah, ah->curchan, false);
1148         if (r) {
1149                 DPRINTF(sc, ATH_DBG_FATAL,
1150                         "Unable to reset channel %u (%uMhz) "
1151                         "reset status %u\n",
1152                         channel->center_freq, r);
1153         }
1154         spin_unlock_bh(&sc->sc_resetlock);
1155
1156         ath9k_hw_phy_disable(ah);
1157         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1158         ath9k_ps_restore(sc);
1159 }
1160
1161 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1162
1163 /*******************/
1164 /*      Rfkill     */
1165 /*******************/
1166
1167 static bool ath_is_rfkill_set(struct ath_softc *sc)
1168 {
1169         struct ath_hw *ah = sc->sc_ah;
1170
1171         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1172                                   ah->rfkill_polarity;
1173 }
1174
1175 /* h/w rfkill poll function */
1176 static void ath_rfkill_poll(struct work_struct *work)
1177 {
1178         struct ath_softc *sc = container_of(work, struct ath_softc,
1179                                             rf_kill.rfkill_poll.work);
1180         bool radio_on;
1181
1182         if (sc->sc_flags & SC_OP_INVALID)
1183                 return;
1184
1185         radio_on = !ath_is_rfkill_set(sc);
1186
1187         /*
1188          * enable/disable radio only when there is a
1189          * state change in RF switch
1190          */
1191         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1192                 enum rfkill_state state;
1193
1194                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1195                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1196                                 : RFKILL_STATE_HARD_BLOCKED;
1197                 } else if (radio_on) {
1198                         ath_radio_enable(sc);
1199                         state = RFKILL_STATE_UNBLOCKED;
1200                 } else {
1201                         ath_radio_disable(sc);
1202                         state = RFKILL_STATE_HARD_BLOCKED;
1203                 }
1204
1205                 if (state == RFKILL_STATE_HARD_BLOCKED)
1206                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1207                 else
1208                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1209
1210                 rfkill_force_state(sc->rf_kill.rfkill, state);
1211         }
1212
1213         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1214                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1215 }
1216
1217 /* s/w rfkill handler */
1218 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1219 {
1220         struct ath_softc *sc = data;
1221
1222         switch (state) {
1223         case RFKILL_STATE_SOFT_BLOCKED:
1224                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1225                     SC_OP_RFKILL_SW_BLOCKED)))
1226                         ath_radio_disable(sc);
1227                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1228                 return 0;
1229         case RFKILL_STATE_UNBLOCKED:
1230                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1231                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1232                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1233                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1234                                         "radio as it is disabled by h/w\n");
1235                                 return -EPERM;
1236                         }
1237                         ath_radio_enable(sc);
1238                 }
1239                 return 0;
1240         default:
1241                 return -EINVAL;
1242         }
1243 }
1244
1245 /* Init s/w rfkill */
1246 static int ath_init_sw_rfkill(struct ath_softc *sc)
1247 {
1248         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1249                                              RFKILL_TYPE_WLAN);
1250         if (!sc->rf_kill.rfkill) {
1251                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1252                 return -ENOMEM;
1253         }
1254
1255         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1256                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1257         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1258         sc->rf_kill.rfkill->data = sc;
1259         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1260         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1261
1262         return 0;
1263 }
1264
1265 /* Deinitialize rfkill */
1266 static void ath_deinit_rfkill(struct ath_softc *sc)
1267 {
1268         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1269                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1270
1271         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1272                 rfkill_unregister(sc->rf_kill.rfkill);
1273                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1274                 sc->rf_kill.rfkill = NULL;
1275         }
1276 }
1277
1278 static int ath_start_rfkill_poll(struct ath_softc *sc)
1279 {
1280         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1281                 queue_delayed_work(sc->hw->workqueue,
1282                                    &sc->rf_kill.rfkill_poll, 0);
1283
1284         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1285                 if (rfkill_register(sc->rf_kill.rfkill)) {
1286                         DPRINTF(sc, ATH_DBG_FATAL,
1287                                 "Unable to register rfkill\n");
1288                         rfkill_free(sc->rf_kill.rfkill);
1289
1290                         /* Deinitialize the device */
1291                         ath_cleanup(sc);
1292                         return -EIO;
1293                 } else {
1294                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1295                 }
1296         }
1297
1298         return 0;
1299 }
1300 #endif /* CONFIG_RFKILL */
1301
1302 void ath_cleanup(struct ath_softc *sc)
1303 {
1304         ath_detach(sc);
1305         free_irq(sc->irq, sc);
1306         ath_bus_cleanup(sc);
1307         kfree(sc->sec_wiphy);
1308         ieee80211_free_hw(sc->hw);
1309 }
1310
1311 void ath_detach(struct ath_softc *sc)
1312 {
1313         struct ieee80211_hw *hw = sc->hw;
1314         int i = 0;
1315
1316         ath9k_ps_wakeup(sc);
1317
1318         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1319
1320 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1321         ath_deinit_rfkill(sc);
1322 #endif
1323         ath_deinit_leds(sc);
1324         cancel_work_sync(&sc->chan_work);
1325         cancel_delayed_work_sync(&sc->wiphy_work);
1326
1327         for (i = 0; i < sc->num_sec_wiphy; i++) {
1328                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1329                 if (aphy == NULL)
1330                         continue;
1331                 sc->sec_wiphy[i] = NULL;
1332                 ieee80211_unregister_hw(aphy->hw);
1333                 ieee80211_free_hw(aphy->hw);
1334         }
1335         ieee80211_unregister_hw(hw);
1336         ath_rx_cleanup(sc);
1337         ath_tx_cleanup(sc);
1338
1339         tasklet_kill(&sc->intr_tq);
1340         tasklet_kill(&sc->bcon_tasklet);
1341
1342         if (!(sc->sc_flags & SC_OP_INVALID))
1343                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1344
1345         /* cleanup tx queues */
1346         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1347                 if (ATH_TXQ_SETUP(sc, i))
1348                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1349
1350         ath9k_hw_detach(sc->sc_ah);
1351         ath9k_exit_debug(sc);
1352         ath9k_ps_restore(sc);
1353 }
1354
1355 static int ath9k_reg_notifier(struct wiphy *wiphy,
1356                               struct regulatory_request *request)
1357 {
1358         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1359         struct ath_wiphy *aphy = hw->priv;
1360         struct ath_softc *sc = aphy->sc;
1361         struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1362
1363         return ath_reg_notifier_apply(wiphy, request, reg);
1364 }
1365
1366 static int ath_init(u16 devid, struct ath_softc *sc)
1367 {
1368         struct ath_hw *ah = NULL;
1369         int status;
1370         int error = 0, i;
1371         int csz = 0;
1372
1373         /* XXX: hardware will not be ready until ath_open() being called */
1374         sc->sc_flags |= SC_OP_INVALID;
1375
1376         if (ath9k_init_debug(sc) < 0)
1377                 printk(KERN_ERR "Unable to create debugfs files\n");
1378
1379         spin_lock_init(&sc->wiphy_lock);
1380         spin_lock_init(&sc->sc_resetlock);
1381         spin_lock_init(&sc->sc_serial_rw);
1382         mutex_init(&sc->mutex);
1383         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1384         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1385                      (unsigned long)sc);
1386
1387         /*
1388          * Cache line size is used to size and align various
1389          * structures used to communicate with the hardware.
1390          */
1391         ath_read_cachesize(sc, &csz);
1392         /* XXX assert csz is non-zero */
1393         sc->cachelsz = csz << 2;        /* convert to bytes */
1394
1395         ah = ath9k_hw_attach(devid, sc, &status);
1396         if (ah == NULL) {
1397                 DPRINTF(sc, ATH_DBG_FATAL,
1398                         "Unable to attach hardware; HAL status %d\n", status);
1399                 error = -ENXIO;
1400                 goto bad;
1401         }
1402         sc->sc_ah = ah;
1403
1404         /* Get the hardware key cache size. */
1405         sc->keymax = ah->caps.keycache_size;
1406         if (sc->keymax > ATH_KEYMAX) {
1407                 DPRINTF(sc, ATH_DBG_ANY,
1408                         "Warning, using only %u entries in %u key cache\n",
1409                         ATH_KEYMAX, sc->keymax);
1410                 sc->keymax = ATH_KEYMAX;
1411         }
1412
1413         /*
1414          * Reset the key cache since some parts do not
1415          * reset the contents on initial power up.
1416          */
1417         for (i = 0; i < sc->keymax; i++)
1418                 ath9k_hw_keyreset(ah, (u16) i);
1419
1420         if (ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1421                           ath9k_reg_notifier))
1422                 goto bad;
1423
1424         /* default to MONITOR mode */
1425         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1426
1427         /* Setup rate tables */
1428
1429         ath_rate_attach(sc);
1430         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1431         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1432
1433         /*
1434          * Allocate hardware transmit queues: one queue for
1435          * beacon frames and one data queue for each QoS
1436          * priority.  Note that the hal handles reseting
1437          * these queues at the needed time.
1438          */
1439         sc->beacon.beaconq = ath_beaconq_setup(ah);
1440         if (sc->beacon.beaconq == -1) {
1441                 DPRINTF(sc, ATH_DBG_FATAL,
1442                         "Unable to setup a beacon xmit queue\n");
1443                 error = -EIO;
1444                 goto bad2;
1445         }
1446         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1447         if (sc->beacon.cabq == NULL) {
1448                 DPRINTF(sc, ATH_DBG_FATAL,
1449                         "Unable to setup CAB xmit queue\n");
1450                 error = -EIO;
1451                 goto bad2;
1452         }
1453
1454         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1455         ath_cabq_update(sc);
1456
1457         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1458                 sc->tx.hwq_map[i] = -1;
1459
1460         /* Setup data queues */
1461         /* NB: ensure BK queue is the lowest priority h/w queue */
1462         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1463                 DPRINTF(sc, ATH_DBG_FATAL,
1464                         "Unable to setup xmit queue for BK traffic\n");
1465                 error = -EIO;
1466                 goto bad2;
1467         }
1468
1469         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1470                 DPRINTF(sc, ATH_DBG_FATAL,
1471                         "Unable to setup xmit queue for BE traffic\n");
1472                 error = -EIO;
1473                 goto bad2;
1474         }
1475         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1476                 DPRINTF(sc, ATH_DBG_FATAL,
1477                         "Unable to setup xmit queue for VI traffic\n");
1478                 error = -EIO;
1479                 goto bad2;
1480         }
1481         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1482                 DPRINTF(sc, ATH_DBG_FATAL,
1483                         "Unable to setup xmit queue for VO traffic\n");
1484                 error = -EIO;
1485                 goto bad2;
1486         }
1487
1488         /* Initializes the noise floor to a reasonable default value.
1489          * Later on this will be updated during ANI processing. */
1490
1491         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1492         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1493
1494         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1495                                    ATH9K_CIPHER_TKIP, NULL)) {
1496                 /*
1497                  * Whether we should enable h/w TKIP MIC.
1498                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1499                  * report WMM capable, so it's always safe to turn on
1500                  * TKIP MIC in this case.
1501                  */
1502                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1503                                        0, 1, NULL);
1504         }
1505
1506         /*
1507          * Check whether the separate key cache entries
1508          * are required to handle both tx+rx MIC keys.
1509          * With split mic keys the number of stations is limited
1510          * to 27 otherwise 59.
1511          */
1512         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1513                                    ATH9K_CIPHER_TKIP, NULL)
1514             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1515                                       ATH9K_CIPHER_MIC, NULL)
1516             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1517                                       0, NULL))
1518                 sc->splitmic = 1;
1519
1520         /* turn on mcast key search if possible */
1521         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1522                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1523                                              1, NULL);
1524
1525         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1526
1527         /* 11n Capabilities */
1528         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1529                 sc->sc_flags |= SC_OP_TXAGGR;
1530                 sc->sc_flags |= SC_OP_RXAGGR;
1531         }
1532
1533         sc->tx_chainmask = ah->caps.tx_chainmask;
1534         sc->rx_chainmask = ah->caps.rx_chainmask;
1535
1536         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1537         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1538
1539         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1540                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1541
1542         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1543
1544         /* initialize beacon slots */
1545         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1546                 sc->beacon.bslot[i] = NULL;
1547                 sc->beacon.bslot_aphy[i] = NULL;
1548         }
1549
1550         /* setup channels and rates */
1551
1552         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1553         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1554                 sc->rates[IEEE80211_BAND_2GHZ];
1555         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1556         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1557                 ARRAY_SIZE(ath9k_2ghz_chantable);
1558
1559         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1560                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1561                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1562                         sc->rates[IEEE80211_BAND_5GHZ];
1563                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1564                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1565                         ARRAY_SIZE(ath9k_5ghz_chantable);
1566         }
1567
1568         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1569                 ath9k_hw_btcoex_enable(sc->sc_ah);
1570
1571         return 0;
1572 bad2:
1573         /* cleanup tx queues */
1574         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1575                 if (ATH_TXQ_SETUP(sc, i))
1576                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1577 bad:
1578         if (ah)
1579                 ath9k_hw_detach(ah);
1580         ath9k_exit_debug(sc);
1581
1582         return error;
1583 }
1584
1585 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1586 {
1587         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1588                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1589                 IEEE80211_HW_SIGNAL_DBM |
1590                 IEEE80211_HW_AMPDU_AGGREGATION |
1591                 IEEE80211_HW_SUPPORTS_PS |
1592                 IEEE80211_HW_PS_NULLFUNC_STACK |
1593                 IEEE80211_HW_SPECTRUM_MGMT;
1594
1595         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1596                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1597
1598         hw->wiphy->interface_modes =
1599                 BIT(NL80211_IFTYPE_AP) |
1600                 BIT(NL80211_IFTYPE_STATION) |
1601                 BIT(NL80211_IFTYPE_ADHOC) |
1602                 BIT(NL80211_IFTYPE_MESH_POINT);
1603
1604         hw->queues = 4;
1605         hw->max_rates = 4;
1606         hw->channel_change_time = 5000;
1607         hw->max_listen_interval = 10;
1608         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1609         hw->sta_data_size = sizeof(struct ath_node);
1610         hw->vif_data_size = sizeof(struct ath_vif);
1611
1612         hw->rate_control_algorithm = "ath9k_rate_control";
1613
1614         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1615                 &sc->sbands[IEEE80211_BAND_2GHZ];
1616         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1617                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1618                         &sc->sbands[IEEE80211_BAND_5GHZ];
1619 }
1620
1621 int ath_attach(u16 devid, struct ath_softc *sc)
1622 {
1623         struct ieee80211_hw *hw = sc->hw;
1624         int error = 0, i;
1625         struct ath_regulatory *reg;
1626
1627         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1628
1629         error = ath_init(devid, sc);
1630         if (error != 0)
1631                 return error;
1632
1633         reg = &sc->sc_ah->regulatory;
1634
1635         /* get mac address from hardware and set in mac80211 */
1636
1637         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1638
1639         ath_set_hw_capab(sc, hw);
1640
1641         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1642                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1643                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1644                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1645         }
1646
1647         /* initialize tx/rx engine */
1648         error = ath_tx_init(sc, ATH_TXBUF);
1649         if (error != 0)
1650                 goto error_attach;
1651
1652         error = ath_rx_init(sc, ATH_RXBUF);
1653         if (error != 0)
1654                 goto error_attach;
1655
1656 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1657         /* Initialze h/w Rfkill */
1658         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1659                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1660
1661         /* Initialize s/w rfkill */
1662         error = ath_init_sw_rfkill(sc);
1663         if (error)
1664                 goto error_attach;
1665 #endif
1666
1667         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1668         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1669         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1670
1671         error = ieee80211_register_hw(hw);
1672
1673         if (!ath_is_world_regd(reg)) {
1674                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1675                 if (error)
1676                         goto error_attach;
1677         }
1678
1679         /* Initialize LED control */
1680         ath_init_leds(sc);
1681
1682
1683         return 0;
1684
1685 error_attach:
1686         /* cleanup tx queues */
1687         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1688                 if (ATH_TXQ_SETUP(sc, i))
1689                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1690
1691         ath9k_hw_detach(sc->sc_ah);
1692         ath9k_exit_debug(sc);
1693
1694         return error;
1695 }
1696
1697 int ath_reset(struct ath_softc *sc, bool retry_tx)
1698 {
1699         struct ath_hw *ah = sc->sc_ah;
1700         struct ieee80211_hw *hw = sc->hw;
1701         int r;
1702
1703         ath9k_hw_set_interrupts(ah, 0);
1704         ath_drain_all_txq(sc, retry_tx);
1705         ath_stoprecv(sc);
1706         ath_flushrecv(sc);
1707
1708         spin_lock_bh(&sc->sc_resetlock);
1709         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1710         if (r)
1711                 DPRINTF(sc, ATH_DBG_FATAL,
1712                         "Unable to reset hardware; reset status %u\n", r);
1713         spin_unlock_bh(&sc->sc_resetlock);
1714
1715         if (ath_startrecv(sc) != 0)
1716                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1717
1718         /*
1719          * We may be doing a reset in response to a request
1720          * that changes the channel so update any state that
1721          * might change as a result.
1722          */
1723         ath_cache_conf_rate(sc, &hw->conf);
1724
1725         ath_update_txpow(sc);
1726
1727         if (sc->sc_flags & SC_OP_BEACONS)
1728                 ath_beacon_config(sc, NULL);    /* restart beacons */
1729
1730         ath9k_hw_set_interrupts(ah, sc->imask);
1731
1732         if (retry_tx) {
1733                 int i;
1734                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1735                         if (ATH_TXQ_SETUP(sc, i)) {
1736                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1737                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1738                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1739                         }
1740                 }
1741         }
1742
1743         return r;
1744 }
1745
1746 /*
1747  *  This function will allocate both the DMA descriptor structure, and the
1748  *  buffers it contains.  These are used to contain the descriptors used
1749  *  by the system.
1750 */
1751 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1752                       struct list_head *head, const char *name,
1753                       int nbuf, int ndesc)
1754 {
1755 #define DS2PHYS(_dd, _ds)                                               \
1756         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1757 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1758 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1759
1760         struct ath_desc *ds;
1761         struct ath_buf *bf;
1762         int i, bsize, error;
1763
1764         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1765                 name, nbuf, ndesc);
1766
1767         INIT_LIST_HEAD(head);
1768         /* ath_desc must be a multiple of DWORDs */
1769         if ((sizeof(struct ath_desc) % 4) != 0) {
1770                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1771                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1772                 error = -ENOMEM;
1773                 goto fail;
1774         }
1775
1776         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1777
1778         /*
1779          * Need additional DMA memory because we can't use
1780          * descriptors that cross the 4K page boundary. Assume
1781          * one skipped descriptor per 4K page.
1782          */
1783         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1784                 u32 ndesc_skipped =
1785                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1786                 u32 dma_len;
1787
1788                 while (ndesc_skipped) {
1789                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1790                         dd->dd_desc_len += dma_len;
1791
1792                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1793                 };
1794         }
1795
1796         /* allocate descriptors */
1797         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1798                                          &dd->dd_desc_paddr, GFP_KERNEL);
1799         if (dd->dd_desc == NULL) {
1800                 error = -ENOMEM;
1801                 goto fail;
1802         }
1803         ds = dd->dd_desc;
1804         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1805                 name, ds, (u32) dd->dd_desc_len,
1806                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1807
1808         /* allocate buffers */
1809         bsize = sizeof(struct ath_buf) * nbuf;
1810         bf = kzalloc(bsize, GFP_KERNEL);
1811         if (bf == NULL) {
1812                 error = -ENOMEM;
1813                 goto fail2;
1814         }
1815         dd->dd_bufptr = bf;
1816
1817         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1818                 bf->bf_desc = ds;
1819                 bf->bf_daddr = DS2PHYS(dd, ds);
1820
1821                 if (!(sc->sc_ah->caps.hw_caps &
1822                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1823                         /*
1824                          * Skip descriptor addresses which can cause 4KB
1825                          * boundary crossing (addr + length) with a 32 dword
1826                          * descriptor fetch.
1827                          */
1828                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1829                                 ASSERT((caddr_t) bf->bf_desc <
1830                                        ((caddr_t) dd->dd_desc +
1831                                         dd->dd_desc_len));
1832
1833                                 ds += ndesc;
1834                                 bf->bf_desc = ds;
1835                                 bf->bf_daddr = DS2PHYS(dd, ds);
1836                         }
1837                 }
1838                 list_add_tail(&bf->list, head);
1839         }
1840         return 0;
1841 fail2:
1842         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1843                           dd->dd_desc_paddr);
1844 fail:
1845         memset(dd, 0, sizeof(*dd));
1846         return error;
1847 #undef ATH_DESC_4KB_BOUND_CHECK
1848 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1849 #undef DS2PHYS
1850 }
1851
1852 void ath_descdma_cleanup(struct ath_softc *sc,
1853                          struct ath_descdma *dd,
1854                          struct list_head *head)
1855 {
1856         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1857                           dd->dd_desc_paddr);
1858
1859         INIT_LIST_HEAD(head);
1860         kfree(dd->dd_bufptr);
1861         memset(dd, 0, sizeof(*dd));
1862 }
1863
1864 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1865 {
1866         int qnum;
1867
1868         switch (queue) {
1869         case 0:
1870                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1871                 break;
1872         case 1:
1873                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1874                 break;
1875         case 2:
1876                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1877                 break;
1878         case 3:
1879                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1880                 break;
1881         default:
1882                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1883                 break;
1884         }
1885
1886         return qnum;
1887 }
1888
1889 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1890 {
1891         int qnum;
1892
1893         switch (queue) {
1894         case ATH9K_WME_AC_VO:
1895                 qnum = 0;
1896                 break;
1897         case ATH9K_WME_AC_VI:
1898                 qnum = 1;
1899                 break;
1900         case ATH9K_WME_AC_BE:
1901                 qnum = 2;
1902                 break;
1903         case ATH9K_WME_AC_BK:
1904                 qnum = 3;
1905                 break;
1906         default:
1907                 qnum = -1;
1908                 break;
1909         }
1910
1911         return qnum;
1912 }
1913
1914 /* XXX: Remove me once we don't depend on ath9k_channel for all
1915  * this redundant data */
1916 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1917                            struct ath9k_channel *ichan)
1918 {
1919         struct ieee80211_channel *chan = hw->conf.channel;
1920         struct ieee80211_conf *conf = &hw->conf;
1921
1922         ichan->channel = chan->center_freq;
1923         ichan->chan = chan;
1924
1925         if (chan->band == IEEE80211_BAND_2GHZ) {
1926                 ichan->chanmode = CHANNEL_G;
1927                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1928         } else {
1929                 ichan->chanmode = CHANNEL_A;
1930                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1931         }
1932
1933         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1934
1935         if (conf_is_ht(conf)) {
1936                 if (conf_is_ht40(conf))
1937                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1938
1939                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1940                                             conf->channel_type);
1941         }
1942 }
1943
1944 /**********************/
1945 /* mac80211 callbacks */
1946 /**********************/
1947
1948 static int ath9k_start(struct ieee80211_hw *hw)
1949 {
1950         struct ath_wiphy *aphy = hw->priv;
1951         struct ath_softc *sc = aphy->sc;
1952         struct ieee80211_channel *curchan = hw->conf.channel;
1953         struct ath9k_channel *init_channel;
1954         int r, pos;
1955
1956         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1957                 "initial channel: %d MHz\n", curchan->center_freq);
1958
1959         mutex_lock(&sc->mutex);
1960
1961         if (ath9k_wiphy_started(sc)) {
1962                 if (sc->chan_idx == curchan->hw_value) {
1963                         /*
1964                          * Already on the operational channel, the new wiphy
1965                          * can be marked active.
1966                          */
1967                         aphy->state = ATH_WIPHY_ACTIVE;
1968                         ieee80211_wake_queues(hw);
1969                 } else {
1970                         /*
1971                          * Another wiphy is on another channel, start the new
1972                          * wiphy in paused state.
1973                          */
1974                         aphy->state = ATH_WIPHY_PAUSED;
1975                         ieee80211_stop_queues(hw);
1976                 }
1977                 mutex_unlock(&sc->mutex);
1978                 return 0;
1979         }
1980         aphy->state = ATH_WIPHY_ACTIVE;
1981
1982         /* setup initial channel */
1983
1984         pos = curchan->hw_value;
1985
1986         sc->chan_idx = pos;
1987         init_channel = &sc->sc_ah->channels[pos];
1988         ath9k_update_ichannel(sc, hw, init_channel);
1989
1990         /* Reset SERDES registers */
1991         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1992
1993         /*
1994          * The basic interface to setting the hardware in a good
1995          * state is ``reset''.  On return the hardware is known to
1996          * be powered up and with interrupts disabled.  This must
1997          * be followed by initialization of the appropriate bits
1998          * and then setup of the interrupt mask.
1999          */
2000         spin_lock_bh(&sc->sc_resetlock);
2001         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2002         if (r) {
2003                 DPRINTF(sc, ATH_DBG_FATAL,
2004                         "Unable to reset hardware; reset status %u "
2005                         "(freq %u MHz)\n", r,
2006                         curchan->center_freq);
2007                 spin_unlock_bh(&sc->sc_resetlock);
2008                 goto mutex_unlock;
2009         }
2010         spin_unlock_bh(&sc->sc_resetlock);
2011
2012         /*
2013          * This is needed only to setup initial state
2014          * but it's best done after a reset.
2015          */
2016         ath_update_txpow(sc);
2017
2018         /*
2019          * Setup the hardware after reset:
2020          * The receive engine is set going.
2021          * Frame transmit is handled entirely
2022          * in the frame output path; there's nothing to do
2023          * here except setup the interrupt mask.
2024          */
2025         if (ath_startrecv(sc) != 0) {
2026                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2027                 r = -EIO;
2028                 goto mutex_unlock;
2029         }
2030
2031         /* Setup our intr mask. */
2032         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2033                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2034                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2035
2036         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2037                 sc->imask |= ATH9K_INT_GTT;
2038
2039         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2040                 sc->imask |= ATH9K_INT_CST;
2041
2042         ath_cache_conf_rate(sc, &hw->conf);
2043
2044         sc->sc_flags &= ~SC_OP_INVALID;
2045
2046         /* Disable BMISS interrupt when we're not associated */
2047         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2048         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2049
2050         ieee80211_wake_queues(hw);
2051
2052 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2053         r = ath_start_rfkill_poll(sc);
2054 #endif
2055
2056 mutex_unlock:
2057         mutex_unlock(&sc->mutex);
2058
2059         return r;
2060 }
2061
2062 static int ath9k_tx(struct ieee80211_hw *hw,
2063                     struct sk_buff *skb)
2064 {
2065         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2066         struct ath_wiphy *aphy = hw->priv;
2067         struct ath_softc *sc = aphy->sc;
2068         struct ath_tx_control txctl;
2069         int hdrlen, padsize;
2070
2071         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2072                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2073                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2074                 goto exit;
2075         }
2076
2077         memset(&txctl, 0, sizeof(struct ath_tx_control));
2078
2079         /*
2080          * As a temporary workaround, assign seq# here; this will likely need
2081          * to be cleaned up to work better with Beacon transmission and virtual
2082          * BSSes.
2083          */
2084         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2085                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2086                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2087                         sc->tx.seq_no += 0x10;
2088                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2089                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2090         }
2091
2092         /* Add the padding after the header if this is not already done */
2093         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2094         if (hdrlen & 3) {
2095                 padsize = hdrlen % 4;
2096                 if (skb_headroom(skb) < padsize)
2097                         return -1;
2098                 skb_push(skb, padsize);
2099                 memmove(skb->data, skb->data + padsize, hdrlen);
2100         }
2101
2102         /* Check if a tx queue is available */
2103
2104         txctl.txq = ath_test_get_txq(sc, skb);
2105         if (!txctl.txq)
2106                 goto exit;
2107
2108         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2109
2110         if (ath_tx_start(hw, skb, &txctl) != 0) {
2111                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2112                 goto exit;
2113         }
2114
2115         return 0;
2116 exit:
2117         dev_kfree_skb_any(skb);
2118         return 0;
2119 }
2120
2121 static void ath9k_stop(struct ieee80211_hw *hw)
2122 {
2123         struct ath_wiphy *aphy = hw->priv;
2124         struct ath_softc *sc = aphy->sc;
2125
2126         aphy->state = ATH_WIPHY_INACTIVE;
2127
2128         if (sc->sc_flags & SC_OP_INVALID) {
2129                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2130                 return;
2131         }
2132
2133         mutex_lock(&sc->mutex);
2134
2135         ieee80211_stop_queues(hw);
2136
2137         if (ath9k_wiphy_started(sc)) {
2138                 mutex_unlock(&sc->mutex);
2139                 return; /* another wiphy still in use */
2140         }
2141
2142         /* make sure h/w will not generate any interrupt
2143          * before setting the invalid flag. */
2144         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2145
2146         if (!(sc->sc_flags & SC_OP_INVALID)) {
2147                 ath_drain_all_txq(sc, false);
2148                 ath_stoprecv(sc);
2149                 ath9k_hw_phy_disable(sc->sc_ah);
2150         } else
2151                 sc->rx.rxlink = NULL;
2152
2153 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2154         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2155                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2156 #endif
2157         /* disable HAL and put h/w to sleep */
2158         ath9k_hw_disable(sc->sc_ah);
2159         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2160
2161         sc->sc_flags |= SC_OP_INVALID;
2162
2163         mutex_unlock(&sc->mutex);
2164
2165         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2166 }
2167
2168 static int ath9k_add_interface(struct ieee80211_hw *hw,
2169                                struct ieee80211_if_init_conf *conf)
2170 {
2171         struct ath_wiphy *aphy = hw->priv;
2172         struct ath_softc *sc = aphy->sc;
2173         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2174         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2175         int ret = 0;
2176
2177         mutex_lock(&sc->mutex);
2178
2179         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2180             sc->nvifs > 0) {
2181                 ret = -ENOBUFS;
2182                 goto out;
2183         }
2184
2185         switch (conf->type) {
2186         case NL80211_IFTYPE_STATION:
2187                 ic_opmode = NL80211_IFTYPE_STATION;
2188                 break;
2189         case NL80211_IFTYPE_ADHOC:
2190         case NL80211_IFTYPE_AP:
2191         case NL80211_IFTYPE_MESH_POINT:
2192                 if (sc->nbcnvifs >= ATH_BCBUF) {
2193                         ret = -ENOBUFS;
2194                         goto out;
2195                 }
2196                 ic_opmode = conf->type;
2197                 break;
2198         default:
2199                 DPRINTF(sc, ATH_DBG_FATAL,
2200                         "Interface type %d not yet supported\n", conf->type);
2201                 ret = -EOPNOTSUPP;
2202                 goto out;
2203         }
2204
2205         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2206
2207         /* Set the VIF opmode */
2208         avp->av_opmode = ic_opmode;
2209         avp->av_bslot = -1;
2210
2211         sc->nvifs++;
2212
2213         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2214                 ath9k_set_bssid_mask(hw);
2215
2216         if (sc->nvifs > 1)
2217                 goto out; /* skip global settings for secondary vif */
2218
2219         if (ic_opmode == NL80211_IFTYPE_AP) {
2220                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2221                 sc->sc_flags |= SC_OP_TSF_RESET;
2222         }
2223
2224         /* Set the device opmode */
2225         sc->sc_ah->opmode = ic_opmode;
2226
2227         /*
2228          * Enable MIB interrupts when there are hardware phy counters.
2229          * Note we only do this (at the moment) for station mode.
2230          */
2231         if ((conf->type == NL80211_IFTYPE_STATION) ||
2232             (conf->type == NL80211_IFTYPE_ADHOC) ||
2233             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2234                 if (ath9k_hw_phycounters(sc->sc_ah))
2235                         sc->imask |= ATH9K_INT_MIB;
2236                 sc->imask |= ATH9K_INT_TSFOOR;
2237         }
2238
2239         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2240
2241         if (conf->type == NL80211_IFTYPE_AP) {
2242                 /* TODO: is this a suitable place to start ANI for AP mode? */
2243                 /* Start ANI */
2244                 mod_timer(&sc->ani.timer,
2245                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2246         }
2247
2248 out:
2249         mutex_unlock(&sc->mutex);
2250         return ret;
2251 }
2252
2253 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2254                                    struct ieee80211_if_init_conf *conf)
2255 {
2256         struct ath_wiphy *aphy = hw->priv;
2257         struct ath_softc *sc = aphy->sc;
2258         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2259         int i;
2260
2261         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2262
2263         mutex_lock(&sc->mutex);
2264
2265         /* Stop ANI */
2266         del_timer_sync(&sc->ani.timer);
2267
2268         /* Reclaim beacon resources */
2269         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2270             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2271             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2272                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2273                 ath_beacon_return(sc, avp);
2274         }
2275
2276         sc->sc_flags &= ~SC_OP_BEACONS;
2277
2278         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2279                 if (sc->beacon.bslot[i] == conf->vif) {
2280                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2281                                "slot\n", __func__);
2282                         sc->beacon.bslot[i] = NULL;
2283                         sc->beacon.bslot_aphy[i] = NULL;
2284                 }
2285         }
2286
2287         sc->nvifs--;
2288
2289         mutex_unlock(&sc->mutex);
2290 }
2291
2292 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2293 {
2294         struct ath_wiphy *aphy = hw->priv;
2295         struct ath_softc *sc = aphy->sc;
2296         struct ieee80211_conf *conf = &hw->conf;
2297         struct ath_hw *ah = sc->sc_ah;
2298
2299         mutex_lock(&sc->mutex);
2300
2301         if (changed & IEEE80211_CONF_CHANGE_PS) {
2302                 if (conf->flags & IEEE80211_CONF_PS) {
2303                         if (!(ah->caps.hw_caps &
2304                               ATH9K_HW_CAP_AUTOSLEEP)) {
2305                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2306                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2307                                         ath9k_hw_set_interrupts(sc->sc_ah,
2308                                                         sc->imask);
2309                                 }
2310                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2311                         }
2312                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2313                 } else {
2314                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2315                         if (!(ah->caps.hw_caps &
2316                               ATH9K_HW_CAP_AUTOSLEEP)) {
2317                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2318                                 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2319                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2320                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2321                                         ath9k_hw_set_interrupts(sc->sc_ah,
2322                                                         sc->imask);
2323                                 }
2324                         }
2325                 }
2326         }
2327
2328         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2329                 struct ieee80211_channel *curchan = hw->conf.channel;
2330                 int pos = curchan->hw_value;
2331
2332                 aphy->chan_idx = pos;
2333                 aphy->chan_is_ht = conf_is_ht(conf);
2334
2335                 if (aphy->state == ATH_WIPHY_SCAN ||
2336                     aphy->state == ATH_WIPHY_ACTIVE)
2337                         ath9k_wiphy_pause_all_forced(sc, aphy);
2338                 else {
2339                         /*
2340                          * Do not change operational channel based on a paused
2341                          * wiphy changes.
2342                          */
2343                         goto skip_chan_change;
2344                 }
2345
2346                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2347                         curchan->center_freq);
2348
2349                 /* XXX: remove me eventualy */
2350                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2351
2352                 ath_update_chainmask(sc, conf_is_ht(conf));
2353
2354                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2355                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2356                         mutex_unlock(&sc->mutex);
2357                         return -EINVAL;
2358                 }
2359         }
2360
2361 skip_chan_change:
2362         if (changed & IEEE80211_CONF_CHANGE_POWER)
2363                 sc->config.txpowlimit = 2 * conf->power_level;
2364
2365         /*
2366          * The HW TSF has to be reset when the beacon interval changes.
2367          * We set the flag here, and ath_beacon_config_ap() would take this
2368          * into account when it gets called through the subsequent
2369          * config_interface() call - with IFCC_BEACON in the changed field.
2370          */
2371
2372         if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
2373                 sc->sc_flags |= SC_OP_TSF_RESET;
2374
2375         mutex_unlock(&sc->mutex);
2376
2377         return 0;
2378 }
2379
2380 static int ath9k_config_interface(struct ieee80211_hw *hw,
2381                                   struct ieee80211_vif *vif,
2382                                   struct ieee80211_if_conf *conf)
2383 {
2384         struct ath_wiphy *aphy = hw->priv;
2385         struct ath_softc *sc = aphy->sc;
2386         struct ath_hw *ah = sc->sc_ah;
2387         struct ath_vif *avp = (void *)vif->drv_priv;
2388         u32 rfilt = 0;
2389         int error, i;
2390
2391         mutex_lock(&sc->mutex);
2392
2393         /* TODO: Need to decide which hw opmode to use for multi-interface
2394          * cases */
2395         if (vif->type == NL80211_IFTYPE_AP &&
2396             ah->opmode != NL80211_IFTYPE_AP) {
2397                 ah->opmode = NL80211_IFTYPE_STATION;
2398                 ath9k_hw_setopmode(ah);
2399                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2400                 sc->curaid = 0;
2401                 ath9k_hw_write_associd(sc);
2402                 /* Request full reset to get hw opmode changed properly */
2403                 sc->sc_flags |= SC_OP_FULL_RESET;
2404         }
2405
2406         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2407             !is_zero_ether_addr(conf->bssid)) {
2408                 switch (vif->type) {
2409                 case NL80211_IFTYPE_STATION:
2410                 case NL80211_IFTYPE_ADHOC:
2411                 case NL80211_IFTYPE_MESH_POINT:
2412                         /* Set BSSID */
2413                         memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2414                         memcpy(avp->bssid, conf->bssid, ETH_ALEN);
2415                         sc->curaid = 0;
2416                         ath9k_hw_write_associd(sc);
2417
2418                         /* Set aggregation protection mode parameters */
2419                         sc->config.ath_aggr_prot = 0;
2420
2421                         DPRINTF(sc, ATH_DBG_CONFIG,
2422                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2423                                 rfilt, sc->curbssid, sc->curaid);
2424
2425                         /* need to reconfigure the beacon */
2426                         sc->sc_flags &= ~SC_OP_BEACONS ;
2427
2428                         break;
2429                 default:
2430                         break;
2431                 }
2432         }
2433
2434         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2435             (vif->type == NL80211_IFTYPE_AP) ||
2436             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2437                 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2438                     (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2439                      conf->enable_beacon)) {
2440                         /*
2441                          * Allocate and setup the beacon frame.
2442                          *
2443                          * Stop any previous beacon DMA.  This may be
2444                          * necessary, for example, when an ibss merge
2445                          * causes reconfiguration; we may be called
2446                          * with beacon transmission active.
2447                          */
2448                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2449
2450                         error = ath_beacon_alloc(aphy, vif);
2451                         if (error != 0) {
2452                                 mutex_unlock(&sc->mutex);
2453                                 return error;
2454                         }
2455
2456                         ath_beacon_config(sc, vif);
2457                 }
2458         }
2459
2460         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2461         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2462                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2463                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2464                                 ath9k_hw_keysetmac(sc->sc_ah,
2465                                                    (u16)i,
2466                                                    sc->curbssid);
2467         }
2468
2469         /* Only legacy IBSS for now */
2470         if (vif->type == NL80211_IFTYPE_ADHOC)
2471                 ath_update_chainmask(sc, 0);
2472
2473         mutex_unlock(&sc->mutex);
2474
2475         return 0;
2476 }
2477
2478 #define SUPPORTED_FILTERS                       \
2479         (FIF_PROMISC_IN_BSS |                   \
2480         FIF_ALLMULTI |                          \
2481         FIF_CONTROL |                           \
2482         FIF_OTHER_BSS |                         \
2483         FIF_BCN_PRBRESP_PROMISC |               \
2484         FIF_FCSFAIL)
2485
2486 /* FIXME: sc->sc_full_reset ? */
2487 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2488                                    unsigned int changed_flags,
2489                                    unsigned int *total_flags,
2490                                    int mc_count,
2491                                    struct dev_mc_list *mclist)
2492 {
2493         struct ath_wiphy *aphy = hw->priv;
2494         struct ath_softc *sc = aphy->sc;
2495         u32 rfilt;
2496
2497         changed_flags &= SUPPORTED_FILTERS;
2498         *total_flags &= SUPPORTED_FILTERS;
2499
2500         sc->rx.rxfilter = *total_flags;
2501         rfilt = ath_calcrxfilter(sc);
2502         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2503
2504         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2505 }
2506
2507 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2508                              struct ieee80211_vif *vif,
2509                              enum sta_notify_cmd cmd,
2510                              struct ieee80211_sta *sta)
2511 {
2512         struct ath_wiphy *aphy = hw->priv;
2513         struct ath_softc *sc = aphy->sc;
2514
2515         switch (cmd) {
2516         case STA_NOTIFY_ADD:
2517                 ath_node_attach(sc, sta);
2518                 break;
2519         case STA_NOTIFY_REMOVE:
2520                 ath_node_detach(sc, sta);
2521                 break;
2522         default:
2523                 break;
2524         }
2525 }
2526
2527 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2528                          const struct ieee80211_tx_queue_params *params)
2529 {
2530         struct ath_wiphy *aphy = hw->priv;
2531         struct ath_softc *sc = aphy->sc;
2532         struct ath9k_tx_queue_info qi;
2533         int ret = 0, qnum;
2534
2535         if (queue >= WME_NUM_AC)
2536                 return 0;
2537
2538         mutex_lock(&sc->mutex);
2539
2540         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2541
2542         qi.tqi_aifs = params->aifs;
2543         qi.tqi_cwmin = params->cw_min;
2544         qi.tqi_cwmax = params->cw_max;
2545         qi.tqi_burstTime = params->txop;
2546         qnum = ath_get_hal_qnum(queue, sc);
2547
2548         DPRINTF(sc, ATH_DBG_CONFIG,
2549                 "Configure tx [queue/halq] [%d/%d],  "
2550                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2551                 queue, qnum, params->aifs, params->cw_min,
2552                 params->cw_max, params->txop);
2553
2554         ret = ath_txq_update(sc, qnum, &qi);
2555         if (ret)
2556                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2557
2558         mutex_unlock(&sc->mutex);
2559
2560         return ret;
2561 }
2562
2563 static int ath9k_set_key(struct ieee80211_hw *hw,
2564                          enum set_key_cmd cmd,
2565                          struct ieee80211_vif *vif,
2566                          struct ieee80211_sta *sta,
2567                          struct ieee80211_key_conf *key)
2568 {
2569         struct ath_wiphy *aphy = hw->priv;
2570         struct ath_softc *sc = aphy->sc;
2571         int ret = 0;
2572
2573         if (modparam_nohwcrypt)
2574                 return -ENOSPC;
2575
2576         mutex_lock(&sc->mutex);
2577         ath9k_ps_wakeup(sc);
2578         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2579
2580         switch (cmd) {
2581         case SET_KEY:
2582                 ret = ath_key_config(sc, vif, sta, key);
2583                 if (ret >= 0) {
2584                         key->hw_key_idx = ret;
2585                         /* push IV and Michael MIC generation to stack */
2586                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2587                         if (key->alg == ALG_TKIP)
2588                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2589                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2590                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2591                         ret = 0;
2592                 }
2593                 break;
2594         case DISABLE_KEY:
2595                 ath_key_delete(sc, key);
2596                 break;
2597         default:
2598                 ret = -EINVAL;
2599         }
2600
2601         ath9k_ps_restore(sc);
2602         mutex_unlock(&sc->mutex);
2603
2604         return ret;
2605 }
2606
2607 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2608                                    struct ieee80211_vif *vif,
2609                                    struct ieee80211_bss_conf *bss_conf,
2610                                    u32 changed)
2611 {
2612         struct ath_wiphy *aphy = hw->priv;
2613         struct ath_softc *sc = aphy->sc;
2614
2615         mutex_lock(&sc->mutex);
2616
2617         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2618                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2619                         bss_conf->use_short_preamble);
2620                 if (bss_conf->use_short_preamble)
2621                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2622                 else
2623                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2624         }
2625
2626         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2627                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2628                         bss_conf->use_cts_prot);
2629                 if (bss_conf->use_cts_prot &&
2630                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2631                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2632                 else
2633                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2634         }
2635
2636         if (changed & BSS_CHANGED_ASSOC) {
2637                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2638                         bss_conf->assoc);
2639                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2640         }
2641
2642         mutex_unlock(&sc->mutex);
2643 }
2644
2645 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2646 {
2647         u64 tsf;
2648         struct ath_wiphy *aphy = hw->priv;
2649         struct ath_softc *sc = aphy->sc;
2650
2651         mutex_lock(&sc->mutex);
2652         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2653         mutex_unlock(&sc->mutex);
2654
2655         return tsf;
2656 }
2657
2658 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2659 {
2660         struct ath_wiphy *aphy = hw->priv;
2661         struct ath_softc *sc = aphy->sc;
2662
2663         mutex_lock(&sc->mutex);
2664         ath9k_hw_settsf64(sc->sc_ah, tsf);
2665         mutex_unlock(&sc->mutex);
2666 }
2667
2668 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2669 {
2670         struct ath_wiphy *aphy = hw->priv;
2671         struct ath_softc *sc = aphy->sc;
2672
2673         mutex_lock(&sc->mutex);
2674         ath9k_hw_reset_tsf(sc->sc_ah);
2675         mutex_unlock(&sc->mutex);
2676 }
2677
2678 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2679                               enum ieee80211_ampdu_mlme_action action,
2680                               struct ieee80211_sta *sta,
2681                               u16 tid, u16 *ssn)
2682 {
2683         struct ath_wiphy *aphy = hw->priv;
2684         struct ath_softc *sc = aphy->sc;
2685         int ret = 0;
2686
2687         switch (action) {
2688         case IEEE80211_AMPDU_RX_START:
2689                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2690                         ret = -ENOTSUPP;
2691                 break;
2692         case IEEE80211_AMPDU_RX_STOP:
2693                 break;
2694         case IEEE80211_AMPDU_TX_START:
2695                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2696                 if (ret < 0)
2697                         DPRINTF(sc, ATH_DBG_FATAL,
2698                                 "Unable to start TX aggregation\n");
2699                 else
2700                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2701                 break;
2702         case IEEE80211_AMPDU_TX_STOP:
2703                 ret = ath_tx_aggr_stop(sc, sta, tid);
2704                 if (ret < 0)
2705                         DPRINTF(sc, ATH_DBG_FATAL,
2706                                 "Unable to stop TX aggregation\n");
2707
2708                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2709                 break;
2710         case IEEE80211_AMPDU_TX_OPERATIONAL:
2711                 ath_tx_aggr_resume(sc, sta, tid);
2712                 break;
2713         default:
2714                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2715         }
2716
2717         return ret;
2718 }
2719
2720 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2721 {
2722         struct ath_wiphy *aphy = hw->priv;
2723         struct ath_softc *sc = aphy->sc;
2724
2725         if (ath9k_wiphy_scanning(sc)) {
2726                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2727                        "same time\n");
2728                 /*
2729                  * Do not allow the concurrent scanning state for now. This
2730                  * could be improved with scanning control moved into ath9k.
2731                  */
2732                 return;
2733         }
2734
2735         aphy->state = ATH_WIPHY_SCAN;
2736         ath9k_wiphy_pause_all_forced(sc, aphy);
2737
2738         mutex_lock(&sc->mutex);
2739         sc->sc_flags |= SC_OP_SCANNING;
2740         mutex_unlock(&sc->mutex);
2741 }
2742
2743 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2744 {
2745         struct ath_wiphy *aphy = hw->priv;
2746         struct ath_softc *sc = aphy->sc;
2747
2748         mutex_lock(&sc->mutex);
2749         aphy->state = ATH_WIPHY_ACTIVE;
2750         sc->sc_flags &= ~SC_OP_SCANNING;
2751         mutex_unlock(&sc->mutex);
2752 }
2753
2754 struct ieee80211_ops ath9k_ops = {
2755         .tx                 = ath9k_tx,
2756         .start              = ath9k_start,
2757         .stop               = ath9k_stop,
2758         .add_interface      = ath9k_add_interface,
2759         .remove_interface   = ath9k_remove_interface,
2760         .config             = ath9k_config,
2761         .config_interface   = ath9k_config_interface,
2762         .configure_filter   = ath9k_configure_filter,
2763         .sta_notify         = ath9k_sta_notify,
2764         .conf_tx            = ath9k_conf_tx,
2765         .bss_info_changed   = ath9k_bss_info_changed,
2766         .set_key            = ath9k_set_key,
2767         .get_tsf            = ath9k_get_tsf,
2768         .set_tsf            = ath9k_set_tsf,
2769         .reset_tsf          = ath9k_reset_tsf,
2770         .ampdu_action       = ath9k_ampdu_action,
2771         .sw_scan_start      = ath9k_sw_scan_start,
2772         .sw_scan_complete   = ath9k_sw_scan_complete,
2773 };
2774
2775 static struct {
2776         u32 version;
2777         const char * name;
2778 } ath_mac_bb_names[] = {
2779         { AR_SREV_VERSION_5416_PCI,     "5416" },
2780         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2781         { AR_SREV_VERSION_9100,         "9100" },
2782         { AR_SREV_VERSION_9160,         "9160" },
2783         { AR_SREV_VERSION_9280,         "9280" },
2784         { AR_SREV_VERSION_9285,         "9285" }
2785 };
2786
2787 static struct {
2788         u16 version;
2789         const char * name;
2790 } ath_rf_names[] = {
2791         { 0,                            "5133" },
2792         { AR_RAD5133_SREV_MAJOR,        "5133" },
2793         { AR_RAD5122_SREV_MAJOR,        "5122" },
2794         { AR_RAD2133_SREV_MAJOR,        "2133" },
2795         { AR_RAD2122_SREV_MAJOR,        "2122" }
2796 };
2797
2798 /*
2799  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2800  */
2801 const char *
2802 ath_mac_bb_name(u32 mac_bb_version)
2803 {
2804         int i;
2805
2806         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2807                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2808                         return ath_mac_bb_names[i].name;
2809                 }
2810         }
2811
2812         return "????";
2813 }
2814
2815 /*
2816  * Return the RF name. "????" is returned if the RF is unknown.
2817  */
2818 const char *
2819 ath_rf_name(u16 rf_version)
2820 {
2821         int i;
2822
2823         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2824                 if (ath_rf_names[i].version == rf_version) {
2825                         return ath_rf_names[i].name;
2826                 }
2827         }
2828
2829         return "????";
2830 }
2831
2832 static int __init ath9k_init(void)
2833 {
2834         int error;
2835
2836         /* Register rate control algorithm */
2837         error = ath_rate_control_register();
2838         if (error != 0) {
2839                 printk(KERN_ERR
2840                         "ath9k: Unable to register rate control "
2841                         "algorithm: %d\n",
2842                         error);
2843                 goto err_out;
2844         }
2845
2846         error = ath9k_debug_create_root();
2847         if (error) {
2848                 printk(KERN_ERR
2849                         "ath9k: Unable to create debugfs root: %d\n",
2850                         error);
2851                 goto err_rate_unregister;
2852         }
2853
2854         error = ath_pci_init();
2855         if (error < 0) {
2856                 printk(KERN_ERR
2857                         "ath9k: No PCI devices found, driver not installed.\n");
2858                 error = -ENODEV;
2859                 goto err_remove_root;
2860         }
2861
2862         error = ath_ahb_init();
2863         if (error < 0) {
2864                 error = -ENODEV;
2865                 goto err_pci_exit;
2866         }
2867
2868         return 0;
2869
2870  err_pci_exit:
2871         ath_pci_exit();
2872
2873  err_remove_root:
2874         ath9k_debug_remove_root();
2875  err_rate_unregister:
2876         ath_rate_control_unregister();
2877  err_out:
2878         return error;
2879 }
2880 module_init(ath9k_init);
2881
2882 static void __exit ath9k_exit(void)
2883 {
2884         ath_ahb_exit();
2885         ath_pci_exit();
2886         ath9k_debug_remove_root();
2887         ath_rate_control_unregister();
2888         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2889 }
2890 module_exit(ath9k_exit);