atheros: define a common priv struct
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19 #include "btcoex.h"
20
21 static char *dev_info = "ath9k";
22
23 MODULE_AUTHOR("Atheros Communications");
24 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
25 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
26 MODULE_LICENSE("Dual BSD/GPL");
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
31
32 /* We use the hw_value as an index into our private channel structure */
33
34 #define CHAN2G(_freq, _idx)  { \
35         .center_freq = (_freq), \
36         .hw_value = (_idx), \
37         .max_power = 20, \
38 }
39
40 #define CHAN5G(_freq, _idx) { \
41         .band = IEEE80211_BAND_5GHZ, \
42         .center_freq = (_freq), \
43         .hw_value = (_idx), \
44         .max_power = 20, \
45 }
46
47 /* Some 2 GHz radios are actually tunable on 2312-2732
48  * on 5 MHz steps, we support the channels which we know
49  * we have calibration data for all cards though to make
50  * this static */
51 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
52         CHAN2G(2412, 0), /* Channel 1 */
53         CHAN2G(2417, 1), /* Channel 2 */
54         CHAN2G(2422, 2), /* Channel 3 */
55         CHAN2G(2427, 3), /* Channel 4 */
56         CHAN2G(2432, 4), /* Channel 5 */
57         CHAN2G(2437, 5), /* Channel 6 */
58         CHAN2G(2442, 6), /* Channel 7 */
59         CHAN2G(2447, 7), /* Channel 8 */
60         CHAN2G(2452, 8), /* Channel 9 */
61         CHAN2G(2457, 9), /* Channel 10 */
62         CHAN2G(2462, 10), /* Channel 11 */
63         CHAN2G(2467, 11), /* Channel 12 */
64         CHAN2G(2472, 12), /* Channel 13 */
65         CHAN2G(2484, 13), /* Channel 14 */
66 };
67
68 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
69  * on 5 MHz steps, we support the channels which we know
70  * we have calibration data for all cards though to make
71  * this static */
72 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
73         /* _We_ call this UNII 1 */
74         CHAN5G(5180, 14), /* Channel 36 */
75         CHAN5G(5200, 15), /* Channel 40 */
76         CHAN5G(5220, 16), /* Channel 44 */
77         CHAN5G(5240, 17), /* Channel 48 */
78         /* _We_ call this UNII 2 */
79         CHAN5G(5260, 18), /* Channel 52 */
80         CHAN5G(5280, 19), /* Channel 56 */
81         CHAN5G(5300, 20), /* Channel 60 */
82         CHAN5G(5320, 21), /* Channel 64 */
83         /* _We_ call this "Middle band" */
84         CHAN5G(5500, 22), /* Channel 100 */
85         CHAN5G(5520, 23), /* Channel 104 */
86         CHAN5G(5540, 24), /* Channel 108 */
87         CHAN5G(5560, 25), /* Channel 112 */
88         CHAN5G(5580, 26), /* Channel 116 */
89         CHAN5G(5600, 27), /* Channel 120 */
90         CHAN5G(5620, 28), /* Channel 124 */
91         CHAN5G(5640, 29), /* Channel 128 */
92         CHAN5G(5660, 30), /* Channel 132 */
93         CHAN5G(5680, 31), /* Channel 136 */
94         CHAN5G(5700, 32), /* Channel 140 */
95         /* _We_ call this UNII 3 */
96         CHAN5G(5745, 33), /* Channel 149 */
97         CHAN5G(5765, 34), /* Channel 153 */
98         CHAN5G(5785, 35), /* Channel 157 */
99         CHAN5G(5805, 36), /* Channel 161 */
100         CHAN5G(5825, 37), /* Channel 165 */
101 };
102
103 static void ath_cache_conf_rate(struct ath_softc *sc,
104                                 struct ieee80211_conf *conf)
105 {
106         switch (conf->channel->band) {
107         case IEEE80211_BAND_2GHZ:
108                 if (conf_is_ht20(conf))
109                         sc->cur_rate_table =
110                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
111                 else if (conf_is_ht40_minus(conf))
112                         sc->cur_rate_table =
113                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
114                 else if (conf_is_ht40_plus(conf))
115                         sc->cur_rate_table =
116                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
117                 else
118                         sc->cur_rate_table =
119                           sc->hw_rate_table[ATH9K_MODE_11G];
120                 break;
121         case IEEE80211_BAND_5GHZ:
122                 if (conf_is_ht20(conf))
123                         sc->cur_rate_table =
124                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
125                 else if (conf_is_ht40_minus(conf))
126                         sc->cur_rate_table =
127                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
128                 else if (conf_is_ht40_plus(conf))
129                         sc->cur_rate_table =
130                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
131                 else
132                         sc->cur_rate_table =
133                           sc->hw_rate_table[ATH9K_MODE_11A];
134                 break;
135         default:
136                 BUG_ON(1);
137                 break;
138         }
139 }
140
141 static void ath_update_txpow(struct ath_softc *sc)
142 {
143         struct ath_hw *ah = sc->sc_ah;
144         u32 txpow;
145
146         if (sc->curtxpow != sc->config.txpowlimit) {
147                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
148                 /* read back in case value is clamped */
149                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
150                 sc->curtxpow = txpow;
151         }
152 }
153
154 static u8 parse_mpdudensity(u8 mpdudensity)
155 {
156         /*
157          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
158          *   0 for no restriction
159          *   1 for 1/4 us
160          *   2 for 1/2 us
161          *   3 for 1 us
162          *   4 for 2 us
163          *   5 for 4 us
164          *   6 for 8 us
165          *   7 for 16 us
166          */
167         switch (mpdudensity) {
168         case 0:
169                 return 0;
170         case 1:
171         case 2:
172         case 3:
173                 /* Our lower layer calculations limit our precision to
174                    1 microsecond */
175                 return 1;
176         case 4:
177                 return 2;
178         case 5:
179                 return 4;
180         case 6:
181                 return 8;
182         case 7:
183                 return 16;
184         default:
185                 return 0;
186         }
187 }
188
189 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
190 {
191         const struct ath_rate_table *rate_table = NULL;
192         struct ieee80211_supported_band *sband;
193         struct ieee80211_rate *rate;
194         int i, maxrates;
195
196         switch (band) {
197         case IEEE80211_BAND_2GHZ:
198                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
199                 break;
200         case IEEE80211_BAND_5GHZ:
201                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
202                 break;
203         default:
204                 break;
205         }
206
207         if (rate_table == NULL)
208                 return;
209
210         sband = &sc->sbands[band];
211         rate = sc->rates[band];
212
213         if (rate_table->rate_cnt > ATH_RATE_MAX)
214                 maxrates = ATH_RATE_MAX;
215         else
216                 maxrates = rate_table->rate_cnt;
217
218         for (i = 0; i < maxrates; i++) {
219                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
220                 rate[i].hw_value = rate_table->info[i].ratecode;
221                 if (rate_table->info[i].short_preamble) {
222                         rate[i].hw_value_short = rate_table->info[i].ratecode |
223                                 rate_table->info[i].short_preamble;
224                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
225                 }
226                 sband->n_bitrates++;
227
228                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
229                           "Rate: %2dMbps, ratecode: %2d\n",
230                           rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
235                                                 struct ieee80211_hw *hw)
236 {
237         struct ieee80211_channel *curchan = hw->conf.channel;
238         struct ath9k_channel *channel;
239         u8 chan_idx;
240
241         chan_idx = curchan->hw_value;
242         channel = &sc->sc_ah->channels[chan_idx];
243         ath9k_update_ichannel(sc, hw, channel);
244         return channel;
245 }
246
247 static bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
248 {
249         unsigned long flags;
250         bool ret;
251
252         spin_lock_irqsave(&sc->sc_pm_lock, flags);
253         ret = ath9k_hw_setpower(sc->sc_ah, mode);
254         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
255
256         return ret;
257 }
258
259 void ath9k_ps_wakeup(struct ath_softc *sc)
260 {
261         unsigned long flags;
262
263         spin_lock_irqsave(&sc->sc_pm_lock, flags);
264         if (++sc->ps_usecount != 1)
265                 goto unlock;
266
267         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
268
269  unlock:
270         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
271 }
272
273 void ath9k_ps_restore(struct ath_softc *sc)
274 {
275         unsigned long flags;
276
277         spin_lock_irqsave(&sc->sc_pm_lock, flags);
278         if (--sc->ps_usecount != 0)
279                 goto unlock;
280
281         if (sc->ps_enabled &&
282             !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
283                               SC_OP_WAIT_FOR_CAB |
284                               SC_OP_WAIT_FOR_PSPOLL_DATA |
285                               SC_OP_WAIT_FOR_TX_ACK)))
286                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
287
288  unlock:
289         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
290 }
291
292 /*
293  * Set/change channels.  If the channel is really being changed, it's done
294  * by reseting the chip.  To accomplish this we must first cleanup any pending
295  * DMA, then restart stuff.
296 */
297 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
298                     struct ath9k_channel *hchan)
299 {
300         struct ath_hw *ah = sc->sc_ah;
301         struct ath_common *common = ath9k_hw_common(ah);
302         struct ieee80211_conf *conf = &common->hw->conf;
303         bool fastcc = true, stopped;
304         struct ieee80211_channel *channel = hw->conf.channel;
305         int r;
306
307         if (sc->sc_flags & SC_OP_INVALID)
308                 return -EIO;
309
310         ath9k_ps_wakeup(sc);
311
312         /*
313          * This is only performed if the channel settings have
314          * actually changed.
315          *
316          * To switch channels clear any pending DMA operations;
317          * wait long enough for the RX fifo to drain, reset the
318          * hardware at the new frequency, and then re-enable
319          * the relevant bits of the h/w.
320          */
321         ath9k_hw_set_interrupts(ah, 0);
322         ath_drain_all_txq(sc, false);
323         stopped = ath_stoprecv(sc);
324
325         /* XXX: do not flush receive queue here. We don't want
326          * to flush data frames already in queue because of
327          * changing channel. */
328
329         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
330                 fastcc = false;
331
332         ath_print(common, ATH_DBG_CONFIG,
333                   "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
334                   sc->sc_ah->curchan->channel,
335                   channel->center_freq, conf_is_ht40(conf));
336
337         spin_lock_bh(&sc->sc_resetlock);
338
339         r = ath9k_hw_reset(ah, hchan, fastcc);
340         if (r) {
341                 ath_print(common, ATH_DBG_FATAL,
342                           "Unable to reset channel (%u Mhz) "
343                           "reset status %d\n",
344                           channel->center_freq, r);
345                 spin_unlock_bh(&sc->sc_resetlock);
346                 goto ps_restore;
347         }
348         spin_unlock_bh(&sc->sc_resetlock);
349
350         sc->sc_flags &= ~SC_OP_FULL_RESET;
351
352         if (ath_startrecv(sc) != 0) {
353                 ath_print(common, ATH_DBG_FATAL,
354                           "Unable to restart recv logic\n");
355                 r = -EIO;
356                 goto ps_restore;
357         }
358
359         ath_cache_conf_rate(sc, &hw->conf);
360         ath_update_txpow(sc);
361         ath9k_hw_set_interrupts(ah, sc->imask);
362
363  ps_restore:
364         ath9k_ps_restore(sc);
365         return r;
366 }
367
368 /*
369  *  This routine performs the periodic noise floor calibration function
370  *  that is used to adjust and optimize the chip performance.  This
371  *  takes environmental changes (location, temperature) into account.
372  *  When the task is complete, it reschedules itself depending on the
373  *  appropriate interval that was calculated.
374  */
375 static void ath_ani_calibrate(unsigned long data)
376 {
377         struct ath_softc *sc = (struct ath_softc *)data;
378         struct ath_hw *ah = sc->sc_ah;
379         struct ath_common *common = ath9k_hw_common(ah);
380         bool longcal = false;
381         bool shortcal = false;
382         bool aniflag = false;
383         unsigned int timestamp = jiffies_to_msecs(jiffies);
384         u32 cal_interval, short_cal_interval;
385
386         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
387                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
388
389         /*
390         * don't calibrate when we're scanning.
391         * we are most likely not on our home channel.
392         */
393         spin_lock(&sc->ani_lock);
394         if (sc->sc_flags & SC_OP_SCANNING)
395                 goto set_timer;
396
397         /* Only calibrate if awake */
398         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
399                 goto set_timer;
400
401         ath9k_ps_wakeup(sc);
402
403         /* Long calibration runs independently of short calibration. */
404         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
405                 longcal = true;
406                 ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
407                 sc->ani.longcal_timer = timestamp;
408         }
409
410         /* Short calibration applies only while caldone is false */
411         if (!sc->ani.caldone) {
412                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
413                         shortcal = true;
414                         ath_print(common, ATH_DBG_ANI,
415                                   "shortcal @%lu\n", jiffies);
416                         sc->ani.shortcal_timer = timestamp;
417                         sc->ani.resetcal_timer = timestamp;
418                 }
419         } else {
420                 if ((timestamp - sc->ani.resetcal_timer) >=
421                     ATH_RESTART_CALINTERVAL) {
422                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
423                         if (sc->ani.caldone)
424                                 sc->ani.resetcal_timer = timestamp;
425                 }
426         }
427
428         /* Verify whether we must check ANI */
429         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
430                 aniflag = true;
431                 sc->ani.checkani_timer = timestamp;
432         }
433
434         /* Skip all processing if there's nothing to do. */
435         if (longcal || shortcal || aniflag) {
436                 /* Call ANI routine if necessary */
437                 if (aniflag)
438                         ath9k_hw_ani_monitor(ah, ah->curchan);
439
440                 /* Perform calibration if necessary */
441                 if (longcal || shortcal) {
442                         sc->ani.caldone =
443                                 ath9k_hw_calibrate(ah,
444                                                    ah->curchan,
445                                                    common->rx_chainmask,
446                                                    longcal);
447
448                         if (longcal)
449                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
450                                                                      ah->curchan);
451
452                         ath_print(common, ATH_DBG_ANI,
453                                   " calibrate chan %u/%x nf: %d\n",
454                                   ah->curchan->channel,
455                                   ah->curchan->channelFlags,
456                                   sc->ani.noise_floor);
457                 }
458         }
459
460         ath9k_ps_restore(sc);
461
462 set_timer:
463         spin_unlock(&sc->ani_lock);
464         /*
465         * Set timer interval based on previous results.
466         * The interval must be the shortest necessary to satisfy ANI,
467         * short calibration and long calibration.
468         */
469         cal_interval = ATH_LONG_CALINTERVAL;
470         if (sc->sc_ah->config.enable_ani)
471                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
472         if (!sc->ani.caldone)
473                 cal_interval = min(cal_interval, (u32)short_cal_interval);
474
475         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
476 }
477
478 static void ath_start_ani(struct ath_softc *sc)
479 {
480         unsigned long timestamp = jiffies_to_msecs(jiffies);
481
482         sc->ani.longcal_timer = timestamp;
483         sc->ani.shortcal_timer = timestamp;
484         sc->ani.checkani_timer = timestamp;
485
486         mod_timer(&sc->ani.timer,
487                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
488 }
489
490 /*
491  * Update tx/rx chainmask. For legacy association,
492  * hard code chainmask to 1x1, for 11n association, use
493  * the chainmask configuration, for bt coexistence, use
494  * the chainmask configuration even in legacy mode.
495  */
496 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
497 {
498         struct ath_hw *ah = sc->sc_ah;
499         struct ath_common *common = ath9k_hw_common(ah);
500
501         if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
502             (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
503                 common->tx_chainmask = ah->caps.tx_chainmask;
504                 common->rx_chainmask = ah->caps.rx_chainmask;
505         } else {
506                 common->tx_chainmask = 1;
507                 common->rx_chainmask = 1;
508         }
509
510         ath_print(common, ATH_DBG_CONFIG,
511                   "tx chmask: %d, rx chmask: %d\n",
512                   common->tx_chainmask,
513                   common->rx_chainmask);
514 }
515
516 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
517 {
518         struct ath_node *an;
519
520         an = (struct ath_node *)sta->drv_priv;
521
522         if (sc->sc_flags & SC_OP_TXAGGR) {
523                 ath_tx_node_init(sc, an);
524                 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
525                                      sta->ht_cap.ampdu_factor);
526                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
527                 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
528         }
529 }
530
531 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
532 {
533         struct ath_node *an = (struct ath_node *)sta->drv_priv;
534
535         if (sc->sc_flags & SC_OP_TXAGGR)
536                 ath_tx_node_cleanup(sc, an);
537 }
538
539 static void ath9k_tasklet(unsigned long data)
540 {
541         struct ath_softc *sc = (struct ath_softc *)data;
542         struct ath_hw *ah = sc->sc_ah;
543         struct ath_common *common = ath9k_hw_common(ah);
544
545         u32 status = sc->intrstatus;
546
547         ath9k_ps_wakeup(sc);
548
549         if (status & ATH9K_INT_FATAL) {
550                 ath_reset(sc, false);
551                 ath9k_ps_restore(sc);
552                 return;
553         }
554
555         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
556                 spin_lock_bh(&sc->rx.rxflushlock);
557                 ath_rx_tasklet(sc, 0);
558                 spin_unlock_bh(&sc->rx.rxflushlock);
559         }
560
561         if (status & ATH9K_INT_TX)
562                 ath_tx_tasklet(sc);
563
564         if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
565                 /*
566                  * TSF sync does not look correct; remain awake to sync with
567                  * the next Beacon.
568                  */
569                 ath_print(common, ATH_DBG_PS,
570                           "TSFOOR - Sync with next Beacon\n");
571                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
572         }
573
574         if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
575                 if (status & ATH9K_INT_GENTIMER)
576                         ath_gen_timer_isr(sc->sc_ah);
577
578         /* re-enable hardware interrupt */
579         ath9k_hw_set_interrupts(ah, sc->imask);
580         ath9k_ps_restore(sc);
581 }
582
583 irqreturn_t ath_isr(int irq, void *dev)
584 {
585 #define SCHED_INTR (                            \
586                 ATH9K_INT_FATAL |               \
587                 ATH9K_INT_RXORN |               \
588                 ATH9K_INT_RXEOL |               \
589                 ATH9K_INT_RX |                  \
590                 ATH9K_INT_TX |                  \
591                 ATH9K_INT_BMISS |               \
592                 ATH9K_INT_CST |                 \
593                 ATH9K_INT_TSFOOR |              \
594                 ATH9K_INT_GENTIMER)
595
596         struct ath_softc *sc = dev;
597         struct ath_hw *ah = sc->sc_ah;
598         enum ath9k_int status;
599         bool sched = false;
600
601         /*
602          * The hardware is not ready/present, don't
603          * touch anything. Note this can happen early
604          * on if the IRQ is shared.
605          */
606         if (sc->sc_flags & SC_OP_INVALID)
607                 return IRQ_NONE;
608
609
610         /* shared irq, not for us */
611
612         if (!ath9k_hw_intrpend(ah))
613                 return IRQ_NONE;
614
615         /*
616          * Figure out the reason(s) for the interrupt.  Note
617          * that the hal returns a pseudo-ISR that may include
618          * bits we haven't explicitly enabled so we mask the
619          * value to insure we only process bits we requested.
620          */
621         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
622         status &= sc->imask;    /* discard unasked-for bits */
623
624         /*
625          * If there are no status bits set, then this interrupt was not
626          * for me (should have been caught above).
627          */
628         if (!status)
629                 return IRQ_NONE;
630
631         /* Cache the status */
632         sc->intrstatus = status;
633
634         if (status & SCHED_INTR)
635                 sched = true;
636
637         /*
638          * If a FATAL or RXORN interrupt is received, we have to reset the
639          * chip immediately.
640          */
641         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
642                 goto chip_reset;
643
644         if (status & ATH9K_INT_SWBA)
645                 tasklet_schedule(&sc->bcon_tasklet);
646
647         if (status & ATH9K_INT_TXURN)
648                 ath9k_hw_updatetxtriglevel(ah, true);
649
650         if (status & ATH9K_INT_MIB) {
651                 /*
652                  * Disable interrupts until we service the MIB
653                  * interrupt; otherwise it will continue to
654                  * fire.
655                  */
656                 ath9k_hw_set_interrupts(ah, 0);
657                 /*
658                  * Let the hal handle the event. We assume
659                  * it will clear whatever condition caused
660                  * the interrupt.
661                  */
662                 ath9k_hw_procmibevent(ah);
663                 ath9k_hw_set_interrupts(ah, sc->imask);
664         }
665
666         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
667                 if (status & ATH9K_INT_TIM_TIMER) {
668                         /* Clear RxAbort bit so that we can
669                          * receive frames */
670                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
671                         ath9k_hw_setrxabort(sc->sc_ah, 0);
672                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
673                 }
674
675 chip_reset:
676
677         ath_debug_stat_interrupt(sc, status);
678
679         if (sched) {
680                 /* turn off every interrupt except SWBA */
681                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
682                 tasklet_schedule(&sc->intr_tq);
683         }
684
685         return IRQ_HANDLED;
686
687 #undef SCHED_INTR
688 }
689
690 static u32 ath_get_extchanmode(struct ath_softc *sc,
691                                struct ieee80211_channel *chan,
692                                enum nl80211_channel_type channel_type)
693 {
694         u32 chanmode = 0;
695
696         switch (chan->band) {
697         case IEEE80211_BAND_2GHZ:
698                 switch(channel_type) {
699                 case NL80211_CHAN_NO_HT:
700                 case NL80211_CHAN_HT20:
701                         chanmode = CHANNEL_G_HT20;
702                         break;
703                 case NL80211_CHAN_HT40PLUS:
704                         chanmode = CHANNEL_G_HT40PLUS;
705                         break;
706                 case NL80211_CHAN_HT40MINUS:
707                         chanmode = CHANNEL_G_HT40MINUS;
708                         break;
709                 }
710                 break;
711         case IEEE80211_BAND_5GHZ:
712                 switch(channel_type) {
713                 case NL80211_CHAN_NO_HT:
714                 case NL80211_CHAN_HT20:
715                         chanmode = CHANNEL_A_HT20;
716                         break;
717                 case NL80211_CHAN_HT40PLUS:
718                         chanmode = CHANNEL_A_HT40PLUS;
719                         break;
720                 case NL80211_CHAN_HT40MINUS:
721                         chanmode = CHANNEL_A_HT40MINUS;
722                         break;
723                 }
724                 break;
725         default:
726                 break;
727         }
728
729         return chanmode;
730 }
731
732 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
733                            struct ath9k_keyval *hk, const u8 *addr,
734                            bool authenticator)
735 {
736         const u8 *key_rxmic;
737         const u8 *key_txmic;
738
739         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
740         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
741
742         if (addr == NULL) {
743                 /*
744                  * Group key installation - only two key cache entries are used
745                  * regardless of splitmic capability since group key is only
746                  * used either for TX or RX.
747                  */
748                 if (authenticator) {
749                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
750                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
751                 } else {
752                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
753                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
754                 }
755                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
756         }
757         if (!sc->splitmic) {
758                 /* TX and RX keys share the same key cache entry. */
759                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
760                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
761                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
762         }
763
764         /* Separate key cache entries for TX and RX */
765
766         /* TX key goes at first index, RX key at +32. */
767         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
768         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
769                 /* TX MIC entry failed. No need to proceed further */
770                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
771                           "Setting TX MIC Key Failed\n");
772                 return 0;
773         }
774
775         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
776         /* XXX delete tx key on failure? */
777         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
778 }
779
780 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
781 {
782         int i;
783
784         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
785                 if (test_bit(i, sc->keymap) ||
786                     test_bit(i + 64, sc->keymap))
787                         continue; /* At least one part of TKIP key allocated */
788                 if (sc->splitmic &&
789                     (test_bit(i + 32, sc->keymap) ||
790                      test_bit(i + 64 + 32, sc->keymap)))
791                         continue; /* At least one part of TKIP key allocated */
792
793                 /* Found a free slot for a TKIP key */
794                 return i;
795         }
796         return -1;
797 }
798
799 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
800 {
801         int i;
802
803         /* First, try to find slots that would not be available for TKIP. */
804         if (sc->splitmic) {
805                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
806                         if (!test_bit(i, sc->keymap) &&
807                             (test_bit(i + 32, sc->keymap) ||
808                              test_bit(i + 64, sc->keymap) ||
809                              test_bit(i + 64 + 32, sc->keymap)))
810                                 return i;
811                         if (!test_bit(i + 32, sc->keymap) &&
812                             (test_bit(i, sc->keymap) ||
813                              test_bit(i + 64, sc->keymap) ||
814                              test_bit(i + 64 + 32, sc->keymap)))
815                                 return i + 32;
816                         if (!test_bit(i + 64, sc->keymap) &&
817                             (test_bit(i , sc->keymap) ||
818                              test_bit(i + 32, sc->keymap) ||
819                              test_bit(i + 64 + 32, sc->keymap)))
820                                 return i + 64;
821                         if (!test_bit(i + 64 + 32, sc->keymap) &&
822                             (test_bit(i, sc->keymap) ||
823                              test_bit(i + 32, sc->keymap) ||
824                              test_bit(i + 64, sc->keymap)))
825                                 return i + 64 + 32;
826                 }
827         } else {
828                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
829                         if (!test_bit(i, sc->keymap) &&
830                             test_bit(i + 64, sc->keymap))
831                                 return i;
832                         if (test_bit(i, sc->keymap) &&
833                             !test_bit(i + 64, sc->keymap))
834                                 return i + 64;
835                 }
836         }
837
838         /* No partially used TKIP slots, pick any available slot */
839         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
840                 /* Do not allow slots that could be needed for TKIP group keys
841                  * to be used. This limitation could be removed if we know that
842                  * TKIP will not be used. */
843                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
844                         continue;
845                 if (sc->splitmic) {
846                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
847                                 continue;
848                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
849                                 continue;
850                 }
851
852                 if (!test_bit(i, sc->keymap))
853                         return i; /* Found a free slot for a key */
854         }
855
856         /* No free slot found */
857         return -1;
858 }
859
860 static int ath_key_config(struct ath_softc *sc,
861                           struct ieee80211_vif *vif,
862                           struct ieee80211_sta *sta,
863                           struct ieee80211_key_conf *key)
864 {
865         struct ath9k_keyval hk;
866         const u8 *mac = NULL;
867         int ret = 0;
868         int idx;
869
870         memset(&hk, 0, sizeof(hk));
871
872         switch (key->alg) {
873         case ALG_WEP:
874                 hk.kv_type = ATH9K_CIPHER_WEP;
875                 break;
876         case ALG_TKIP:
877                 hk.kv_type = ATH9K_CIPHER_TKIP;
878                 break;
879         case ALG_CCMP:
880                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
881                 break;
882         default:
883                 return -EOPNOTSUPP;
884         }
885
886         hk.kv_len = key->keylen;
887         memcpy(hk.kv_val, key->key, key->keylen);
888
889         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
890                 /* For now, use the default keys for broadcast keys. This may
891                  * need to change with virtual interfaces. */
892                 idx = key->keyidx;
893         } else if (key->keyidx) {
894                 if (WARN_ON(!sta))
895                         return -EOPNOTSUPP;
896                 mac = sta->addr;
897
898                 if (vif->type != NL80211_IFTYPE_AP) {
899                         /* Only keyidx 0 should be used with unicast key, but
900                          * allow this for client mode for now. */
901                         idx = key->keyidx;
902                 } else
903                         return -EIO;
904         } else {
905                 if (WARN_ON(!sta))
906                         return -EOPNOTSUPP;
907                 mac = sta->addr;
908
909                 if (key->alg == ALG_TKIP)
910                         idx = ath_reserve_key_cache_slot_tkip(sc);
911                 else
912                         idx = ath_reserve_key_cache_slot(sc);
913                 if (idx < 0)
914                         return -ENOSPC; /* no free key cache entries */
915         }
916
917         if (key->alg == ALG_TKIP)
918                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
919                                       vif->type == NL80211_IFTYPE_AP);
920         else
921                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
922
923         if (!ret)
924                 return -EIO;
925
926         set_bit(idx, sc->keymap);
927         if (key->alg == ALG_TKIP) {
928                 set_bit(idx + 64, sc->keymap);
929                 if (sc->splitmic) {
930                         set_bit(idx + 32, sc->keymap);
931                         set_bit(idx + 64 + 32, sc->keymap);
932                 }
933         }
934
935         return idx;
936 }
937
938 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
939 {
940         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
941         if (key->hw_key_idx < IEEE80211_WEP_NKID)
942                 return;
943
944         clear_bit(key->hw_key_idx, sc->keymap);
945         if (key->alg != ALG_TKIP)
946                 return;
947
948         clear_bit(key->hw_key_idx + 64, sc->keymap);
949         if (sc->splitmic) {
950                 clear_bit(key->hw_key_idx + 32, sc->keymap);
951                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
952         }
953 }
954
955 static void setup_ht_cap(struct ath_softc *sc,
956                          struct ieee80211_sta_ht_cap *ht_info)
957 {
958         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
959         u8 tx_streams, rx_streams;
960
961         ht_info->ht_supported = true;
962         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
963                        IEEE80211_HT_CAP_SM_PS |
964                        IEEE80211_HT_CAP_SGI_40 |
965                        IEEE80211_HT_CAP_DSSSCCK40;
966
967         ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
968         ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
969
970         /* set up supported mcs set */
971         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
972         tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ?
973                      1 : 2;
974         rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ?
975                      1 : 2;
976
977         if (tx_streams != rx_streams) {
978                 ath_print(common, ATH_DBG_CONFIG,
979                           "TX streams %d, RX streams: %d\n",
980                           tx_streams, rx_streams);
981                 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
982                 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
983                                 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
984         }
985
986         ht_info->mcs.rx_mask[0] = 0xff;
987         if (rx_streams >= 2)
988                 ht_info->mcs.rx_mask[1] = 0xff;
989
990         ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
991 }
992
993 static void ath9k_bss_assoc_info(struct ath_softc *sc,
994                                  struct ieee80211_vif *vif,
995                                  struct ieee80211_bss_conf *bss_conf)
996 {
997         struct ath_hw *ah = sc->sc_ah;
998         struct ath_common *common = ath9k_hw_common(ah);
999
1000         if (bss_conf->assoc) {
1001                 ath_print(common, ATH_DBG_CONFIG,
1002                           "Bss Info ASSOC %d, bssid: %pM\n",
1003                            bss_conf->aid, common->curbssid);
1004
1005                 /* New association, store aid */
1006                 common->curaid = bss_conf->aid;
1007                 ath9k_hw_write_associd(ah);
1008
1009                 /*
1010                  * Request a re-configuration of Beacon related timers
1011                  * on the receipt of the first Beacon frame (i.e.,
1012                  * after time sync with the AP).
1013                  */
1014                 sc->sc_flags |= SC_OP_BEACON_SYNC;
1015
1016                 /* Configure the beacon */
1017                 ath_beacon_config(sc, vif);
1018
1019                 /* Reset rssi stats */
1020                 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
1021
1022                 ath_start_ani(sc);
1023         } else {
1024                 ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
1025                 common->curaid = 0;
1026                 /* Stop ANI */
1027                 del_timer_sync(&sc->ani.timer);
1028         }
1029 }
1030
1031 /********************************/
1032 /*       LED functions          */
1033 /********************************/
1034
1035 static void ath_led_blink_work(struct work_struct *work)
1036 {
1037         struct ath_softc *sc = container_of(work, struct ath_softc,
1038                                             ath_led_blink_work.work);
1039
1040         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
1041                 return;
1042
1043         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
1044             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
1045                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1046         else
1047                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1048                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
1049
1050         ieee80211_queue_delayed_work(sc->hw,
1051                                      &sc->ath_led_blink_work,
1052                                      (sc->sc_flags & SC_OP_LED_ON) ?
1053                                         msecs_to_jiffies(sc->led_off_duration) :
1054                                         msecs_to_jiffies(sc->led_on_duration));
1055
1056         sc->led_on_duration = sc->led_on_cnt ?
1057                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
1058                         ATH_LED_ON_DURATION_IDLE;
1059         sc->led_off_duration = sc->led_off_cnt ?
1060                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
1061                         ATH_LED_OFF_DURATION_IDLE;
1062         sc->led_on_cnt = sc->led_off_cnt = 0;
1063         if (sc->sc_flags & SC_OP_LED_ON)
1064                 sc->sc_flags &= ~SC_OP_LED_ON;
1065         else
1066                 sc->sc_flags |= SC_OP_LED_ON;
1067 }
1068
1069 static void ath_led_brightness(struct led_classdev *led_cdev,
1070                                enum led_brightness brightness)
1071 {
1072         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1073         struct ath_softc *sc = led->sc;
1074
1075         switch (brightness) {
1076         case LED_OFF:
1077                 if (led->led_type == ATH_LED_ASSOC ||
1078                     led->led_type == ATH_LED_RADIO) {
1079                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1080                                 (led->led_type == ATH_LED_RADIO));
1081                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1082                         if (led->led_type == ATH_LED_RADIO)
1083                                 sc->sc_flags &= ~SC_OP_LED_ON;
1084                 } else {
1085                         sc->led_off_cnt++;
1086                 }
1087                 break;
1088         case LED_FULL:
1089                 if (led->led_type == ATH_LED_ASSOC) {
1090                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1091                         ieee80211_queue_delayed_work(sc->hw,
1092                                                      &sc->ath_led_blink_work, 0);
1093                 } else if (led->led_type == ATH_LED_RADIO) {
1094                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1095                         sc->sc_flags |= SC_OP_LED_ON;
1096                 } else {
1097                         sc->led_on_cnt++;
1098                 }
1099                 break;
1100         default:
1101                 break;
1102         }
1103 }
1104
1105 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1106                             char *trigger)
1107 {
1108         int ret;
1109
1110         led->sc = sc;
1111         led->led_cdev.name = led->name;
1112         led->led_cdev.default_trigger = trigger;
1113         led->led_cdev.brightness_set = ath_led_brightness;
1114
1115         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1116         if (ret)
1117                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1118                           "Failed to register led:%s", led->name);
1119         else
1120                 led->registered = 1;
1121         return ret;
1122 }
1123
1124 static void ath_unregister_led(struct ath_led *led)
1125 {
1126         if (led->registered) {
1127                 led_classdev_unregister(&led->led_cdev);
1128                 led->registered = 0;
1129         }
1130 }
1131
1132 static void ath_deinit_leds(struct ath_softc *sc)
1133 {
1134         ath_unregister_led(&sc->assoc_led);
1135         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1136         ath_unregister_led(&sc->tx_led);
1137         ath_unregister_led(&sc->rx_led);
1138         ath_unregister_led(&sc->radio_led);
1139         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1140 }
1141
1142 static void ath_init_leds(struct ath_softc *sc)
1143 {
1144         char *trigger;
1145         int ret;
1146
1147         if (AR_SREV_9287(sc->sc_ah))
1148                 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1149         else
1150                 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1151
1152         /* Configure gpio 1 for output */
1153         ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1154                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1155         /* LED off, active low */
1156         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1157
1158         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1159
1160         trigger = ieee80211_get_radio_led_name(sc->hw);
1161         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1162                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1163         ret = ath_register_led(sc, &sc->radio_led, trigger);
1164         sc->radio_led.led_type = ATH_LED_RADIO;
1165         if (ret)
1166                 goto fail;
1167
1168         trigger = ieee80211_get_assoc_led_name(sc->hw);
1169         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1170                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1171         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1172         sc->assoc_led.led_type = ATH_LED_ASSOC;
1173         if (ret)
1174                 goto fail;
1175
1176         trigger = ieee80211_get_tx_led_name(sc->hw);
1177         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1178                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1179         ret = ath_register_led(sc, &sc->tx_led, trigger);
1180         sc->tx_led.led_type = ATH_LED_TX;
1181         if (ret)
1182                 goto fail;
1183
1184         trigger = ieee80211_get_rx_led_name(sc->hw);
1185         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1186                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1187         ret = ath_register_led(sc, &sc->rx_led, trigger);
1188         sc->rx_led.led_type = ATH_LED_RX;
1189         if (ret)
1190                 goto fail;
1191
1192         return;
1193
1194 fail:
1195         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1196         ath_deinit_leds(sc);
1197 }
1198
1199 void ath_radio_enable(struct ath_softc *sc)
1200 {
1201         struct ath_hw *ah = sc->sc_ah;
1202         struct ath_common *common = ath9k_hw_common(ah);
1203         struct ieee80211_channel *channel = sc->hw->conf.channel;
1204         int r;
1205
1206         ath9k_ps_wakeup(sc);
1207         ath9k_hw_configpcipowersave(ah, 0, 0);
1208
1209         if (!ah->curchan)
1210                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1211
1212         spin_lock_bh(&sc->sc_resetlock);
1213         r = ath9k_hw_reset(ah, ah->curchan, false);
1214         if (r) {
1215                 ath_print(common, ATH_DBG_FATAL,
1216                           "Unable to reset channel %u (%uMhz) ",
1217                           "reset status %d\n",
1218                           channel->center_freq, r);
1219         }
1220         spin_unlock_bh(&sc->sc_resetlock);
1221
1222         ath_update_txpow(sc);
1223         if (ath_startrecv(sc) != 0) {
1224                 ath_print(common, ATH_DBG_FATAL,
1225                           "Unable to restart recv logic\n");
1226                 return;
1227         }
1228
1229         if (sc->sc_flags & SC_OP_BEACONS)
1230                 ath_beacon_config(sc, NULL);    /* restart beacons */
1231
1232         /* Re-Enable  interrupts */
1233         ath9k_hw_set_interrupts(ah, sc->imask);
1234
1235         /* Enable LED */
1236         ath9k_hw_cfg_output(ah, ah->led_pin,
1237                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1238         ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1239
1240         ieee80211_wake_queues(sc->hw);
1241         ath9k_ps_restore(sc);
1242 }
1243
1244 void ath_radio_disable(struct ath_softc *sc)
1245 {
1246         struct ath_hw *ah = sc->sc_ah;
1247         struct ieee80211_channel *channel = sc->hw->conf.channel;
1248         int r;
1249
1250         ath9k_ps_wakeup(sc);
1251         ieee80211_stop_queues(sc->hw);
1252
1253         /* Disable LED */
1254         ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1255         ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1256
1257         /* Disable interrupts */
1258         ath9k_hw_set_interrupts(ah, 0);
1259
1260         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1261         ath_stoprecv(sc);               /* turn off frame recv */
1262         ath_flushrecv(sc);              /* flush recv queue */
1263
1264         if (!ah->curchan)
1265                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1266
1267         spin_lock_bh(&sc->sc_resetlock);
1268         r = ath9k_hw_reset(ah, ah->curchan, false);
1269         if (r) {
1270                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1271                           "Unable to reset channel %u (%uMhz) "
1272                           "reset status %d\n",
1273                           channel->center_freq, r);
1274         }
1275         spin_unlock_bh(&sc->sc_resetlock);
1276
1277         ath9k_hw_phy_disable(ah);
1278         ath9k_hw_configpcipowersave(ah, 1, 1);
1279         ath9k_ps_restore(sc);
1280         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
1281 }
1282
1283 /*******************/
1284 /*      Rfkill     */
1285 /*******************/
1286
1287 static bool ath_is_rfkill_set(struct ath_softc *sc)
1288 {
1289         struct ath_hw *ah = sc->sc_ah;
1290
1291         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1292                                   ah->rfkill_polarity;
1293 }
1294
1295 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1296 {
1297         struct ath_wiphy *aphy = hw->priv;
1298         struct ath_softc *sc = aphy->sc;
1299         bool blocked = !!ath_is_rfkill_set(sc);
1300
1301         wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1302 }
1303
1304 static void ath_start_rfkill_poll(struct ath_softc *sc)
1305 {
1306         struct ath_hw *ah = sc->sc_ah;
1307
1308         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1309                 wiphy_rfkill_start_polling(sc->hw->wiphy);
1310 }
1311
1312 void ath_cleanup(struct ath_softc *sc)
1313 {
1314         struct ath_hw *ah = sc->sc_ah;
1315         struct ath_common *common = ath9k_hw_common(ah);
1316
1317         ath_detach(sc);
1318         free_irq(sc->irq, sc);
1319         ath_bus_cleanup(common);
1320         kfree(sc->sec_wiphy);
1321         ieee80211_free_hw(sc->hw);
1322 }
1323
1324 void ath_detach(struct ath_softc *sc)
1325 {
1326         struct ieee80211_hw *hw = sc->hw;
1327         struct ath_hw *ah = sc->sc_ah;
1328         int i = 0;
1329
1330         ath9k_ps_wakeup(sc);
1331
1332         dev_dbg(sc->dev, "Detach ATH hw\n");
1333
1334         ath_deinit_leds(sc);
1335         wiphy_rfkill_stop_polling(sc->hw->wiphy);
1336
1337         for (i = 0; i < sc->num_sec_wiphy; i++) {
1338                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1339                 if (aphy == NULL)
1340                         continue;
1341                 sc->sec_wiphy[i] = NULL;
1342                 ieee80211_unregister_hw(aphy->hw);
1343                 ieee80211_free_hw(aphy->hw);
1344         }
1345         ieee80211_unregister_hw(hw);
1346         ath_rx_cleanup(sc);
1347         ath_tx_cleanup(sc);
1348
1349         tasklet_kill(&sc->intr_tq);
1350         tasklet_kill(&sc->bcon_tasklet);
1351
1352         if (!(sc->sc_flags & SC_OP_INVALID))
1353                 ath9k_setpower(sc, ATH9K_PM_AWAKE);
1354
1355         /* cleanup tx queues */
1356         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1357                 if (ATH_TXQ_SETUP(sc, i))
1358                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1359
1360         if ((sc->btcoex.no_stomp_timer) &&
1361             ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1362                 ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer);
1363
1364         ath9k_hw_detach(ah);
1365         ath9k_exit_debug(ah);
1366         sc->sc_ah = NULL;
1367 }
1368
1369 static int ath9k_reg_notifier(struct wiphy *wiphy,
1370                               struct regulatory_request *request)
1371 {
1372         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1373         struct ath_wiphy *aphy = hw->priv;
1374         struct ath_softc *sc = aphy->sc;
1375         struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
1376
1377         return ath_reg_notifier_apply(wiphy, request, reg);
1378 }
1379
1380 /*
1381  * Detects if there is any priority bt traffic
1382  */
1383 static void ath_detect_bt_priority(struct ath_softc *sc)
1384 {
1385         struct ath_btcoex *btcoex = &sc->btcoex;
1386         struct ath_hw *ah = sc->sc_ah;
1387
1388         if (ath9k_hw_gpio_get(sc->sc_ah, ah->btcoex_hw.btpriority_gpio))
1389                 btcoex->bt_priority_cnt++;
1390
1391         if (time_after(jiffies, btcoex->bt_priority_time +
1392                         msecs_to_jiffies(ATH_BT_PRIORITY_TIME_THRESHOLD))) {
1393                 if (btcoex->bt_priority_cnt >= ATH_BT_CNT_THRESHOLD) {
1394                         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_BTCOEX,
1395                                   "BT priority traffic detected");
1396                         sc->sc_flags |= SC_OP_BT_PRIORITY_DETECTED;
1397                 } else {
1398                         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
1399                 }
1400
1401                 btcoex->bt_priority_cnt = 0;
1402                 btcoex->bt_priority_time = jiffies;
1403         }
1404 }
1405
1406 /*
1407  * Configures appropriate weight based on stomp type.
1408  */
1409 static void ath9k_btcoex_bt_stomp(struct ath_softc *sc,
1410                                   enum ath_stomp_type stomp_type)
1411 {
1412         struct ath_hw *ah = sc->sc_ah;
1413
1414         switch (stomp_type) {
1415         case ATH_BTCOEX_STOMP_ALL:
1416                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1417                                            AR_STOMP_ALL_WLAN_WGHT);
1418                 break;
1419         case ATH_BTCOEX_STOMP_LOW:
1420                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1421                                            AR_STOMP_LOW_WLAN_WGHT);
1422                 break;
1423         case ATH_BTCOEX_STOMP_NONE:
1424                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1425                                            AR_STOMP_NONE_WLAN_WGHT);
1426                 break;
1427         default:
1428                 ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1429                           "Invalid Stomptype\n");
1430                 break;
1431         }
1432
1433         ath9k_hw_btcoex_enable(ah);
1434 }
1435
1436 static void ath9k_gen_timer_start(struct ath_hw *ah,
1437                                   struct ath_gen_timer *timer,
1438                                   u32 timer_next,
1439                                   u32 timer_period)
1440 {
1441         struct ath_common *common = ath9k_hw_common(ah);
1442         struct ath_softc *sc = (struct ath_softc *) common->priv;
1443
1444         ath9k_hw_gen_timer_start(ah, timer, timer_next, timer_period);
1445
1446         if ((sc->imask & ATH9K_INT_GENTIMER) == 0) {
1447                 ath9k_hw_set_interrupts(ah, 0);
1448                 sc->imask |= ATH9K_INT_GENTIMER;
1449                 ath9k_hw_set_interrupts(ah, sc->imask);
1450         }
1451 }
1452
1453 static void ath9k_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
1454 {
1455         struct ath_common *common = ath9k_hw_common(ah);
1456         struct ath_softc *sc = (struct ath_softc *) common->priv;
1457         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
1458
1459         ath9k_hw_gen_timer_stop(ah, timer);
1460
1461         /* if no timer is enabled, turn off interrupt mask */
1462         if (timer_table->timer_mask.val == 0) {
1463                 ath9k_hw_set_interrupts(ah, 0);
1464                 sc->imask &= ~ATH9K_INT_GENTIMER;
1465                 ath9k_hw_set_interrupts(ah, sc->imask);
1466         }
1467 }
1468
1469 /*
1470  * This is the master bt coex timer which runs for every
1471  * 45ms, bt traffic will be given priority during 55% of this
1472  * period while wlan gets remaining 45%
1473  */
1474 static void ath_btcoex_period_timer(unsigned long data)
1475 {
1476         struct ath_softc *sc = (struct ath_softc *) data;
1477         struct ath_hw *ah = sc->sc_ah;
1478         struct ath_btcoex *btcoex = &sc->btcoex;
1479
1480         ath_detect_bt_priority(sc);
1481
1482         spin_lock_bh(&btcoex->btcoex_lock);
1483
1484         ath9k_btcoex_bt_stomp(sc, btcoex->bt_stomp_type);
1485
1486         spin_unlock_bh(&btcoex->btcoex_lock);
1487
1488         if (btcoex->btcoex_period != btcoex->btcoex_no_stomp) {
1489                 if (btcoex->hw_timer_enabled)
1490                         ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
1491
1492                 ath9k_gen_timer_start(ah,
1493                                       btcoex->no_stomp_timer,
1494                                       (ath9k_hw_gettsf32(ah) +
1495                                        btcoex->btcoex_no_stomp),
1496                                        btcoex->btcoex_no_stomp * 10);
1497                 btcoex->hw_timer_enabled = true;
1498         }
1499
1500         mod_timer(&btcoex->period_timer, jiffies +
1501                                   msecs_to_jiffies(ATH_BTCOEX_DEF_BT_PERIOD));
1502 }
1503
1504 /*
1505  * Generic tsf based hw timer which configures weight
1506  * registers to time slice between wlan and bt traffic
1507  */
1508 static void ath_btcoex_no_stomp_timer(void *arg)
1509 {
1510         struct ath_softc *sc = (struct ath_softc *)arg;
1511         struct ath_hw *ah = sc->sc_ah;
1512         struct ath_btcoex *btcoex = &sc->btcoex;
1513
1514         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1515                   "no stomp timer running \n");
1516
1517         spin_lock_bh(&btcoex->btcoex_lock);
1518
1519         if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_LOW)
1520                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_NONE);
1521          else if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_ALL)
1522                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_LOW);
1523
1524         spin_unlock_bh(&btcoex->btcoex_lock);
1525 }
1526
1527 static int ath_init_btcoex_timer(struct ath_softc *sc)
1528 {
1529         struct ath_btcoex *btcoex = &sc->btcoex;
1530
1531         btcoex->btcoex_period = ATH_BTCOEX_DEF_BT_PERIOD * 1000;
1532         btcoex->btcoex_no_stomp = (100 - ATH_BTCOEX_DEF_DUTY_CYCLE) *
1533                 btcoex->btcoex_period / 100;
1534
1535         setup_timer(&btcoex->period_timer, ath_btcoex_period_timer,
1536                         (unsigned long) sc);
1537
1538         spin_lock_init(&btcoex->btcoex_lock);
1539
1540         btcoex->no_stomp_timer = ath_gen_timer_alloc(sc->sc_ah,
1541                         ath_btcoex_no_stomp_timer,
1542                         ath_btcoex_no_stomp_timer,
1543                         (void *) sc, AR_FIRST_NDP_TIMER);
1544
1545         if (!btcoex->no_stomp_timer)
1546                 return -ENOMEM;
1547
1548         return 0;
1549 }
1550
1551 /*
1552  * Read and write, they both share the same lock. We do this to serialize
1553  * reads and writes on Atheros 802.11n PCI devices only. This is required
1554  * as the FIFO on these devices can only accept sanely 2 requests. After
1555  * that the device goes bananas. Serializing the reads/writes prevents this
1556  * from happening.
1557  */
1558
1559 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
1560 {
1561         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1562         struct ath_common *common = ath9k_hw_common(ah);
1563         struct ath_softc *sc = (struct ath_softc *) common->priv;
1564
1565         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1566                 unsigned long flags;
1567                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1568                 iowrite32(val, sc->mem + reg_offset);
1569                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1570         } else
1571                 iowrite32(val, sc->mem + reg_offset);
1572 }
1573
1574 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
1575 {
1576         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1577         struct ath_common *common = ath9k_hw_common(ah);
1578         struct ath_softc *sc = (struct ath_softc *) common->priv;
1579         u32 val;
1580
1581         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1582                 unsigned long flags;
1583                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1584                 val = ioread32(sc->mem + reg_offset);
1585                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1586         } else
1587                 val = ioread32(sc->mem + reg_offset);
1588         return val;
1589 }
1590
1591 static const struct ath_ops ath9k_common_ops = {
1592         .read = ath9k_ioread32,
1593         .write = ath9k_iowrite32,
1594 };
1595
1596 /*
1597  * Initialize and fill ath_softc, ath_sofct is the
1598  * "Software Carrier" struct. Historically it has existed
1599  * to allow the separation between hardware specific
1600  * variables (now in ath_hw) and driver specific variables.
1601  */
1602 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
1603                           const struct ath_bus_ops *bus_ops)
1604 {
1605         struct ath_hw *ah = NULL;
1606         struct ath_common *common;
1607         int r = 0, i;
1608         int csz = 0;
1609         int qnum;
1610
1611         /* XXX: hardware will not be ready until ath_open() being called */
1612         sc->sc_flags |= SC_OP_INVALID;
1613
1614         spin_lock_init(&sc->wiphy_lock);
1615         spin_lock_init(&sc->sc_resetlock);
1616         spin_lock_init(&sc->sc_serial_rw);
1617         spin_lock_init(&sc->ani_lock);
1618         spin_lock_init(&sc->sc_pm_lock);
1619         mutex_init(&sc->mutex);
1620         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1621         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1622                      (unsigned long)sc);
1623
1624         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1625         if (!ah) {
1626                 r = -ENOMEM;
1627                 goto bad_no_ah;
1628         }
1629
1630         ah->hw_version.devid = devid;
1631         ah->hw_version.subsysid = subsysid;
1632         sc->sc_ah = ah;
1633
1634         common = ath9k_hw_common(ah);
1635         common->ops = &ath9k_common_ops;
1636         common->bus_ops = bus_ops;
1637         common->ah = ah;
1638         common->hw = sc->hw;
1639         common->priv = sc;
1640
1641         /*
1642          * Cache line size is used to size and align various
1643          * structures used to communicate with the hardware.
1644          */
1645         ath_read_cachesize(common, &csz);
1646         /* XXX assert csz is non-zero */
1647         common->cachelsz = csz << 2;    /* convert to bytes */
1648
1649         if (ath9k_init_debug(ah) < 0)
1650                 dev_err(sc->dev, "Unable to create debugfs files\n");
1651
1652         r = ath9k_hw_init(ah);
1653         if (r) {
1654                 ath_print(common, ATH_DBG_FATAL,
1655                           "Unable to initialize hardware; "
1656                           "initialization status: %d\n", r);
1657                 goto bad;
1658         }
1659
1660         /* Get the hardware key cache size. */
1661         sc->keymax = ah->caps.keycache_size;
1662         if (sc->keymax > ATH_KEYMAX) {
1663                 ath_print(common, ATH_DBG_ANY,
1664                           "Warning, using only %u entries in %u key cache\n",
1665                           ATH_KEYMAX, sc->keymax);
1666                 sc->keymax = ATH_KEYMAX;
1667         }
1668
1669         /*
1670          * Reset the key cache since some parts do not
1671          * reset the contents on initial power up.
1672          */
1673         for (i = 0; i < sc->keymax; i++)
1674                 ath9k_hw_keyreset(ah, (u16) i);
1675
1676         /* default to MONITOR mode */
1677         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1678
1679         /* Setup rate tables */
1680
1681         ath_rate_attach(sc);
1682         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1683         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1684
1685         /*
1686          * Allocate hardware transmit queues: one queue for
1687          * beacon frames and one data queue for each QoS
1688          * priority.  Note that the hal handles reseting
1689          * these queues at the needed time.
1690          */
1691         sc->beacon.beaconq = ath_beaconq_setup(ah);
1692         if (sc->beacon.beaconq == -1) {
1693                 ath_print(common, ATH_DBG_FATAL,
1694                           "Unable to setup a beacon xmit queue\n");
1695                 r = -EIO;
1696                 goto bad2;
1697         }
1698         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1699         if (sc->beacon.cabq == NULL) {
1700                 ath_print(common, ATH_DBG_FATAL,
1701                           "Unable to setup CAB xmit queue\n");
1702                 r = -EIO;
1703                 goto bad2;
1704         }
1705
1706         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1707         ath_cabq_update(sc);
1708
1709         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1710                 sc->tx.hwq_map[i] = -1;
1711
1712         /* Setup data queues */
1713         /* NB: ensure BK queue is the lowest priority h/w queue */
1714         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1715                 ath_print(common, ATH_DBG_FATAL,
1716                           "Unable to setup xmit queue for BK traffic\n");
1717                 r = -EIO;
1718                 goto bad2;
1719         }
1720
1721         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1722                 ath_print(common, ATH_DBG_FATAL,
1723                           "Unable to setup xmit queue for BE traffic\n");
1724                 r = -EIO;
1725                 goto bad2;
1726         }
1727         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1728                 ath_print(common, ATH_DBG_FATAL,
1729                           "Unable to setup xmit queue for VI traffic\n");
1730                 r = -EIO;
1731                 goto bad2;
1732         }
1733         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1734                 ath_print(common, ATH_DBG_FATAL,
1735                           "Unable to setup xmit queue for VO traffic\n");
1736                 r = -EIO;
1737                 goto bad2;
1738         }
1739
1740         /* Initializes the noise floor to a reasonable default value.
1741          * Later on this will be updated during ANI processing. */
1742
1743         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1744         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1745
1746         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1747                                    ATH9K_CIPHER_TKIP, NULL)) {
1748                 /*
1749                  * Whether we should enable h/w TKIP MIC.
1750                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1751                  * report WMM capable, so it's always safe to turn on
1752                  * TKIP MIC in this case.
1753                  */
1754                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1755                                        0, 1, NULL);
1756         }
1757
1758         /*
1759          * Check whether the separate key cache entries
1760          * are required to handle both tx+rx MIC keys.
1761          * With split mic keys the number of stations is limited
1762          * to 27 otherwise 59.
1763          */
1764         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1765                                    ATH9K_CIPHER_TKIP, NULL)
1766             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1767                                       ATH9K_CIPHER_MIC, NULL)
1768             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1769                                       0, NULL))
1770                 sc->splitmic = 1;
1771
1772         /* turn on mcast key search if possible */
1773         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1774                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1775                                              1, NULL);
1776
1777         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1778
1779         /* 11n Capabilities */
1780         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1781                 sc->sc_flags |= SC_OP_TXAGGR;
1782                 sc->sc_flags |= SC_OP_RXAGGR;
1783         }
1784
1785         common->tx_chainmask = ah->caps.tx_chainmask;
1786         common->rx_chainmask = ah->caps.rx_chainmask;
1787
1788         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1789         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1790
1791         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1792                 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
1793
1794         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1795
1796         /* initialize beacon slots */
1797         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1798                 sc->beacon.bslot[i] = NULL;
1799                 sc->beacon.bslot_aphy[i] = NULL;
1800         }
1801
1802         /* setup channels and rates */
1803
1804         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1805         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1806                 sc->rates[IEEE80211_BAND_2GHZ];
1807         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1808         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1809                 ARRAY_SIZE(ath9k_2ghz_chantable);
1810
1811         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1812                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1813                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1814                         sc->rates[IEEE80211_BAND_5GHZ];
1815                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1816                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1817                         ARRAY_SIZE(ath9k_5ghz_chantable);
1818         }
1819
1820         switch (ah->btcoex_hw.scheme) {
1821         case ATH_BTCOEX_CFG_NONE:
1822                 break;
1823         case ATH_BTCOEX_CFG_2WIRE:
1824                 ath9k_hw_btcoex_init_2wire(ah);
1825                 break;
1826         case ATH_BTCOEX_CFG_3WIRE:
1827                 ath9k_hw_btcoex_init_3wire(ah);
1828                 r = ath_init_btcoex_timer(sc);
1829                 if (r)
1830                         goto bad2;
1831                 qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
1832                 ath9k_hw_init_btcoex_hw(ah, qnum);
1833                 sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
1834                 break;
1835         default:
1836                 WARN_ON(1);
1837                 break;
1838         }
1839
1840         return 0;
1841 bad2:
1842         /* cleanup tx queues */
1843         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1844                 if (ATH_TXQ_SETUP(sc, i))
1845                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1846 bad:
1847         ath9k_hw_detach(ah);
1848 bad_no_ah:
1849         ath9k_exit_debug(sc->sc_ah);
1850         sc->sc_ah = NULL;
1851
1852         return r;
1853 }
1854
1855 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1856 {
1857         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1858                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1859                 IEEE80211_HW_SIGNAL_DBM |
1860                 IEEE80211_HW_AMPDU_AGGREGATION |
1861                 IEEE80211_HW_SUPPORTS_PS |
1862                 IEEE80211_HW_PS_NULLFUNC_STACK |
1863                 IEEE80211_HW_SPECTRUM_MGMT;
1864
1865         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1866                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1867
1868         hw->wiphy->interface_modes =
1869                 BIT(NL80211_IFTYPE_AP) |
1870                 BIT(NL80211_IFTYPE_STATION) |
1871                 BIT(NL80211_IFTYPE_ADHOC) |
1872                 BIT(NL80211_IFTYPE_MESH_POINT);
1873
1874         hw->queues = 4;
1875         hw->max_rates = 4;
1876         hw->channel_change_time = 5000;
1877         hw->max_listen_interval = 10;
1878         /* Hardware supports 10 but we use 4 */
1879         hw->max_rate_tries = 4;
1880         hw->sta_data_size = sizeof(struct ath_node);
1881         hw->vif_data_size = sizeof(struct ath_vif);
1882
1883         hw->rate_control_algorithm = "ath9k_rate_control";
1884
1885         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1886                 &sc->sbands[IEEE80211_BAND_2GHZ];
1887         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1888                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1889                         &sc->sbands[IEEE80211_BAND_5GHZ];
1890 }
1891
1892 /* Device driver core initialization */
1893 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
1894                     const struct ath_bus_ops *bus_ops)
1895 {
1896         struct ieee80211_hw *hw = sc->hw;
1897         struct ath_common *common;
1898         struct ath_hw *ah;
1899         int error = 0, i;
1900         struct ath_regulatory *reg;
1901
1902         dev_dbg(sc->dev, "Attach ATH hw\n");
1903
1904         error = ath_init_softc(devid, sc, subsysid, bus_ops);
1905         if (error != 0)
1906                 return error;
1907
1908         ah = sc->sc_ah;
1909         common = ath9k_hw_common(ah);
1910
1911         /* get mac address from hardware and set in mac80211 */
1912
1913         SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
1914
1915         ath_set_hw_capab(sc, hw);
1916
1917         error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
1918                               ath9k_reg_notifier);
1919         if (error)
1920                 return error;
1921
1922         reg = &common->regulatory;
1923
1924         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1925                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1926                 if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes))
1927                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1928         }
1929
1930         /* initialize tx/rx engine */
1931         error = ath_tx_init(sc, ATH_TXBUF);
1932         if (error != 0)
1933                 goto error_attach;
1934
1935         error = ath_rx_init(sc, ATH_RXBUF);
1936         if (error != 0)
1937                 goto error_attach;
1938
1939         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1940         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1941         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1942
1943         error = ieee80211_register_hw(hw);
1944
1945         if (!ath_is_world_regd(reg)) {
1946                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1947                 if (error)
1948                         goto error_attach;
1949         }
1950
1951         /* Initialize LED control */
1952         ath_init_leds(sc);
1953
1954         ath_start_rfkill_poll(sc);
1955
1956         return 0;
1957
1958 error_attach:
1959         /* cleanup tx queues */
1960         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1961                 if (ATH_TXQ_SETUP(sc, i))
1962                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1963
1964         ath9k_hw_detach(ah);
1965         ath9k_exit_debug(ah);
1966         sc->sc_ah = NULL;
1967
1968         return error;
1969 }
1970
1971 int ath_reset(struct ath_softc *sc, bool retry_tx)
1972 {
1973         struct ath_hw *ah = sc->sc_ah;
1974         struct ath_common *common = ath9k_hw_common(ah);
1975         struct ieee80211_hw *hw = sc->hw;
1976         int r;
1977
1978         ath9k_hw_set_interrupts(ah, 0);
1979         ath_drain_all_txq(sc, retry_tx);
1980         ath_stoprecv(sc);
1981         ath_flushrecv(sc);
1982
1983         spin_lock_bh(&sc->sc_resetlock);
1984         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1985         if (r)
1986                 ath_print(common, ATH_DBG_FATAL,
1987                           "Unable to reset hardware; reset status %d\n", r);
1988         spin_unlock_bh(&sc->sc_resetlock);
1989
1990         if (ath_startrecv(sc) != 0)
1991                 ath_print(common, ATH_DBG_FATAL,
1992                           "Unable to start recv logic\n");
1993
1994         /*
1995          * We may be doing a reset in response to a request
1996          * that changes the channel so update any state that
1997          * might change as a result.
1998          */
1999         ath_cache_conf_rate(sc, &hw->conf);
2000
2001         ath_update_txpow(sc);
2002
2003         if (sc->sc_flags & SC_OP_BEACONS)
2004                 ath_beacon_config(sc, NULL);    /* restart beacons */
2005
2006         ath9k_hw_set_interrupts(ah, sc->imask);
2007
2008         if (retry_tx) {
2009                 int i;
2010                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2011                         if (ATH_TXQ_SETUP(sc, i)) {
2012                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
2013                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
2014                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
2015                         }
2016                 }
2017         }
2018
2019         return r;
2020 }
2021
2022 /*
2023  *  This function will allocate both the DMA descriptor structure, and the
2024  *  buffers it contains.  These are used to contain the descriptors used
2025  *  by the system.
2026 */
2027 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
2028                       struct list_head *head, const char *name,
2029                       int nbuf, int ndesc)
2030 {
2031 #define DS2PHYS(_dd, _ds)                                               \
2032         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2033 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
2034 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
2035         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2036         struct ath_desc *ds;
2037         struct ath_buf *bf;
2038         int i, bsize, error;
2039
2040         ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
2041                   name, nbuf, ndesc);
2042
2043         INIT_LIST_HEAD(head);
2044         /* ath_desc must be a multiple of DWORDs */
2045         if ((sizeof(struct ath_desc) % 4) != 0) {
2046                 ath_print(common, ATH_DBG_FATAL,
2047                           "ath_desc not DWORD aligned\n");
2048                 BUG_ON((sizeof(struct ath_desc) % 4) != 0);
2049                 error = -ENOMEM;
2050                 goto fail;
2051         }
2052
2053         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2054
2055         /*
2056          * Need additional DMA memory because we can't use
2057          * descriptors that cross the 4K page boundary. Assume
2058          * one skipped descriptor per 4K page.
2059          */
2060         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2061                 u32 ndesc_skipped =
2062                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
2063                 u32 dma_len;
2064
2065                 while (ndesc_skipped) {
2066                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
2067                         dd->dd_desc_len += dma_len;
2068
2069                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
2070                 };
2071         }
2072
2073         /* allocate descriptors */
2074         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2075                                          &dd->dd_desc_paddr, GFP_KERNEL);
2076         if (dd->dd_desc == NULL) {
2077                 error = -ENOMEM;
2078                 goto fail;
2079         }
2080         ds = dd->dd_desc;
2081         ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
2082                   name, ds, (u32) dd->dd_desc_len,
2083                   ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
2084
2085         /* allocate buffers */
2086         bsize = sizeof(struct ath_buf) * nbuf;
2087         bf = kzalloc(bsize, GFP_KERNEL);
2088         if (bf == NULL) {
2089                 error = -ENOMEM;
2090                 goto fail2;
2091         }
2092         dd->dd_bufptr = bf;
2093
2094         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2095                 bf->bf_desc = ds;
2096                 bf->bf_daddr = DS2PHYS(dd, ds);
2097
2098                 if (!(sc->sc_ah->caps.hw_caps &
2099                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2100                         /*
2101                          * Skip descriptor addresses which can cause 4KB
2102                          * boundary crossing (addr + length) with a 32 dword
2103                          * descriptor fetch.
2104                          */
2105                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
2106                                 BUG_ON((caddr_t) bf->bf_desc >=
2107                                        ((caddr_t) dd->dd_desc +
2108                                         dd->dd_desc_len));
2109
2110                                 ds += ndesc;
2111                                 bf->bf_desc = ds;
2112                                 bf->bf_daddr = DS2PHYS(dd, ds);
2113                         }
2114                 }
2115                 list_add_tail(&bf->list, head);
2116         }
2117         return 0;
2118 fail2:
2119         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2120                           dd->dd_desc_paddr);
2121 fail:
2122         memset(dd, 0, sizeof(*dd));
2123         return error;
2124 #undef ATH_DESC_4KB_BOUND_CHECK
2125 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
2126 #undef DS2PHYS
2127 }
2128
2129 void ath_descdma_cleanup(struct ath_softc *sc,
2130                          struct ath_descdma *dd,
2131                          struct list_head *head)
2132 {
2133         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2134                           dd->dd_desc_paddr);
2135
2136         INIT_LIST_HEAD(head);
2137         kfree(dd->dd_bufptr);
2138         memset(dd, 0, sizeof(*dd));
2139 }
2140
2141 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
2142 {
2143         int qnum;
2144
2145         switch (queue) {
2146         case 0:
2147                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
2148                 break;
2149         case 1:
2150                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
2151                 break;
2152         case 2:
2153                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2154                 break;
2155         case 3:
2156                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
2157                 break;
2158         default:
2159                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2160                 break;
2161         }
2162
2163         return qnum;
2164 }
2165
2166 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
2167 {
2168         int qnum;
2169
2170         switch (queue) {
2171         case ATH9K_WME_AC_VO:
2172                 qnum = 0;
2173                 break;
2174         case ATH9K_WME_AC_VI:
2175                 qnum = 1;
2176                 break;
2177         case ATH9K_WME_AC_BE:
2178                 qnum = 2;
2179                 break;
2180         case ATH9K_WME_AC_BK:
2181                 qnum = 3;
2182                 break;
2183         default:
2184                 qnum = -1;
2185                 break;
2186         }
2187
2188         return qnum;
2189 }
2190
2191 /* XXX: Remove me once we don't depend on ath9k_channel for all
2192  * this redundant data */
2193 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
2194                            struct ath9k_channel *ichan)
2195 {
2196         struct ieee80211_channel *chan = hw->conf.channel;
2197         struct ieee80211_conf *conf = &hw->conf;
2198
2199         ichan->channel = chan->center_freq;
2200         ichan->chan = chan;
2201
2202         if (chan->band == IEEE80211_BAND_2GHZ) {
2203                 ichan->chanmode = CHANNEL_G;
2204                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
2205         } else {
2206                 ichan->chanmode = CHANNEL_A;
2207                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
2208         }
2209
2210         if (conf_is_ht(conf))
2211                 ichan->chanmode = ath_get_extchanmode(sc, chan,
2212                                             conf->channel_type);
2213 }
2214
2215 /**********************/
2216 /* mac80211 callbacks */
2217 /**********************/
2218
2219 /*
2220  * (Re)start btcoex timers
2221  */
2222 static void ath9k_btcoex_timer_resume(struct ath_softc *sc)
2223 {
2224         struct ath_btcoex *btcoex = &sc->btcoex;
2225         struct ath_hw *ah = sc->sc_ah;
2226
2227         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
2228                   "Starting btcoex timers");
2229
2230         /* make sure duty cycle timer is also stopped when resuming */
2231         if (btcoex->hw_timer_enabled)
2232                 ath9k_gen_timer_stop(sc->sc_ah, btcoex->no_stomp_timer);
2233
2234         btcoex->bt_priority_cnt = 0;
2235         btcoex->bt_priority_time = jiffies;
2236         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
2237
2238         mod_timer(&btcoex->period_timer, jiffies);
2239 }
2240
2241 static int ath9k_start(struct ieee80211_hw *hw)
2242 {
2243         struct ath_wiphy *aphy = hw->priv;
2244         struct ath_softc *sc = aphy->sc;
2245         struct ath_hw *ah = sc->sc_ah;
2246         struct ath_common *common = ath9k_hw_common(ah);
2247         struct ieee80211_channel *curchan = hw->conf.channel;
2248         struct ath9k_channel *init_channel;
2249         int r;
2250
2251         ath_print(common, ATH_DBG_CONFIG,
2252                   "Starting driver with initial channel: %d MHz\n",
2253                   curchan->center_freq);
2254
2255         mutex_lock(&sc->mutex);
2256
2257         if (ath9k_wiphy_started(sc)) {
2258                 if (sc->chan_idx == curchan->hw_value) {
2259                         /*
2260                          * Already on the operational channel, the new wiphy
2261                          * can be marked active.
2262                          */
2263                         aphy->state = ATH_WIPHY_ACTIVE;
2264                         ieee80211_wake_queues(hw);
2265                 } else {
2266                         /*
2267                          * Another wiphy is on another channel, start the new
2268                          * wiphy in paused state.
2269                          */
2270                         aphy->state = ATH_WIPHY_PAUSED;
2271                         ieee80211_stop_queues(hw);
2272                 }
2273                 mutex_unlock(&sc->mutex);
2274                 return 0;
2275         }
2276         aphy->state = ATH_WIPHY_ACTIVE;
2277
2278         /* setup initial channel */
2279
2280         sc->chan_idx = curchan->hw_value;
2281
2282         init_channel = ath_get_curchannel(sc, hw);
2283
2284         /* Reset SERDES registers */
2285         ath9k_hw_configpcipowersave(ah, 0, 0);
2286
2287         /*
2288          * The basic interface to setting the hardware in a good
2289          * state is ``reset''.  On return the hardware is known to
2290          * be powered up and with interrupts disabled.  This must
2291          * be followed by initialization of the appropriate bits
2292          * and then setup of the interrupt mask.
2293          */
2294         spin_lock_bh(&sc->sc_resetlock);
2295         r = ath9k_hw_reset(ah, init_channel, false);
2296         if (r) {
2297                 ath_print(common, ATH_DBG_FATAL,
2298                           "Unable to reset hardware; reset status %d "
2299                           "(freq %u MHz)\n", r,
2300                           curchan->center_freq);
2301                 spin_unlock_bh(&sc->sc_resetlock);
2302                 goto mutex_unlock;
2303         }
2304         spin_unlock_bh(&sc->sc_resetlock);
2305
2306         /*
2307          * This is needed only to setup initial state
2308          * but it's best done after a reset.
2309          */
2310         ath_update_txpow(sc);
2311
2312         /*
2313          * Setup the hardware after reset:
2314          * The receive engine is set going.
2315          * Frame transmit is handled entirely
2316          * in the frame output path; there's nothing to do
2317          * here except setup the interrupt mask.
2318          */
2319         if (ath_startrecv(sc) != 0) {
2320                 ath_print(common, ATH_DBG_FATAL,
2321                           "Unable to start recv logic\n");
2322                 r = -EIO;
2323                 goto mutex_unlock;
2324         }
2325
2326         /* Setup our intr mask. */
2327         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2328                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2329                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2330
2331         if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2332                 sc->imask |= ATH9K_INT_GTT;
2333
2334         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2335                 sc->imask |= ATH9K_INT_CST;
2336
2337         ath_cache_conf_rate(sc, &hw->conf);
2338
2339         sc->sc_flags &= ~SC_OP_INVALID;
2340
2341         /* Disable BMISS interrupt when we're not associated */
2342         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2343         ath9k_hw_set_interrupts(ah, sc->imask);
2344
2345         ieee80211_wake_queues(hw);
2346
2347         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2348
2349         if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
2350             !ah->btcoex_hw.enabled) {
2351                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
2352                                            AR_STOMP_LOW_WLAN_WGHT);
2353                 ath9k_hw_btcoex_enable(ah);
2354
2355                 if (common->bus_ops->bt_coex_prep)
2356                         common->bus_ops->bt_coex_prep(common);
2357                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2358                         ath9k_btcoex_timer_resume(sc);
2359         }
2360
2361 mutex_unlock:
2362         mutex_unlock(&sc->mutex);
2363
2364         return r;
2365 }
2366
2367 static int ath9k_tx(struct ieee80211_hw *hw,
2368                     struct sk_buff *skb)
2369 {
2370         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2371         struct ath_wiphy *aphy = hw->priv;
2372         struct ath_softc *sc = aphy->sc;
2373         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2374         struct ath_tx_control txctl;
2375         int hdrlen, padsize;
2376
2377         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2378                 ath_print(common, ATH_DBG_XMIT,
2379                           "ath9k: %s: TX in unexpected wiphy state "
2380                           "%d\n", wiphy_name(hw->wiphy), aphy->state);
2381                 goto exit;
2382         }
2383
2384         if (sc->ps_enabled) {
2385                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2386                 /*
2387                  * mac80211 does not set PM field for normal data frames, so we
2388                  * need to update that based on the current PS mode.
2389                  */
2390                 if (ieee80211_is_data(hdr->frame_control) &&
2391                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2392                     !ieee80211_has_pm(hdr->frame_control)) {
2393                         ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
2394                                   "while in PS mode\n");
2395                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2396                 }
2397         }
2398
2399         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2400                 /*
2401                  * We are using PS-Poll and mac80211 can request TX while in
2402                  * power save mode. Need to wake up hardware for the TX to be
2403                  * completed and if needed, also for RX of buffered frames.
2404                  */
2405                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2406                 ath9k_ps_wakeup(sc);
2407                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2408                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2409                         ath_print(common, ATH_DBG_PS,
2410                                   "Sending PS-Poll to pick a buffered frame\n");
2411                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2412                 } else {
2413                         ath_print(common, ATH_DBG_PS,
2414                                   "Wake up to complete TX\n");
2415                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2416                 }
2417                 /*
2418                  * The actual restore operation will happen only after
2419                  * the sc_flags bit is cleared. We are just dropping
2420                  * the ps_usecount here.
2421                  */
2422                 ath9k_ps_restore(sc);
2423         }
2424
2425         memset(&txctl, 0, sizeof(struct ath_tx_control));
2426
2427         /*
2428          * As a temporary workaround, assign seq# here; this will likely need
2429          * to be cleaned up to work better with Beacon transmission and virtual
2430          * BSSes.
2431          */
2432         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2433                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2434                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2435                         sc->tx.seq_no += 0x10;
2436                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2437                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2438         }
2439
2440         /* Add the padding after the header if this is not already done */
2441         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2442         if (hdrlen & 3) {
2443                 padsize = hdrlen % 4;
2444                 if (skb_headroom(skb) < padsize)
2445                         return -1;
2446                 skb_push(skb, padsize);
2447                 memmove(skb->data, skb->data + padsize, hdrlen);
2448         }
2449
2450         /* Check if a tx queue is available */
2451
2452         txctl.txq = ath_test_get_txq(sc, skb);
2453         if (!txctl.txq)
2454                 goto exit;
2455
2456         ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2457
2458         if (ath_tx_start(hw, skb, &txctl) != 0) {
2459                 ath_print(common, ATH_DBG_XMIT, "TX failed\n");
2460                 goto exit;
2461         }
2462
2463         return 0;
2464 exit:
2465         dev_kfree_skb_any(skb);
2466         return 0;
2467 }
2468
2469 /*
2470  * Pause btcoex timer and bt duty cycle timer
2471  */
2472 static void ath9k_btcoex_timer_pause(struct ath_softc *sc)
2473 {
2474         struct ath_btcoex *btcoex = &sc->btcoex;
2475         struct ath_hw *ah = sc->sc_ah;
2476
2477         del_timer_sync(&btcoex->period_timer);
2478
2479         if (btcoex->hw_timer_enabled)
2480                 ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
2481
2482         btcoex->hw_timer_enabled = false;
2483 }
2484
2485 static void ath9k_stop(struct ieee80211_hw *hw)
2486 {
2487         struct ath_wiphy *aphy = hw->priv;
2488         struct ath_softc *sc = aphy->sc;
2489         struct ath_hw *ah = sc->sc_ah;
2490         struct ath_common *common = ath9k_hw_common(ah);
2491
2492         mutex_lock(&sc->mutex);
2493
2494         aphy->state = ATH_WIPHY_INACTIVE;
2495
2496         cancel_delayed_work_sync(&sc->ath_led_blink_work);
2497         cancel_delayed_work_sync(&sc->tx_complete_work);
2498
2499         if (!sc->num_sec_wiphy) {
2500                 cancel_delayed_work_sync(&sc->wiphy_work);
2501                 cancel_work_sync(&sc->chan_work);
2502         }
2503
2504         if (sc->sc_flags & SC_OP_INVALID) {
2505                 ath_print(common, ATH_DBG_ANY, "Device not present\n");
2506                 mutex_unlock(&sc->mutex);
2507                 return;
2508         }
2509
2510         if (ath9k_wiphy_started(sc)) {
2511                 mutex_unlock(&sc->mutex);
2512                 return; /* another wiphy still in use */
2513         }
2514
2515         if (ah->btcoex_hw.enabled) {
2516                 ath9k_hw_btcoex_disable(ah);
2517                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2518                         ath9k_btcoex_timer_pause(sc);
2519         }
2520
2521         /* make sure h/w will not generate any interrupt
2522          * before setting the invalid flag. */
2523         ath9k_hw_set_interrupts(ah, 0);
2524
2525         if (!(sc->sc_flags & SC_OP_INVALID)) {
2526                 ath_drain_all_txq(sc, false);
2527                 ath_stoprecv(sc);
2528                 ath9k_hw_phy_disable(ah);
2529         } else
2530                 sc->rx.rxlink = NULL;
2531
2532         /* disable HAL and put h/w to sleep */
2533         ath9k_hw_disable(ah);
2534         ath9k_hw_configpcipowersave(ah, 1, 1);
2535         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
2536
2537         sc->sc_flags |= SC_OP_INVALID;
2538
2539         mutex_unlock(&sc->mutex);
2540
2541         ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
2542 }
2543
2544 static int ath9k_add_interface(struct ieee80211_hw *hw,
2545                                struct ieee80211_if_init_conf *conf)
2546 {
2547         struct ath_wiphy *aphy = hw->priv;
2548         struct ath_softc *sc = aphy->sc;
2549         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2550         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2551         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2552         int ret = 0;
2553
2554         mutex_lock(&sc->mutex);
2555
2556         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2557             sc->nvifs > 0) {
2558                 ret = -ENOBUFS;
2559                 goto out;
2560         }
2561
2562         switch (conf->type) {
2563         case NL80211_IFTYPE_STATION:
2564                 ic_opmode = NL80211_IFTYPE_STATION;
2565                 break;
2566         case NL80211_IFTYPE_ADHOC:
2567         case NL80211_IFTYPE_AP:
2568         case NL80211_IFTYPE_MESH_POINT:
2569                 if (sc->nbcnvifs >= ATH_BCBUF) {
2570                         ret = -ENOBUFS;
2571                         goto out;
2572                 }
2573                 ic_opmode = conf->type;
2574                 break;
2575         default:
2576                 ath_print(common, ATH_DBG_FATAL,
2577                         "Interface type %d not yet supported\n", conf->type);
2578                 ret = -EOPNOTSUPP;
2579                 goto out;
2580         }
2581
2582         ath_print(common, ATH_DBG_CONFIG,
2583                   "Attach a VIF of type: %d\n", ic_opmode);
2584
2585         /* Set the VIF opmode */
2586         avp->av_opmode = ic_opmode;
2587         avp->av_bslot = -1;
2588
2589         sc->nvifs++;
2590
2591         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2592                 ath9k_set_bssid_mask(hw);
2593
2594         if (sc->nvifs > 1)
2595                 goto out; /* skip global settings for secondary vif */
2596
2597         if (ic_opmode == NL80211_IFTYPE_AP) {
2598                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2599                 sc->sc_flags |= SC_OP_TSF_RESET;
2600         }
2601
2602         /* Set the device opmode */
2603         sc->sc_ah->opmode = ic_opmode;
2604
2605         /*
2606          * Enable MIB interrupts when there are hardware phy counters.
2607          * Note we only do this (at the moment) for station mode.
2608          */
2609         if ((conf->type == NL80211_IFTYPE_STATION) ||
2610             (conf->type == NL80211_IFTYPE_ADHOC) ||
2611             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2612                 sc->imask |= ATH9K_INT_MIB;
2613                 sc->imask |= ATH9K_INT_TSFOOR;
2614         }
2615
2616         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2617
2618         if (conf->type == NL80211_IFTYPE_AP    ||
2619             conf->type == NL80211_IFTYPE_ADHOC ||
2620             conf->type == NL80211_IFTYPE_MONITOR)
2621                 ath_start_ani(sc);
2622
2623 out:
2624         mutex_unlock(&sc->mutex);
2625         return ret;
2626 }
2627
2628 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2629                                    struct ieee80211_if_init_conf *conf)
2630 {
2631         struct ath_wiphy *aphy = hw->priv;
2632         struct ath_softc *sc = aphy->sc;
2633         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2634         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2635         int i;
2636
2637         ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
2638
2639         mutex_lock(&sc->mutex);
2640
2641         /* Stop ANI */
2642         del_timer_sync(&sc->ani.timer);
2643
2644         /* Reclaim beacon resources */
2645         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2646             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2647             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2648                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2649                 ath_beacon_return(sc, avp);
2650         }
2651
2652         sc->sc_flags &= ~SC_OP_BEACONS;
2653
2654         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2655                 if (sc->beacon.bslot[i] == conf->vif) {
2656                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2657                                "slot\n", __func__);
2658                         sc->beacon.bslot[i] = NULL;
2659                         sc->beacon.bslot_aphy[i] = NULL;
2660                 }
2661         }
2662
2663         sc->nvifs--;
2664
2665         mutex_unlock(&sc->mutex);
2666 }
2667
2668 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2669 {
2670         struct ath_wiphy *aphy = hw->priv;
2671         struct ath_softc *sc = aphy->sc;
2672         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2673         struct ieee80211_conf *conf = &hw->conf;
2674         struct ath_hw *ah = sc->sc_ah;
2675         bool all_wiphys_idle = false, disable_radio = false;
2676
2677         mutex_lock(&sc->mutex);
2678
2679         /* Leave this as the first check */
2680         if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2681
2682                 spin_lock_bh(&sc->wiphy_lock);
2683                 all_wiphys_idle =  ath9k_all_wiphys_idle(sc);
2684                 spin_unlock_bh(&sc->wiphy_lock);
2685
2686                 if (conf->flags & IEEE80211_CONF_IDLE){
2687                         if (all_wiphys_idle)
2688                                 disable_radio = true;
2689                 }
2690                 else if (all_wiphys_idle) {
2691                         ath_radio_enable(sc);
2692                         ath_print(common, ATH_DBG_CONFIG,
2693                                   "not-idle: enabling radio\n");
2694                 }
2695         }
2696
2697         if (changed & IEEE80211_CONF_CHANGE_PS) {
2698                 if (conf->flags & IEEE80211_CONF_PS) {
2699                         if (!(ah->caps.hw_caps &
2700                               ATH9K_HW_CAP_AUTOSLEEP)) {
2701                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2702                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2703                                         ath9k_hw_set_interrupts(sc->sc_ah,
2704                                                         sc->imask);
2705                                 }
2706                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2707                         }
2708                         sc->ps_enabled = true;
2709                 } else {
2710                         sc->ps_enabled = false;
2711                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
2712                         if (!(ah->caps.hw_caps &
2713                               ATH9K_HW_CAP_AUTOSLEEP)) {
2714                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2715                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2716                                                   SC_OP_WAIT_FOR_CAB |
2717                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2718                                                   SC_OP_WAIT_FOR_TX_ACK);
2719                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2720                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2721                                         ath9k_hw_set_interrupts(sc->sc_ah,
2722                                                         sc->imask);
2723                                 }
2724                         }
2725                 }
2726         }
2727
2728         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2729                 struct ieee80211_channel *curchan = hw->conf.channel;
2730                 int pos = curchan->hw_value;
2731
2732                 aphy->chan_idx = pos;
2733                 aphy->chan_is_ht = conf_is_ht(conf);
2734
2735                 if (aphy->state == ATH_WIPHY_SCAN ||
2736                     aphy->state == ATH_WIPHY_ACTIVE)
2737                         ath9k_wiphy_pause_all_forced(sc, aphy);
2738                 else {
2739                         /*
2740                          * Do not change operational channel based on a paused
2741                          * wiphy changes.
2742                          */
2743                         goto skip_chan_change;
2744                 }
2745
2746                 ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2747                           curchan->center_freq);
2748
2749                 /* XXX: remove me eventualy */
2750                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2751
2752                 ath_update_chainmask(sc, conf_is_ht(conf));
2753
2754                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2755                         ath_print(common, ATH_DBG_FATAL,
2756                                   "Unable to set channel\n");
2757                         mutex_unlock(&sc->mutex);
2758                         return -EINVAL;
2759                 }
2760         }
2761
2762 skip_chan_change:
2763         if (changed & IEEE80211_CONF_CHANGE_POWER)
2764                 sc->config.txpowlimit = 2 * conf->power_level;
2765
2766         if (disable_radio) {
2767                 ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
2768                 ath_radio_disable(sc);
2769         }
2770
2771         mutex_unlock(&sc->mutex);
2772
2773         return 0;
2774 }
2775
2776 #define SUPPORTED_FILTERS                       \
2777         (FIF_PROMISC_IN_BSS |                   \
2778         FIF_ALLMULTI |                          \
2779         FIF_CONTROL |                           \
2780         FIF_PSPOLL |                            \
2781         FIF_OTHER_BSS |                         \
2782         FIF_BCN_PRBRESP_PROMISC |               \
2783         FIF_FCSFAIL)
2784
2785 /* FIXME: sc->sc_full_reset ? */
2786 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2787                                    unsigned int changed_flags,
2788                                    unsigned int *total_flags,
2789                                    u64 multicast)
2790 {
2791         struct ath_wiphy *aphy = hw->priv;
2792         struct ath_softc *sc = aphy->sc;
2793         u32 rfilt;
2794
2795         changed_flags &= SUPPORTED_FILTERS;
2796         *total_flags &= SUPPORTED_FILTERS;
2797
2798         sc->rx.rxfilter = *total_flags;
2799         ath9k_ps_wakeup(sc);
2800         rfilt = ath_calcrxfilter(sc);
2801         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2802         ath9k_ps_restore(sc);
2803
2804         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
2805                   "Set HW RX filter: 0x%x\n", rfilt);
2806 }
2807
2808 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2809                              struct ieee80211_vif *vif,
2810                              enum sta_notify_cmd cmd,
2811                              struct ieee80211_sta *sta)
2812 {
2813         struct ath_wiphy *aphy = hw->priv;
2814         struct ath_softc *sc = aphy->sc;
2815
2816         switch (cmd) {
2817         case STA_NOTIFY_ADD:
2818                 ath_node_attach(sc, sta);
2819                 break;
2820         case STA_NOTIFY_REMOVE:
2821                 ath_node_detach(sc, sta);
2822                 break;
2823         default:
2824                 break;
2825         }
2826 }
2827
2828 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2829                          const struct ieee80211_tx_queue_params *params)
2830 {
2831         struct ath_wiphy *aphy = hw->priv;
2832         struct ath_softc *sc = aphy->sc;
2833         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2834         struct ath9k_tx_queue_info qi;
2835         int ret = 0, qnum;
2836
2837         if (queue >= WME_NUM_AC)
2838                 return 0;
2839
2840         mutex_lock(&sc->mutex);
2841
2842         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2843
2844         qi.tqi_aifs = params->aifs;
2845         qi.tqi_cwmin = params->cw_min;
2846         qi.tqi_cwmax = params->cw_max;
2847         qi.tqi_burstTime = params->txop;
2848         qnum = ath_get_hal_qnum(queue, sc);
2849
2850         ath_print(common, ATH_DBG_CONFIG,
2851                   "Configure tx [queue/halq] [%d/%d],  "
2852                   "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2853                   queue, qnum, params->aifs, params->cw_min,
2854                   params->cw_max, params->txop);
2855
2856         ret = ath_txq_update(sc, qnum, &qi);
2857         if (ret)
2858                 ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
2859
2860         mutex_unlock(&sc->mutex);
2861
2862         return ret;
2863 }
2864
2865 static int ath9k_set_key(struct ieee80211_hw *hw,
2866                          enum set_key_cmd cmd,
2867                          struct ieee80211_vif *vif,
2868                          struct ieee80211_sta *sta,
2869                          struct ieee80211_key_conf *key)
2870 {
2871         struct ath_wiphy *aphy = hw->priv;
2872         struct ath_softc *sc = aphy->sc;
2873         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2874         int ret = 0;
2875
2876         if (modparam_nohwcrypt)
2877                 return -ENOSPC;
2878
2879         mutex_lock(&sc->mutex);
2880         ath9k_ps_wakeup(sc);
2881         ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
2882
2883         switch (cmd) {
2884         case SET_KEY:
2885                 ret = ath_key_config(sc, vif, sta, key);
2886                 if (ret >= 0) {
2887                         key->hw_key_idx = ret;
2888                         /* push IV and Michael MIC generation to stack */
2889                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2890                         if (key->alg == ALG_TKIP)
2891                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2892                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2893                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2894                         ret = 0;
2895                 }
2896                 break;
2897         case DISABLE_KEY:
2898                 ath_key_delete(sc, key);
2899                 break;
2900         default:
2901                 ret = -EINVAL;
2902         }
2903
2904         ath9k_ps_restore(sc);
2905         mutex_unlock(&sc->mutex);
2906
2907         return ret;
2908 }
2909
2910 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2911                                    struct ieee80211_vif *vif,
2912                                    struct ieee80211_bss_conf *bss_conf,
2913                                    u32 changed)
2914 {
2915         struct ath_wiphy *aphy = hw->priv;
2916         struct ath_softc *sc = aphy->sc;
2917         struct ath_hw *ah = sc->sc_ah;
2918         struct ath_common *common = ath9k_hw_common(ah);
2919         struct ath_vif *avp = (void *)vif->drv_priv;
2920         u32 rfilt = 0;
2921         int error, i;
2922
2923         mutex_lock(&sc->mutex);
2924
2925         /*
2926          * TODO: Need to decide which hw opmode to use for
2927          *       multi-interface cases
2928          * XXX: This belongs into add_interface!
2929          */
2930         if (vif->type == NL80211_IFTYPE_AP &&
2931             ah->opmode != NL80211_IFTYPE_AP) {
2932                 ah->opmode = NL80211_IFTYPE_STATION;
2933                 ath9k_hw_setopmode(ah);
2934                 memcpy(common->curbssid, common->macaddr, ETH_ALEN);
2935                 common->curaid = 0;
2936                 ath9k_hw_write_associd(ah);
2937                 /* Request full reset to get hw opmode changed properly */
2938                 sc->sc_flags |= SC_OP_FULL_RESET;
2939         }
2940
2941         if ((changed & BSS_CHANGED_BSSID) &&
2942             !is_zero_ether_addr(bss_conf->bssid)) {
2943                 switch (vif->type) {
2944                 case NL80211_IFTYPE_STATION:
2945                 case NL80211_IFTYPE_ADHOC:
2946                 case NL80211_IFTYPE_MESH_POINT:
2947                         /* Set BSSID */
2948                         memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
2949                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2950                         common->curaid = 0;
2951                         ath9k_hw_write_associd(ah);
2952
2953                         /* Set aggregation protection mode parameters */
2954                         sc->config.ath_aggr_prot = 0;
2955
2956                         ath_print(common, ATH_DBG_CONFIG,
2957                                   "RX filter 0x%x bssid %pM aid 0x%x\n",
2958                                   rfilt, common->curbssid, common->curaid);
2959
2960                         /* need to reconfigure the beacon */
2961                         sc->sc_flags &= ~SC_OP_BEACONS ;
2962
2963                         break;
2964                 default:
2965                         break;
2966                 }
2967         }
2968
2969         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2970             (vif->type == NL80211_IFTYPE_AP) ||
2971             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2972                 if ((changed & BSS_CHANGED_BEACON) ||
2973                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2974                      bss_conf->enable_beacon)) {
2975                         /*
2976                          * Allocate and setup the beacon frame.
2977                          *
2978                          * Stop any previous beacon DMA.  This may be
2979                          * necessary, for example, when an ibss merge
2980                          * causes reconfiguration; we may be called
2981                          * with beacon transmission active.
2982                          */
2983                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2984
2985                         error = ath_beacon_alloc(aphy, vif);
2986                         if (!error)
2987                                 ath_beacon_config(sc, vif);
2988                 }
2989         }
2990
2991         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2992         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2993                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2994                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2995                                 ath9k_hw_keysetmac(sc->sc_ah,
2996                                                    (u16)i,
2997                                                    common->curbssid);
2998         }
2999
3000         /* Only legacy IBSS for now */
3001         if (vif->type == NL80211_IFTYPE_ADHOC)
3002                 ath_update_chainmask(sc, 0);
3003
3004         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3005                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
3006                           bss_conf->use_short_preamble);
3007                 if (bss_conf->use_short_preamble)
3008                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
3009                 else
3010                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
3011         }
3012
3013         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
3014                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
3015                           bss_conf->use_cts_prot);
3016                 if (bss_conf->use_cts_prot &&
3017                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
3018                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
3019                 else
3020                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
3021         }
3022
3023         if (changed & BSS_CHANGED_ASSOC) {
3024                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
3025                         bss_conf->assoc);
3026                 ath9k_bss_assoc_info(sc, vif, bss_conf);
3027         }
3028
3029         /*
3030          * The HW TSF has to be reset when the beacon interval changes.
3031          * We set the flag here, and ath_beacon_config_ap() would take this
3032          * into account when it gets called through the subsequent
3033          * config_interface() call - with IFCC_BEACON in the changed field.
3034          */
3035
3036         if (changed & BSS_CHANGED_BEACON_INT) {
3037                 sc->sc_flags |= SC_OP_TSF_RESET;
3038                 sc->beacon_interval = bss_conf->beacon_int;
3039         }
3040
3041         mutex_unlock(&sc->mutex);
3042 }
3043
3044 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
3045 {
3046         u64 tsf;
3047         struct ath_wiphy *aphy = hw->priv;
3048         struct ath_softc *sc = aphy->sc;
3049
3050         mutex_lock(&sc->mutex);
3051         tsf = ath9k_hw_gettsf64(sc->sc_ah);
3052         mutex_unlock(&sc->mutex);
3053
3054         return tsf;
3055 }
3056
3057 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3058 {
3059         struct ath_wiphy *aphy = hw->priv;
3060         struct ath_softc *sc = aphy->sc;
3061
3062         mutex_lock(&sc->mutex);
3063         ath9k_hw_settsf64(sc->sc_ah, tsf);
3064         mutex_unlock(&sc->mutex);
3065 }
3066
3067 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
3068 {
3069         struct ath_wiphy *aphy = hw->priv;
3070         struct ath_softc *sc = aphy->sc;
3071
3072         mutex_lock(&sc->mutex);
3073
3074         ath9k_ps_wakeup(sc);
3075         ath9k_hw_reset_tsf(sc->sc_ah);
3076         ath9k_ps_restore(sc);
3077
3078         mutex_unlock(&sc->mutex);
3079 }
3080
3081 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
3082                               enum ieee80211_ampdu_mlme_action action,
3083                               struct ieee80211_sta *sta,
3084                               u16 tid, u16 *ssn)
3085 {
3086         struct ath_wiphy *aphy = hw->priv;
3087         struct ath_softc *sc = aphy->sc;
3088         int ret = 0;
3089
3090         switch (action) {
3091         case IEEE80211_AMPDU_RX_START:
3092                 if (!(sc->sc_flags & SC_OP_RXAGGR))
3093                         ret = -ENOTSUPP;
3094                 break;
3095         case IEEE80211_AMPDU_RX_STOP:
3096                 break;
3097         case IEEE80211_AMPDU_TX_START:
3098                 ath_tx_aggr_start(sc, sta, tid, ssn);
3099                 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3100                 break;
3101         case IEEE80211_AMPDU_TX_STOP:
3102                 ath_tx_aggr_stop(sc, sta, tid);
3103                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3104                 break;
3105         case IEEE80211_AMPDU_TX_OPERATIONAL:
3106                 ath_tx_aggr_resume(sc, sta, tid);
3107                 break;
3108         default:
3109                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
3110                           "Unknown AMPDU action\n");
3111         }
3112
3113         return ret;
3114 }
3115
3116 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
3117 {
3118         struct ath_wiphy *aphy = hw->priv;
3119         struct ath_softc *sc = aphy->sc;
3120
3121         mutex_lock(&sc->mutex);
3122         if (ath9k_wiphy_scanning(sc)) {
3123                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
3124                        "same time\n");
3125                 /*
3126                  * Do not allow the concurrent scanning state for now. This
3127                  * could be improved with scanning control moved into ath9k.
3128                  */
3129                 mutex_unlock(&sc->mutex);
3130                 return;
3131         }
3132
3133         aphy->state = ATH_WIPHY_SCAN;
3134         ath9k_wiphy_pause_all_forced(sc, aphy);
3135
3136         spin_lock_bh(&sc->ani_lock);
3137         sc->sc_flags |= SC_OP_SCANNING;
3138         spin_unlock_bh(&sc->ani_lock);
3139         mutex_unlock(&sc->mutex);
3140 }
3141
3142 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
3143 {
3144         struct ath_wiphy *aphy = hw->priv;
3145         struct ath_softc *sc = aphy->sc;
3146
3147         mutex_lock(&sc->mutex);
3148         spin_lock_bh(&sc->ani_lock);
3149         aphy->state = ATH_WIPHY_ACTIVE;
3150         sc->sc_flags &= ~SC_OP_SCANNING;
3151         sc->sc_flags |= SC_OP_FULL_RESET;
3152         spin_unlock_bh(&sc->ani_lock);
3153         ath_beacon_config(sc, NULL);
3154         mutex_unlock(&sc->mutex);
3155 }
3156
3157 struct ieee80211_ops ath9k_ops = {
3158         .tx                 = ath9k_tx,
3159         .start              = ath9k_start,
3160         .stop               = ath9k_stop,
3161         .add_interface      = ath9k_add_interface,
3162         .remove_interface   = ath9k_remove_interface,
3163         .config             = ath9k_config,
3164         .configure_filter   = ath9k_configure_filter,
3165         .sta_notify         = ath9k_sta_notify,
3166         .conf_tx            = ath9k_conf_tx,
3167         .bss_info_changed   = ath9k_bss_info_changed,
3168         .set_key            = ath9k_set_key,
3169         .get_tsf            = ath9k_get_tsf,
3170         .set_tsf            = ath9k_set_tsf,
3171         .reset_tsf          = ath9k_reset_tsf,
3172         .ampdu_action       = ath9k_ampdu_action,
3173         .sw_scan_start      = ath9k_sw_scan_start,
3174         .sw_scan_complete   = ath9k_sw_scan_complete,
3175         .rfkill_poll        = ath9k_rfkill_poll_state,
3176 };
3177
3178 static struct {
3179         u32 version;
3180         const char * name;
3181 } ath_mac_bb_names[] = {
3182         { AR_SREV_VERSION_5416_PCI,     "5416" },
3183         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3184         { AR_SREV_VERSION_9100,         "9100" },
3185         { AR_SREV_VERSION_9160,         "9160" },
3186         { AR_SREV_VERSION_9280,         "9280" },
3187         { AR_SREV_VERSION_9285,         "9285" },
3188         { AR_SREV_VERSION_9287,         "9287" }
3189 };
3190
3191 static struct {
3192         u16 version;
3193         const char * name;
3194 } ath_rf_names[] = {
3195         { 0,                            "5133" },
3196         { AR_RAD5133_SREV_MAJOR,        "5133" },
3197         { AR_RAD5122_SREV_MAJOR,        "5122" },
3198         { AR_RAD2133_SREV_MAJOR,        "2133" },
3199         { AR_RAD2122_SREV_MAJOR,        "2122" }
3200 };
3201
3202 /*
3203  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3204  */
3205 const char *
3206 ath_mac_bb_name(u32 mac_bb_version)
3207 {
3208         int i;
3209
3210         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3211                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3212                         return ath_mac_bb_names[i].name;
3213                 }
3214         }
3215
3216         return "????";
3217 }
3218
3219 /*
3220  * Return the RF name. "????" is returned if the RF is unknown.
3221  */
3222 const char *
3223 ath_rf_name(u16 rf_version)
3224 {
3225         int i;
3226
3227         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3228                 if (ath_rf_names[i].version == rf_version) {
3229                         return ath_rf_names[i].name;
3230                 }
3231         }
3232
3233         return "????";
3234 }
3235
3236 static int __init ath9k_init(void)
3237 {
3238         int error;
3239
3240         /* Register rate control algorithm */
3241         error = ath_rate_control_register();
3242         if (error != 0) {
3243                 printk(KERN_ERR
3244                         "ath9k: Unable to register rate control "
3245                         "algorithm: %d\n",
3246                         error);
3247                 goto err_out;
3248         }
3249
3250         error = ath9k_debug_create_root();
3251         if (error) {
3252                 printk(KERN_ERR
3253                         "ath9k: Unable to create debugfs root: %d\n",
3254                         error);
3255                 goto err_rate_unregister;
3256         }
3257
3258         error = ath_pci_init();
3259         if (error < 0) {
3260                 printk(KERN_ERR
3261                         "ath9k: No PCI devices found, driver not installed.\n");
3262                 error = -ENODEV;
3263                 goto err_remove_root;
3264         }
3265
3266         error = ath_ahb_init();
3267         if (error < 0) {
3268                 error = -ENODEV;
3269                 goto err_pci_exit;
3270         }
3271
3272         return 0;
3273
3274  err_pci_exit:
3275         ath_pci_exit();
3276
3277  err_remove_root:
3278         ath9k_debug_remove_root();
3279  err_rate_unregister:
3280         ath_rate_control_unregister();
3281  err_out:
3282         return error;
3283 }
3284 module_init(ath9k_init);
3285
3286 static void __exit ath9k_exit(void)
3287 {
3288         ath_ahb_exit();
3289         ath_pci_exit();
3290         ath9k_debug_remove_root();
3291         ath_rate_control_unregister();
3292         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
3293 }
3294 module_exit(ath9k_exit);