ath9k: Do not try to calibrate radio when in sleep mode
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         const struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 /*
235  * Set/change channels.  If the channel is really being changed, it's done
236  * by reseting the chip.  To accomplish this we must first cleanup any pending
237  * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240                     struct ath9k_channel *hchan)
241 {
242         struct ath_hw *ah = sc->sc_ah;
243         bool fastcc = true, stopped;
244         struct ieee80211_channel *channel = hw->conf.channel;
245         int r;
246
247         if (sc->sc_flags & SC_OP_INVALID)
248                 return -EIO;
249
250         ath9k_ps_wakeup(sc);
251
252         /*
253          * This is only performed if the channel settings have
254          * actually changed.
255          *
256          * To switch channels clear any pending DMA operations;
257          * wait long enough for the RX fifo to drain, reset the
258          * hardware at the new frequency, and then re-enable
259          * the relevant bits of the h/w.
260          */
261         ath9k_hw_set_interrupts(ah, 0);
262         ath_drain_all_txq(sc, false);
263         stopped = ath_stoprecv(sc);
264
265         /* XXX: do not flush receive queue here. We don't want
266          * to flush data frames already in queue because of
267          * changing channel. */
268
269         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270                 fastcc = false;
271
272         DPRINTF(sc, ATH_DBG_CONFIG,
273                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274                 sc->sc_ah->curchan->channel,
275                 channel->center_freq, sc->tx_chan_width);
276
277         spin_lock_bh(&sc->sc_resetlock);
278
279         r = ath9k_hw_reset(ah, hchan, fastcc);
280         if (r) {
281                 DPRINTF(sc, ATH_DBG_FATAL,
282                         "Unable to reset channel (%u Mhz) "
283                         "reset status %d\n",
284                         channel->center_freq, r);
285                 spin_unlock_bh(&sc->sc_resetlock);
286                 return r;
287         }
288         spin_unlock_bh(&sc->sc_resetlock);
289
290         sc->sc_flags &= ~SC_OP_FULL_RESET;
291
292         if (ath_startrecv(sc) != 0) {
293                 DPRINTF(sc, ATH_DBG_FATAL,
294                         "Unable to restart recv logic\n");
295                 return -EIO;
296         }
297
298         ath_cache_conf_rate(sc, &hw->conf);
299         ath_update_txpow(sc);
300         ath9k_hw_set_interrupts(ah, sc->imask);
301         ath9k_ps_restore(sc);
302         return 0;
303 }
304
305 /*
306  *  This routine performs the periodic noise floor calibration function
307  *  that is used to adjust and optimize the chip performance.  This
308  *  takes environmental changes (location, temperature) into account.
309  *  When the task is complete, it reschedules itself depending on the
310  *  appropriate interval that was calculated.
311  */
312 static void ath_ani_calibrate(unsigned long data)
313 {
314         struct ath_softc *sc = (struct ath_softc *)data;
315         struct ath_hw *ah = sc->sc_ah;
316         bool longcal = false;
317         bool shortcal = false;
318         bool aniflag = false;
319         unsigned int timestamp = jiffies_to_msecs(jiffies);
320         u32 cal_interval, short_cal_interval;
321
322         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
324
325         /*
326         * don't calibrate when we're scanning.
327         * we are most likely not on our home channel.
328         */
329         if (sc->sc_flags & SC_OP_SCANNING)
330                 goto set_timer;
331
332         /* Only calibrate if awake */
333         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
334                 goto set_timer;
335
336         ath9k_ps_wakeup(sc);
337
338         /* Long calibration runs independently of short calibration. */
339         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
340                 longcal = true;
341                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
342                 sc->ani.longcal_timer = timestamp;
343         }
344
345         /* Short calibration applies only while caldone is false */
346         if (!sc->ani.caldone) {
347                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
348                         shortcal = true;
349                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
350                         sc->ani.shortcal_timer = timestamp;
351                         sc->ani.resetcal_timer = timestamp;
352                 }
353         } else {
354                 if ((timestamp - sc->ani.resetcal_timer) >=
355                     ATH_RESTART_CALINTERVAL) {
356                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
357                         if (sc->ani.caldone)
358                                 sc->ani.resetcal_timer = timestamp;
359                 }
360         }
361
362         /* Verify whether we must check ANI */
363         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
364                 aniflag = true;
365                 sc->ani.checkani_timer = timestamp;
366         }
367
368         /* Skip all processing if there's nothing to do. */
369         if (longcal || shortcal || aniflag) {
370                 /* Call ANI routine if necessary */
371                 if (aniflag)
372                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
373
374                 /* Perform calibration if necessary */
375                 if (longcal || shortcal) {
376                         sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
377                                                      sc->rx_chainmask, longcal);
378
379                         if (longcal)
380                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
381                                                                      ah->curchan);
382
383                         DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
384                                 ah->curchan->channel, ah->curchan->channelFlags,
385                                 sc->ani.noise_floor);
386                 }
387         }
388
389         ath9k_ps_restore(sc);
390
391 set_timer:
392         /*
393         * Set timer interval based on previous results.
394         * The interval must be the shortest necessary to satisfy ANI,
395         * short calibration and long calibration.
396         */
397         cal_interval = ATH_LONG_CALINTERVAL;
398         if (sc->sc_ah->config.enable_ani)
399                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
400         if (!sc->ani.caldone)
401                 cal_interval = min(cal_interval, (u32)short_cal_interval);
402
403         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
404 }
405
406 static void ath_start_ani(struct ath_softc *sc)
407 {
408         unsigned long timestamp = jiffies_to_msecs(jiffies);
409
410         sc->ani.longcal_timer = timestamp;
411         sc->ani.shortcal_timer = timestamp;
412         sc->ani.checkani_timer = timestamp;
413
414         mod_timer(&sc->ani.timer,
415                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
416 }
417
418 /*
419  * Update tx/rx chainmask. For legacy association,
420  * hard code chainmask to 1x1, for 11n association, use
421  * the chainmask configuration, for bt coexistence, use
422  * the chainmask configuration even in legacy mode.
423  */
424 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
425 {
426         if (is_ht ||
427             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
428                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
429                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
430         } else {
431                 sc->tx_chainmask = 1;
432                 sc->rx_chainmask = 1;
433         }
434
435         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
436                 sc->tx_chainmask, sc->rx_chainmask);
437 }
438
439 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
440 {
441         struct ath_node *an;
442
443         an = (struct ath_node *)sta->drv_priv;
444
445         if (sc->sc_flags & SC_OP_TXAGGR) {
446                 ath_tx_node_init(sc, an);
447                 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
448                                      sta->ht_cap.ampdu_factor);
449                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
450         }
451 }
452
453 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
454 {
455         struct ath_node *an = (struct ath_node *)sta->drv_priv;
456
457         if (sc->sc_flags & SC_OP_TXAGGR)
458                 ath_tx_node_cleanup(sc, an);
459 }
460
461 static void ath9k_tasklet(unsigned long data)
462 {
463         struct ath_softc *sc = (struct ath_softc *)data;
464         u32 status = sc->intrstatus;
465
466         ath9k_ps_wakeup(sc);
467
468         if (status & ATH9K_INT_FATAL) {
469                 ath_reset(sc, false);
470                 ath9k_ps_restore(sc);
471                 return;
472         }
473
474         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
475                 spin_lock_bh(&sc->rx.rxflushlock);
476                 ath_rx_tasklet(sc, 0);
477                 spin_unlock_bh(&sc->rx.rxflushlock);
478         }
479
480         if (status & ATH9K_INT_TX)
481                 ath_tx_tasklet(sc);
482
483         /* re-enable hardware interrupt */
484         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
485         ath9k_ps_restore(sc);
486 }
487
488 irqreturn_t ath_isr(int irq, void *dev)
489 {
490 #define SCHED_INTR (                            \
491                 ATH9K_INT_FATAL |               \
492                 ATH9K_INT_RXORN |               \
493                 ATH9K_INT_RXEOL |               \
494                 ATH9K_INT_RX |                  \
495                 ATH9K_INT_TX |                  \
496                 ATH9K_INT_BMISS |               \
497                 ATH9K_INT_CST |                 \
498                 ATH9K_INT_TSFOOR)
499
500         struct ath_softc *sc = dev;
501         struct ath_hw *ah = sc->sc_ah;
502         enum ath9k_int status;
503         bool sched = false;
504
505         /*
506          * The hardware is not ready/present, don't
507          * touch anything. Note this can happen early
508          * on if the IRQ is shared.
509          */
510         if (sc->sc_flags & SC_OP_INVALID)
511                 return IRQ_NONE;
512
513
514         /* shared irq, not for us */
515
516         if (!ath9k_hw_intrpend(ah))
517                 return IRQ_NONE;
518
519         /*
520          * Figure out the reason(s) for the interrupt.  Note
521          * that the hal returns a pseudo-ISR that may include
522          * bits we haven't explicitly enabled so we mask the
523          * value to insure we only process bits we requested.
524          */
525         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
526         status &= sc->imask;    /* discard unasked-for bits */
527
528         /*
529          * If there are no status bits set, then this interrupt was not
530          * for me (should have been caught above).
531          */
532         if (!status)
533                 return IRQ_NONE;
534
535         /* Cache the status */
536         sc->intrstatus = status;
537
538         if (status & SCHED_INTR)
539                 sched = true;
540
541         /*
542          * If a FATAL or RXORN interrupt is received, we have to reset the
543          * chip immediately.
544          */
545         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
546                 goto chip_reset;
547
548         if (status & ATH9K_INT_SWBA)
549                 tasklet_schedule(&sc->bcon_tasklet);
550
551         if (status & ATH9K_INT_TXURN)
552                 ath9k_hw_updatetxtriglevel(ah, true);
553
554         if (status & ATH9K_INT_MIB) {
555                 /*
556                  * Disable interrupts until we service the MIB
557                  * interrupt; otherwise it will continue to
558                  * fire.
559                  */
560                 ath9k_hw_set_interrupts(ah, 0);
561                 /*
562                  * Let the hal handle the event. We assume
563                  * it will clear whatever condition caused
564                  * the interrupt.
565                  */
566                 ath9k_hw_procmibevent(ah, &sc->nodestats);
567                 ath9k_hw_set_interrupts(ah, sc->imask);
568         }
569
570         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
571                 if (status & ATH9K_INT_TIM_TIMER) {
572                         /* Clear RxAbort bit so that we can
573                          * receive frames */
574                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
575                         ath9k_hw_setrxabort(sc->sc_ah, 0);
576                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
577                 }
578
579 chip_reset:
580
581         ath_debug_stat_interrupt(sc, status);
582
583         if (sched) {
584                 /* turn off every interrupt except SWBA */
585                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
586                 tasklet_schedule(&sc->intr_tq);
587         }
588
589         return IRQ_HANDLED;
590
591 #undef SCHED_INTR
592 }
593
594 static u32 ath_get_extchanmode(struct ath_softc *sc,
595                                struct ieee80211_channel *chan,
596                                enum nl80211_channel_type channel_type)
597 {
598         u32 chanmode = 0;
599
600         switch (chan->band) {
601         case IEEE80211_BAND_2GHZ:
602                 switch(channel_type) {
603                 case NL80211_CHAN_NO_HT:
604                 case NL80211_CHAN_HT20:
605                         chanmode = CHANNEL_G_HT20;
606                         break;
607                 case NL80211_CHAN_HT40PLUS:
608                         chanmode = CHANNEL_G_HT40PLUS;
609                         break;
610                 case NL80211_CHAN_HT40MINUS:
611                         chanmode = CHANNEL_G_HT40MINUS;
612                         break;
613                 }
614                 break;
615         case IEEE80211_BAND_5GHZ:
616                 switch(channel_type) {
617                 case NL80211_CHAN_NO_HT:
618                 case NL80211_CHAN_HT20:
619                         chanmode = CHANNEL_A_HT20;
620                         break;
621                 case NL80211_CHAN_HT40PLUS:
622                         chanmode = CHANNEL_A_HT40PLUS;
623                         break;
624                 case NL80211_CHAN_HT40MINUS:
625                         chanmode = CHANNEL_A_HT40MINUS;
626                         break;
627                 }
628                 break;
629         default:
630                 break;
631         }
632
633         return chanmode;
634 }
635
636 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
637                            struct ath9k_keyval *hk, const u8 *addr,
638                            bool authenticator)
639 {
640         const u8 *key_rxmic;
641         const u8 *key_txmic;
642
643         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
644         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
645
646         if (addr == NULL) {
647                 /*
648                  * Group key installation - only two key cache entries are used
649                  * regardless of splitmic capability since group key is only
650                  * used either for TX or RX.
651                  */
652                 if (authenticator) {
653                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
654                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
655                 } else {
656                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
657                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
658                 }
659                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
660         }
661         if (!sc->splitmic) {
662                 /* TX and RX keys share the same key cache entry. */
663                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
664                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
665                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
666         }
667
668         /* Separate key cache entries for TX and RX */
669
670         /* TX key goes at first index, RX key at +32. */
671         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
672         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
673                 /* TX MIC entry failed. No need to proceed further */
674                 DPRINTF(sc, ATH_DBG_FATAL,
675                         "Setting TX MIC Key Failed\n");
676                 return 0;
677         }
678
679         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
680         /* XXX delete tx key on failure? */
681         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
682 }
683
684 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
685 {
686         int i;
687
688         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
689                 if (test_bit(i, sc->keymap) ||
690                     test_bit(i + 64, sc->keymap))
691                         continue; /* At least one part of TKIP key allocated */
692                 if (sc->splitmic &&
693                     (test_bit(i + 32, sc->keymap) ||
694                      test_bit(i + 64 + 32, sc->keymap)))
695                         continue; /* At least one part of TKIP key allocated */
696
697                 /* Found a free slot for a TKIP key */
698                 return i;
699         }
700         return -1;
701 }
702
703 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
704 {
705         int i;
706
707         /* First, try to find slots that would not be available for TKIP. */
708         if (sc->splitmic) {
709                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
710                         if (!test_bit(i, sc->keymap) &&
711                             (test_bit(i + 32, sc->keymap) ||
712                              test_bit(i + 64, sc->keymap) ||
713                              test_bit(i + 64 + 32, sc->keymap)))
714                                 return i;
715                         if (!test_bit(i + 32, sc->keymap) &&
716                             (test_bit(i, sc->keymap) ||
717                              test_bit(i + 64, sc->keymap) ||
718                              test_bit(i + 64 + 32, sc->keymap)))
719                                 return i + 32;
720                         if (!test_bit(i + 64, sc->keymap) &&
721                             (test_bit(i , sc->keymap) ||
722                              test_bit(i + 32, sc->keymap) ||
723                              test_bit(i + 64 + 32, sc->keymap)))
724                                 return i + 64;
725                         if (!test_bit(i + 64 + 32, sc->keymap) &&
726                             (test_bit(i, sc->keymap) ||
727                              test_bit(i + 32, sc->keymap) ||
728                              test_bit(i + 64, sc->keymap)))
729                                 return i + 64 + 32;
730                 }
731         } else {
732                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
733                         if (!test_bit(i, sc->keymap) &&
734                             test_bit(i + 64, sc->keymap))
735                                 return i;
736                         if (test_bit(i, sc->keymap) &&
737                             !test_bit(i + 64, sc->keymap))
738                                 return i + 64;
739                 }
740         }
741
742         /* No partially used TKIP slots, pick any available slot */
743         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
744                 /* Do not allow slots that could be needed for TKIP group keys
745                  * to be used. This limitation could be removed if we know that
746                  * TKIP will not be used. */
747                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
748                         continue;
749                 if (sc->splitmic) {
750                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
751                                 continue;
752                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
753                                 continue;
754                 }
755
756                 if (!test_bit(i, sc->keymap))
757                         return i; /* Found a free slot for a key */
758         }
759
760         /* No free slot found */
761         return -1;
762 }
763
764 static int ath_key_config(struct ath_softc *sc,
765                           struct ieee80211_vif *vif,
766                           struct ieee80211_sta *sta,
767                           struct ieee80211_key_conf *key)
768 {
769         struct ath9k_keyval hk;
770         const u8 *mac = NULL;
771         int ret = 0;
772         int idx;
773
774         memset(&hk, 0, sizeof(hk));
775
776         switch (key->alg) {
777         case ALG_WEP:
778                 hk.kv_type = ATH9K_CIPHER_WEP;
779                 break;
780         case ALG_TKIP:
781                 hk.kv_type = ATH9K_CIPHER_TKIP;
782                 break;
783         case ALG_CCMP:
784                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
785                 break;
786         default:
787                 return -EOPNOTSUPP;
788         }
789
790         hk.kv_len = key->keylen;
791         memcpy(hk.kv_val, key->key, key->keylen);
792
793         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
794                 /* For now, use the default keys for broadcast keys. This may
795                  * need to change with virtual interfaces. */
796                 idx = key->keyidx;
797         } else if (key->keyidx) {
798                 if (WARN_ON(!sta))
799                         return -EOPNOTSUPP;
800                 mac = sta->addr;
801
802                 if (vif->type != NL80211_IFTYPE_AP) {
803                         /* Only keyidx 0 should be used with unicast key, but
804                          * allow this for client mode for now. */
805                         idx = key->keyidx;
806                 } else
807                         return -EIO;
808         } else {
809                 if (WARN_ON(!sta))
810                         return -EOPNOTSUPP;
811                 mac = sta->addr;
812
813                 if (key->alg == ALG_TKIP)
814                         idx = ath_reserve_key_cache_slot_tkip(sc);
815                 else
816                         idx = ath_reserve_key_cache_slot(sc);
817                 if (idx < 0)
818                         return -ENOSPC; /* no free key cache entries */
819         }
820
821         if (key->alg == ALG_TKIP)
822                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
823                                       vif->type == NL80211_IFTYPE_AP);
824         else
825                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
826
827         if (!ret)
828                 return -EIO;
829
830         set_bit(idx, sc->keymap);
831         if (key->alg == ALG_TKIP) {
832                 set_bit(idx + 64, sc->keymap);
833                 if (sc->splitmic) {
834                         set_bit(idx + 32, sc->keymap);
835                         set_bit(idx + 64 + 32, sc->keymap);
836                 }
837         }
838
839         return idx;
840 }
841
842 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
843 {
844         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
845         if (key->hw_key_idx < IEEE80211_WEP_NKID)
846                 return;
847
848         clear_bit(key->hw_key_idx, sc->keymap);
849         if (key->alg != ALG_TKIP)
850                 return;
851
852         clear_bit(key->hw_key_idx + 64, sc->keymap);
853         if (sc->splitmic) {
854                 clear_bit(key->hw_key_idx + 32, sc->keymap);
855                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
856         }
857 }
858
859 static void setup_ht_cap(struct ath_softc *sc,
860                          struct ieee80211_sta_ht_cap *ht_info)
861 {
862 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
863 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
864
865         ht_info->ht_supported = true;
866         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
867                        IEEE80211_HT_CAP_SM_PS |
868                        IEEE80211_HT_CAP_SGI_40 |
869                        IEEE80211_HT_CAP_DSSSCCK40;
870
871         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
872         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
873
874         /* set up supported mcs set */
875         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
876
877         switch(sc->rx_chainmask) {
878         case 1:
879                 ht_info->mcs.rx_mask[0] = 0xff;
880                 break;
881         case 3:
882         case 5:
883         case 7:
884         default:
885                 ht_info->mcs.rx_mask[0] = 0xff;
886                 ht_info->mcs.rx_mask[1] = 0xff;
887                 break;
888         }
889
890         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
891 }
892
893 static void ath9k_bss_assoc_info(struct ath_softc *sc,
894                                  struct ieee80211_vif *vif,
895                                  struct ieee80211_bss_conf *bss_conf)
896 {
897         struct ath_vif *avp = (void *)vif->drv_priv;
898
899         if (bss_conf->assoc) {
900                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
901                         bss_conf->aid, sc->curbssid);
902
903                 /* New association, store aid */
904                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
905                         sc->curaid = bss_conf->aid;
906                         ath9k_hw_write_associd(sc);
907                 }
908
909                 /* Configure the beacon */
910                 ath_beacon_config(sc, vif);
911
912                 /* Reset rssi stats */
913                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
914                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
915                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
916                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
917
918                 ath_start_ani(sc);
919         } else {
920                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
921                 sc->curaid = 0;
922         }
923 }
924
925 /********************************/
926 /*       LED functions          */
927 /********************************/
928
929 static void ath_led_blink_work(struct work_struct *work)
930 {
931         struct ath_softc *sc = container_of(work, struct ath_softc,
932                                             ath_led_blink_work.work);
933
934         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
935                 return;
936
937         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
938             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
939                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
940         else
941                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
942                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
943
944         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
945                            (sc->sc_flags & SC_OP_LED_ON) ?
946                            msecs_to_jiffies(sc->led_off_duration) :
947                            msecs_to_jiffies(sc->led_on_duration));
948
949         sc->led_on_duration = sc->led_on_cnt ?
950                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
951                         ATH_LED_ON_DURATION_IDLE;
952         sc->led_off_duration = sc->led_off_cnt ?
953                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
954                         ATH_LED_OFF_DURATION_IDLE;
955         sc->led_on_cnt = sc->led_off_cnt = 0;
956         if (sc->sc_flags & SC_OP_LED_ON)
957                 sc->sc_flags &= ~SC_OP_LED_ON;
958         else
959                 sc->sc_flags |= SC_OP_LED_ON;
960 }
961
962 static void ath_led_brightness(struct led_classdev *led_cdev,
963                                enum led_brightness brightness)
964 {
965         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
966         struct ath_softc *sc = led->sc;
967
968         switch (brightness) {
969         case LED_OFF:
970                 if (led->led_type == ATH_LED_ASSOC ||
971                     led->led_type == ATH_LED_RADIO) {
972                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
973                                 (led->led_type == ATH_LED_RADIO));
974                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
975                         if (led->led_type == ATH_LED_RADIO)
976                                 sc->sc_flags &= ~SC_OP_LED_ON;
977                 } else {
978                         sc->led_off_cnt++;
979                 }
980                 break;
981         case LED_FULL:
982                 if (led->led_type == ATH_LED_ASSOC) {
983                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
984                         queue_delayed_work(sc->hw->workqueue,
985                                            &sc->ath_led_blink_work, 0);
986                 } else if (led->led_type == ATH_LED_RADIO) {
987                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
988                         sc->sc_flags |= SC_OP_LED_ON;
989                 } else {
990                         sc->led_on_cnt++;
991                 }
992                 break;
993         default:
994                 break;
995         }
996 }
997
998 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
999                             char *trigger)
1000 {
1001         int ret;
1002
1003         led->sc = sc;
1004         led->led_cdev.name = led->name;
1005         led->led_cdev.default_trigger = trigger;
1006         led->led_cdev.brightness_set = ath_led_brightness;
1007
1008         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1009         if (ret)
1010                 DPRINTF(sc, ATH_DBG_FATAL,
1011                         "Failed to register led:%s", led->name);
1012         else
1013                 led->registered = 1;
1014         return ret;
1015 }
1016
1017 static void ath_unregister_led(struct ath_led *led)
1018 {
1019         if (led->registered) {
1020                 led_classdev_unregister(&led->led_cdev);
1021                 led->registered = 0;
1022         }
1023 }
1024
1025 static void ath_deinit_leds(struct ath_softc *sc)
1026 {
1027         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1028         ath_unregister_led(&sc->assoc_led);
1029         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1030         ath_unregister_led(&sc->tx_led);
1031         ath_unregister_led(&sc->rx_led);
1032         ath_unregister_led(&sc->radio_led);
1033         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1034 }
1035
1036 static void ath_init_leds(struct ath_softc *sc)
1037 {
1038         char *trigger;
1039         int ret;
1040
1041         /* Configure gpio 1 for output */
1042         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1043                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1044         /* LED off, active low */
1045         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1046
1047         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1048
1049         trigger = ieee80211_get_radio_led_name(sc->hw);
1050         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1051                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1052         ret = ath_register_led(sc, &sc->radio_led, trigger);
1053         sc->radio_led.led_type = ATH_LED_RADIO;
1054         if (ret)
1055                 goto fail;
1056
1057         trigger = ieee80211_get_assoc_led_name(sc->hw);
1058         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1059                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1060         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1061         sc->assoc_led.led_type = ATH_LED_ASSOC;
1062         if (ret)
1063                 goto fail;
1064
1065         trigger = ieee80211_get_tx_led_name(sc->hw);
1066         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1067                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1068         ret = ath_register_led(sc, &sc->tx_led, trigger);
1069         sc->tx_led.led_type = ATH_LED_TX;
1070         if (ret)
1071                 goto fail;
1072
1073         trigger = ieee80211_get_rx_led_name(sc->hw);
1074         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1075                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1076         ret = ath_register_led(sc, &sc->rx_led, trigger);
1077         sc->rx_led.led_type = ATH_LED_RX;
1078         if (ret)
1079                 goto fail;
1080
1081         return;
1082
1083 fail:
1084         ath_deinit_leds(sc);
1085 }
1086
1087 void ath_radio_enable(struct ath_softc *sc)
1088 {
1089         struct ath_hw *ah = sc->sc_ah;
1090         struct ieee80211_channel *channel = sc->hw->conf.channel;
1091         int r;
1092
1093         ath9k_ps_wakeup(sc);
1094         ath9k_hw_configpcipowersave(ah, 0);
1095
1096         spin_lock_bh(&sc->sc_resetlock);
1097         r = ath9k_hw_reset(ah, ah->curchan, false);
1098         if (r) {
1099                 DPRINTF(sc, ATH_DBG_FATAL,
1100                         "Unable to reset channel %u (%uMhz) ",
1101                         "reset status %d\n",
1102                         channel->center_freq, r);
1103         }
1104         spin_unlock_bh(&sc->sc_resetlock);
1105
1106         ath_update_txpow(sc);
1107         if (ath_startrecv(sc) != 0) {
1108                 DPRINTF(sc, ATH_DBG_FATAL,
1109                         "Unable to restart recv logic\n");
1110                 return;
1111         }
1112
1113         if (sc->sc_flags & SC_OP_BEACONS)
1114                 ath_beacon_config(sc, NULL);    /* restart beacons */
1115
1116         /* Re-Enable  interrupts */
1117         ath9k_hw_set_interrupts(ah, sc->imask);
1118
1119         /* Enable LED */
1120         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1121                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1122         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1123
1124         ieee80211_wake_queues(sc->hw);
1125         ath9k_ps_restore(sc);
1126 }
1127
1128 void ath_radio_disable(struct ath_softc *sc)
1129 {
1130         struct ath_hw *ah = sc->sc_ah;
1131         struct ieee80211_channel *channel = sc->hw->conf.channel;
1132         int r;
1133
1134         ath9k_ps_wakeup(sc);
1135         ieee80211_stop_queues(sc->hw);
1136
1137         /* Disable LED */
1138         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1139         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1140
1141         /* Disable interrupts */
1142         ath9k_hw_set_interrupts(ah, 0);
1143
1144         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1145         ath_stoprecv(sc);               /* turn off frame recv */
1146         ath_flushrecv(sc);              /* flush recv queue */
1147
1148         spin_lock_bh(&sc->sc_resetlock);
1149         r = ath9k_hw_reset(ah, ah->curchan, false);
1150         if (r) {
1151                 DPRINTF(sc, ATH_DBG_FATAL,
1152                         "Unable to reset channel %u (%uMhz) "
1153                         "reset status %d\n",
1154                         channel->center_freq, r);
1155         }
1156         spin_unlock_bh(&sc->sc_resetlock);
1157
1158         ath9k_hw_phy_disable(ah);
1159         ath9k_hw_configpcipowersave(ah, 1);
1160         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1161         ath9k_ps_restore(sc);
1162 }
1163
1164 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1165
1166 /*******************/
1167 /*      Rfkill     */
1168 /*******************/
1169
1170 static bool ath_is_rfkill_set(struct ath_softc *sc)
1171 {
1172         struct ath_hw *ah = sc->sc_ah;
1173
1174         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1175                                   ah->rfkill_polarity;
1176 }
1177
1178 /* h/w rfkill poll function */
1179 static void ath_rfkill_poll(struct work_struct *work)
1180 {
1181         struct ath_softc *sc = container_of(work, struct ath_softc,
1182                                             rf_kill.rfkill_poll.work);
1183         bool radio_on;
1184
1185         if (sc->sc_flags & SC_OP_INVALID)
1186                 return;
1187
1188         radio_on = !ath_is_rfkill_set(sc);
1189
1190         /*
1191          * enable/disable radio only when there is a
1192          * state change in RF switch
1193          */
1194         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1195                 enum rfkill_state state;
1196
1197                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1198                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1199                                 : RFKILL_STATE_HARD_BLOCKED;
1200                 } else if (radio_on) {
1201                         ath_radio_enable(sc);
1202                         state = RFKILL_STATE_UNBLOCKED;
1203                 } else {
1204                         ath_radio_disable(sc);
1205                         state = RFKILL_STATE_HARD_BLOCKED;
1206                 }
1207
1208                 if (state == RFKILL_STATE_HARD_BLOCKED)
1209                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1210                 else
1211                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1212
1213                 rfkill_force_state(sc->rf_kill.rfkill, state);
1214         }
1215
1216         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1217                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1218 }
1219
1220 /* s/w rfkill handler */
1221 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1222 {
1223         struct ath_softc *sc = data;
1224
1225         switch (state) {
1226         case RFKILL_STATE_SOFT_BLOCKED:
1227                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1228                     SC_OP_RFKILL_SW_BLOCKED)))
1229                         ath_radio_disable(sc);
1230                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1231                 return 0;
1232         case RFKILL_STATE_UNBLOCKED:
1233                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1234                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1235                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1236                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1237                                         "radio as it is disabled by h/w\n");
1238                                 return -EPERM;
1239                         }
1240                         ath_radio_enable(sc);
1241                 }
1242                 return 0;
1243         default:
1244                 return -EINVAL;
1245         }
1246 }
1247
1248 /* Init s/w rfkill */
1249 static int ath_init_sw_rfkill(struct ath_softc *sc)
1250 {
1251         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1252                                              RFKILL_TYPE_WLAN);
1253         if (!sc->rf_kill.rfkill) {
1254                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1255                 return -ENOMEM;
1256         }
1257
1258         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1259                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1260         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1261         sc->rf_kill.rfkill->data = sc;
1262         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1263         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1264
1265         return 0;
1266 }
1267
1268 /* Deinitialize rfkill */
1269 static void ath_deinit_rfkill(struct ath_softc *sc)
1270 {
1271         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1272                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1273
1274         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1275                 rfkill_unregister(sc->rf_kill.rfkill);
1276                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1277                 sc->rf_kill.rfkill = NULL;
1278         }
1279 }
1280
1281 static int ath_start_rfkill_poll(struct ath_softc *sc)
1282 {
1283         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1284                 queue_delayed_work(sc->hw->workqueue,
1285                                    &sc->rf_kill.rfkill_poll, 0);
1286
1287         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1288                 if (rfkill_register(sc->rf_kill.rfkill)) {
1289                         DPRINTF(sc, ATH_DBG_FATAL,
1290                                 "Unable to register rfkill\n");
1291                         rfkill_free(sc->rf_kill.rfkill);
1292
1293                         /* Deinitialize the device */
1294                         ath_cleanup(sc);
1295                         return -EIO;
1296                 } else {
1297                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1298                 }
1299         }
1300
1301         return 0;
1302 }
1303 #endif /* CONFIG_RFKILL */
1304
1305 void ath_cleanup(struct ath_softc *sc)
1306 {
1307         ath_detach(sc);
1308         free_irq(sc->irq, sc);
1309         ath_bus_cleanup(sc);
1310         kfree(sc->sec_wiphy);
1311         ieee80211_free_hw(sc->hw);
1312 }
1313
1314 void ath_detach(struct ath_softc *sc)
1315 {
1316         struct ieee80211_hw *hw = sc->hw;
1317         int i = 0;
1318
1319         ath9k_ps_wakeup(sc);
1320
1321         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1322
1323 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1324         ath_deinit_rfkill(sc);
1325 #endif
1326         ath_deinit_leds(sc);
1327         cancel_work_sync(&sc->chan_work);
1328         cancel_delayed_work_sync(&sc->wiphy_work);
1329
1330         for (i = 0; i < sc->num_sec_wiphy; i++) {
1331                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1332                 if (aphy == NULL)
1333                         continue;
1334                 sc->sec_wiphy[i] = NULL;
1335                 ieee80211_unregister_hw(aphy->hw);
1336                 ieee80211_free_hw(aphy->hw);
1337         }
1338         ieee80211_unregister_hw(hw);
1339         ath_rx_cleanup(sc);
1340         ath_tx_cleanup(sc);
1341
1342         tasklet_kill(&sc->intr_tq);
1343         tasklet_kill(&sc->bcon_tasklet);
1344
1345         if (!(sc->sc_flags & SC_OP_INVALID))
1346                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1347
1348         /* cleanup tx queues */
1349         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1350                 if (ATH_TXQ_SETUP(sc, i))
1351                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1352
1353         ath9k_hw_detach(sc->sc_ah);
1354         ath9k_exit_debug(sc);
1355         ath9k_ps_restore(sc);
1356 }
1357
1358 static int ath9k_reg_notifier(struct wiphy *wiphy,
1359                               struct regulatory_request *request)
1360 {
1361         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1362         struct ath_wiphy *aphy = hw->priv;
1363         struct ath_softc *sc = aphy->sc;
1364         struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1365
1366         return ath_reg_notifier_apply(wiphy, request, reg);
1367 }
1368
1369 static int ath_init(u16 devid, struct ath_softc *sc)
1370 {
1371         struct ath_hw *ah = NULL;
1372         int status;
1373         int error = 0, i;
1374         int csz = 0;
1375
1376         /* XXX: hardware will not be ready until ath_open() being called */
1377         sc->sc_flags |= SC_OP_INVALID;
1378
1379         if (ath9k_init_debug(sc) < 0)
1380                 printk(KERN_ERR "Unable to create debugfs files\n");
1381
1382         spin_lock_init(&sc->wiphy_lock);
1383         spin_lock_init(&sc->sc_resetlock);
1384         spin_lock_init(&sc->sc_serial_rw);
1385         mutex_init(&sc->mutex);
1386         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1387         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1388                      (unsigned long)sc);
1389
1390         /*
1391          * Cache line size is used to size and align various
1392          * structures used to communicate with the hardware.
1393          */
1394         ath_read_cachesize(sc, &csz);
1395         /* XXX assert csz is non-zero */
1396         sc->cachelsz = csz << 2;        /* convert to bytes */
1397
1398         ah = ath9k_hw_attach(devid, sc, &status);
1399         if (ah == NULL) {
1400                 DPRINTF(sc, ATH_DBG_FATAL,
1401                         "Unable to attach hardware; HAL status %d\n", status);
1402                 error = -ENXIO;
1403                 goto bad;
1404         }
1405         sc->sc_ah = ah;
1406
1407         /* Get the hardware key cache size. */
1408         sc->keymax = ah->caps.keycache_size;
1409         if (sc->keymax > ATH_KEYMAX) {
1410                 DPRINTF(sc, ATH_DBG_ANY,
1411                         "Warning, using only %u entries in %u key cache\n",
1412                         ATH_KEYMAX, sc->keymax);
1413                 sc->keymax = ATH_KEYMAX;
1414         }
1415
1416         /*
1417          * Reset the key cache since some parts do not
1418          * reset the contents on initial power up.
1419          */
1420         for (i = 0; i < sc->keymax; i++)
1421                 ath9k_hw_keyreset(ah, (u16) i);
1422
1423         error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1424                               ath9k_reg_notifier);
1425         if (error)
1426                 goto bad;
1427
1428         /* default to MONITOR mode */
1429         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1430
1431         /* Setup rate tables */
1432
1433         ath_rate_attach(sc);
1434         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1435         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1436
1437         /*
1438          * Allocate hardware transmit queues: one queue for
1439          * beacon frames and one data queue for each QoS
1440          * priority.  Note that the hal handles reseting
1441          * these queues at the needed time.
1442          */
1443         sc->beacon.beaconq = ath_beaconq_setup(ah);
1444         if (sc->beacon.beaconq == -1) {
1445                 DPRINTF(sc, ATH_DBG_FATAL,
1446                         "Unable to setup a beacon xmit queue\n");
1447                 error = -EIO;
1448                 goto bad2;
1449         }
1450         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1451         if (sc->beacon.cabq == NULL) {
1452                 DPRINTF(sc, ATH_DBG_FATAL,
1453                         "Unable to setup CAB xmit queue\n");
1454                 error = -EIO;
1455                 goto bad2;
1456         }
1457
1458         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1459         ath_cabq_update(sc);
1460
1461         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1462                 sc->tx.hwq_map[i] = -1;
1463
1464         /* Setup data queues */
1465         /* NB: ensure BK queue is the lowest priority h/w queue */
1466         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1467                 DPRINTF(sc, ATH_DBG_FATAL,
1468                         "Unable to setup xmit queue for BK traffic\n");
1469                 error = -EIO;
1470                 goto bad2;
1471         }
1472
1473         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1474                 DPRINTF(sc, ATH_DBG_FATAL,
1475                         "Unable to setup xmit queue for BE traffic\n");
1476                 error = -EIO;
1477                 goto bad2;
1478         }
1479         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1480                 DPRINTF(sc, ATH_DBG_FATAL,
1481                         "Unable to setup xmit queue for VI traffic\n");
1482                 error = -EIO;
1483                 goto bad2;
1484         }
1485         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1486                 DPRINTF(sc, ATH_DBG_FATAL,
1487                         "Unable to setup xmit queue for VO traffic\n");
1488                 error = -EIO;
1489                 goto bad2;
1490         }
1491
1492         /* Initializes the noise floor to a reasonable default value.
1493          * Later on this will be updated during ANI processing. */
1494
1495         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1496         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1497
1498         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1499                                    ATH9K_CIPHER_TKIP, NULL)) {
1500                 /*
1501                  * Whether we should enable h/w TKIP MIC.
1502                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1503                  * report WMM capable, so it's always safe to turn on
1504                  * TKIP MIC in this case.
1505                  */
1506                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1507                                        0, 1, NULL);
1508         }
1509
1510         /*
1511          * Check whether the separate key cache entries
1512          * are required to handle both tx+rx MIC keys.
1513          * With split mic keys the number of stations is limited
1514          * to 27 otherwise 59.
1515          */
1516         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1517                                    ATH9K_CIPHER_TKIP, NULL)
1518             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1519                                       ATH9K_CIPHER_MIC, NULL)
1520             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1521                                       0, NULL))
1522                 sc->splitmic = 1;
1523
1524         /* turn on mcast key search if possible */
1525         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1526                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1527                                              1, NULL);
1528
1529         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1530
1531         /* 11n Capabilities */
1532         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1533                 sc->sc_flags |= SC_OP_TXAGGR;
1534                 sc->sc_flags |= SC_OP_RXAGGR;
1535         }
1536
1537         sc->tx_chainmask = ah->caps.tx_chainmask;
1538         sc->rx_chainmask = ah->caps.rx_chainmask;
1539
1540         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1541         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1542
1543         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1544                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1545
1546         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1547
1548         /* initialize beacon slots */
1549         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1550                 sc->beacon.bslot[i] = NULL;
1551                 sc->beacon.bslot_aphy[i] = NULL;
1552         }
1553
1554         /* setup channels and rates */
1555
1556         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1557         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1558                 sc->rates[IEEE80211_BAND_2GHZ];
1559         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1560         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1561                 ARRAY_SIZE(ath9k_2ghz_chantable);
1562
1563         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1564                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1565                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1566                         sc->rates[IEEE80211_BAND_5GHZ];
1567                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1568                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1569                         ARRAY_SIZE(ath9k_5ghz_chantable);
1570         }
1571
1572         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1573                 ath9k_hw_btcoex_enable(sc->sc_ah);
1574
1575         return 0;
1576 bad2:
1577         /* cleanup tx queues */
1578         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1579                 if (ATH_TXQ_SETUP(sc, i))
1580                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1581 bad:
1582         if (ah)
1583                 ath9k_hw_detach(ah);
1584         ath9k_exit_debug(sc);
1585
1586         return error;
1587 }
1588
1589 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1590 {
1591         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1592                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1593                 IEEE80211_HW_SIGNAL_DBM |
1594                 IEEE80211_HW_AMPDU_AGGREGATION |
1595                 IEEE80211_HW_SUPPORTS_PS |
1596                 IEEE80211_HW_PS_NULLFUNC_STACK |
1597                 IEEE80211_HW_SPECTRUM_MGMT;
1598
1599         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1600                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1601
1602         hw->wiphy->interface_modes =
1603                 BIT(NL80211_IFTYPE_AP) |
1604                 BIT(NL80211_IFTYPE_STATION) |
1605                 BIT(NL80211_IFTYPE_ADHOC) |
1606                 BIT(NL80211_IFTYPE_MESH_POINT);
1607
1608         hw->queues = 4;
1609         hw->max_rates = 4;
1610         hw->channel_change_time = 5000;
1611         hw->max_listen_interval = 10;
1612         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1613         hw->sta_data_size = sizeof(struct ath_node);
1614         hw->vif_data_size = sizeof(struct ath_vif);
1615
1616         hw->rate_control_algorithm = "ath9k_rate_control";
1617
1618         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1619                 &sc->sbands[IEEE80211_BAND_2GHZ];
1620         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1621                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1622                         &sc->sbands[IEEE80211_BAND_5GHZ];
1623 }
1624
1625 int ath_attach(u16 devid, struct ath_softc *sc)
1626 {
1627         struct ieee80211_hw *hw = sc->hw;
1628         int error = 0, i;
1629         struct ath_regulatory *reg;
1630
1631         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1632
1633         error = ath_init(devid, sc);
1634         if (error != 0)
1635                 return error;
1636
1637         reg = &sc->sc_ah->regulatory;
1638
1639         /* get mac address from hardware and set in mac80211 */
1640
1641         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1642
1643         ath_set_hw_capab(sc, hw);
1644
1645         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1646                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1647                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1648                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1649         }
1650
1651         /* initialize tx/rx engine */
1652         error = ath_tx_init(sc, ATH_TXBUF);
1653         if (error != 0)
1654                 goto error_attach;
1655
1656         error = ath_rx_init(sc, ATH_RXBUF);
1657         if (error != 0)
1658                 goto error_attach;
1659
1660 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1661         /* Initialze h/w Rfkill */
1662         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1663                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1664
1665         /* Initialize s/w rfkill */
1666         error = ath_init_sw_rfkill(sc);
1667         if (error)
1668                 goto error_attach;
1669 #endif
1670
1671         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1672         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1673         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1674
1675         error = ieee80211_register_hw(hw);
1676
1677         if (!ath_is_world_regd(reg)) {
1678                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1679                 if (error)
1680                         goto error_attach;
1681         }
1682
1683         /* Initialize LED control */
1684         ath_init_leds(sc);
1685
1686
1687         return 0;
1688
1689 error_attach:
1690         /* cleanup tx queues */
1691         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1692                 if (ATH_TXQ_SETUP(sc, i))
1693                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1694
1695         ath9k_hw_detach(sc->sc_ah);
1696         ath9k_exit_debug(sc);
1697
1698         return error;
1699 }
1700
1701 int ath_reset(struct ath_softc *sc, bool retry_tx)
1702 {
1703         struct ath_hw *ah = sc->sc_ah;
1704         struct ieee80211_hw *hw = sc->hw;
1705         int r;
1706
1707         ath9k_hw_set_interrupts(ah, 0);
1708         ath_drain_all_txq(sc, retry_tx);
1709         ath_stoprecv(sc);
1710         ath_flushrecv(sc);
1711
1712         spin_lock_bh(&sc->sc_resetlock);
1713         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1714         if (r)
1715                 DPRINTF(sc, ATH_DBG_FATAL,
1716                         "Unable to reset hardware; reset status %d\n", r);
1717         spin_unlock_bh(&sc->sc_resetlock);
1718
1719         if (ath_startrecv(sc) != 0)
1720                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1721
1722         /*
1723          * We may be doing a reset in response to a request
1724          * that changes the channel so update any state that
1725          * might change as a result.
1726          */
1727         ath_cache_conf_rate(sc, &hw->conf);
1728
1729         ath_update_txpow(sc);
1730
1731         if (sc->sc_flags & SC_OP_BEACONS)
1732                 ath_beacon_config(sc, NULL);    /* restart beacons */
1733
1734         ath9k_hw_set_interrupts(ah, sc->imask);
1735
1736         if (retry_tx) {
1737                 int i;
1738                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1739                         if (ATH_TXQ_SETUP(sc, i)) {
1740                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1741                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1742                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1743                         }
1744                 }
1745         }
1746
1747         return r;
1748 }
1749
1750 /*
1751  *  This function will allocate both the DMA descriptor structure, and the
1752  *  buffers it contains.  These are used to contain the descriptors used
1753  *  by the system.
1754 */
1755 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1756                       struct list_head *head, const char *name,
1757                       int nbuf, int ndesc)
1758 {
1759 #define DS2PHYS(_dd, _ds)                                               \
1760         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1761 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1762 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1763
1764         struct ath_desc *ds;
1765         struct ath_buf *bf;
1766         int i, bsize, error;
1767
1768         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1769                 name, nbuf, ndesc);
1770
1771         INIT_LIST_HEAD(head);
1772         /* ath_desc must be a multiple of DWORDs */
1773         if ((sizeof(struct ath_desc) % 4) != 0) {
1774                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1775                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1776                 error = -ENOMEM;
1777                 goto fail;
1778         }
1779
1780         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1781
1782         /*
1783          * Need additional DMA memory because we can't use
1784          * descriptors that cross the 4K page boundary. Assume
1785          * one skipped descriptor per 4K page.
1786          */
1787         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1788                 u32 ndesc_skipped =
1789                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1790                 u32 dma_len;
1791
1792                 while (ndesc_skipped) {
1793                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1794                         dd->dd_desc_len += dma_len;
1795
1796                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1797                 };
1798         }
1799
1800         /* allocate descriptors */
1801         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1802                                          &dd->dd_desc_paddr, GFP_KERNEL);
1803         if (dd->dd_desc == NULL) {
1804                 error = -ENOMEM;
1805                 goto fail;
1806         }
1807         ds = dd->dd_desc;
1808         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1809                 name, ds, (u32) dd->dd_desc_len,
1810                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1811
1812         /* allocate buffers */
1813         bsize = sizeof(struct ath_buf) * nbuf;
1814         bf = kzalloc(bsize, GFP_KERNEL);
1815         if (bf == NULL) {
1816                 error = -ENOMEM;
1817                 goto fail2;
1818         }
1819         dd->dd_bufptr = bf;
1820
1821         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1822                 bf->bf_desc = ds;
1823                 bf->bf_daddr = DS2PHYS(dd, ds);
1824
1825                 if (!(sc->sc_ah->caps.hw_caps &
1826                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1827                         /*
1828                          * Skip descriptor addresses which can cause 4KB
1829                          * boundary crossing (addr + length) with a 32 dword
1830                          * descriptor fetch.
1831                          */
1832                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1833                                 ASSERT((caddr_t) bf->bf_desc <
1834                                        ((caddr_t) dd->dd_desc +
1835                                         dd->dd_desc_len));
1836
1837                                 ds += ndesc;
1838                                 bf->bf_desc = ds;
1839                                 bf->bf_daddr = DS2PHYS(dd, ds);
1840                         }
1841                 }
1842                 list_add_tail(&bf->list, head);
1843         }
1844         return 0;
1845 fail2:
1846         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1847                           dd->dd_desc_paddr);
1848 fail:
1849         memset(dd, 0, sizeof(*dd));
1850         return error;
1851 #undef ATH_DESC_4KB_BOUND_CHECK
1852 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1853 #undef DS2PHYS
1854 }
1855
1856 void ath_descdma_cleanup(struct ath_softc *sc,
1857                          struct ath_descdma *dd,
1858                          struct list_head *head)
1859 {
1860         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1861                           dd->dd_desc_paddr);
1862
1863         INIT_LIST_HEAD(head);
1864         kfree(dd->dd_bufptr);
1865         memset(dd, 0, sizeof(*dd));
1866 }
1867
1868 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1869 {
1870         int qnum;
1871
1872         switch (queue) {
1873         case 0:
1874                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1875                 break;
1876         case 1:
1877                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1878                 break;
1879         case 2:
1880                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1881                 break;
1882         case 3:
1883                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1884                 break;
1885         default:
1886                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1887                 break;
1888         }
1889
1890         return qnum;
1891 }
1892
1893 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1894 {
1895         int qnum;
1896
1897         switch (queue) {
1898         case ATH9K_WME_AC_VO:
1899                 qnum = 0;
1900                 break;
1901         case ATH9K_WME_AC_VI:
1902                 qnum = 1;
1903                 break;
1904         case ATH9K_WME_AC_BE:
1905                 qnum = 2;
1906                 break;
1907         case ATH9K_WME_AC_BK:
1908                 qnum = 3;
1909                 break;
1910         default:
1911                 qnum = -1;
1912                 break;
1913         }
1914
1915         return qnum;
1916 }
1917
1918 /* XXX: Remove me once we don't depend on ath9k_channel for all
1919  * this redundant data */
1920 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1921                            struct ath9k_channel *ichan)
1922 {
1923         struct ieee80211_channel *chan = hw->conf.channel;
1924         struct ieee80211_conf *conf = &hw->conf;
1925
1926         ichan->channel = chan->center_freq;
1927         ichan->chan = chan;
1928
1929         if (chan->band == IEEE80211_BAND_2GHZ) {
1930                 ichan->chanmode = CHANNEL_G;
1931                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1932         } else {
1933                 ichan->chanmode = CHANNEL_A;
1934                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1935         }
1936
1937         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1938
1939         if (conf_is_ht(conf)) {
1940                 if (conf_is_ht40(conf))
1941                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1942
1943                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1944                                             conf->channel_type);
1945         }
1946 }
1947
1948 /**********************/
1949 /* mac80211 callbacks */
1950 /**********************/
1951
1952 static int ath9k_start(struct ieee80211_hw *hw)
1953 {
1954         struct ath_wiphy *aphy = hw->priv;
1955         struct ath_softc *sc = aphy->sc;
1956         struct ieee80211_channel *curchan = hw->conf.channel;
1957         struct ath9k_channel *init_channel;
1958         int r, pos;
1959
1960         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1961                 "initial channel: %d MHz\n", curchan->center_freq);
1962
1963         mutex_lock(&sc->mutex);
1964
1965         if (ath9k_wiphy_started(sc)) {
1966                 if (sc->chan_idx == curchan->hw_value) {
1967                         /*
1968                          * Already on the operational channel, the new wiphy
1969                          * can be marked active.
1970                          */
1971                         aphy->state = ATH_WIPHY_ACTIVE;
1972                         ieee80211_wake_queues(hw);
1973                 } else {
1974                         /*
1975                          * Another wiphy is on another channel, start the new
1976                          * wiphy in paused state.
1977                          */
1978                         aphy->state = ATH_WIPHY_PAUSED;
1979                         ieee80211_stop_queues(hw);
1980                 }
1981                 mutex_unlock(&sc->mutex);
1982                 return 0;
1983         }
1984         aphy->state = ATH_WIPHY_ACTIVE;
1985
1986         /* setup initial channel */
1987
1988         pos = curchan->hw_value;
1989
1990         sc->chan_idx = pos;
1991         init_channel = &sc->sc_ah->channels[pos];
1992         ath9k_update_ichannel(sc, hw, init_channel);
1993
1994         /* Reset SERDES registers */
1995         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1996
1997         /*
1998          * The basic interface to setting the hardware in a good
1999          * state is ``reset''.  On return the hardware is known to
2000          * be powered up and with interrupts disabled.  This must
2001          * be followed by initialization of the appropriate bits
2002          * and then setup of the interrupt mask.
2003          */
2004         spin_lock_bh(&sc->sc_resetlock);
2005         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2006         if (r) {
2007                 DPRINTF(sc, ATH_DBG_FATAL,
2008                         "Unable to reset hardware; reset status %d "
2009                         "(freq %u MHz)\n", r,
2010                         curchan->center_freq);
2011                 spin_unlock_bh(&sc->sc_resetlock);
2012                 goto mutex_unlock;
2013         }
2014         spin_unlock_bh(&sc->sc_resetlock);
2015
2016         /*
2017          * This is needed only to setup initial state
2018          * but it's best done after a reset.
2019          */
2020         ath_update_txpow(sc);
2021
2022         /*
2023          * Setup the hardware after reset:
2024          * The receive engine is set going.
2025          * Frame transmit is handled entirely
2026          * in the frame output path; there's nothing to do
2027          * here except setup the interrupt mask.
2028          */
2029         if (ath_startrecv(sc) != 0) {
2030                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2031                 r = -EIO;
2032                 goto mutex_unlock;
2033         }
2034
2035         /* Setup our intr mask. */
2036         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2037                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2038                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2039
2040         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2041                 sc->imask |= ATH9K_INT_GTT;
2042
2043         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2044                 sc->imask |= ATH9K_INT_CST;
2045
2046         ath_cache_conf_rate(sc, &hw->conf);
2047
2048         sc->sc_flags &= ~SC_OP_INVALID;
2049
2050         /* Disable BMISS interrupt when we're not associated */
2051         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2052         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2053
2054         ieee80211_wake_queues(hw);
2055
2056 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2057         r = ath_start_rfkill_poll(sc);
2058 #endif
2059
2060 mutex_unlock:
2061         mutex_unlock(&sc->mutex);
2062
2063         return r;
2064 }
2065
2066 static int ath9k_tx(struct ieee80211_hw *hw,
2067                     struct sk_buff *skb)
2068 {
2069         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2070         struct ath_wiphy *aphy = hw->priv;
2071         struct ath_softc *sc = aphy->sc;
2072         struct ath_tx_control txctl;
2073         int hdrlen, padsize;
2074
2075         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2076                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2077                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2078                 goto exit;
2079         }
2080
2081         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2082                 /*
2083                  * We are using PS-Poll and mac80211 can request TX while in
2084                  * power save mode. Need to wake up hardware for the TX to be
2085                  * completed and if needed, also for RX of buffered frames.
2086                  */
2087                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2088                 ath9k_ps_wakeup(sc);
2089                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2090                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2091                         DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2092                                 "buffered frame\n");
2093                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2094                 } else {
2095                         DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2096                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2097                 }
2098                 /*
2099                  * The actual restore operation will happen only after
2100                  * the sc_flags bit is cleared. We are just dropping
2101                  * the ps_usecount here.
2102                  */
2103                 ath9k_ps_restore(sc);
2104         }
2105
2106         memset(&txctl, 0, sizeof(struct ath_tx_control));
2107
2108         /*
2109          * As a temporary workaround, assign seq# here; this will likely need
2110          * to be cleaned up to work better with Beacon transmission and virtual
2111          * BSSes.
2112          */
2113         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2114                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2115                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2116                         sc->tx.seq_no += 0x10;
2117                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2118                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2119         }
2120
2121         /* Add the padding after the header if this is not already done */
2122         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2123         if (hdrlen & 3) {
2124                 padsize = hdrlen % 4;
2125                 if (skb_headroom(skb) < padsize)
2126                         return -1;
2127                 skb_push(skb, padsize);
2128                 memmove(skb->data, skb->data + padsize, hdrlen);
2129         }
2130
2131         /* Check if a tx queue is available */
2132
2133         txctl.txq = ath_test_get_txq(sc, skb);
2134         if (!txctl.txq)
2135                 goto exit;
2136
2137         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2138
2139         if (ath_tx_start(hw, skb, &txctl) != 0) {
2140                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2141                 goto exit;
2142         }
2143
2144         return 0;
2145 exit:
2146         dev_kfree_skb_any(skb);
2147         return 0;
2148 }
2149
2150 static void ath9k_stop(struct ieee80211_hw *hw)
2151 {
2152         struct ath_wiphy *aphy = hw->priv;
2153         struct ath_softc *sc = aphy->sc;
2154
2155         aphy->state = ATH_WIPHY_INACTIVE;
2156
2157         if (sc->sc_flags & SC_OP_INVALID) {
2158                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2159                 return;
2160         }
2161
2162         mutex_lock(&sc->mutex);
2163
2164         ieee80211_stop_queues(hw);
2165
2166         if (ath9k_wiphy_started(sc)) {
2167                 mutex_unlock(&sc->mutex);
2168                 return; /* another wiphy still in use */
2169         }
2170
2171         /* make sure h/w will not generate any interrupt
2172          * before setting the invalid flag. */
2173         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2174
2175         if (!(sc->sc_flags & SC_OP_INVALID)) {
2176                 ath_drain_all_txq(sc, false);
2177                 ath_stoprecv(sc);
2178                 ath9k_hw_phy_disable(sc->sc_ah);
2179         } else
2180                 sc->rx.rxlink = NULL;
2181
2182 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2183         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2184                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2185 #endif
2186         /* disable HAL and put h/w to sleep */
2187         ath9k_hw_disable(sc->sc_ah);
2188         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2189
2190         sc->sc_flags |= SC_OP_INVALID;
2191
2192         mutex_unlock(&sc->mutex);
2193
2194         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2195 }
2196
2197 static int ath9k_add_interface(struct ieee80211_hw *hw,
2198                                struct ieee80211_if_init_conf *conf)
2199 {
2200         struct ath_wiphy *aphy = hw->priv;
2201         struct ath_softc *sc = aphy->sc;
2202         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2203         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2204         int ret = 0;
2205
2206         mutex_lock(&sc->mutex);
2207
2208         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2209             sc->nvifs > 0) {
2210                 ret = -ENOBUFS;
2211                 goto out;
2212         }
2213
2214         switch (conf->type) {
2215         case NL80211_IFTYPE_STATION:
2216                 ic_opmode = NL80211_IFTYPE_STATION;
2217                 break;
2218         case NL80211_IFTYPE_ADHOC:
2219         case NL80211_IFTYPE_AP:
2220         case NL80211_IFTYPE_MESH_POINT:
2221                 if (sc->nbcnvifs >= ATH_BCBUF) {
2222                         ret = -ENOBUFS;
2223                         goto out;
2224                 }
2225                 ic_opmode = conf->type;
2226                 break;
2227         default:
2228                 DPRINTF(sc, ATH_DBG_FATAL,
2229                         "Interface type %d not yet supported\n", conf->type);
2230                 ret = -EOPNOTSUPP;
2231                 goto out;
2232         }
2233
2234         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2235
2236         /* Set the VIF opmode */
2237         avp->av_opmode = ic_opmode;
2238         avp->av_bslot = -1;
2239
2240         sc->nvifs++;
2241
2242         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2243                 ath9k_set_bssid_mask(hw);
2244
2245         if (sc->nvifs > 1)
2246                 goto out; /* skip global settings for secondary vif */
2247
2248         if (ic_opmode == NL80211_IFTYPE_AP) {
2249                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2250                 sc->sc_flags |= SC_OP_TSF_RESET;
2251         }
2252
2253         /* Set the device opmode */
2254         sc->sc_ah->opmode = ic_opmode;
2255
2256         /*
2257          * Enable MIB interrupts when there are hardware phy counters.
2258          * Note we only do this (at the moment) for station mode.
2259          */
2260         if ((conf->type == NL80211_IFTYPE_STATION) ||
2261             (conf->type == NL80211_IFTYPE_ADHOC) ||
2262             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2263                 if (ath9k_hw_phycounters(sc->sc_ah))
2264                         sc->imask |= ATH9K_INT_MIB;
2265                 sc->imask |= ATH9K_INT_TSFOOR;
2266         }
2267
2268         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2269
2270         if (conf->type == NL80211_IFTYPE_AP)
2271                 ath_start_ani(sc);
2272
2273 out:
2274         mutex_unlock(&sc->mutex);
2275         return ret;
2276 }
2277
2278 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2279                                    struct ieee80211_if_init_conf *conf)
2280 {
2281         struct ath_wiphy *aphy = hw->priv;
2282         struct ath_softc *sc = aphy->sc;
2283         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2284         int i;
2285
2286         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2287
2288         mutex_lock(&sc->mutex);
2289
2290         /* Stop ANI */
2291         del_timer_sync(&sc->ani.timer);
2292
2293         /* Reclaim beacon resources */
2294         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2295             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2296             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2297                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2298                 ath_beacon_return(sc, avp);
2299         }
2300
2301         sc->sc_flags &= ~SC_OP_BEACONS;
2302
2303         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2304                 if (sc->beacon.bslot[i] == conf->vif) {
2305                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2306                                "slot\n", __func__);
2307                         sc->beacon.bslot[i] = NULL;
2308                         sc->beacon.bslot_aphy[i] = NULL;
2309                 }
2310         }
2311
2312         sc->nvifs--;
2313
2314         mutex_unlock(&sc->mutex);
2315 }
2316
2317 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2318 {
2319         struct ath_wiphy *aphy = hw->priv;
2320         struct ath_softc *sc = aphy->sc;
2321         struct ieee80211_conf *conf = &hw->conf;
2322         struct ath_hw *ah = sc->sc_ah;
2323
2324         mutex_lock(&sc->mutex);
2325
2326         if (changed & IEEE80211_CONF_CHANGE_PS) {
2327                 if (conf->flags & IEEE80211_CONF_PS) {
2328                         if (!(ah->caps.hw_caps &
2329                               ATH9K_HW_CAP_AUTOSLEEP)) {
2330                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2331                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2332                                         ath9k_hw_set_interrupts(sc->sc_ah,
2333                                                         sc->imask);
2334                                 }
2335                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2336                         }
2337                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2338                 } else {
2339                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2340                         if (!(ah->caps.hw_caps &
2341                               ATH9K_HW_CAP_AUTOSLEEP)) {
2342                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2343                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2344                                                   SC_OP_WAIT_FOR_CAB |
2345                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2346                                                   SC_OP_WAIT_FOR_TX_ACK);
2347                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2348                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2349                                         ath9k_hw_set_interrupts(sc->sc_ah,
2350                                                         sc->imask);
2351                                 }
2352                         }
2353                 }
2354         }
2355
2356         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2357                 struct ieee80211_channel *curchan = hw->conf.channel;
2358                 int pos = curchan->hw_value;
2359
2360                 aphy->chan_idx = pos;
2361                 aphy->chan_is_ht = conf_is_ht(conf);
2362
2363                 if (aphy->state == ATH_WIPHY_SCAN ||
2364                     aphy->state == ATH_WIPHY_ACTIVE)
2365                         ath9k_wiphy_pause_all_forced(sc, aphy);
2366                 else {
2367                         /*
2368                          * Do not change operational channel based on a paused
2369                          * wiphy changes.
2370                          */
2371                         goto skip_chan_change;
2372                 }
2373
2374                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2375                         curchan->center_freq);
2376
2377                 /* XXX: remove me eventualy */
2378                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2379
2380                 ath_update_chainmask(sc, conf_is_ht(conf));
2381
2382                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2383                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2384                         mutex_unlock(&sc->mutex);
2385                         return -EINVAL;
2386                 }
2387         }
2388
2389 skip_chan_change:
2390         if (changed & IEEE80211_CONF_CHANGE_POWER)
2391                 sc->config.txpowlimit = 2 * conf->power_level;
2392
2393         mutex_unlock(&sc->mutex);
2394
2395         return 0;
2396 }
2397
2398 #define SUPPORTED_FILTERS                       \
2399         (FIF_PROMISC_IN_BSS |                   \
2400         FIF_ALLMULTI |                          \
2401         FIF_CONTROL |                           \
2402         FIF_OTHER_BSS |                         \
2403         FIF_BCN_PRBRESP_PROMISC |               \
2404         FIF_FCSFAIL)
2405
2406 /* FIXME: sc->sc_full_reset ? */
2407 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2408                                    unsigned int changed_flags,
2409                                    unsigned int *total_flags,
2410                                    int mc_count,
2411                                    struct dev_mc_list *mclist)
2412 {
2413         struct ath_wiphy *aphy = hw->priv;
2414         struct ath_softc *sc = aphy->sc;
2415         u32 rfilt;
2416
2417         changed_flags &= SUPPORTED_FILTERS;
2418         *total_flags &= SUPPORTED_FILTERS;
2419
2420         sc->rx.rxfilter = *total_flags;
2421         rfilt = ath_calcrxfilter(sc);
2422         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2423
2424         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2425 }
2426
2427 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2428                              struct ieee80211_vif *vif,
2429                              enum sta_notify_cmd cmd,
2430                              struct ieee80211_sta *sta)
2431 {
2432         struct ath_wiphy *aphy = hw->priv;
2433         struct ath_softc *sc = aphy->sc;
2434
2435         switch (cmd) {
2436         case STA_NOTIFY_ADD:
2437                 ath_node_attach(sc, sta);
2438                 break;
2439         case STA_NOTIFY_REMOVE:
2440                 ath_node_detach(sc, sta);
2441                 break;
2442         default:
2443                 break;
2444         }
2445 }
2446
2447 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2448                          const struct ieee80211_tx_queue_params *params)
2449 {
2450         struct ath_wiphy *aphy = hw->priv;
2451         struct ath_softc *sc = aphy->sc;
2452         struct ath9k_tx_queue_info qi;
2453         int ret = 0, qnum;
2454
2455         if (queue >= WME_NUM_AC)
2456                 return 0;
2457
2458         mutex_lock(&sc->mutex);
2459
2460         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2461
2462         qi.tqi_aifs = params->aifs;
2463         qi.tqi_cwmin = params->cw_min;
2464         qi.tqi_cwmax = params->cw_max;
2465         qi.tqi_burstTime = params->txop;
2466         qnum = ath_get_hal_qnum(queue, sc);
2467
2468         DPRINTF(sc, ATH_DBG_CONFIG,
2469                 "Configure tx [queue/halq] [%d/%d],  "
2470                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2471                 queue, qnum, params->aifs, params->cw_min,
2472                 params->cw_max, params->txop);
2473
2474         ret = ath_txq_update(sc, qnum, &qi);
2475         if (ret)
2476                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2477
2478         mutex_unlock(&sc->mutex);
2479
2480         return ret;
2481 }
2482
2483 static int ath9k_set_key(struct ieee80211_hw *hw,
2484                          enum set_key_cmd cmd,
2485                          struct ieee80211_vif *vif,
2486                          struct ieee80211_sta *sta,
2487                          struct ieee80211_key_conf *key)
2488 {
2489         struct ath_wiphy *aphy = hw->priv;
2490         struct ath_softc *sc = aphy->sc;
2491         int ret = 0;
2492
2493         if (modparam_nohwcrypt)
2494                 return -ENOSPC;
2495
2496         mutex_lock(&sc->mutex);
2497         ath9k_ps_wakeup(sc);
2498         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2499
2500         switch (cmd) {
2501         case SET_KEY:
2502                 ret = ath_key_config(sc, vif, sta, key);
2503                 if (ret >= 0) {
2504                         key->hw_key_idx = ret;
2505                         /* push IV and Michael MIC generation to stack */
2506                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2507                         if (key->alg == ALG_TKIP)
2508                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2509                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2510                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2511                         ret = 0;
2512                 }
2513                 break;
2514         case DISABLE_KEY:
2515                 ath_key_delete(sc, key);
2516                 break;
2517         default:
2518                 ret = -EINVAL;
2519         }
2520
2521         ath9k_ps_restore(sc);
2522         mutex_unlock(&sc->mutex);
2523
2524         return ret;
2525 }
2526
2527 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2528                                    struct ieee80211_vif *vif,
2529                                    struct ieee80211_bss_conf *bss_conf,
2530                                    u32 changed)
2531 {
2532         struct ath_wiphy *aphy = hw->priv;
2533         struct ath_softc *sc = aphy->sc;
2534         struct ath_hw *ah = sc->sc_ah;
2535         struct ath_vif *avp = (void *)vif->drv_priv;
2536         u32 rfilt = 0;
2537         int error, i;
2538
2539         mutex_lock(&sc->mutex);
2540
2541         /*
2542          * TODO: Need to decide which hw opmode to use for
2543          *       multi-interface cases
2544          * XXX: This belongs into add_interface!
2545          */
2546         if (vif->type == NL80211_IFTYPE_AP &&
2547             ah->opmode != NL80211_IFTYPE_AP) {
2548                 ah->opmode = NL80211_IFTYPE_STATION;
2549                 ath9k_hw_setopmode(ah);
2550                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2551                 sc->curaid = 0;
2552                 ath9k_hw_write_associd(sc);
2553                 /* Request full reset to get hw opmode changed properly */
2554                 sc->sc_flags |= SC_OP_FULL_RESET;
2555         }
2556
2557         if ((changed & BSS_CHANGED_BSSID) &&
2558             !is_zero_ether_addr(bss_conf->bssid)) {
2559                 switch (vif->type) {
2560                 case NL80211_IFTYPE_STATION:
2561                 case NL80211_IFTYPE_ADHOC:
2562                 case NL80211_IFTYPE_MESH_POINT:
2563                         /* Set BSSID */
2564                         memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2565                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2566                         sc->curaid = 0;
2567                         ath9k_hw_write_associd(sc);
2568
2569                         /* Set aggregation protection mode parameters */
2570                         sc->config.ath_aggr_prot = 0;
2571
2572                         DPRINTF(sc, ATH_DBG_CONFIG,
2573                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2574                                 rfilt, sc->curbssid, sc->curaid);
2575
2576                         /* need to reconfigure the beacon */
2577                         sc->sc_flags &= ~SC_OP_BEACONS ;
2578
2579                         break;
2580                 default:
2581                         break;
2582                 }
2583         }
2584
2585         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2586             (vif->type == NL80211_IFTYPE_AP) ||
2587             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2588                 if ((changed & BSS_CHANGED_BEACON) ||
2589                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2590                      bss_conf->enable_beacon)) {
2591                         /*
2592                          * Allocate and setup the beacon frame.
2593                          *
2594                          * Stop any previous beacon DMA.  This may be
2595                          * necessary, for example, when an ibss merge
2596                          * causes reconfiguration; we may be called
2597                          * with beacon transmission active.
2598                          */
2599                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2600
2601                         error = ath_beacon_alloc(aphy, vif);
2602                         if (!error)
2603                                 ath_beacon_config(sc, vif);
2604                 }
2605         }
2606
2607         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2608         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2609                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2610                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2611                                 ath9k_hw_keysetmac(sc->sc_ah,
2612                                                    (u16)i,
2613                                                    sc->curbssid);
2614         }
2615
2616         /* Only legacy IBSS for now */
2617         if (vif->type == NL80211_IFTYPE_ADHOC)
2618                 ath_update_chainmask(sc, 0);
2619
2620         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2621                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2622                         bss_conf->use_short_preamble);
2623                 if (bss_conf->use_short_preamble)
2624                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2625                 else
2626                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2627         }
2628
2629         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2630                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2631                         bss_conf->use_cts_prot);
2632                 if (bss_conf->use_cts_prot &&
2633                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2634                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2635                 else
2636                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2637         }
2638
2639         if (changed & BSS_CHANGED_ASSOC) {
2640                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2641                         bss_conf->assoc);
2642                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2643         }
2644
2645         /*
2646          * The HW TSF has to be reset when the beacon interval changes.
2647          * We set the flag here, and ath_beacon_config_ap() would take this
2648          * into account when it gets called through the subsequent
2649          * config_interface() call - with IFCC_BEACON in the changed field.
2650          */
2651
2652         if (changed & BSS_CHANGED_BEACON_INT) {
2653                 sc->sc_flags |= SC_OP_TSF_RESET;
2654                 sc->beacon_interval = bss_conf->beacon_int;
2655         }
2656
2657         mutex_unlock(&sc->mutex);
2658 }
2659
2660 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2661 {
2662         u64 tsf;
2663         struct ath_wiphy *aphy = hw->priv;
2664         struct ath_softc *sc = aphy->sc;
2665
2666         mutex_lock(&sc->mutex);
2667         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2668         mutex_unlock(&sc->mutex);
2669
2670         return tsf;
2671 }
2672
2673 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2674 {
2675         struct ath_wiphy *aphy = hw->priv;
2676         struct ath_softc *sc = aphy->sc;
2677
2678         mutex_lock(&sc->mutex);
2679         ath9k_hw_settsf64(sc->sc_ah, tsf);
2680         mutex_unlock(&sc->mutex);
2681 }
2682
2683 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2684 {
2685         struct ath_wiphy *aphy = hw->priv;
2686         struct ath_softc *sc = aphy->sc;
2687
2688         mutex_lock(&sc->mutex);
2689         ath9k_hw_reset_tsf(sc->sc_ah);
2690         mutex_unlock(&sc->mutex);
2691 }
2692
2693 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2694                               enum ieee80211_ampdu_mlme_action action,
2695                               struct ieee80211_sta *sta,
2696                               u16 tid, u16 *ssn)
2697 {
2698         struct ath_wiphy *aphy = hw->priv;
2699         struct ath_softc *sc = aphy->sc;
2700         int ret = 0;
2701
2702         switch (action) {
2703         case IEEE80211_AMPDU_RX_START:
2704                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2705                         ret = -ENOTSUPP;
2706                 break;
2707         case IEEE80211_AMPDU_RX_STOP:
2708                 break;
2709         case IEEE80211_AMPDU_TX_START:
2710                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2711                 if (ret < 0)
2712                         DPRINTF(sc, ATH_DBG_FATAL,
2713                                 "Unable to start TX aggregation\n");
2714                 else
2715                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2716                 break;
2717         case IEEE80211_AMPDU_TX_STOP:
2718                 ret = ath_tx_aggr_stop(sc, sta, tid);
2719                 if (ret < 0)
2720                         DPRINTF(sc, ATH_DBG_FATAL,
2721                                 "Unable to stop TX aggregation\n");
2722
2723                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2724                 break;
2725         case IEEE80211_AMPDU_TX_OPERATIONAL:
2726                 ath_tx_aggr_resume(sc, sta, tid);
2727                 break;
2728         default:
2729                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2730         }
2731
2732         return ret;
2733 }
2734
2735 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2736 {
2737         struct ath_wiphy *aphy = hw->priv;
2738         struct ath_softc *sc = aphy->sc;
2739
2740         if (ath9k_wiphy_scanning(sc)) {
2741                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2742                        "same time\n");
2743                 /*
2744                  * Do not allow the concurrent scanning state for now. This
2745                  * could be improved with scanning control moved into ath9k.
2746                  */
2747                 return;
2748         }
2749
2750         aphy->state = ATH_WIPHY_SCAN;
2751         ath9k_wiphy_pause_all_forced(sc, aphy);
2752
2753         mutex_lock(&sc->mutex);
2754         sc->sc_flags |= SC_OP_SCANNING;
2755         mutex_unlock(&sc->mutex);
2756 }
2757
2758 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2759 {
2760         struct ath_wiphy *aphy = hw->priv;
2761         struct ath_softc *sc = aphy->sc;
2762
2763         mutex_lock(&sc->mutex);
2764         aphy->state = ATH_WIPHY_ACTIVE;
2765         sc->sc_flags &= ~SC_OP_SCANNING;
2766         sc->sc_flags |= SC_OP_FULL_RESET;
2767         mutex_unlock(&sc->mutex);
2768 }
2769
2770 struct ieee80211_ops ath9k_ops = {
2771         .tx                 = ath9k_tx,
2772         .start              = ath9k_start,
2773         .stop               = ath9k_stop,
2774         .add_interface      = ath9k_add_interface,
2775         .remove_interface   = ath9k_remove_interface,
2776         .config             = ath9k_config,
2777         .configure_filter   = ath9k_configure_filter,
2778         .sta_notify         = ath9k_sta_notify,
2779         .conf_tx            = ath9k_conf_tx,
2780         .bss_info_changed   = ath9k_bss_info_changed,
2781         .set_key            = ath9k_set_key,
2782         .get_tsf            = ath9k_get_tsf,
2783         .set_tsf            = ath9k_set_tsf,
2784         .reset_tsf          = ath9k_reset_tsf,
2785         .ampdu_action       = ath9k_ampdu_action,
2786         .sw_scan_start      = ath9k_sw_scan_start,
2787         .sw_scan_complete   = ath9k_sw_scan_complete,
2788 };
2789
2790 static struct {
2791         u32 version;
2792         const char * name;
2793 } ath_mac_bb_names[] = {
2794         { AR_SREV_VERSION_5416_PCI,     "5416" },
2795         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2796         { AR_SREV_VERSION_9100,         "9100" },
2797         { AR_SREV_VERSION_9160,         "9160" },
2798         { AR_SREV_VERSION_9280,         "9280" },
2799         { AR_SREV_VERSION_9285,         "9285" }
2800 };
2801
2802 static struct {
2803         u16 version;
2804         const char * name;
2805 } ath_rf_names[] = {
2806         { 0,                            "5133" },
2807         { AR_RAD5133_SREV_MAJOR,        "5133" },
2808         { AR_RAD5122_SREV_MAJOR,        "5122" },
2809         { AR_RAD2133_SREV_MAJOR,        "2133" },
2810         { AR_RAD2122_SREV_MAJOR,        "2122" }
2811 };
2812
2813 /*
2814  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2815  */
2816 const char *
2817 ath_mac_bb_name(u32 mac_bb_version)
2818 {
2819         int i;
2820
2821         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2822                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2823                         return ath_mac_bb_names[i].name;
2824                 }
2825         }
2826
2827         return "????";
2828 }
2829
2830 /*
2831  * Return the RF name. "????" is returned if the RF is unknown.
2832  */
2833 const char *
2834 ath_rf_name(u16 rf_version)
2835 {
2836         int i;
2837
2838         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2839                 if (ath_rf_names[i].version == rf_version) {
2840                         return ath_rf_names[i].name;
2841                 }
2842         }
2843
2844         return "????";
2845 }
2846
2847 static int __init ath9k_init(void)
2848 {
2849         int error;
2850
2851         /* Register rate control algorithm */
2852         error = ath_rate_control_register();
2853         if (error != 0) {
2854                 printk(KERN_ERR
2855                         "ath9k: Unable to register rate control "
2856                         "algorithm: %d\n",
2857                         error);
2858                 goto err_out;
2859         }
2860
2861         error = ath9k_debug_create_root();
2862         if (error) {
2863                 printk(KERN_ERR
2864                         "ath9k: Unable to create debugfs root: %d\n",
2865                         error);
2866                 goto err_rate_unregister;
2867         }
2868
2869         error = ath_pci_init();
2870         if (error < 0) {
2871                 printk(KERN_ERR
2872                         "ath9k: No PCI devices found, driver not installed.\n");
2873                 error = -ENODEV;
2874                 goto err_remove_root;
2875         }
2876
2877         error = ath_ahb_init();
2878         if (error < 0) {
2879                 error = -ENODEV;
2880                 goto err_pci_exit;
2881         }
2882
2883         return 0;
2884
2885  err_pci_exit:
2886         ath_pci_exit();
2887
2888  err_remove_root:
2889         ath9k_debug_remove_root();
2890  err_rate_unregister:
2891         ath_rate_control_unregister();
2892  err_out:
2893         return error;
2894 }
2895 module_init(ath9k_init);
2896
2897 static void __exit ath9k_exit(void)
2898 {
2899         ath_ahb_exit();
2900         ath_pci_exit();
2901         ath9k_debug_remove_root();
2902         ath_rate_control_unregister();
2903         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2904 }
2905 module_exit(ath9k_exit);