ath9k: Make sure we have current channel in ah_curchan before rf disable/enable
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 20, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 20, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         const struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
235                                                 struct ieee80211_hw *hw)
236 {
237         struct ieee80211_channel *curchan = hw->conf.channel;
238         struct ath9k_channel *channel;
239         u8 chan_idx;
240
241         chan_idx = curchan->hw_value;
242         channel = &sc->sc_ah->channels[chan_idx];
243         ath9k_update_ichannel(sc, hw, channel);
244         return channel;
245 }
246
247 /*
248  * Set/change channels.  If the channel is really being changed, it's done
249  * by reseting the chip.  To accomplish this we must first cleanup any pending
250  * DMA, then restart stuff.
251 */
252 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
253                     struct ath9k_channel *hchan)
254 {
255         struct ath_hw *ah = sc->sc_ah;
256         bool fastcc = true, stopped;
257         struct ieee80211_channel *channel = hw->conf.channel;
258         int r;
259
260         if (sc->sc_flags & SC_OP_INVALID)
261                 return -EIO;
262
263         ath9k_ps_wakeup(sc);
264
265         /*
266          * This is only performed if the channel settings have
267          * actually changed.
268          *
269          * To switch channels clear any pending DMA operations;
270          * wait long enough for the RX fifo to drain, reset the
271          * hardware at the new frequency, and then re-enable
272          * the relevant bits of the h/w.
273          */
274         ath9k_hw_set_interrupts(ah, 0);
275         ath_drain_all_txq(sc, false);
276         stopped = ath_stoprecv(sc);
277
278         /* XXX: do not flush receive queue here. We don't want
279          * to flush data frames already in queue because of
280          * changing channel. */
281
282         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
283                 fastcc = false;
284
285         DPRINTF(sc, ATH_DBG_CONFIG,
286                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
287                 sc->sc_ah->curchan->channel,
288                 channel->center_freq, sc->tx_chan_width);
289
290         spin_lock_bh(&sc->sc_resetlock);
291
292         r = ath9k_hw_reset(ah, hchan, fastcc);
293         if (r) {
294                 DPRINTF(sc, ATH_DBG_FATAL,
295                         "Unable to reset channel (%u Mhz) "
296                         "reset status %d\n",
297                         channel->center_freq, r);
298                 spin_unlock_bh(&sc->sc_resetlock);
299                 return r;
300         }
301         spin_unlock_bh(&sc->sc_resetlock);
302
303         sc->sc_flags &= ~SC_OP_FULL_RESET;
304
305         if (ath_startrecv(sc) != 0) {
306                 DPRINTF(sc, ATH_DBG_FATAL,
307                         "Unable to restart recv logic\n");
308                 return -EIO;
309         }
310
311         ath_cache_conf_rate(sc, &hw->conf);
312         ath_update_txpow(sc);
313         ath9k_hw_set_interrupts(ah, sc->imask);
314         ath9k_ps_restore(sc);
315         return 0;
316 }
317
318 /*
319  *  This routine performs the periodic noise floor calibration function
320  *  that is used to adjust and optimize the chip performance.  This
321  *  takes environmental changes (location, temperature) into account.
322  *  When the task is complete, it reschedules itself depending on the
323  *  appropriate interval that was calculated.
324  */
325 static void ath_ani_calibrate(unsigned long data)
326 {
327         struct ath_softc *sc = (struct ath_softc *)data;
328         struct ath_hw *ah = sc->sc_ah;
329         bool longcal = false;
330         bool shortcal = false;
331         bool aniflag = false;
332         unsigned int timestamp = jiffies_to_msecs(jiffies);
333         u32 cal_interval, short_cal_interval;
334
335         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
336                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
337
338         /*
339         * don't calibrate when we're scanning.
340         * we are most likely not on our home channel.
341         */
342         if (sc->sc_flags & SC_OP_SCANNING)
343                 goto set_timer;
344
345         /* Only calibrate if awake */
346         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
347                 goto set_timer;
348
349         ath9k_ps_wakeup(sc);
350
351         /* Long calibration runs independently of short calibration. */
352         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
353                 longcal = true;
354                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
355                 sc->ani.longcal_timer = timestamp;
356         }
357
358         /* Short calibration applies only while caldone is false */
359         if (!sc->ani.caldone) {
360                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
361                         shortcal = true;
362                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
363                         sc->ani.shortcal_timer = timestamp;
364                         sc->ani.resetcal_timer = timestamp;
365                 }
366         } else {
367                 if ((timestamp - sc->ani.resetcal_timer) >=
368                     ATH_RESTART_CALINTERVAL) {
369                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
370                         if (sc->ani.caldone)
371                                 sc->ani.resetcal_timer = timestamp;
372                 }
373         }
374
375         /* Verify whether we must check ANI */
376         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
377                 aniflag = true;
378                 sc->ani.checkani_timer = timestamp;
379         }
380
381         /* Skip all processing if there's nothing to do. */
382         if (longcal || shortcal || aniflag) {
383                 /* Call ANI routine if necessary */
384                 if (aniflag)
385                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
386
387                 /* Perform calibration if necessary */
388                 if (longcal || shortcal) {
389                         sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
390                                                      sc->rx_chainmask, longcal);
391
392                         if (longcal)
393                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
394                                                                      ah->curchan);
395
396                         DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
397                                 ah->curchan->channel, ah->curchan->channelFlags,
398                                 sc->ani.noise_floor);
399                 }
400         }
401
402         ath9k_ps_restore(sc);
403
404 set_timer:
405         /*
406         * Set timer interval based on previous results.
407         * The interval must be the shortest necessary to satisfy ANI,
408         * short calibration and long calibration.
409         */
410         cal_interval = ATH_LONG_CALINTERVAL;
411         if (sc->sc_ah->config.enable_ani)
412                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
413         if (!sc->ani.caldone)
414                 cal_interval = min(cal_interval, (u32)short_cal_interval);
415
416         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
417 }
418
419 static void ath_start_ani(struct ath_softc *sc)
420 {
421         unsigned long timestamp = jiffies_to_msecs(jiffies);
422
423         sc->ani.longcal_timer = timestamp;
424         sc->ani.shortcal_timer = timestamp;
425         sc->ani.checkani_timer = timestamp;
426
427         mod_timer(&sc->ani.timer,
428                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
429 }
430
431 /*
432  * Update tx/rx chainmask. For legacy association,
433  * hard code chainmask to 1x1, for 11n association, use
434  * the chainmask configuration, for bt coexistence, use
435  * the chainmask configuration even in legacy mode.
436  */
437 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
438 {
439         if (is_ht ||
440             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
441                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
442                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
443         } else {
444                 sc->tx_chainmask = 1;
445                 sc->rx_chainmask = 1;
446         }
447
448         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
449                 sc->tx_chainmask, sc->rx_chainmask);
450 }
451
452 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
453 {
454         struct ath_node *an;
455
456         an = (struct ath_node *)sta->drv_priv;
457
458         if (sc->sc_flags & SC_OP_TXAGGR) {
459                 ath_tx_node_init(sc, an);
460                 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
461                                      sta->ht_cap.ampdu_factor);
462                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
463         }
464 }
465
466 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
467 {
468         struct ath_node *an = (struct ath_node *)sta->drv_priv;
469
470         if (sc->sc_flags & SC_OP_TXAGGR)
471                 ath_tx_node_cleanup(sc, an);
472 }
473
474 static void ath9k_tasklet(unsigned long data)
475 {
476         struct ath_softc *sc = (struct ath_softc *)data;
477         u32 status = sc->intrstatus;
478
479         ath9k_ps_wakeup(sc);
480
481         if (status & ATH9K_INT_FATAL) {
482                 ath_reset(sc, false);
483                 ath9k_ps_restore(sc);
484                 return;
485         }
486
487         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
488                 spin_lock_bh(&sc->rx.rxflushlock);
489                 ath_rx_tasklet(sc, 0);
490                 spin_unlock_bh(&sc->rx.rxflushlock);
491         }
492
493         if (status & ATH9K_INT_TX)
494                 ath_tx_tasklet(sc);
495
496         if ((status & ATH9K_INT_TSFOOR) &&
497             (sc->hw->conf.flags & IEEE80211_CONF_PS)) {
498                 /*
499                  * TSF sync does not look correct; remain awake to sync with
500                  * the next Beacon.
501                  */
502                 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
503                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
504         }
505
506         /* re-enable hardware interrupt */
507         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
508         ath9k_ps_restore(sc);
509 }
510
511 irqreturn_t ath_isr(int irq, void *dev)
512 {
513 #define SCHED_INTR (                            \
514                 ATH9K_INT_FATAL |               \
515                 ATH9K_INT_RXORN |               \
516                 ATH9K_INT_RXEOL |               \
517                 ATH9K_INT_RX |                  \
518                 ATH9K_INT_TX |                  \
519                 ATH9K_INT_BMISS |               \
520                 ATH9K_INT_CST |                 \
521                 ATH9K_INT_TSFOOR)
522
523         struct ath_softc *sc = dev;
524         struct ath_hw *ah = sc->sc_ah;
525         enum ath9k_int status;
526         bool sched = false;
527
528         /*
529          * The hardware is not ready/present, don't
530          * touch anything. Note this can happen early
531          * on if the IRQ is shared.
532          */
533         if (sc->sc_flags & SC_OP_INVALID)
534                 return IRQ_NONE;
535
536
537         /* shared irq, not for us */
538
539         if (!ath9k_hw_intrpend(ah))
540                 return IRQ_NONE;
541
542         /*
543          * Figure out the reason(s) for the interrupt.  Note
544          * that the hal returns a pseudo-ISR that may include
545          * bits we haven't explicitly enabled so we mask the
546          * value to insure we only process bits we requested.
547          */
548         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
549         status &= sc->imask;    /* discard unasked-for bits */
550
551         /*
552          * If there are no status bits set, then this interrupt was not
553          * for me (should have been caught above).
554          */
555         if (!status)
556                 return IRQ_NONE;
557
558         /* Cache the status */
559         sc->intrstatus = status;
560
561         if (status & SCHED_INTR)
562                 sched = true;
563
564         /*
565          * If a FATAL or RXORN interrupt is received, we have to reset the
566          * chip immediately.
567          */
568         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
569                 goto chip_reset;
570
571         if (status & ATH9K_INT_SWBA)
572                 tasklet_schedule(&sc->bcon_tasklet);
573
574         if (status & ATH9K_INT_TXURN)
575                 ath9k_hw_updatetxtriglevel(ah, true);
576
577         if (status & ATH9K_INT_MIB) {
578                 /*
579                  * Disable interrupts until we service the MIB
580                  * interrupt; otherwise it will continue to
581                  * fire.
582                  */
583                 ath9k_hw_set_interrupts(ah, 0);
584                 /*
585                  * Let the hal handle the event. We assume
586                  * it will clear whatever condition caused
587                  * the interrupt.
588                  */
589                 ath9k_hw_procmibevent(ah, &sc->nodestats);
590                 ath9k_hw_set_interrupts(ah, sc->imask);
591         }
592
593         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
594                 if (status & ATH9K_INT_TIM_TIMER) {
595                         /* Clear RxAbort bit so that we can
596                          * receive frames */
597                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
598                         ath9k_hw_setrxabort(sc->sc_ah, 0);
599                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
600                 }
601
602 chip_reset:
603
604         ath_debug_stat_interrupt(sc, status);
605
606         if (sched) {
607                 /* turn off every interrupt except SWBA */
608                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
609                 tasklet_schedule(&sc->intr_tq);
610         }
611
612         return IRQ_HANDLED;
613
614 #undef SCHED_INTR
615 }
616
617 static u32 ath_get_extchanmode(struct ath_softc *sc,
618                                struct ieee80211_channel *chan,
619                                enum nl80211_channel_type channel_type)
620 {
621         u32 chanmode = 0;
622
623         switch (chan->band) {
624         case IEEE80211_BAND_2GHZ:
625                 switch(channel_type) {
626                 case NL80211_CHAN_NO_HT:
627                 case NL80211_CHAN_HT20:
628                         chanmode = CHANNEL_G_HT20;
629                         break;
630                 case NL80211_CHAN_HT40PLUS:
631                         chanmode = CHANNEL_G_HT40PLUS;
632                         break;
633                 case NL80211_CHAN_HT40MINUS:
634                         chanmode = CHANNEL_G_HT40MINUS;
635                         break;
636                 }
637                 break;
638         case IEEE80211_BAND_5GHZ:
639                 switch(channel_type) {
640                 case NL80211_CHAN_NO_HT:
641                 case NL80211_CHAN_HT20:
642                         chanmode = CHANNEL_A_HT20;
643                         break;
644                 case NL80211_CHAN_HT40PLUS:
645                         chanmode = CHANNEL_A_HT40PLUS;
646                         break;
647                 case NL80211_CHAN_HT40MINUS:
648                         chanmode = CHANNEL_A_HT40MINUS;
649                         break;
650                 }
651                 break;
652         default:
653                 break;
654         }
655
656         return chanmode;
657 }
658
659 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
660                            struct ath9k_keyval *hk, const u8 *addr,
661                            bool authenticator)
662 {
663         const u8 *key_rxmic;
664         const u8 *key_txmic;
665
666         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
667         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
668
669         if (addr == NULL) {
670                 /*
671                  * Group key installation - only two key cache entries are used
672                  * regardless of splitmic capability since group key is only
673                  * used either for TX or RX.
674                  */
675                 if (authenticator) {
676                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
677                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
678                 } else {
679                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
680                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
681                 }
682                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
683         }
684         if (!sc->splitmic) {
685                 /* TX and RX keys share the same key cache entry. */
686                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
687                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
688                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
689         }
690
691         /* Separate key cache entries for TX and RX */
692
693         /* TX key goes at first index, RX key at +32. */
694         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
695         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
696                 /* TX MIC entry failed. No need to proceed further */
697                 DPRINTF(sc, ATH_DBG_FATAL,
698                         "Setting TX MIC Key Failed\n");
699                 return 0;
700         }
701
702         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
703         /* XXX delete tx key on failure? */
704         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
705 }
706
707 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
708 {
709         int i;
710
711         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
712                 if (test_bit(i, sc->keymap) ||
713                     test_bit(i + 64, sc->keymap))
714                         continue; /* At least one part of TKIP key allocated */
715                 if (sc->splitmic &&
716                     (test_bit(i + 32, sc->keymap) ||
717                      test_bit(i + 64 + 32, sc->keymap)))
718                         continue; /* At least one part of TKIP key allocated */
719
720                 /* Found a free slot for a TKIP key */
721                 return i;
722         }
723         return -1;
724 }
725
726 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
727 {
728         int i;
729
730         /* First, try to find slots that would not be available for TKIP. */
731         if (sc->splitmic) {
732                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
733                         if (!test_bit(i, sc->keymap) &&
734                             (test_bit(i + 32, sc->keymap) ||
735                              test_bit(i + 64, sc->keymap) ||
736                              test_bit(i + 64 + 32, sc->keymap)))
737                                 return i;
738                         if (!test_bit(i + 32, sc->keymap) &&
739                             (test_bit(i, sc->keymap) ||
740                              test_bit(i + 64, sc->keymap) ||
741                              test_bit(i + 64 + 32, sc->keymap)))
742                                 return i + 32;
743                         if (!test_bit(i + 64, sc->keymap) &&
744                             (test_bit(i , sc->keymap) ||
745                              test_bit(i + 32, sc->keymap) ||
746                              test_bit(i + 64 + 32, sc->keymap)))
747                                 return i + 64;
748                         if (!test_bit(i + 64 + 32, sc->keymap) &&
749                             (test_bit(i, sc->keymap) ||
750                              test_bit(i + 32, sc->keymap) ||
751                              test_bit(i + 64, sc->keymap)))
752                                 return i + 64 + 32;
753                 }
754         } else {
755                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
756                         if (!test_bit(i, sc->keymap) &&
757                             test_bit(i + 64, sc->keymap))
758                                 return i;
759                         if (test_bit(i, sc->keymap) &&
760                             !test_bit(i + 64, sc->keymap))
761                                 return i + 64;
762                 }
763         }
764
765         /* No partially used TKIP slots, pick any available slot */
766         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
767                 /* Do not allow slots that could be needed for TKIP group keys
768                  * to be used. This limitation could be removed if we know that
769                  * TKIP will not be used. */
770                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
771                         continue;
772                 if (sc->splitmic) {
773                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
774                                 continue;
775                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
776                                 continue;
777                 }
778
779                 if (!test_bit(i, sc->keymap))
780                         return i; /* Found a free slot for a key */
781         }
782
783         /* No free slot found */
784         return -1;
785 }
786
787 static int ath_key_config(struct ath_softc *sc,
788                           struct ieee80211_vif *vif,
789                           struct ieee80211_sta *sta,
790                           struct ieee80211_key_conf *key)
791 {
792         struct ath9k_keyval hk;
793         const u8 *mac = NULL;
794         int ret = 0;
795         int idx;
796
797         memset(&hk, 0, sizeof(hk));
798
799         switch (key->alg) {
800         case ALG_WEP:
801                 hk.kv_type = ATH9K_CIPHER_WEP;
802                 break;
803         case ALG_TKIP:
804                 hk.kv_type = ATH9K_CIPHER_TKIP;
805                 break;
806         case ALG_CCMP:
807                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
808                 break;
809         default:
810                 return -EOPNOTSUPP;
811         }
812
813         hk.kv_len = key->keylen;
814         memcpy(hk.kv_val, key->key, key->keylen);
815
816         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
817                 /* For now, use the default keys for broadcast keys. This may
818                  * need to change with virtual interfaces. */
819                 idx = key->keyidx;
820         } else if (key->keyidx) {
821                 if (WARN_ON(!sta))
822                         return -EOPNOTSUPP;
823                 mac = sta->addr;
824
825                 if (vif->type != NL80211_IFTYPE_AP) {
826                         /* Only keyidx 0 should be used with unicast key, but
827                          * allow this for client mode for now. */
828                         idx = key->keyidx;
829                 } else
830                         return -EIO;
831         } else {
832                 if (WARN_ON(!sta))
833                         return -EOPNOTSUPP;
834                 mac = sta->addr;
835
836                 if (key->alg == ALG_TKIP)
837                         idx = ath_reserve_key_cache_slot_tkip(sc);
838                 else
839                         idx = ath_reserve_key_cache_slot(sc);
840                 if (idx < 0)
841                         return -ENOSPC; /* no free key cache entries */
842         }
843
844         if (key->alg == ALG_TKIP)
845                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
846                                       vif->type == NL80211_IFTYPE_AP);
847         else
848                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
849
850         if (!ret)
851                 return -EIO;
852
853         set_bit(idx, sc->keymap);
854         if (key->alg == ALG_TKIP) {
855                 set_bit(idx + 64, sc->keymap);
856                 if (sc->splitmic) {
857                         set_bit(idx + 32, sc->keymap);
858                         set_bit(idx + 64 + 32, sc->keymap);
859                 }
860         }
861
862         return idx;
863 }
864
865 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
866 {
867         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
868         if (key->hw_key_idx < IEEE80211_WEP_NKID)
869                 return;
870
871         clear_bit(key->hw_key_idx, sc->keymap);
872         if (key->alg != ALG_TKIP)
873                 return;
874
875         clear_bit(key->hw_key_idx + 64, sc->keymap);
876         if (sc->splitmic) {
877                 clear_bit(key->hw_key_idx + 32, sc->keymap);
878                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
879         }
880 }
881
882 static void setup_ht_cap(struct ath_softc *sc,
883                          struct ieee80211_sta_ht_cap *ht_info)
884 {
885 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
886 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
887
888         ht_info->ht_supported = true;
889         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
890                        IEEE80211_HT_CAP_SM_PS |
891                        IEEE80211_HT_CAP_SGI_40 |
892                        IEEE80211_HT_CAP_DSSSCCK40;
893
894         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
895         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
896
897         /* set up supported mcs set */
898         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
899
900         switch(sc->rx_chainmask) {
901         case 1:
902                 ht_info->mcs.rx_mask[0] = 0xff;
903                 break;
904         case 3:
905         case 5:
906         case 7:
907         default:
908                 ht_info->mcs.rx_mask[0] = 0xff;
909                 ht_info->mcs.rx_mask[1] = 0xff;
910                 break;
911         }
912
913         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
914 }
915
916 static void ath9k_bss_assoc_info(struct ath_softc *sc,
917                                  struct ieee80211_vif *vif,
918                                  struct ieee80211_bss_conf *bss_conf)
919 {
920         struct ath_vif *avp = (void *)vif->drv_priv;
921
922         if (bss_conf->assoc) {
923                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
924                         bss_conf->aid, sc->curbssid);
925
926                 /* New association, store aid */
927                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
928                         sc->curaid = bss_conf->aid;
929                         ath9k_hw_write_associd(sc);
930
931                         /*
932                          * Request a re-configuration of Beacon related timers
933                          * on the receipt of the first Beacon frame (i.e.,
934                          * after time sync with the AP).
935                          */
936                         sc->sc_flags |= SC_OP_BEACON_SYNC;
937                 }
938
939                 /* Configure the beacon */
940                 ath_beacon_config(sc, vif);
941
942                 /* Reset rssi stats */
943                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
944                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
945                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
946                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
947
948                 ath_start_ani(sc);
949         } else {
950                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
951                 sc->curaid = 0;
952         }
953 }
954
955 /********************************/
956 /*       LED functions          */
957 /********************************/
958
959 static void ath_led_blink_work(struct work_struct *work)
960 {
961         struct ath_softc *sc = container_of(work, struct ath_softc,
962                                             ath_led_blink_work.work);
963
964         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
965                 return;
966
967         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
968             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
969                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
970         else
971                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
972                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
973
974         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
975                            (sc->sc_flags & SC_OP_LED_ON) ?
976                            msecs_to_jiffies(sc->led_off_duration) :
977                            msecs_to_jiffies(sc->led_on_duration));
978
979         sc->led_on_duration = sc->led_on_cnt ?
980                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
981                         ATH_LED_ON_DURATION_IDLE;
982         sc->led_off_duration = sc->led_off_cnt ?
983                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
984                         ATH_LED_OFF_DURATION_IDLE;
985         sc->led_on_cnt = sc->led_off_cnt = 0;
986         if (sc->sc_flags & SC_OP_LED_ON)
987                 sc->sc_flags &= ~SC_OP_LED_ON;
988         else
989                 sc->sc_flags |= SC_OP_LED_ON;
990 }
991
992 static void ath_led_brightness(struct led_classdev *led_cdev,
993                                enum led_brightness brightness)
994 {
995         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
996         struct ath_softc *sc = led->sc;
997
998         switch (brightness) {
999         case LED_OFF:
1000                 if (led->led_type == ATH_LED_ASSOC ||
1001                     led->led_type == ATH_LED_RADIO) {
1002                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
1003                                 (led->led_type == ATH_LED_RADIO));
1004                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1005                         if (led->led_type == ATH_LED_RADIO)
1006                                 sc->sc_flags &= ~SC_OP_LED_ON;
1007                 } else {
1008                         sc->led_off_cnt++;
1009                 }
1010                 break;
1011         case LED_FULL:
1012                 if (led->led_type == ATH_LED_ASSOC) {
1013                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1014                         queue_delayed_work(sc->hw->workqueue,
1015                                            &sc->ath_led_blink_work, 0);
1016                 } else if (led->led_type == ATH_LED_RADIO) {
1017                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
1018                         sc->sc_flags |= SC_OP_LED_ON;
1019                 } else {
1020                         sc->led_on_cnt++;
1021                 }
1022                 break;
1023         default:
1024                 break;
1025         }
1026 }
1027
1028 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1029                             char *trigger)
1030 {
1031         int ret;
1032
1033         led->sc = sc;
1034         led->led_cdev.name = led->name;
1035         led->led_cdev.default_trigger = trigger;
1036         led->led_cdev.brightness_set = ath_led_brightness;
1037
1038         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1039         if (ret)
1040                 DPRINTF(sc, ATH_DBG_FATAL,
1041                         "Failed to register led:%s", led->name);
1042         else
1043                 led->registered = 1;
1044         return ret;
1045 }
1046
1047 static void ath_unregister_led(struct ath_led *led)
1048 {
1049         if (led->registered) {
1050                 led_classdev_unregister(&led->led_cdev);
1051                 led->registered = 0;
1052         }
1053 }
1054
1055 static void ath_deinit_leds(struct ath_softc *sc)
1056 {
1057         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1058         ath_unregister_led(&sc->assoc_led);
1059         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1060         ath_unregister_led(&sc->tx_led);
1061         ath_unregister_led(&sc->rx_led);
1062         ath_unregister_led(&sc->radio_led);
1063         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1064 }
1065
1066 static void ath_init_leds(struct ath_softc *sc)
1067 {
1068         char *trigger;
1069         int ret;
1070
1071         /* Configure gpio 1 for output */
1072         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1073                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1074         /* LED off, active low */
1075         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1076
1077         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1078
1079         trigger = ieee80211_get_radio_led_name(sc->hw);
1080         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1081                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1082         ret = ath_register_led(sc, &sc->radio_led, trigger);
1083         sc->radio_led.led_type = ATH_LED_RADIO;
1084         if (ret)
1085                 goto fail;
1086
1087         trigger = ieee80211_get_assoc_led_name(sc->hw);
1088         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1089                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1090         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1091         sc->assoc_led.led_type = ATH_LED_ASSOC;
1092         if (ret)
1093                 goto fail;
1094
1095         trigger = ieee80211_get_tx_led_name(sc->hw);
1096         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1097                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1098         ret = ath_register_led(sc, &sc->tx_led, trigger);
1099         sc->tx_led.led_type = ATH_LED_TX;
1100         if (ret)
1101                 goto fail;
1102
1103         trigger = ieee80211_get_rx_led_name(sc->hw);
1104         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1105                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1106         ret = ath_register_led(sc, &sc->rx_led, trigger);
1107         sc->rx_led.led_type = ATH_LED_RX;
1108         if (ret)
1109                 goto fail;
1110
1111         return;
1112
1113 fail:
1114         ath_deinit_leds(sc);
1115 }
1116
1117 void ath_radio_enable(struct ath_softc *sc)
1118 {
1119         struct ath_hw *ah = sc->sc_ah;
1120         struct ieee80211_channel *channel = sc->hw->conf.channel;
1121         int r;
1122
1123         ath9k_ps_wakeup(sc);
1124         ath9k_hw_configpcipowersave(ah, 0);
1125
1126         if (!ah->curchan)
1127                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1128
1129         spin_lock_bh(&sc->sc_resetlock);
1130         r = ath9k_hw_reset(ah, ah->curchan, false);
1131         if (r) {
1132                 DPRINTF(sc, ATH_DBG_FATAL,
1133                         "Unable to reset channel %u (%uMhz) ",
1134                         "reset status %d\n",
1135                         channel->center_freq, r);
1136         }
1137         spin_unlock_bh(&sc->sc_resetlock);
1138
1139         ath_update_txpow(sc);
1140         if (ath_startrecv(sc) != 0) {
1141                 DPRINTF(sc, ATH_DBG_FATAL,
1142                         "Unable to restart recv logic\n");
1143                 return;
1144         }
1145
1146         if (sc->sc_flags & SC_OP_BEACONS)
1147                 ath_beacon_config(sc, NULL);    /* restart beacons */
1148
1149         /* Re-Enable  interrupts */
1150         ath9k_hw_set_interrupts(ah, sc->imask);
1151
1152         /* Enable LED */
1153         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1154                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1155         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1156
1157         ieee80211_wake_queues(sc->hw);
1158         ath9k_ps_restore(sc);
1159 }
1160
1161 void ath_radio_disable(struct ath_softc *sc)
1162 {
1163         struct ath_hw *ah = sc->sc_ah;
1164         struct ieee80211_channel *channel = sc->hw->conf.channel;
1165         int r;
1166
1167         ath9k_ps_wakeup(sc);
1168         ieee80211_stop_queues(sc->hw);
1169
1170         /* Disable LED */
1171         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1172         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1173
1174         /* Disable interrupts */
1175         ath9k_hw_set_interrupts(ah, 0);
1176
1177         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1178         ath_stoprecv(sc);               /* turn off frame recv */
1179         ath_flushrecv(sc);              /* flush recv queue */
1180
1181         if (!ah->curchan)
1182                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1183
1184         spin_lock_bh(&sc->sc_resetlock);
1185         r = ath9k_hw_reset(ah, ah->curchan, false);
1186         if (r) {
1187                 DPRINTF(sc, ATH_DBG_FATAL,
1188                         "Unable to reset channel %u (%uMhz) "
1189                         "reset status %d\n",
1190                         channel->center_freq, r);
1191         }
1192         spin_unlock_bh(&sc->sc_resetlock);
1193
1194         ath9k_hw_phy_disable(ah);
1195         ath9k_hw_configpcipowersave(ah, 1);
1196         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1197         ath9k_ps_restore(sc);
1198 }
1199
1200 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1201
1202 /*******************/
1203 /*      Rfkill     */
1204 /*******************/
1205
1206 static bool ath_is_rfkill_set(struct ath_softc *sc)
1207 {
1208         struct ath_hw *ah = sc->sc_ah;
1209
1210         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1211                                   ah->rfkill_polarity;
1212 }
1213
1214 /* s/w rfkill handlers */
1215 static int ath_rfkill_set_block(void *data, bool blocked)
1216 {
1217         struct ath_softc *sc = data;
1218
1219         if (blocked)
1220                 ath_radio_disable(sc);
1221         else
1222                 ath_radio_enable(sc);
1223
1224         return 0;
1225 }
1226
1227 static void ath_rfkill_poll_state(struct rfkill *rfkill, void *data)
1228 {
1229         struct ath_softc *sc = data;
1230         bool blocked = !!ath_is_rfkill_set(sc);
1231
1232         if (rfkill_set_hw_state(rfkill, blocked))
1233                 ath_radio_disable(sc);
1234         else
1235                 ath_radio_enable(sc);
1236 }
1237
1238 /* Init s/w rfkill */
1239 static int ath_init_sw_rfkill(struct ath_softc *sc)
1240 {
1241         sc->rf_kill.ops.set_block = ath_rfkill_set_block;
1242         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1243                 sc->rf_kill.ops.poll = ath_rfkill_poll_state;
1244
1245         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1246                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1247
1248         sc->rf_kill.rfkill = rfkill_alloc(sc->rf_kill.rfkill_name,
1249                                           wiphy_dev(sc->hw->wiphy),
1250                                           RFKILL_TYPE_WLAN,
1251                                           &sc->rf_kill.ops, sc);
1252         if (!sc->rf_kill.rfkill) {
1253                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1254                 return -ENOMEM;
1255         }
1256
1257         return 0;
1258 }
1259
1260 /* Deinitialize rfkill */
1261 static void ath_deinit_rfkill(struct ath_softc *sc)
1262 {
1263         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1264                 rfkill_unregister(sc->rf_kill.rfkill);
1265                 rfkill_destroy(sc->rf_kill.rfkill);
1266                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1267         }
1268 }
1269
1270 static int ath_start_rfkill_poll(struct ath_softc *sc)
1271 {
1272         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1273                 if (rfkill_register(sc->rf_kill.rfkill)) {
1274                         DPRINTF(sc, ATH_DBG_FATAL,
1275                                 "Unable to register rfkill\n");
1276                         rfkill_destroy(sc->rf_kill.rfkill);
1277
1278                         /* Deinitialize the device */
1279                         ath_cleanup(sc);
1280                         return -EIO;
1281                 } else {
1282                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1283                 }
1284         }
1285
1286         return 0;
1287 }
1288 #endif /* CONFIG_RFKILL */
1289
1290 void ath_cleanup(struct ath_softc *sc)
1291 {
1292         ath_detach(sc);
1293         free_irq(sc->irq, sc);
1294         ath_bus_cleanup(sc);
1295         kfree(sc->sec_wiphy);
1296         ieee80211_free_hw(sc->hw);
1297 }
1298
1299 void ath_detach(struct ath_softc *sc)
1300 {
1301         struct ieee80211_hw *hw = sc->hw;
1302         int i = 0;
1303
1304         ath9k_ps_wakeup(sc);
1305
1306         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1307
1308 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1309         ath_deinit_rfkill(sc);
1310 #endif
1311         ath_deinit_leds(sc);
1312         cancel_work_sync(&sc->chan_work);
1313         cancel_delayed_work_sync(&sc->wiphy_work);
1314
1315         for (i = 0; i < sc->num_sec_wiphy; i++) {
1316                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1317                 if (aphy == NULL)
1318                         continue;
1319                 sc->sec_wiphy[i] = NULL;
1320                 ieee80211_unregister_hw(aphy->hw);
1321                 ieee80211_free_hw(aphy->hw);
1322         }
1323         ieee80211_unregister_hw(hw);
1324         ath_rx_cleanup(sc);
1325         ath_tx_cleanup(sc);
1326
1327         tasklet_kill(&sc->intr_tq);
1328         tasklet_kill(&sc->bcon_tasklet);
1329
1330         if (!(sc->sc_flags & SC_OP_INVALID))
1331                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1332
1333         /* cleanup tx queues */
1334         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1335                 if (ATH_TXQ_SETUP(sc, i))
1336                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1337
1338         ath9k_hw_detach(sc->sc_ah);
1339         ath9k_exit_debug(sc);
1340         ath9k_ps_restore(sc);
1341 }
1342
1343 static int ath9k_reg_notifier(struct wiphy *wiphy,
1344                               struct regulatory_request *request)
1345 {
1346         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1347         struct ath_wiphy *aphy = hw->priv;
1348         struct ath_softc *sc = aphy->sc;
1349         struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1350
1351         return ath_reg_notifier_apply(wiphy, request, reg);
1352 }
1353
1354 static int ath_init(u16 devid, struct ath_softc *sc)
1355 {
1356         struct ath_hw *ah = NULL;
1357         int status;
1358         int error = 0, i;
1359         int csz = 0;
1360
1361         /* XXX: hardware will not be ready until ath_open() being called */
1362         sc->sc_flags |= SC_OP_INVALID;
1363
1364         if (ath9k_init_debug(sc) < 0)
1365                 printk(KERN_ERR "Unable to create debugfs files\n");
1366
1367         spin_lock_init(&sc->wiphy_lock);
1368         spin_lock_init(&sc->sc_resetlock);
1369         spin_lock_init(&sc->sc_serial_rw);
1370         mutex_init(&sc->mutex);
1371         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1372         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1373                      (unsigned long)sc);
1374
1375         /*
1376          * Cache line size is used to size and align various
1377          * structures used to communicate with the hardware.
1378          */
1379         ath_read_cachesize(sc, &csz);
1380         /* XXX assert csz is non-zero */
1381         sc->cachelsz = csz << 2;        /* convert to bytes */
1382
1383         ah = ath9k_hw_attach(devid, sc, &status);
1384         if (ah == NULL) {
1385                 DPRINTF(sc, ATH_DBG_FATAL,
1386                         "Unable to attach hardware; HAL status %d\n", status);
1387                 error = -ENXIO;
1388                 goto bad;
1389         }
1390         sc->sc_ah = ah;
1391
1392         /* Get the hardware key cache size. */
1393         sc->keymax = ah->caps.keycache_size;
1394         if (sc->keymax > ATH_KEYMAX) {
1395                 DPRINTF(sc, ATH_DBG_ANY,
1396                         "Warning, using only %u entries in %u key cache\n",
1397                         ATH_KEYMAX, sc->keymax);
1398                 sc->keymax = ATH_KEYMAX;
1399         }
1400
1401         /*
1402          * Reset the key cache since some parts do not
1403          * reset the contents on initial power up.
1404          */
1405         for (i = 0; i < sc->keymax; i++)
1406                 ath9k_hw_keyreset(ah, (u16) i);
1407
1408         if (error)
1409                 goto bad;
1410
1411         /* default to MONITOR mode */
1412         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1413
1414         /* Setup rate tables */
1415
1416         ath_rate_attach(sc);
1417         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1418         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1419
1420         /*
1421          * Allocate hardware transmit queues: one queue for
1422          * beacon frames and one data queue for each QoS
1423          * priority.  Note that the hal handles reseting
1424          * these queues at the needed time.
1425          */
1426         sc->beacon.beaconq = ath_beaconq_setup(ah);
1427         if (sc->beacon.beaconq == -1) {
1428                 DPRINTF(sc, ATH_DBG_FATAL,
1429                         "Unable to setup a beacon xmit queue\n");
1430                 error = -EIO;
1431                 goto bad2;
1432         }
1433         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1434         if (sc->beacon.cabq == NULL) {
1435                 DPRINTF(sc, ATH_DBG_FATAL,
1436                         "Unable to setup CAB xmit queue\n");
1437                 error = -EIO;
1438                 goto bad2;
1439         }
1440
1441         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1442         ath_cabq_update(sc);
1443
1444         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1445                 sc->tx.hwq_map[i] = -1;
1446
1447         /* Setup data queues */
1448         /* NB: ensure BK queue is the lowest priority h/w queue */
1449         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1450                 DPRINTF(sc, ATH_DBG_FATAL,
1451                         "Unable to setup xmit queue for BK traffic\n");
1452                 error = -EIO;
1453                 goto bad2;
1454         }
1455
1456         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1457                 DPRINTF(sc, ATH_DBG_FATAL,
1458                         "Unable to setup xmit queue for BE traffic\n");
1459                 error = -EIO;
1460                 goto bad2;
1461         }
1462         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1463                 DPRINTF(sc, ATH_DBG_FATAL,
1464                         "Unable to setup xmit queue for VI traffic\n");
1465                 error = -EIO;
1466                 goto bad2;
1467         }
1468         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1469                 DPRINTF(sc, ATH_DBG_FATAL,
1470                         "Unable to setup xmit queue for VO traffic\n");
1471                 error = -EIO;
1472                 goto bad2;
1473         }
1474
1475         /* Initializes the noise floor to a reasonable default value.
1476          * Later on this will be updated during ANI processing. */
1477
1478         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1479         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1480
1481         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1482                                    ATH9K_CIPHER_TKIP, NULL)) {
1483                 /*
1484                  * Whether we should enable h/w TKIP MIC.
1485                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1486                  * report WMM capable, so it's always safe to turn on
1487                  * TKIP MIC in this case.
1488                  */
1489                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1490                                        0, 1, NULL);
1491         }
1492
1493         /*
1494          * Check whether the separate key cache entries
1495          * are required to handle both tx+rx MIC keys.
1496          * With split mic keys the number of stations is limited
1497          * to 27 otherwise 59.
1498          */
1499         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1500                                    ATH9K_CIPHER_TKIP, NULL)
1501             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1502                                       ATH9K_CIPHER_MIC, NULL)
1503             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1504                                       0, NULL))
1505                 sc->splitmic = 1;
1506
1507         /* turn on mcast key search if possible */
1508         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1509                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1510                                              1, NULL);
1511
1512         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1513
1514         /* 11n Capabilities */
1515         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1516                 sc->sc_flags |= SC_OP_TXAGGR;
1517                 sc->sc_flags |= SC_OP_RXAGGR;
1518         }
1519
1520         sc->tx_chainmask = ah->caps.tx_chainmask;
1521         sc->rx_chainmask = ah->caps.rx_chainmask;
1522
1523         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1524         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1525
1526         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1527                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1528
1529         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1530
1531         /* initialize beacon slots */
1532         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1533                 sc->beacon.bslot[i] = NULL;
1534                 sc->beacon.bslot_aphy[i] = NULL;
1535         }
1536
1537         /* setup channels and rates */
1538
1539         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1540         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1541                 sc->rates[IEEE80211_BAND_2GHZ];
1542         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1543         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1544                 ARRAY_SIZE(ath9k_2ghz_chantable);
1545
1546         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1547                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1548                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1549                         sc->rates[IEEE80211_BAND_5GHZ];
1550                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1551                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1552                         ARRAY_SIZE(ath9k_5ghz_chantable);
1553         }
1554
1555         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1556                 ath9k_hw_btcoex_enable(sc->sc_ah);
1557
1558         return 0;
1559 bad2:
1560         /* cleanup tx queues */
1561         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1562                 if (ATH_TXQ_SETUP(sc, i))
1563                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1564 bad:
1565         if (ah)
1566                 ath9k_hw_detach(ah);
1567         ath9k_exit_debug(sc);
1568
1569         return error;
1570 }
1571
1572 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1573 {
1574         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1575                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1576                 IEEE80211_HW_SIGNAL_DBM |
1577                 IEEE80211_HW_AMPDU_AGGREGATION |
1578                 IEEE80211_HW_SUPPORTS_PS |
1579                 IEEE80211_HW_PS_NULLFUNC_STACK |
1580                 IEEE80211_HW_SPECTRUM_MGMT;
1581
1582         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1583                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1584
1585         hw->wiphy->interface_modes =
1586                 BIT(NL80211_IFTYPE_AP) |
1587                 BIT(NL80211_IFTYPE_STATION) |
1588                 BIT(NL80211_IFTYPE_ADHOC) |
1589                 BIT(NL80211_IFTYPE_MESH_POINT);
1590
1591         hw->queues = 4;
1592         hw->max_rates = 4;
1593         hw->channel_change_time = 5000;
1594         hw->max_listen_interval = 10;
1595         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1596         hw->sta_data_size = sizeof(struct ath_node);
1597         hw->vif_data_size = sizeof(struct ath_vif);
1598
1599         hw->rate_control_algorithm = "ath9k_rate_control";
1600
1601         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1602                 &sc->sbands[IEEE80211_BAND_2GHZ];
1603         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1604                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1605                         &sc->sbands[IEEE80211_BAND_5GHZ];
1606 }
1607
1608 int ath_attach(u16 devid, struct ath_softc *sc)
1609 {
1610         struct ieee80211_hw *hw = sc->hw;
1611         int error = 0, i;
1612         struct ath_regulatory *reg;
1613
1614         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1615
1616         error = ath_init(devid, sc);
1617         if (error != 0)
1618                 return error;
1619
1620         /* get mac address from hardware and set in mac80211 */
1621
1622         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1623
1624         ath_set_hw_capab(sc, hw);
1625
1626         error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1627                               ath9k_reg_notifier);
1628         if (error)
1629                 return error;
1630
1631         reg = &sc->sc_ah->regulatory;
1632
1633         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1634                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1635                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1636                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1637         }
1638
1639         /* initialize tx/rx engine */
1640         error = ath_tx_init(sc, ATH_TXBUF);
1641         if (error != 0)
1642                 goto error_attach;
1643
1644         error = ath_rx_init(sc, ATH_RXBUF);
1645         if (error != 0)
1646                 goto error_attach;
1647
1648 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1649         /* Initialize s/w rfkill */
1650         error = ath_init_sw_rfkill(sc);
1651         if (error)
1652                 goto error_attach;
1653 #endif
1654
1655         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1656         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1657         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1658
1659         error = ieee80211_register_hw(hw);
1660
1661         if (!ath_is_world_regd(reg)) {
1662                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1663                 if (error)
1664                         goto error_attach;
1665         }
1666
1667         /* Initialize LED control */
1668         ath_init_leds(sc);
1669
1670
1671         return 0;
1672
1673 error_attach:
1674         /* cleanup tx queues */
1675         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1676                 if (ATH_TXQ_SETUP(sc, i))
1677                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1678
1679         ath9k_hw_detach(sc->sc_ah);
1680         ath9k_exit_debug(sc);
1681
1682         return error;
1683 }
1684
1685 int ath_reset(struct ath_softc *sc, bool retry_tx)
1686 {
1687         struct ath_hw *ah = sc->sc_ah;
1688         struct ieee80211_hw *hw = sc->hw;
1689         int r;
1690
1691         ath9k_hw_set_interrupts(ah, 0);
1692         ath_drain_all_txq(sc, retry_tx);
1693         ath_stoprecv(sc);
1694         ath_flushrecv(sc);
1695
1696         spin_lock_bh(&sc->sc_resetlock);
1697         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1698         if (r)
1699                 DPRINTF(sc, ATH_DBG_FATAL,
1700                         "Unable to reset hardware; reset status %d\n", r);
1701         spin_unlock_bh(&sc->sc_resetlock);
1702
1703         if (ath_startrecv(sc) != 0)
1704                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1705
1706         /*
1707          * We may be doing a reset in response to a request
1708          * that changes the channel so update any state that
1709          * might change as a result.
1710          */
1711         ath_cache_conf_rate(sc, &hw->conf);
1712
1713         ath_update_txpow(sc);
1714
1715         if (sc->sc_flags & SC_OP_BEACONS)
1716                 ath_beacon_config(sc, NULL);    /* restart beacons */
1717
1718         ath9k_hw_set_interrupts(ah, sc->imask);
1719
1720         if (retry_tx) {
1721                 int i;
1722                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1723                         if (ATH_TXQ_SETUP(sc, i)) {
1724                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1725                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1726                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1727                         }
1728                 }
1729         }
1730
1731         return r;
1732 }
1733
1734 /*
1735  *  This function will allocate both the DMA descriptor structure, and the
1736  *  buffers it contains.  These are used to contain the descriptors used
1737  *  by the system.
1738 */
1739 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1740                       struct list_head *head, const char *name,
1741                       int nbuf, int ndesc)
1742 {
1743 #define DS2PHYS(_dd, _ds)                                               \
1744         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1745 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1746 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1747
1748         struct ath_desc *ds;
1749         struct ath_buf *bf;
1750         int i, bsize, error;
1751
1752         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1753                 name, nbuf, ndesc);
1754
1755         INIT_LIST_HEAD(head);
1756         /* ath_desc must be a multiple of DWORDs */
1757         if ((sizeof(struct ath_desc) % 4) != 0) {
1758                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1759                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1760                 error = -ENOMEM;
1761                 goto fail;
1762         }
1763
1764         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1765
1766         /*
1767          * Need additional DMA memory because we can't use
1768          * descriptors that cross the 4K page boundary. Assume
1769          * one skipped descriptor per 4K page.
1770          */
1771         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1772                 u32 ndesc_skipped =
1773                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1774                 u32 dma_len;
1775
1776                 while (ndesc_skipped) {
1777                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1778                         dd->dd_desc_len += dma_len;
1779
1780                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1781                 };
1782         }
1783
1784         /* allocate descriptors */
1785         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1786                                          &dd->dd_desc_paddr, GFP_KERNEL);
1787         if (dd->dd_desc == NULL) {
1788                 error = -ENOMEM;
1789                 goto fail;
1790         }
1791         ds = dd->dd_desc;
1792         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1793                 name, ds, (u32) dd->dd_desc_len,
1794                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1795
1796         /* allocate buffers */
1797         bsize = sizeof(struct ath_buf) * nbuf;
1798         bf = kzalloc(bsize, GFP_KERNEL);
1799         if (bf == NULL) {
1800                 error = -ENOMEM;
1801                 goto fail2;
1802         }
1803         dd->dd_bufptr = bf;
1804
1805         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1806                 bf->bf_desc = ds;
1807                 bf->bf_daddr = DS2PHYS(dd, ds);
1808
1809                 if (!(sc->sc_ah->caps.hw_caps &
1810                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1811                         /*
1812                          * Skip descriptor addresses which can cause 4KB
1813                          * boundary crossing (addr + length) with a 32 dword
1814                          * descriptor fetch.
1815                          */
1816                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1817                                 ASSERT((caddr_t) bf->bf_desc <
1818                                        ((caddr_t) dd->dd_desc +
1819                                         dd->dd_desc_len));
1820
1821                                 ds += ndesc;
1822                                 bf->bf_desc = ds;
1823                                 bf->bf_daddr = DS2PHYS(dd, ds);
1824                         }
1825                 }
1826                 list_add_tail(&bf->list, head);
1827         }
1828         return 0;
1829 fail2:
1830         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1831                           dd->dd_desc_paddr);
1832 fail:
1833         memset(dd, 0, sizeof(*dd));
1834         return error;
1835 #undef ATH_DESC_4KB_BOUND_CHECK
1836 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1837 #undef DS2PHYS
1838 }
1839
1840 void ath_descdma_cleanup(struct ath_softc *sc,
1841                          struct ath_descdma *dd,
1842                          struct list_head *head)
1843 {
1844         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1845                           dd->dd_desc_paddr);
1846
1847         INIT_LIST_HEAD(head);
1848         kfree(dd->dd_bufptr);
1849         memset(dd, 0, sizeof(*dd));
1850 }
1851
1852 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1853 {
1854         int qnum;
1855
1856         switch (queue) {
1857         case 0:
1858                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1859                 break;
1860         case 1:
1861                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1862                 break;
1863         case 2:
1864                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1865                 break;
1866         case 3:
1867                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1868                 break;
1869         default:
1870                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1871                 break;
1872         }
1873
1874         return qnum;
1875 }
1876
1877 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1878 {
1879         int qnum;
1880
1881         switch (queue) {
1882         case ATH9K_WME_AC_VO:
1883                 qnum = 0;
1884                 break;
1885         case ATH9K_WME_AC_VI:
1886                 qnum = 1;
1887                 break;
1888         case ATH9K_WME_AC_BE:
1889                 qnum = 2;
1890                 break;
1891         case ATH9K_WME_AC_BK:
1892                 qnum = 3;
1893                 break;
1894         default:
1895                 qnum = -1;
1896                 break;
1897         }
1898
1899         return qnum;
1900 }
1901
1902 /* XXX: Remove me once we don't depend on ath9k_channel for all
1903  * this redundant data */
1904 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1905                            struct ath9k_channel *ichan)
1906 {
1907         struct ieee80211_channel *chan = hw->conf.channel;
1908         struct ieee80211_conf *conf = &hw->conf;
1909
1910         ichan->channel = chan->center_freq;
1911         ichan->chan = chan;
1912
1913         if (chan->band == IEEE80211_BAND_2GHZ) {
1914                 ichan->chanmode = CHANNEL_G;
1915                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1916         } else {
1917                 ichan->chanmode = CHANNEL_A;
1918                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1919         }
1920
1921         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1922
1923         if (conf_is_ht(conf)) {
1924                 if (conf_is_ht40(conf))
1925                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1926
1927                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1928                                             conf->channel_type);
1929         }
1930 }
1931
1932 /**********************/
1933 /* mac80211 callbacks */
1934 /**********************/
1935
1936 static int ath9k_start(struct ieee80211_hw *hw)
1937 {
1938         struct ath_wiphy *aphy = hw->priv;
1939         struct ath_softc *sc = aphy->sc;
1940         struct ieee80211_channel *curchan = hw->conf.channel;
1941         struct ath9k_channel *init_channel;
1942         int r;
1943
1944         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1945                 "initial channel: %d MHz\n", curchan->center_freq);
1946
1947         mutex_lock(&sc->mutex);
1948
1949         if (ath9k_wiphy_started(sc)) {
1950                 if (sc->chan_idx == curchan->hw_value) {
1951                         /*
1952                          * Already on the operational channel, the new wiphy
1953                          * can be marked active.
1954                          */
1955                         aphy->state = ATH_WIPHY_ACTIVE;
1956                         ieee80211_wake_queues(hw);
1957                 } else {
1958                         /*
1959                          * Another wiphy is on another channel, start the new
1960                          * wiphy in paused state.
1961                          */
1962                         aphy->state = ATH_WIPHY_PAUSED;
1963                         ieee80211_stop_queues(hw);
1964                 }
1965                 mutex_unlock(&sc->mutex);
1966                 return 0;
1967         }
1968         aphy->state = ATH_WIPHY_ACTIVE;
1969
1970         /* setup initial channel */
1971
1972         sc->chan_idx = curchan->hw_value;
1973
1974         init_channel = ath_get_curchannel(sc, hw);
1975
1976         /* Reset SERDES registers */
1977         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1978
1979         /*
1980          * The basic interface to setting the hardware in a good
1981          * state is ``reset''.  On return the hardware is known to
1982          * be powered up and with interrupts disabled.  This must
1983          * be followed by initialization of the appropriate bits
1984          * and then setup of the interrupt mask.
1985          */
1986         spin_lock_bh(&sc->sc_resetlock);
1987         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1988         if (r) {
1989                 DPRINTF(sc, ATH_DBG_FATAL,
1990                         "Unable to reset hardware; reset status %d "
1991                         "(freq %u MHz)\n", r,
1992                         curchan->center_freq);
1993                 spin_unlock_bh(&sc->sc_resetlock);
1994                 goto mutex_unlock;
1995         }
1996         spin_unlock_bh(&sc->sc_resetlock);
1997
1998         /*
1999          * This is needed only to setup initial state
2000          * but it's best done after a reset.
2001          */
2002         ath_update_txpow(sc);
2003
2004         /*
2005          * Setup the hardware after reset:
2006          * The receive engine is set going.
2007          * Frame transmit is handled entirely
2008          * in the frame output path; there's nothing to do
2009          * here except setup the interrupt mask.
2010          */
2011         if (ath_startrecv(sc) != 0) {
2012                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2013                 r = -EIO;
2014                 goto mutex_unlock;
2015         }
2016
2017         /* Setup our intr mask. */
2018         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2019                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2020                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2021
2022         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2023                 sc->imask |= ATH9K_INT_GTT;
2024
2025         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2026                 sc->imask |= ATH9K_INT_CST;
2027
2028         ath_cache_conf_rate(sc, &hw->conf);
2029
2030         sc->sc_flags &= ~SC_OP_INVALID;
2031
2032         /* Disable BMISS interrupt when we're not associated */
2033         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2034         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2035
2036         ieee80211_wake_queues(hw);
2037
2038 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2039         r = ath_start_rfkill_poll(sc);
2040 #endif
2041
2042 mutex_unlock:
2043         mutex_unlock(&sc->mutex);
2044
2045         return r;
2046 }
2047
2048 static int ath9k_tx(struct ieee80211_hw *hw,
2049                     struct sk_buff *skb)
2050 {
2051         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2052         struct ath_wiphy *aphy = hw->priv;
2053         struct ath_softc *sc = aphy->sc;
2054         struct ath_tx_control txctl;
2055         int hdrlen, padsize;
2056
2057         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2058                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2059                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2060                 goto exit;
2061         }
2062
2063         if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
2064                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2065                 /*
2066                  * mac80211 does not set PM field for normal data frames, so we
2067                  * need to update that based on the current PS mode.
2068                  */
2069                 if (ieee80211_is_data(hdr->frame_control) &&
2070                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2071                     !ieee80211_has_pm(hdr->frame_control)) {
2072                         DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2073                                 "while in PS mode\n");
2074                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2075                 }
2076         }
2077
2078         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2079                 /*
2080                  * We are using PS-Poll and mac80211 can request TX while in
2081                  * power save mode. Need to wake up hardware for the TX to be
2082                  * completed and if needed, also for RX of buffered frames.
2083                  */
2084                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2085                 ath9k_ps_wakeup(sc);
2086                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2087                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2088                         DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2089                                 "buffered frame\n");
2090                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2091                 } else {
2092                         DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2093                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2094                 }
2095                 /*
2096                  * The actual restore operation will happen only after
2097                  * the sc_flags bit is cleared. We are just dropping
2098                  * the ps_usecount here.
2099                  */
2100                 ath9k_ps_restore(sc);
2101         }
2102
2103         memset(&txctl, 0, sizeof(struct ath_tx_control));
2104
2105         /*
2106          * As a temporary workaround, assign seq# here; this will likely need
2107          * to be cleaned up to work better with Beacon transmission and virtual
2108          * BSSes.
2109          */
2110         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2111                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2112                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2113                         sc->tx.seq_no += 0x10;
2114                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2115                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2116         }
2117
2118         /* Add the padding after the header if this is not already done */
2119         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2120         if (hdrlen & 3) {
2121                 padsize = hdrlen % 4;
2122                 if (skb_headroom(skb) < padsize)
2123                         return -1;
2124                 skb_push(skb, padsize);
2125                 memmove(skb->data, skb->data + padsize, hdrlen);
2126         }
2127
2128         /* Check if a tx queue is available */
2129
2130         txctl.txq = ath_test_get_txq(sc, skb);
2131         if (!txctl.txq)
2132                 goto exit;
2133
2134         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2135
2136         if (ath_tx_start(hw, skb, &txctl) != 0) {
2137                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2138                 goto exit;
2139         }
2140
2141         return 0;
2142 exit:
2143         dev_kfree_skb_any(skb);
2144         return 0;
2145 }
2146
2147 static void ath9k_stop(struct ieee80211_hw *hw)
2148 {
2149         struct ath_wiphy *aphy = hw->priv;
2150         struct ath_softc *sc = aphy->sc;
2151
2152         aphy->state = ATH_WIPHY_INACTIVE;
2153
2154         if (sc->sc_flags & SC_OP_INVALID) {
2155                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2156                 return;
2157         }
2158
2159         mutex_lock(&sc->mutex);
2160
2161         ieee80211_stop_queues(hw);
2162
2163         if (ath9k_wiphy_started(sc)) {
2164                 mutex_unlock(&sc->mutex);
2165                 return; /* another wiphy still in use */
2166         }
2167
2168         /* make sure h/w will not generate any interrupt
2169          * before setting the invalid flag. */
2170         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2171
2172         if (!(sc->sc_flags & SC_OP_INVALID)) {
2173                 ath_drain_all_txq(sc, false);
2174                 ath_stoprecv(sc);
2175                 ath9k_hw_phy_disable(sc->sc_ah);
2176         } else
2177                 sc->rx.rxlink = NULL;
2178
2179         rfkill_pause_polling(sc->rf_kill.rfkill);
2180
2181         /* disable HAL and put h/w to sleep */
2182         ath9k_hw_disable(sc->sc_ah);
2183         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2184
2185         sc->sc_flags |= SC_OP_INVALID;
2186
2187         mutex_unlock(&sc->mutex);
2188
2189         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2190 }
2191
2192 static int ath9k_add_interface(struct ieee80211_hw *hw,
2193                                struct ieee80211_if_init_conf *conf)
2194 {
2195         struct ath_wiphy *aphy = hw->priv;
2196         struct ath_softc *sc = aphy->sc;
2197         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2198         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2199         int ret = 0;
2200
2201         mutex_lock(&sc->mutex);
2202
2203         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2204             sc->nvifs > 0) {
2205                 ret = -ENOBUFS;
2206                 goto out;
2207         }
2208
2209         switch (conf->type) {
2210         case NL80211_IFTYPE_STATION:
2211                 ic_opmode = NL80211_IFTYPE_STATION;
2212                 break;
2213         case NL80211_IFTYPE_ADHOC:
2214         case NL80211_IFTYPE_AP:
2215         case NL80211_IFTYPE_MESH_POINT:
2216                 if (sc->nbcnvifs >= ATH_BCBUF) {
2217                         ret = -ENOBUFS;
2218                         goto out;
2219                 }
2220                 ic_opmode = conf->type;
2221                 break;
2222         default:
2223                 DPRINTF(sc, ATH_DBG_FATAL,
2224                         "Interface type %d not yet supported\n", conf->type);
2225                 ret = -EOPNOTSUPP;
2226                 goto out;
2227         }
2228
2229         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2230
2231         /* Set the VIF opmode */
2232         avp->av_opmode = ic_opmode;
2233         avp->av_bslot = -1;
2234
2235         sc->nvifs++;
2236
2237         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2238                 ath9k_set_bssid_mask(hw);
2239
2240         if (sc->nvifs > 1)
2241                 goto out; /* skip global settings for secondary vif */
2242
2243         if (ic_opmode == NL80211_IFTYPE_AP) {
2244                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2245                 sc->sc_flags |= SC_OP_TSF_RESET;
2246         }
2247
2248         /* Set the device opmode */
2249         sc->sc_ah->opmode = ic_opmode;
2250
2251         /*
2252          * Enable MIB interrupts when there are hardware phy counters.
2253          * Note we only do this (at the moment) for station mode.
2254          */
2255         if ((conf->type == NL80211_IFTYPE_STATION) ||
2256             (conf->type == NL80211_IFTYPE_ADHOC) ||
2257             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2258                 if (ath9k_hw_phycounters(sc->sc_ah))
2259                         sc->imask |= ATH9K_INT_MIB;
2260                 sc->imask |= ATH9K_INT_TSFOOR;
2261         }
2262
2263         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2264
2265         if (conf->type == NL80211_IFTYPE_AP)
2266                 ath_start_ani(sc);
2267
2268 out:
2269         mutex_unlock(&sc->mutex);
2270         return ret;
2271 }
2272
2273 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2274                                    struct ieee80211_if_init_conf *conf)
2275 {
2276         struct ath_wiphy *aphy = hw->priv;
2277         struct ath_softc *sc = aphy->sc;
2278         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2279         int i;
2280
2281         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2282
2283         mutex_lock(&sc->mutex);
2284
2285         /* Stop ANI */
2286         del_timer_sync(&sc->ani.timer);
2287
2288         /* Reclaim beacon resources */
2289         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2290             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2291             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2292                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2293                 ath_beacon_return(sc, avp);
2294         }
2295
2296         sc->sc_flags &= ~SC_OP_BEACONS;
2297
2298         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2299                 if (sc->beacon.bslot[i] == conf->vif) {
2300                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2301                                "slot\n", __func__);
2302                         sc->beacon.bslot[i] = NULL;
2303                         sc->beacon.bslot_aphy[i] = NULL;
2304                 }
2305         }
2306
2307         sc->nvifs--;
2308
2309         mutex_unlock(&sc->mutex);
2310 }
2311
2312 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2313 {
2314         struct ath_wiphy *aphy = hw->priv;
2315         struct ath_softc *sc = aphy->sc;
2316         struct ieee80211_conf *conf = &hw->conf;
2317         struct ath_hw *ah = sc->sc_ah;
2318
2319         mutex_lock(&sc->mutex);
2320
2321         if (changed & IEEE80211_CONF_CHANGE_PS) {
2322                 if (conf->flags & IEEE80211_CONF_PS) {
2323                         if (!(ah->caps.hw_caps &
2324                               ATH9K_HW_CAP_AUTOSLEEP)) {
2325                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2326                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2327                                         ath9k_hw_set_interrupts(sc->sc_ah,
2328                                                         sc->imask);
2329                                 }
2330                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2331                         }
2332                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2333                 } else {
2334                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2335                         if (!(ah->caps.hw_caps &
2336                               ATH9K_HW_CAP_AUTOSLEEP)) {
2337                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2338                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2339                                                   SC_OP_WAIT_FOR_CAB |
2340                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2341                                                   SC_OP_WAIT_FOR_TX_ACK);
2342                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2343                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2344                                         ath9k_hw_set_interrupts(sc->sc_ah,
2345                                                         sc->imask);
2346                                 }
2347                         }
2348                 }
2349         }
2350
2351         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2352                 struct ieee80211_channel *curchan = hw->conf.channel;
2353                 int pos = curchan->hw_value;
2354
2355                 aphy->chan_idx = pos;
2356                 aphy->chan_is_ht = conf_is_ht(conf);
2357
2358                 if (aphy->state == ATH_WIPHY_SCAN ||
2359                     aphy->state == ATH_WIPHY_ACTIVE)
2360                         ath9k_wiphy_pause_all_forced(sc, aphy);
2361                 else {
2362                         /*
2363                          * Do not change operational channel based on a paused
2364                          * wiphy changes.
2365                          */
2366                         goto skip_chan_change;
2367                 }
2368
2369                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2370                         curchan->center_freq);
2371
2372                 /* XXX: remove me eventualy */
2373                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2374
2375                 ath_update_chainmask(sc, conf_is_ht(conf));
2376
2377                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2378                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2379                         mutex_unlock(&sc->mutex);
2380                         return -EINVAL;
2381                 }
2382         }
2383
2384 skip_chan_change:
2385         if (changed & IEEE80211_CONF_CHANGE_POWER)
2386                 sc->config.txpowlimit = 2 * conf->power_level;
2387
2388         mutex_unlock(&sc->mutex);
2389
2390         return 0;
2391 }
2392
2393 #define SUPPORTED_FILTERS                       \
2394         (FIF_PROMISC_IN_BSS |                   \
2395         FIF_ALLMULTI |                          \
2396         FIF_CONTROL |                           \
2397         FIF_OTHER_BSS |                         \
2398         FIF_BCN_PRBRESP_PROMISC |               \
2399         FIF_FCSFAIL)
2400
2401 /* FIXME: sc->sc_full_reset ? */
2402 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2403                                    unsigned int changed_flags,
2404                                    unsigned int *total_flags,
2405                                    int mc_count,
2406                                    struct dev_mc_list *mclist)
2407 {
2408         struct ath_wiphy *aphy = hw->priv;
2409         struct ath_softc *sc = aphy->sc;
2410         u32 rfilt;
2411
2412         changed_flags &= SUPPORTED_FILTERS;
2413         *total_flags &= SUPPORTED_FILTERS;
2414
2415         sc->rx.rxfilter = *total_flags;
2416         ath9k_ps_wakeup(sc);
2417         rfilt = ath_calcrxfilter(sc);
2418         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2419         ath9k_ps_restore(sc);
2420
2421         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2422 }
2423
2424 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2425                              struct ieee80211_vif *vif,
2426                              enum sta_notify_cmd cmd,
2427                              struct ieee80211_sta *sta)
2428 {
2429         struct ath_wiphy *aphy = hw->priv;
2430         struct ath_softc *sc = aphy->sc;
2431
2432         switch (cmd) {
2433         case STA_NOTIFY_ADD:
2434                 ath_node_attach(sc, sta);
2435                 break;
2436         case STA_NOTIFY_REMOVE:
2437                 ath_node_detach(sc, sta);
2438                 break;
2439         default:
2440                 break;
2441         }
2442 }
2443
2444 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2445                          const struct ieee80211_tx_queue_params *params)
2446 {
2447         struct ath_wiphy *aphy = hw->priv;
2448         struct ath_softc *sc = aphy->sc;
2449         struct ath9k_tx_queue_info qi;
2450         int ret = 0, qnum;
2451
2452         if (queue >= WME_NUM_AC)
2453                 return 0;
2454
2455         mutex_lock(&sc->mutex);
2456
2457         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2458
2459         qi.tqi_aifs = params->aifs;
2460         qi.tqi_cwmin = params->cw_min;
2461         qi.tqi_cwmax = params->cw_max;
2462         qi.tqi_burstTime = params->txop;
2463         qnum = ath_get_hal_qnum(queue, sc);
2464
2465         DPRINTF(sc, ATH_DBG_CONFIG,
2466                 "Configure tx [queue/halq] [%d/%d],  "
2467                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2468                 queue, qnum, params->aifs, params->cw_min,
2469                 params->cw_max, params->txop);
2470
2471         ret = ath_txq_update(sc, qnum, &qi);
2472         if (ret)
2473                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2474
2475         mutex_unlock(&sc->mutex);
2476
2477         return ret;
2478 }
2479
2480 static int ath9k_set_key(struct ieee80211_hw *hw,
2481                          enum set_key_cmd cmd,
2482                          struct ieee80211_vif *vif,
2483                          struct ieee80211_sta *sta,
2484                          struct ieee80211_key_conf *key)
2485 {
2486         struct ath_wiphy *aphy = hw->priv;
2487         struct ath_softc *sc = aphy->sc;
2488         int ret = 0;
2489
2490         if (modparam_nohwcrypt)
2491                 return -ENOSPC;
2492
2493         mutex_lock(&sc->mutex);
2494         ath9k_ps_wakeup(sc);
2495         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2496
2497         switch (cmd) {
2498         case SET_KEY:
2499                 ret = ath_key_config(sc, vif, sta, key);
2500                 if (ret >= 0) {
2501                         key->hw_key_idx = ret;
2502                         /* push IV and Michael MIC generation to stack */
2503                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2504                         if (key->alg == ALG_TKIP)
2505                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2506                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2507                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2508                         ret = 0;
2509                 }
2510                 break;
2511         case DISABLE_KEY:
2512                 ath_key_delete(sc, key);
2513                 break;
2514         default:
2515                 ret = -EINVAL;
2516         }
2517
2518         ath9k_ps_restore(sc);
2519         mutex_unlock(&sc->mutex);
2520
2521         return ret;
2522 }
2523
2524 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2525                                    struct ieee80211_vif *vif,
2526                                    struct ieee80211_bss_conf *bss_conf,
2527                                    u32 changed)
2528 {
2529         struct ath_wiphy *aphy = hw->priv;
2530         struct ath_softc *sc = aphy->sc;
2531         struct ath_hw *ah = sc->sc_ah;
2532         struct ath_vif *avp = (void *)vif->drv_priv;
2533         u32 rfilt = 0;
2534         int error, i;
2535
2536         mutex_lock(&sc->mutex);
2537
2538         /*
2539          * TODO: Need to decide which hw opmode to use for
2540          *       multi-interface cases
2541          * XXX: This belongs into add_interface!
2542          */
2543         if (vif->type == NL80211_IFTYPE_AP &&
2544             ah->opmode != NL80211_IFTYPE_AP) {
2545                 ah->opmode = NL80211_IFTYPE_STATION;
2546                 ath9k_hw_setopmode(ah);
2547                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2548                 sc->curaid = 0;
2549                 ath9k_hw_write_associd(sc);
2550                 /* Request full reset to get hw opmode changed properly */
2551                 sc->sc_flags |= SC_OP_FULL_RESET;
2552         }
2553
2554         if ((changed & BSS_CHANGED_BSSID) &&
2555             !is_zero_ether_addr(bss_conf->bssid)) {
2556                 switch (vif->type) {
2557                 case NL80211_IFTYPE_STATION:
2558                 case NL80211_IFTYPE_ADHOC:
2559                 case NL80211_IFTYPE_MESH_POINT:
2560                         /* Set BSSID */
2561                         memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2562                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2563                         sc->curaid = 0;
2564                         ath9k_hw_write_associd(sc);
2565
2566                         /* Set aggregation protection mode parameters */
2567                         sc->config.ath_aggr_prot = 0;
2568
2569                         DPRINTF(sc, ATH_DBG_CONFIG,
2570                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2571                                 rfilt, sc->curbssid, sc->curaid);
2572
2573                         /* need to reconfigure the beacon */
2574                         sc->sc_flags &= ~SC_OP_BEACONS ;
2575
2576                         break;
2577                 default:
2578                         break;
2579                 }
2580         }
2581
2582         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2583             (vif->type == NL80211_IFTYPE_AP) ||
2584             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2585                 if ((changed & BSS_CHANGED_BEACON) ||
2586                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2587                      bss_conf->enable_beacon)) {
2588                         /*
2589                          * Allocate and setup the beacon frame.
2590                          *
2591                          * Stop any previous beacon DMA.  This may be
2592                          * necessary, for example, when an ibss merge
2593                          * causes reconfiguration; we may be called
2594                          * with beacon transmission active.
2595                          */
2596                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2597
2598                         error = ath_beacon_alloc(aphy, vif);
2599                         if (!error)
2600                                 ath_beacon_config(sc, vif);
2601                 }
2602         }
2603
2604         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2605         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2606                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2607                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2608                                 ath9k_hw_keysetmac(sc->sc_ah,
2609                                                    (u16)i,
2610                                                    sc->curbssid);
2611         }
2612
2613         /* Only legacy IBSS for now */
2614         if (vif->type == NL80211_IFTYPE_ADHOC)
2615                 ath_update_chainmask(sc, 0);
2616
2617         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2618                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2619                         bss_conf->use_short_preamble);
2620                 if (bss_conf->use_short_preamble)
2621                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2622                 else
2623                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2624         }
2625
2626         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2627                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2628                         bss_conf->use_cts_prot);
2629                 if (bss_conf->use_cts_prot &&
2630                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2631                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2632                 else
2633                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2634         }
2635
2636         if (changed & BSS_CHANGED_ASSOC) {
2637                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2638                         bss_conf->assoc);
2639                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2640         }
2641
2642         /*
2643          * The HW TSF has to be reset when the beacon interval changes.
2644          * We set the flag here, and ath_beacon_config_ap() would take this
2645          * into account when it gets called through the subsequent
2646          * config_interface() call - with IFCC_BEACON in the changed field.
2647          */
2648
2649         if (changed & BSS_CHANGED_BEACON_INT) {
2650                 sc->sc_flags |= SC_OP_TSF_RESET;
2651                 sc->beacon_interval = bss_conf->beacon_int;
2652         }
2653
2654         mutex_unlock(&sc->mutex);
2655 }
2656
2657 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2658 {
2659         u64 tsf;
2660         struct ath_wiphy *aphy = hw->priv;
2661         struct ath_softc *sc = aphy->sc;
2662
2663         mutex_lock(&sc->mutex);
2664         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2665         mutex_unlock(&sc->mutex);
2666
2667         return tsf;
2668 }
2669
2670 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2671 {
2672         struct ath_wiphy *aphy = hw->priv;
2673         struct ath_softc *sc = aphy->sc;
2674
2675         mutex_lock(&sc->mutex);
2676         ath9k_hw_settsf64(sc->sc_ah, tsf);
2677         mutex_unlock(&sc->mutex);
2678 }
2679
2680 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2681 {
2682         struct ath_wiphy *aphy = hw->priv;
2683         struct ath_softc *sc = aphy->sc;
2684
2685         mutex_lock(&sc->mutex);
2686         ath9k_hw_reset_tsf(sc->sc_ah);
2687         mutex_unlock(&sc->mutex);
2688 }
2689
2690 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2691                               enum ieee80211_ampdu_mlme_action action,
2692                               struct ieee80211_sta *sta,
2693                               u16 tid, u16 *ssn)
2694 {
2695         struct ath_wiphy *aphy = hw->priv;
2696         struct ath_softc *sc = aphy->sc;
2697         int ret = 0;
2698
2699         switch (action) {
2700         case IEEE80211_AMPDU_RX_START:
2701                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2702                         ret = -ENOTSUPP;
2703                 break;
2704         case IEEE80211_AMPDU_RX_STOP:
2705                 break;
2706         case IEEE80211_AMPDU_TX_START:
2707                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2708                 if (ret < 0)
2709                         DPRINTF(sc, ATH_DBG_FATAL,
2710                                 "Unable to start TX aggregation\n");
2711                 else
2712                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2713                 break;
2714         case IEEE80211_AMPDU_TX_STOP:
2715                 ret = ath_tx_aggr_stop(sc, sta, tid);
2716                 if (ret < 0)
2717                         DPRINTF(sc, ATH_DBG_FATAL,
2718                                 "Unable to stop TX aggregation\n");
2719
2720                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2721                 break;
2722         case IEEE80211_AMPDU_TX_OPERATIONAL:
2723                 ath_tx_aggr_resume(sc, sta, tid);
2724                 break;
2725         default:
2726                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2727         }
2728
2729         return ret;
2730 }
2731
2732 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2733 {
2734         struct ath_wiphy *aphy = hw->priv;
2735         struct ath_softc *sc = aphy->sc;
2736
2737         if (ath9k_wiphy_scanning(sc)) {
2738                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2739                        "same time\n");
2740                 /*
2741                  * Do not allow the concurrent scanning state for now. This
2742                  * could be improved with scanning control moved into ath9k.
2743                  */
2744                 return;
2745         }
2746
2747         aphy->state = ATH_WIPHY_SCAN;
2748         ath9k_wiphy_pause_all_forced(sc, aphy);
2749
2750         mutex_lock(&sc->mutex);
2751         sc->sc_flags |= SC_OP_SCANNING;
2752         mutex_unlock(&sc->mutex);
2753 }
2754
2755 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2756 {
2757         struct ath_wiphy *aphy = hw->priv;
2758         struct ath_softc *sc = aphy->sc;
2759
2760         mutex_lock(&sc->mutex);
2761         aphy->state = ATH_WIPHY_ACTIVE;
2762         sc->sc_flags &= ~SC_OP_SCANNING;
2763         sc->sc_flags |= SC_OP_FULL_RESET;
2764         mutex_unlock(&sc->mutex);
2765 }
2766
2767 struct ieee80211_ops ath9k_ops = {
2768         .tx                 = ath9k_tx,
2769         .start              = ath9k_start,
2770         .stop               = ath9k_stop,
2771         .add_interface      = ath9k_add_interface,
2772         .remove_interface   = ath9k_remove_interface,
2773         .config             = ath9k_config,
2774         .configure_filter   = ath9k_configure_filter,
2775         .sta_notify         = ath9k_sta_notify,
2776         .conf_tx            = ath9k_conf_tx,
2777         .bss_info_changed   = ath9k_bss_info_changed,
2778         .set_key            = ath9k_set_key,
2779         .get_tsf            = ath9k_get_tsf,
2780         .set_tsf            = ath9k_set_tsf,
2781         .reset_tsf          = ath9k_reset_tsf,
2782         .ampdu_action       = ath9k_ampdu_action,
2783         .sw_scan_start      = ath9k_sw_scan_start,
2784         .sw_scan_complete   = ath9k_sw_scan_complete,
2785 };
2786
2787 static struct {
2788         u32 version;
2789         const char * name;
2790 } ath_mac_bb_names[] = {
2791         { AR_SREV_VERSION_5416_PCI,     "5416" },
2792         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2793         { AR_SREV_VERSION_9100,         "9100" },
2794         { AR_SREV_VERSION_9160,         "9160" },
2795         { AR_SREV_VERSION_9280,         "9280" },
2796         { AR_SREV_VERSION_9285,         "9285" }
2797 };
2798
2799 static struct {
2800         u16 version;
2801         const char * name;
2802 } ath_rf_names[] = {
2803         { 0,                            "5133" },
2804         { AR_RAD5133_SREV_MAJOR,        "5133" },
2805         { AR_RAD5122_SREV_MAJOR,        "5122" },
2806         { AR_RAD2133_SREV_MAJOR,        "2133" },
2807         { AR_RAD2122_SREV_MAJOR,        "2122" }
2808 };
2809
2810 /*
2811  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2812  */
2813 const char *
2814 ath_mac_bb_name(u32 mac_bb_version)
2815 {
2816         int i;
2817
2818         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2819                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2820                         return ath_mac_bb_names[i].name;
2821                 }
2822         }
2823
2824         return "????";
2825 }
2826
2827 /*
2828  * Return the RF name. "????" is returned if the RF is unknown.
2829  */
2830 const char *
2831 ath_rf_name(u16 rf_version)
2832 {
2833         int i;
2834
2835         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2836                 if (ath_rf_names[i].version == rf_version) {
2837                         return ath_rf_names[i].name;
2838                 }
2839         }
2840
2841         return "????";
2842 }
2843
2844 static int __init ath9k_init(void)
2845 {
2846         int error;
2847
2848         /* Register rate control algorithm */
2849         error = ath_rate_control_register();
2850         if (error != 0) {
2851                 printk(KERN_ERR
2852                         "ath9k: Unable to register rate control "
2853                         "algorithm: %d\n",
2854                         error);
2855                 goto err_out;
2856         }
2857
2858         error = ath9k_debug_create_root();
2859         if (error) {
2860                 printk(KERN_ERR
2861                         "ath9k: Unable to create debugfs root: %d\n",
2862                         error);
2863                 goto err_rate_unregister;
2864         }
2865
2866         error = ath_pci_init();
2867         if (error < 0) {
2868                 printk(KERN_ERR
2869                         "ath9k: No PCI devices found, driver not installed.\n");
2870                 error = -ENODEV;
2871                 goto err_remove_root;
2872         }
2873
2874         error = ath_ahb_init();
2875         if (error < 0) {
2876                 error = -ENODEV;
2877                 goto err_pci_exit;
2878         }
2879
2880         return 0;
2881
2882  err_pci_exit:
2883         ath_pci_exit();
2884
2885  err_remove_root:
2886         ath9k_debug_remove_root();
2887  err_rate_unregister:
2888         ath_rate_control_unregister();
2889  err_out:
2890         return error;
2891 }
2892 module_init(ath9k_init);
2893
2894 static void __exit ath9k_exit(void)
2895 {
2896         ath_ahb_exit();
2897         ath_pci_exit();
2898         ath9k_debug_remove_root();
2899         ath_rate_control_unregister();
2900         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2901 }
2902 module_exit(ath9k_exit);