ath9k: implement coverage class support
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return usecs *ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64 }
65
66 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70         if (conf_is_ht40(conf))
71                 return ath9k_hw_mac_clks(ah, usecs) * 2;
72         else
73                 return ath9k_hw_mac_clks(ah, usecs);
74 }
75
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78         int i;
79
80         BUG_ON(timeout < AH_TIME_QUANTUM);
81
82         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83                 if ((REG_READ(ah, reg) & mask) == val)
84                         return true;
85
86                 udelay(AH_TIME_QUANTUM);
87         }
88
89         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91                   timeout, reg, REG_READ(ah, reg), mask, val);
92
93         return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
97 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98 {
99         u32 retval;
100         int i;
101
102         for (i = 0, retval = 0; i < n; i++) {
103                 retval = (retval << 1) | (val & 1);
104                 val >>= 1;
105         }
106         return retval;
107 }
108
109 bool ath9k_get_channel_edges(struct ath_hw *ah,
110                              u16 flags, u16 *low,
111                              u16 *high)
112 {
113         struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115         if (flags & CHANNEL_5GHZ) {
116                 *low = pCap->low_5ghz_chan;
117                 *high = pCap->high_5ghz_chan;
118                 return true;
119         }
120         if ((flags & CHANNEL_2GHZ)) {
121                 *low = pCap->low_2ghz_chan;
122                 *high = pCap->high_2ghz_chan;
123                 return true;
124         }
125         return false;
126 }
127
128 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129                            u8 phy, int kbps,
130                            u32 frameLen, u16 rateix,
131                            bool shortPreamble)
132 {
133         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135         if (kbps == 0)
136                 return 0;
137
138         switch (phy) {
139         case WLAN_RC_PHY_CCK:
140                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141                 if (shortPreamble)
142                         phyTime >>= 1;
143                 numBits = frameLen << 3;
144                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145                 break;
146         case WLAN_RC_PHY_OFDM:
147                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
150                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151                         txTime = OFDM_SIFS_TIME_QUARTER
152                                 + OFDM_PREAMBLE_TIME_QUARTER
153                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154                 } else if (ah->curchan &&
155                            IS_CHAN_HALF_RATE(ah->curchan)) {
156                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
158                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159                         txTime = OFDM_SIFS_TIME_HALF +
160                                 OFDM_PREAMBLE_TIME_HALF
161                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
162                 } else {
163                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
165                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167                                 + (numSymbols * OFDM_SYMBOL_TIME);
168                 }
169                 break;
170         default:
171                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
173                 txTime = 0;
174                 break;
175         }
176
177         return txTime;
178 }
179 EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182                                   struct ath9k_channel *chan,
183                                   struct chan_centers *centers)
184 {
185         int8_t extoff;
186
187         if (!IS_CHAN_HT40(chan)) {
188                 centers->ctl_center = centers->ext_center =
189                         centers->synth_center = chan->channel;
190                 return;
191         }
192
193         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195                 centers->synth_center =
196                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197                 extoff = 1;
198         } else {
199                 centers->synth_center =
200                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201                 extoff = -1;
202         }
203
204         centers->ctl_center =
205                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206         /* 25 MHz spacing is supported by hw but not on upper layers */
207         centers->ext_center =
208                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209 }
210
211 /******************/
212 /* Chip Revisions */
213 /******************/
214
215 static void ath9k_hw_read_revisions(struct ath_hw *ah)
216 {
217         u32 val;
218
219         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221         if (val == 0xFF) {
222                 val = REG_READ(ah, AR_SREV);
223                 ah->hw_version.macVersion =
224                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227         } else {
228                 if (!AR_SREV_9100(ah))
229                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231                 ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234                         ah->is_pciexpress = true;
235         }
236 }
237
238 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239 {
240         u32 val;
241         int i;
242
243         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245         for (i = 0; i < 8; i++)
246                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250         return ath9k_hw_reverse_bits(val, 8);
251 }
252
253 /************************************/
254 /* HW Attach, Detach, Init Routines */
255 /************************************/
256
257 static void ath9k_hw_disablepcie(struct ath_hw *ah)
258 {
259         if (AR_SREV_9100(ah))
260                 return;
261
262         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273 }
274
275 static bool ath9k_hw_chip_test(struct ath_hw *ah)
276 {
277         struct ath_common *common = ath9k_hw_common(ah);
278         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279         u32 regHold[2];
280         u32 patternData[4] = { 0x55555555,
281                                0xaaaaaaaa,
282                                0x66666666,
283                                0x99999999 };
284         int i, j;
285
286         for (i = 0; i < 2; i++) {
287                 u32 addr = regAddr[i];
288                 u32 wrData, rdData;
289
290                 regHold[i] = REG_READ(ah, addr);
291                 for (j = 0; j < 0x100; j++) {
292                         wrData = (j << 16) | j;
293                         REG_WRITE(ah, addr, wrData);
294                         rdData = REG_READ(ah, addr);
295                         if (rdData != wrData) {
296                                 ath_print(common, ATH_DBG_FATAL,
297                                           "address test failed "
298                                           "addr: 0x%08x - wr:0x%08x != "
299                                           "rd:0x%08x\n",
300                                           addr, wrData, rdData);
301                                 return false;
302                         }
303                 }
304                 for (j = 0; j < 4; j++) {
305                         wrData = patternData[j];
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (wrData != rdData) {
309                                 ath_print(common, ATH_DBG_FATAL,
310                                           "address test failed "
311                                           "addr: 0x%08x - wr:0x%08x != "
312                                           "rd:0x%08x\n",
313                                           addr, wrData, rdData);
314                                 return false;
315                         }
316                 }
317                 REG_WRITE(ah, regAddr[i], regHold[i]);
318         }
319         udelay(100);
320
321         return true;
322 }
323
324 static void ath9k_hw_init_config(struct ath_hw *ah)
325 {
326         int i;
327
328         ah->config.dma_beacon_response_time = 2;
329         ah->config.sw_beacon_response_time = 10;
330         ah->config.additional_swba_backoff = 0;
331         ah->config.ack_6mb = 0x0;
332         ah->config.cwm_ignore_extcca = 0;
333         ah->config.pcie_powersave_enable = 0;
334         ah->config.pcie_clock_req = 0;
335         ah->config.pcie_waen = 0;
336         ah->config.analog_shiftreg = 1;
337         ah->config.ht_enable = 1;
338         ah->config.ofdm_trig_low = 200;
339         ah->config.ofdm_trig_high = 500;
340         ah->config.cck_trig_high = 200;
341         ah->config.cck_trig_low = 100;
342         ah->config.enable_ani = 1;
343
344         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
345                 ah->config.spurchans[i][0] = AR_NO_SPUR;
346                 ah->config.spurchans[i][1] = AR_NO_SPUR;
347         }
348
349         ah->config.rx_intr_mitigation = true;
350
351         /*
352          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
353          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
354          * This means we use it for all AR5416 devices, and the few
355          * minor PCI AR9280 devices out there.
356          *
357          * Serialization is required because these devices do not handle
358          * well the case of two concurrent reads/writes due to the latency
359          * involved. During one read/write another read/write can be issued
360          * on another CPU while the previous read/write may still be working
361          * on our hardware, if we hit this case the hardware poops in a loop.
362          * We prevent this by serializing reads and writes.
363          *
364          * This issue is not present on PCI-Express devices or pre-AR5416
365          * devices (legacy, 802.11abg).
366          */
367         if (num_possible_cpus() > 1)
368                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
369 }
370 EXPORT_SYMBOL(ath9k_hw_init);
371
372 static void ath9k_hw_init_defaults(struct ath_hw *ah)
373 {
374         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
375
376         regulatory->country_code = CTRY_DEFAULT;
377         regulatory->power_limit = MAX_RATE_POWER;
378         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
379
380         ah->hw_version.magic = AR5416_MAGIC;
381         ah->hw_version.subvendorid = 0;
382
383         ah->ah_flags = 0;
384         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
385                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
386         if (!AR_SREV_9100(ah))
387                 ah->ah_flags = AH_USE_EEPROM;
388
389         ah->atim_window = 0;
390         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
391         ah->beacon_interval = 100;
392         ah->enable_32kHz_clock = DONT_USE_32KHZ;
393         ah->slottime = (u32) -1;
394         ah->globaltxtimeout = (u32) -1;
395         ah->power_mode = ATH9K_PM_UNDEFINED;
396 }
397
398 static int ath9k_hw_rf_claim(struct ath_hw *ah)
399 {
400         u32 val;
401
402         REG_WRITE(ah, AR_PHY(0), 0x00000007);
403
404         val = ath9k_hw_get_radiorev(ah);
405         switch (val & AR_RADIO_SREV_MAJOR) {
406         case 0:
407                 val = AR_RAD5133_SREV_MAJOR;
408                 break;
409         case AR_RAD5133_SREV_MAJOR:
410         case AR_RAD5122_SREV_MAJOR:
411         case AR_RAD2133_SREV_MAJOR:
412         case AR_RAD2122_SREV_MAJOR:
413                 break;
414         default:
415                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
416                           "Radio Chip Rev 0x%02X not supported\n",
417                           val & AR_RADIO_SREV_MAJOR);
418                 return -EOPNOTSUPP;
419         }
420
421         ah->hw_version.analog5GhzRev = val;
422
423         return 0;
424 }
425
426 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
427 {
428         struct ath_common *common = ath9k_hw_common(ah);
429         u32 sum;
430         int i;
431         u16 eeval;
432
433         sum = 0;
434         for (i = 0; i < 3; i++) {
435                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
436                 sum += eeval;
437                 common->macaddr[2 * i] = eeval >> 8;
438                 common->macaddr[2 * i + 1] = eeval & 0xff;
439         }
440         if (sum == 0 || sum == 0xffff * 3)
441                 return -EADDRNOTAVAIL;
442
443         return 0;
444 }
445
446 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
447 {
448         u32 rxgain_type;
449
450         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
451                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
452
453                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
454                         INIT_INI_ARRAY(&ah->iniModesRxGain,
455                         ar9280Modes_backoff_13db_rxgain_9280_2,
456                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
457                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
458                         INIT_INI_ARRAY(&ah->iniModesRxGain,
459                         ar9280Modes_backoff_23db_rxgain_9280_2,
460                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
461                 else
462                         INIT_INI_ARRAY(&ah->iniModesRxGain,
463                         ar9280Modes_original_rxgain_9280_2,
464                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
465         } else {
466                 INIT_INI_ARRAY(&ah->iniModesRxGain,
467                         ar9280Modes_original_rxgain_9280_2,
468                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469         }
470 }
471
472 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
473 {
474         u32 txgain_type;
475
476         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
477                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
478
479                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
480                         INIT_INI_ARRAY(&ah->iniModesTxGain,
481                         ar9280Modes_high_power_tx_gain_9280_2,
482                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
483                 else
484                         INIT_INI_ARRAY(&ah->iniModesTxGain,
485                         ar9280Modes_original_tx_gain_9280_2,
486                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
487         } else {
488                 INIT_INI_ARRAY(&ah->iniModesTxGain,
489                 ar9280Modes_original_tx_gain_9280_2,
490                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491         }
492 }
493
494 static int ath9k_hw_post_init(struct ath_hw *ah)
495 {
496         int ecode;
497
498         if (!ath9k_hw_chip_test(ah))
499                 return -ENODEV;
500
501         ecode = ath9k_hw_rf_claim(ah);
502         if (ecode != 0)
503                 return ecode;
504
505         ecode = ath9k_hw_eeprom_init(ah);
506         if (ecode != 0)
507                 return ecode;
508
509         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
510                   "Eeprom VER: %d, REV: %d\n",
511                   ah->eep_ops->get_eeprom_ver(ah),
512                   ah->eep_ops->get_eeprom_rev(ah));
513
514         if (!AR_SREV_9280_10_OR_LATER(ah)) {
515                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
516                 if (ecode) {
517                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
518                                   "Failed allocating banks for "
519                                   "external radio\n");
520                         return ecode;
521                 }
522         }
523
524         if (!AR_SREV_9100(ah)) {
525                 ath9k_hw_ani_setup(ah);
526                 ath9k_hw_ani_init(ah);
527         }
528
529         return 0;
530 }
531
532 static bool ath9k_hw_devid_supported(u16 devid)
533 {
534         switch (devid) {
535         case AR5416_DEVID_PCI:
536         case AR5416_DEVID_PCIE:
537         case AR5416_AR9100_DEVID:
538         case AR9160_DEVID_PCI:
539         case AR9280_DEVID_PCI:
540         case AR9280_DEVID_PCIE:
541         case AR9285_DEVID_PCIE:
542         case AR5416_DEVID_AR9287_PCI:
543         case AR5416_DEVID_AR9287_PCIE:
544         case AR9271_USB:
545                 return true;
546         default:
547                 break;
548         }
549         return false;
550 }
551
552 static bool ath9k_hw_macversion_supported(u32 macversion)
553 {
554         switch (macversion) {
555         case AR_SREV_VERSION_5416_PCI:
556         case AR_SREV_VERSION_5416_PCIE:
557         case AR_SREV_VERSION_9160:
558         case AR_SREV_VERSION_9100:
559         case AR_SREV_VERSION_9280:
560         case AR_SREV_VERSION_9285:
561         case AR_SREV_VERSION_9287:
562         case AR_SREV_VERSION_9271:
563                 return true;
564         default:
565                 break;
566         }
567         return false;
568 }
569
570 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
571 {
572         if (AR_SREV_9160_10_OR_LATER(ah)) {
573                 if (AR_SREV_9280_10_OR_LATER(ah)) {
574                         ah->iq_caldata.calData = &iq_cal_single_sample;
575                         ah->adcgain_caldata.calData =
576                                 &adc_gain_cal_single_sample;
577                         ah->adcdc_caldata.calData =
578                                 &adc_dc_cal_single_sample;
579                         ah->adcdc_calinitdata.calData =
580                                 &adc_init_dc_cal;
581                 } else {
582                         ah->iq_caldata.calData = &iq_cal_multi_sample;
583                         ah->adcgain_caldata.calData =
584                                 &adc_gain_cal_multi_sample;
585                         ah->adcdc_caldata.calData =
586                                 &adc_dc_cal_multi_sample;
587                         ah->adcdc_calinitdata.calData =
588                                 &adc_init_dc_cal;
589                 }
590                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
591         }
592 }
593
594 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
595 {
596         if (AR_SREV_9271(ah)) {
597                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
598                                ARRAY_SIZE(ar9271Modes_9271), 6);
599                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
600                                ARRAY_SIZE(ar9271Common_9271), 2);
601                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
602                                ar9271Modes_9271_1_0_only,
603                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
604                 return;
605         }
606
607         if (AR_SREV_9287_11_OR_LATER(ah)) {
608                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
609                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
610                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
611                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
612                 if (ah->config.pcie_clock_req)
613                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
614                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
615                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
616                 else
617                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
618                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
619                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
620                                         2);
621         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
622                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
623                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
624                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
625                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
626
627                 if (ah->config.pcie_clock_req)
628                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
629                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
630                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
631                 else
632                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
633                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
634                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
635                                   2);
636         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
637
638
639                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
640                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
641                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
642                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
643
644                 if (ah->config.pcie_clock_req) {
645                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
646                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
647                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
648                 } else {
649                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
650                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
651                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
652                                   2);
653                 }
654         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
655                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
656                                ARRAY_SIZE(ar9285Modes_9285), 6);
657                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
658                                ARRAY_SIZE(ar9285Common_9285), 2);
659
660                 if (ah->config.pcie_clock_req) {
661                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
662                         ar9285PciePhy_clkreq_off_L1_9285,
663                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
664                 } else {
665                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
666                         ar9285PciePhy_clkreq_always_on_L1_9285,
667                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
668                 }
669         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
670                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
671                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
672                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
673                                ARRAY_SIZE(ar9280Common_9280_2), 2);
674
675                 if (ah->config.pcie_clock_req) {
676                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
677                                ar9280PciePhy_clkreq_off_L1_9280,
678                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
679                 } else {
680                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
681                                ar9280PciePhy_clkreq_always_on_L1_9280,
682                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
683                 }
684                 INIT_INI_ARRAY(&ah->iniModesAdditional,
685                                ar9280Modes_fast_clock_9280_2,
686                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
687         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
688                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
689                                ARRAY_SIZE(ar9280Modes_9280), 6);
690                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
691                                ARRAY_SIZE(ar9280Common_9280), 2);
692         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
693                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
694                                ARRAY_SIZE(ar5416Modes_9160), 6);
695                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
696                                ARRAY_SIZE(ar5416Common_9160), 2);
697                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
698                                ARRAY_SIZE(ar5416Bank0_9160), 2);
699                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
700                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
701                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
702                                ARRAY_SIZE(ar5416Bank1_9160), 2);
703                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
704                                ARRAY_SIZE(ar5416Bank2_9160), 2);
705                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
706                                ARRAY_SIZE(ar5416Bank3_9160), 3);
707                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
708                                ARRAY_SIZE(ar5416Bank6_9160), 3);
709                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
710                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
711                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
712                                ARRAY_SIZE(ar5416Bank7_9160), 2);
713                 if (AR_SREV_9160_11(ah)) {
714                         INIT_INI_ARRAY(&ah->iniAddac,
715                                        ar5416Addac_91601_1,
716                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
717                 } else {
718                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
719                                        ARRAY_SIZE(ar5416Addac_9160), 2);
720                 }
721         } else if (AR_SREV_9100_OR_LATER(ah)) {
722                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
723                                ARRAY_SIZE(ar5416Modes_9100), 6);
724                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
725                                ARRAY_SIZE(ar5416Common_9100), 2);
726                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
727                                ARRAY_SIZE(ar5416Bank0_9100), 2);
728                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
729                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
730                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
731                                ARRAY_SIZE(ar5416Bank1_9100), 2);
732                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
733                                ARRAY_SIZE(ar5416Bank2_9100), 2);
734                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
735                                ARRAY_SIZE(ar5416Bank3_9100), 3);
736                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
737                                ARRAY_SIZE(ar5416Bank6_9100), 3);
738                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
739                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
740                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
741                                ARRAY_SIZE(ar5416Bank7_9100), 2);
742                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
743                                ARRAY_SIZE(ar5416Addac_9100), 2);
744         } else {
745                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
746                                ARRAY_SIZE(ar5416Modes), 6);
747                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
748                                ARRAY_SIZE(ar5416Common), 2);
749                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
750                                ARRAY_SIZE(ar5416Bank0), 2);
751                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
752                                ARRAY_SIZE(ar5416BB_RfGain), 3);
753                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
754                                ARRAY_SIZE(ar5416Bank1), 2);
755                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
756                                ARRAY_SIZE(ar5416Bank2), 2);
757                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
758                                ARRAY_SIZE(ar5416Bank3), 3);
759                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
760                                ARRAY_SIZE(ar5416Bank6), 3);
761                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
762                                ARRAY_SIZE(ar5416Bank6TPC), 3);
763                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
764                                ARRAY_SIZE(ar5416Bank7), 2);
765                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
766                                ARRAY_SIZE(ar5416Addac), 2);
767         }
768 }
769
770 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
771 {
772         if (AR_SREV_9287_11_OR_LATER(ah))
773                 INIT_INI_ARRAY(&ah->iniModesRxGain,
774                 ar9287Modes_rx_gain_9287_1_1,
775                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
776         else if (AR_SREV_9287_10(ah))
777                 INIT_INI_ARRAY(&ah->iniModesRxGain,
778                 ar9287Modes_rx_gain_9287_1_0,
779                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
780         else if (AR_SREV_9280_20(ah))
781                 ath9k_hw_init_rxgain_ini(ah);
782
783         if (AR_SREV_9287_11_OR_LATER(ah)) {
784                 INIT_INI_ARRAY(&ah->iniModesTxGain,
785                 ar9287Modes_tx_gain_9287_1_1,
786                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
787         } else if (AR_SREV_9287_10(ah)) {
788                 INIT_INI_ARRAY(&ah->iniModesTxGain,
789                 ar9287Modes_tx_gain_9287_1_0,
790                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
791         } else if (AR_SREV_9280_20(ah)) {
792                 ath9k_hw_init_txgain_ini(ah);
793         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
794                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
795
796                 /* txgain table */
797                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
798                         INIT_INI_ARRAY(&ah->iniModesTxGain,
799                         ar9285Modes_high_power_tx_gain_9285_1_2,
800                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
801                 } else {
802                         INIT_INI_ARRAY(&ah->iniModesTxGain,
803                         ar9285Modes_original_tx_gain_9285_1_2,
804                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
805                 }
806
807         }
808 }
809
810 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
811 {
812         u32 i, j;
813
814         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
815             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
816
817                 /* EEPROM Fixup */
818                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
819                         u32 reg = INI_RA(&ah->iniModes, i, 0);
820
821                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
822                                 u32 val = INI_RA(&ah->iniModes, i, j);
823
824                                 INI_RA(&ah->iniModes, i, j) =
825                                         ath9k_hw_ini_fixup(ah,
826                                                            &ah->eeprom.def,
827                                                            reg, val);
828                         }
829                 }
830         }
831 }
832
833 int ath9k_hw_init(struct ath_hw *ah)
834 {
835         struct ath_common *common = ath9k_hw_common(ah);
836         int r = 0;
837
838         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
839                 ath_print(common, ATH_DBG_FATAL,
840                           "Unsupported device ID: 0x%0x\n",
841                           ah->hw_version.devid);
842                 return -EOPNOTSUPP;
843         }
844
845         ath9k_hw_init_defaults(ah);
846         ath9k_hw_init_config(ah);
847
848         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
849                 ath_print(common, ATH_DBG_FATAL,
850                           "Couldn't reset chip\n");
851                 return -EIO;
852         }
853
854         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
855                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
856                 return -EIO;
857         }
858
859         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
860                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
861                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
862                         ah->config.serialize_regmode =
863                                 SER_REG_MODE_ON;
864                 } else {
865                         ah->config.serialize_regmode =
866                                 SER_REG_MODE_OFF;
867                 }
868         }
869
870         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
871                 ah->config.serialize_regmode);
872
873         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
874                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
875         else
876                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
877
878         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
879                 ath_print(common, ATH_DBG_FATAL,
880                           "Mac Chip Rev 0x%02x.%x is not supported by "
881                           "this driver\n", ah->hw_version.macVersion,
882                           ah->hw_version.macRev);
883                 return -EOPNOTSUPP;
884         }
885
886         if (AR_SREV_9100(ah)) {
887                 ah->iq_caldata.calData = &iq_cal_multi_sample;
888                 ah->supp_cals = IQ_MISMATCH_CAL;
889                 ah->is_pciexpress = false;
890         }
891
892         if (AR_SREV_9271(ah))
893                 ah->is_pciexpress = false;
894
895         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
896
897         ath9k_hw_init_cal_settings(ah);
898
899         ah->ani_function = ATH9K_ANI_ALL;
900         if (AR_SREV_9280_10_OR_LATER(ah)) {
901                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
902                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
903                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
904         } else {
905                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
906                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
907         }
908
909         ath9k_hw_init_mode_regs(ah);
910
911         if (ah->is_pciexpress)
912                 ath9k_hw_configpcipowersave(ah, 0, 0);
913         else
914                 ath9k_hw_disablepcie(ah);
915
916         /* Support for Japan ch.14 (2484) spread */
917         if (AR_SREV_9287_11_OR_LATER(ah)) {
918                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
919                        ar9287Common_normal_cck_fir_coeff_92871_1,
920                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
921                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
922                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
923                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
924         }
925
926         r = ath9k_hw_post_init(ah);
927         if (r)
928                 return r;
929
930         ath9k_hw_init_mode_gain_regs(ah);
931         r = ath9k_hw_fill_cap_info(ah);
932         if (r)
933                 return r;
934
935         ath9k_hw_init_11a_eeprom_fix(ah);
936
937         r = ath9k_hw_init_macaddr(ah);
938         if (r) {
939                 ath_print(common, ATH_DBG_FATAL,
940                           "Failed to initialize MAC address\n");
941                 return r;
942         }
943
944         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
945                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
946         else
947                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
948
949         ath9k_init_nfcal_hist_buffer(ah);
950
951         common->state = ATH_HW_INITIALIZED;
952
953         return 0;
954 }
955
956 static void ath9k_hw_init_bb(struct ath_hw *ah,
957                              struct ath9k_channel *chan)
958 {
959         u32 synthDelay;
960
961         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
962         if (IS_CHAN_B(chan))
963                 synthDelay = (4 * synthDelay) / 22;
964         else
965                 synthDelay /= 10;
966
967         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
968
969         udelay(synthDelay + BASE_ACTIVATE_DELAY);
970 }
971
972 static void ath9k_hw_init_qos(struct ath_hw *ah)
973 {
974         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
975         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
976
977         REG_WRITE(ah, AR_QOS_NO_ACK,
978                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
979                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
980                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
981
982         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
983         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
984         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
985         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
986         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
987 }
988
989 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
990 {
991         u32 lcr;
992         u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
993
994         lcr = REG_READ(ah , 0x5100c);
995         lcr |= 0x80;
996
997         REG_WRITE(ah, 0x5100c, lcr);
998         REG_WRITE(ah, 0x51004, (baud_divider >> 8));
999         REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1000
1001         lcr &= ~0x80;
1002         REG_WRITE(ah, 0x5100c, lcr);
1003 }
1004
1005 static void ath9k_hw_init_pll(struct ath_hw *ah,
1006                               struct ath9k_channel *chan)
1007 {
1008         u32 pll;
1009
1010         if (AR_SREV_9100(ah)) {
1011                 if (chan && IS_CHAN_5GHZ(chan))
1012                         pll = 0x1450;
1013                 else
1014                         pll = 0x1458;
1015         } else {
1016                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1017                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1018
1019                         if (chan && IS_CHAN_HALF_RATE(chan))
1020                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1021                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1022                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1023
1024                         if (chan && IS_CHAN_5GHZ(chan)) {
1025                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1026
1027
1028                                 if (AR_SREV_9280_20(ah)) {
1029                                         if (((chan->channel % 20) == 0)
1030                                             || ((chan->channel % 10) == 0))
1031                                                 pll = 0x2850;
1032                                         else
1033                                                 pll = 0x142c;
1034                                 }
1035                         } else {
1036                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1037                         }
1038
1039                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1040
1041                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1042
1043                         if (chan && IS_CHAN_HALF_RATE(chan))
1044                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1045                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1046                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1047
1048                         if (chan && IS_CHAN_5GHZ(chan))
1049                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1050                         else
1051                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1052                 } else {
1053                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1054
1055                         if (chan && IS_CHAN_HALF_RATE(chan))
1056                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1057                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1058                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1059
1060                         if (chan && IS_CHAN_5GHZ(chan))
1061                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1062                         else
1063                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1064                 }
1065         }
1066         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1067
1068         /* Switch the core clock for ar9271 to 117Mhz */
1069         if (AR_SREV_9271(ah)) {
1070                 if ((pll == 0x142c) || (pll == 0x2850) ) {
1071                         udelay(500);
1072                         /* set CLKOBS to output AHB clock */
1073                         REG_WRITE(ah, 0x7020, 0xe);
1074                         /*
1075                          * 0x304: 117Mhz, ahb_ratio: 1x1
1076                          * 0x306: 40Mhz, ahb_ratio: 1x1
1077                          */
1078                         REG_WRITE(ah, 0x50040, 0x304);
1079                         /*
1080                          * makes adjustments for the baud dividor to keep the
1081                          * targetted baud rate based on the used core clock.
1082                          */
1083                         ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1084                                                     AR9271_TARGET_BAUD_RATE);
1085                 }
1086         }
1087
1088         udelay(RTC_PLL_SETTLE_DELAY);
1089
1090         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1091 }
1092
1093 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1094 {
1095         int rx_chainmask, tx_chainmask;
1096
1097         rx_chainmask = ah->rxchainmask;
1098         tx_chainmask = ah->txchainmask;
1099
1100         switch (rx_chainmask) {
1101         case 0x5:
1102                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1103                             AR_PHY_SWAP_ALT_CHAIN);
1104         case 0x3:
1105                 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1106                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1107                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1108                         break;
1109                 }
1110         case 0x1:
1111         case 0x2:
1112         case 0x7:
1113                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1114                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1115                 break;
1116         default:
1117                 break;
1118         }
1119
1120         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1121         if (tx_chainmask == 0x5) {
1122                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1123                             AR_PHY_SWAP_ALT_CHAIN);
1124         }
1125         if (AR_SREV_9100(ah))
1126                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1127                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1128 }
1129
1130 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1131                                           enum nl80211_iftype opmode)
1132 {
1133         ah->mask_reg = AR_IMR_TXERR |
1134                 AR_IMR_TXURN |
1135                 AR_IMR_RXERR |
1136                 AR_IMR_RXORN |
1137                 AR_IMR_BCNMISC;
1138
1139         if (ah->config.rx_intr_mitigation)
1140                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1141         else
1142                 ah->mask_reg |= AR_IMR_RXOK;
1143
1144         ah->mask_reg |= AR_IMR_TXOK;
1145
1146         if (opmode == NL80211_IFTYPE_AP)
1147                 ah->mask_reg |= AR_IMR_MIB;
1148
1149         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1150         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1151
1152         if (!AR_SREV_9100(ah)) {
1153                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1154                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1155                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1156         }
1157 }
1158
1159 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1160 {
1161         u32 val = ath9k_hw_mac_to_clks(ah, us);
1162         val = min(val, (u32) 0xFFFF);
1163         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1164 }
1165
1166 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1167 {
1168         u32 val = ath9k_hw_mac_to_clks(ah, us);
1169         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1170         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1171 }
1172
1173 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1174 {
1175         u32 val = ath9k_hw_mac_to_clks(ah, us);
1176         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1177         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1178 }
1179
1180 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1181 {
1182         if (tu > 0xFFFF) {
1183                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1184                           "bad global tx timeout %u\n", tu);
1185                 ah->globaltxtimeout = (u32) -1;
1186                 return false;
1187         } else {
1188                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1189                 ah->globaltxtimeout = tu;
1190                 return true;
1191         }
1192 }
1193
1194 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1195 {
1196         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1197         int acktimeout;
1198         int slottime;
1199         int sifstime;
1200
1201         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1202                   ah->misc_mode);
1203
1204         if (ah->misc_mode != 0)
1205                 REG_WRITE(ah, AR_PCU_MISC,
1206                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1207
1208         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1209                 sifstime = 16;
1210         else
1211                 sifstime = 10;
1212
1213         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1214         slottime = ah->slottime + 3 * ah->coverage_class;
1215         acktimeout = slottime + sifstime;
1216         ath9k_hw_setslottime(ah, slottime);
1217         ath9k_hw_set_ack_timeout(ah, acktimeout);
1218         ath9k_hw_set_cts_timeout(ah, acktimeout);
1219         if (ah->globaltxtimeout != (u32) -1)
1220                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1221 }
1222 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1223
1224 void ath9k_hw_deinit(struct ath_hw *ah)
1225 {
1226         struct ath_common *common = ath9k_hw_common(ah);
1227
1228         if (common->state <= ATH_HW_INITIALIZED)
1229                 goto free_hw;
1230
1231         if (!AR_SREV_9100(ah))
1232                 ath9k_hw_ani_disable(ah);
1233
1234         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1235
1236 free_hw:
1237         if (!AR_SREV_9280_10_OR_LATER(ah))
1238                 ath9k_hw_rf_free_ext_banks(ah);
1239         kfree(ah);
1240         ah = NULL;
1241 }
1242 EXPORT_SYMBOL(ath9k_hw_deinit);
1243
1244 /*******/
1245 /* INI */
1246 /*******/
1247
1248 static void ath9k_hw_override_ini(struct ath_hw *ah,
1249                                   struct ath9k_channel *chan)
1250 {
1251         u32 val;
1252
1253         if (AR_SREV_9271(ah)) {
1254                 /*
1255                  * Enable spectral scan to solution for issues with stuck
1256                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1257                  * AR9271 1.1
1258                  */
1259                 if (AR_SREV_9271_10(ah)) {
1260                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1261                               AR_PHY_SPECTRAL_SCAN_ENABLE;
1262                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1263                 }
1264                 else if (AR_SREV_9271_11(ah))
1265                         /*
1266                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1267                          * present on AR9271 1.1
1268                          */
1269                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1270                 return;
1271         }
1272
1273         /*
1274          * Set the RX_ABORT and RX_DIS and clear if off only after
1275          * RXE is set for MAC. This prevents frames with corrupted
1276          * descriptor status.
1277          */
1278         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1279
1280         if (AR_SREV_9280_10_OR_LATER(ah)) {
1281                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1282                                (~AR_PCU_MISC_MODE2_HWWAR1);
1283
1284                 if (AR_SREV_9287_10_OR_LATER(ah))
1285                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1286
1287                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1288         }
1289
1290         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1291             AR_SREV_9280_10_OR_LATER(ah))
1292                 return;
1293         /*
1294          * Disable BB clock gating
1295          * Necessary to avoid issues on AR5416 2.0
1296          */
1297         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1298 }
1299
1300 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1301                               struct ar5416_eeprom_def *pEepData,
1302                               u32 reg, u32 value)
1303 {
1304         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1305         struct ath_common *common = ath9k_hw_common(ah);
1306
1307         switch (ah->hw_version.devid) {
1308         case AR9280_DEVID_PCI:
1309                 if (reg == 0x7894) {
1310                         ath_print(common, ATH_DBG_EEPROM,
1311                                 "ini VAL: %x  EEPROM: %x\n", value,
1312                                 (pBase->version & 0xff));
1313
1314                         if ((pBase->version & 0xff) > 0x0a) {
1315                                 ath_print(common, ATH_DBG_EEPROM,
1316                                           "PWDCLKIND: %d\n",
1317                                           pBase->pwdclkind);
1318                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1319                                 value |= AR_AN_TOP2_PWDCLKIND &
1320                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1321                         } else {
1322                                 ath_print(common, ATH_DBG_EEPROM,
1323                                           "PWDCLKIND Earlier Rev\n");
1324                         }
1325
1326                         ath_print(common, ATH_DBG_EEPROM,
1327                                   "final ini VAL: %x\n", value);
1328                 }
1329                 break;
1330         }
1331
1332         return value;
1333 }
1334
1335 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1336                               struct ar5416_eeprom_def *pEepData,
1337                               u32 reg, u32 value)
1338 {
1339         if (ah->eep_map == EEP_MAP_4KBITS)
1340                 return value;
1341         else
1342                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1343 }
1344
1345 static void ath9k_olc_init(struct ath_hw *ah)
1346 {
1347         u32 i;
1348
1349         if (OLC_FOR_AR9287_10_LATER) {
1350                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1351                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1352                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1353                                 AR9287_AN_TXPC0_TXPCMODE,
1354                                 AR9287_AN_TXPC0_TXPCMODE_S,
1355                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1356                 udelay(100);
1357         } else {
1358                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1359                         ah->originalGain[i] =
1360                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1361                                                 AR_PHY_TX_GAIN);
1362                 ah->PDADCdelta = 0;
1363         }
1364 }
1365
1366 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1367                               struct ath9k_channel *chan)
1368 {
1369         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1370
1371         if (IS_CHAN_B(chan))
1372                 ctl |= CTL_11B;
1373         else if (IS_CHAN_G(chan))
1374                 ctl |= CTL_11G;
1375         else
1376                 ctl |= CTL_11A;
1377
1378         return ctl;
1379 }
1380
1381 static int ath9k_hw_process_ini(struct ath_hw *ah,
1382                                 struct ath9k_channel *chan)
1383 {
1384         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1385         int i, regWrites = 0;
1386         struct ieee80211_channel *channel = chan->chan;
1387         u32 modesIndex, freqIndex;
1388
1389         switch (chan->chanmode) {
1390         case CHANNEL_A:
1391         case CHANNEL_A_HT20:
1392                 modesIndex = 1;
1393                 freqIndex = 1;
1394                 break;
1395         case CHANNEL_A_HT40PLUS:
1396         case CHANNEL_A_HT40MINUS:
1397                 modesIndex = 2;
1398                 freqIndex = 1;
1399                 break;
1400         case CHANNEL_G:
1401         case CHANNEL_G_HT20:
1402         case CHANNEL_B:
1403                 modesIndex = 4;
1404                 freqIndex = 2;
1405                 break;
1406         case CHANNEL_G_HT40PLUS:
1407         case CHANNEL_G_HT40MINUS:
1408                 modesIndex = 3;
1409                 freqIndex = 2;
1410                 break;
1411
1412         default:
1413                 return -EINVAL;
1414         }
1415
1416         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1417         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1418         ah->eep_ops->set_addac(ah, chan);
1419
1420         if (AR_SREV_5416_22_OR_LATER(ah)) {
1421                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1422         } else {
1423                 struct ar5416IniArray temp;
1424                 u32 addacSize =
1425                         sizeof(u32) * ah->iniAddac.ia_rows *
1426                         ah->iniAddac.ia_columns;
1427
1428                 memcpy(ah->addac5416_21,
1429                        ah->iniAddac.ia_array, addacSize);
1430
1431                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1432
1433                 temp.ia_array = ah->addac5416_21;
1434                 temp.ia_columns = ah->iniAddac.ia_columns;
1435                 temp.ia_rows = ah->iniAddac.ia_rows;
1436                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1437         }
1438
1439         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1440
1441         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1442                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1443                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1444
1445                 REG_WRITE(ah, reg, val);
1446
1447                 if (reg >= 0x7800 && reg < 0x78a0
1448                     && ah->config.analog_shiftreg) {
1449                         udelay(100);
1450                 }
1451
1452                 DO_DELAY(regWrites);
1453         }
1454
1455         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1456                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1457
1458         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1459             AR_SREV_9287_10_OR_LATER(ah))
1460                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1461
1462         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1463                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1464                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1465
1466                 REG_WRITE(ah, reg, val);
1467
1468                 if (reg >= 0x7800 && reg < 0x78a0
1469                     && ah->config.analog_shiftreg) {
1470                         udelay(100);
1471                 }
1472
1473                 DO_DELAY(regWrites);
1474         }
1475
1476         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1477
1478         if (AR_SREV_9271_10(ah))
1479                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1480                                 modesIndex, regWrites);
1481
1482         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1483                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1484                                 regWrites);
1485         }
1486
1487         ath9k_hw_override_ini(ah, chan);
1488         ath9k_hw_set_regs(ah, chan);
1489         ath9k_hw_init_chain_masks(ah);
1490
1491         if (OLC_FOR_AR9280_20_LATER)
1492                 ath9k_olc_init(ah);
1493
1494         ah->eep_ops->set_txpower(ah, chan,
1495                                  ath9k_regd_get_ctl(regulatory, chan),
1496                                  channel->max_antenna_gain * 2,
1497                                  channel->max_power * 2,
1498                                  min((u32) MAX_RATE_POWER,
1499                                  (u32) regulatory->power_limit));
1500
1501         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1502                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1503                           "ar5416SetRfRegs failed\n");
1504                 return -EIO;
1505         }
1506
1507         return 0;
1508 }
1509
1510 /****************************************/
1511 /* Reset and Channel Switching Routines */
1512 /****************************************/
1513
1514 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1515 {
1516         u32 rfMode = 0;
1517
1518         if (chan == NULL)
1519                 return;
1520
1521         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1522                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1523
1524         if (!AR_SREV_9280_10_OR_LATER(ah))
1525                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1526                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1527
1528         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1529                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1530
1531         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1532 }
1533
1534 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1535 {
1536         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1537 }
1538
1539 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1540 {
1541         u32 regval;
1542
1543         /*
1544          * set AHB_MODE not to do cacheline prefetches
1545         */
1546         regval = REG_READ(ah, AR_AHB_MODE);
1547         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1548
1549         /*
1550          * let mac dma reads be in 128 byte chunks
1551          */
1552         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1553         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1554
1555         /*
1556          * Restore TX Trigger Level to its pre-reset value.
1557          * The initial value depends on whether aggregation is enabled, and is
1558          * adjusted whenever underruns are detected.
1559          */
1560         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1561
1562         /*
1563          * let mac dma writes be in 128 byte chunks
1564          */
1565         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1566         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1567
1568         /*
1569          * Setup receive FIFO threshold to hold off TX activities
1570          */
1571         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1572
1573         /*
1574          * reduce the number of usable entries in PCU TXBUF to avoid
1575          * wrap around issues.
1576          */
1577         if (AR_SREV_9285(ah)) {
1578                 /* For AR9285 the number of Fifos are reduced to half.
1579                  * So set the usable tx buf size also to half to
1580                  * avoid data/delimiter underruns
1581                  */
1582                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1583                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1584         } else if (!AR_SREV_9271(ah)) {
1585                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1586                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1587         }
1588 }
1589
1590 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1591 {
1592         u32 val;
1593
1594         val = REG_READ(ah, AR_STA_ID1);
1595         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1596         switch (opmode) {
1597         case NL80211_IFTYPE_AP:
1598                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1599                           | AR_STA_ID1_KSRCH_MODE);
1600                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1601                 break;
1602         case NL80211_IFTYPE_ADHOC:
1603         case NL80211_IFTYPE_MESH_POINT:
1604                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1605                           | AR_STA_ID1_KSRCH_MODE);
1606                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1607                 break;
1608         case NL80211_IFTYPE_STATION:
1609         case NL80211_IFTYPE_MONITOR:
1610                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1611                 break;
1612         }
1613 }
1614
1615 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1616                                                  u32 coef_scaled,
1617                                                  u32 *coef_mantissa,
1618                                                  u32 *coef_exponent)
1619 {
1620         u32 coef_exp, coef_man;
1621
1622         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1623                 if ((coef_scaled >> coef_exp) & 0x1)
1624                         break;
1625
1626         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1627
1628         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1629
1630         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1631         *coef_exponent = coef_exp - 16;
1632 }
1633
1634 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1635                                      struct ath9k_channel *chan)
1636 {
1637         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1638         u32 clockMhzScaled = 0x64000000;
1639         struct chan_centers centers;
1640
1641         if (IS_CHAN_HALF_RATE(chan))
1642                 clockMhzScaled = clockMhzScaled >> 1;
1643         else if (IS_CHAN_QUARTER_RATE(chan))
1644                 clockMhzScaled = clockMhzScaled >> 2;
1645
1646         ath9k_hw_get_channel_centers(ah, chan, &centers);
1647         coef_scaled = clockMhzScaled / centers.synth_center;
1648
1649         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1650                                       &ds_coef_exp);
1651
1652         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1653                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1654         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1655                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1656
1657         coef_scaled = (9 * coef_scaled) / 10;
1658
1659         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1660                                       &ds_coef_exp);
1661
1662         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1663                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1664         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1665                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1666 }
1667
1668 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1669 {
1670         u32 rst_flags;
1671         u32 tmpReg;
1672
1673         if (AR_SREV_9100(ah)) {
1674                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1675                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1676                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1677                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1678                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1679         }
1680
1681         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1682                   AR_RTC_FORCE_WAKE_ON_INT);
1683
1684         if (AR_SREV_9100(ah)) {
1685                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1686                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1687         } else {
1688                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1689                 if (tmpReg &
1690                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1691                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1692                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1693                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1694                 } else {
1695                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1696                 }
1697
1698                 rst_flags = AR_RTC_RC_MAC_WARM;
1699                 if (type == ATH9K_RESET_COLD)
1700                         rst_flags |= AR_RTC_RC_MAC_COLD;
1701         }
1702
1703         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1704         udelay(50);
1705
1706         REG_WRITE(ah, AR_RTC_RC, 0);
1707         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1708                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1709                           "RTC stuck in MAC reset\n");
1710                 return false;
1711         }
1712
1713         if (!AR_SREV_9100(ah))
1714                 REG_WRITE(ah, AR_RC, 0);
1715
1716         if (AR_SREV_9100(ah))
1717                 udelay(50);
1718
1719         return true;
1720 }
1721
1722 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1723 {
1724         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1725                   AR_RTC_FORCE_WAKE_ON_INT);
1726
1727         if (!AR_SREV_9100(ah))
1728                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1729
1730         REG_WRITE(ah, AR_RTC_RESET, 0);
1731         udelay(2);
1732
1733         if (!AR_SREV_9100(ah))
1734                 REG_WRITE(ah, AR_RC, 0);
1735
1736         REG_WRITE(ah, AR_RTC_RESET, 1);
1737
1738         if (!ath9k_hw_wait(ah,
1739                            AR_RTC_STATUS,
1740                            AR_RTC_STATUS_M,
1741                            AR_RTC_STATUS_ON,
1742                            AH_WAIT_TIMEOUT)) {
1743                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1744                           "RTC not waking up\n");
1745                 return false;
1746         }
1747
1748         ath9k_hw_read_revisions(ah);
1749
1750         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1751 }
1752
1753 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1754 {
1755         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1756                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1757
1758         switch (type) {
1759         case ATH9K_RESET_POWER_ON:
1760                 return ath9k_hw_set_reset_power_on(ah);
1761         case ATH9K_RESET_WARM:
1762         case ATH9K_RESET_COLD:
1763                 return ath9k_hw_set_reset(ah, type);
1764         default:
1765                 return false;
1766         }
1767 }
1768
1769 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1770 {
1771         u32 phymode;
1772         u32 enableDacFifo = 0;
1773
1774         if (AR_SREV_9285_10_OR_LATER(ah))
1775                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1776                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1777
1778         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1779                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1780
1781         if (IS_CHAN_HT40(chan)) {
1782                 phymode |= AR_PHY_FC_DYN2040_EN;
1783
1784                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1785                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1786                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1787
1788         }
1789         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1790
1791         ath9k_hw_set11nmac2040(ah);
1792
1793         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1794         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1795 }
1796
1797 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1798                                 struct ath9k_channel *chan)
1799 {
1800         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1801                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1802                         return false;
1803         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1804                 return false;
1805
1806         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1807                 return false;
1808
1809         ah->chip_fullsleep = false;
1810         ath9k_hw_init_pll(ah, chan);
1811         ath9k_hw_set_rfmode(ah, chan);
1812
1813         return true;
1814 }
1815
1816 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1817                                     struct ath9k_channel *chan)
1818 {
1819         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1820         struct ath_common *common = ath9k_hw_common(ah);
1821         struct ieee80211_channel *channel = chan->chan;
1822         u32 synthDelay, qnum;
1823         int r;
1824
1825         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1826                 if (ath9k_hw_numtxpending(ah, qnum)) {
1827                         ath_print(common, ATH_DBG_QUEUE,
1828                                   "Transmit frames pending on "
1829                                   "queue %d\n", qnum);
1830                         return false;
1831                 }
1832         }
1833
1834         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1835         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1836                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1837                 ath_print(common, ATH_DBG_FATAL,
1838                           "Could not kill baseband RX\n");
1839                 return false;
1840         }
1841
1842         ath9k_hw_set_regs(ah, chan);
1843
1844         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1845         if (r) {
1846                 ath_print(common, ATH_DBG_FATAL,
1847                           "Failed to set channel\n");
1848                 return false;
1849         }
1850
1851         ah->eep_ops->set_txpower(ah, chan,
1852                              ath9k_regd_get_ctl(regulatory, chan),
1853                              channel->max_antenna_gain * 2,
1854                              channel->max_power * 2,
1855                              min((u32) MAX_RATE_POWER,
1856                              (u32) regulatory->power_limit));
1857
1858         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1859         if (IS_CHAN_B(chan))
1860                 synthDelay = (4 * synthDelay) / 22;
1861         else
1862                 synthDelay /= 10;
1863
1864         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1865
1866         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1867
1868         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1869                 ath9k_hw_set_delta_slope(ah, chan);
1870
1871         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1872
1873         if (!chan->oneTimeCalsDone)
1874                 chan->oneTimeCalsDone = true;
1875
1876         return true;
1877 }
1878
1879 static void ath9k_enable_rfkill(struct ath_hw *ah)
1880 {
1881         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1882                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1883
1884         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1885                     AR_GPIO_INPUT_MUX2_RFSILENT);
1886
1887         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1888         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1889 }
1890
1891 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1892                     bool bChannelChange)
1893 {
1894         struct ath_common *common = ath9k_hw_common(ah);
1895         u32 saveLedState;
1896         struct ath9k_channel *curchan = ah->curchan;
1897         u32 saveDefAntenna;
1898         u32 macStaId1;
1899         u64 tsf = 0;
1900         int i, rx_chainmask, r;
1901
1902         ah->txchainmask = common->tx_chainmask;
1903         ah->rxchainmask = common->rx_chainmask;
1904
1905         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1906                 return -EIO;
1907
1908         if (curchan && !ah->chip_fullsleep)
1909                 ath9k_hw_getnf(ah, curchan);
1910
1911         if (bChannelChange &&
1912             (ah->chip_fullsleep != true) &&
1913             (ah->curchan != NULL) &&
1914             (chan->channel != ah->curchan->channel) &&
1915             ((chan->channelFlags & CHANNEL_ALL) ==
1916              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1917              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1918              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1919
1920                 if (ath9k_hw_channel_change(ah, chan)) {
1921                         ath9k_hw_loadnf(ah, ah->curchan);
1922                         ath9k_hw_start_nfcal(ah);
1923                         return 0;
1924                 }
1925         }
1926
1927         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1928         if (saveDefAntenna == 0)
1929                 saveDefAntenna = 1;
1930
1931         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1932
1933         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1934         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1935                 tsf = ath9k_hw_gettsf64(ah);
1936
1937         saveLedState = REG_READ(ah, AR_CFG_LED) &
1938                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1939                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1940
1941         ath9k_hw_mark_phy_inactive(ah);
1942
1943         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1944                 REG_WRITE(ah,
1945                           AR9271_RESET_POWER_DOWN_CONTROL,
1946                           AR9271_RADIO_RF_RST);
1947                 udelay(50);
1948         }
1949
1950         if (!ath9k_hw_chip_reset(ah, chan)) {
1951                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1952                 return -EINVAL;
1953         }
1954
1955         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1956                 ah->htc_reset_init = false;
1957                 REG_WRITE(ah,
1958                           AR9271_RESET_POWER_DOWN_CONTROL,
1959                           AR9271_GATE_MAC_CTL);
1960                 udelay(50);
1961         }
1962
1963         /* Restore TSF */
1964         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1965                 ath9k_hw_settsf64(ah, tsf);
1966
1967         if (AR_SREV_9280_10_OR_LATER(ah))
1968                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1969
1970         if (AR_SREV_9287_12_OR_LATER(ah)) {
1971                 /* Enable ASYNC FIFO */
1972                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1973                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
1974                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
1975                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1976                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1977                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1978                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1979         }
1980         r = ath9k_hw_process_ini(ah, chan);
1981         if (r)
1982                 return r;
1983
1984         /* Setup MFP options for CCMP */
1985         if (AR_SREV_9280_20_OR_LATER(ah)) {
1986                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1987                  * frames when constructing CCMP AAD. */
1988                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1989                               0xc7ff);
1990                 ah->sw_mgmt_crypto = false;
1991         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1992                 /* Disable hardware crypto for management frames */
1993                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1994                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1995                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1996                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1997                 ah->sw_mgmt_crypto = true;
1998         } else
1999                 ah->sw_mgmt_crypto = true;
2000
2001         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2002                 ath9k_hw_set_delta_slope(ah, chan);
2003
2004         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2005         ah->eep_ops->set_board_values(ah, chan);
2006
2007         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2008         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2009                   | macStaId1
2010                   | AR_STA_ID1_RTS_USE_DEF
2011                   | (ah->config.
2012                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2013                   | ah->sta_id1_defaults);
2014         ath9k_hw_set_operating_mode(ah, ah->opmode);
2015
2016         ath_hw_setbssidmask(common);
2017
2018         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2019
2020         ath9k_hw_write_associd(ah);
2021
2022         REG_WRITE(ah, AR_ISR, ~0);
2023
2024         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2025
2026         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2027         if (r)
2028                 return r;
2029
2030         for (i = 0; i < AR_NUM_DCU; i++)
2031                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2032
2033         ah->intr_txqs = 0;
2034         for (i = 0; i < ah->caps.total_queues; i++)
2035                 ath9k_hw_resettxqueue(ah, i);
2036
2037         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2038         ath9k_hw_init_qos(ah);
2039
2040         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2041                 ath9k_enable_rfkill(ah);
2042
2043         ath9k_hw_init_global_settings(ah);
2044
2045         if (AR_SREV_9287_12_OR_LATER(ah)) {
2046                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2047                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2048                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2049                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2050                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2051                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2052
2053                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2054                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2055
2056                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2057                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2058                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2059                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2060         }
2061         if (AR_SREV_9287_12_OR_LATER(ah)) {
2062                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2063                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2064         }
2065
2066         REG_WRITE(ah, AR_STA_ID1,
2067                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2068
2069         ath9k_hw_set_dma(ah);
2070
2071         REG_WRITE(ah, AR_OBS, 8);
2072
2073         if (ah->config.rx_intr_mitigation) {
2074                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2075                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2076         }
2077
2078         ath9k_hw_init_bb(ah, chan);
2079
2080         if (!ath9k_hw_init_cal(ah, chan))
2081                 return -EIO;
2082
2083         rx_chainmask = ah->rxchainmask;
2084         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2085                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2086                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2087         }
2088
2089         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2090
2091         /*
2092          * For big endian systems turn on swapping for descriptors
2093          */
2094         if (AR_SREV_9100(ah)) {
2095                 u32 mask;
2096                 mask = REG_READ(ah, AR_CFG);
2097                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2098                         ath_print(common, ATH_DBG_RESET,
2099                                 "CFG Byte Swap Set 0x%x\n", mask);
2100                 } else {
2101                         mask =
2102                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2103                         REG_WRITE(ah, AR_CFG, mask);
2104                         ath_print(common, ATH_DBG_RESET,
2105                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2106                 }
2107         } else {
2108                 /* Configure AR9271 target WLAN */
2109                 if (AR_SREV_9271(ah))
2110                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2111 #ifdef __BIG_ENDIAN
2112                 else
2113                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2114 #endif
2115         }
2116
2117         if (ah->btcoex_hw.enabled)
2118                 ath9k_hw_btcoex_enable(ah);
2119
2120         return 0;
2121 }
2122 EXPORT_SYMBOL(ath9k_hw_reset);
2123
2124 /************************/
2125 /* Key Cache Management */
2126 /************************/
2127
2128 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2129 {
2130         u32 keyType;
2131
2132         if (entry >= ah->caps.keycache_size) {
2133                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2134                           "keychache entry %u out of range\n", entry);
2135                 return false;
2136         }
2137
2138         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2139
2140         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2141         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2142         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2143         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2144         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2145         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2146         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2147         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2148
2149         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2150                 u16 micentry = entry + 64;
2151
2152                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2153                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2154                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2155                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2156
2157         }
2158
2159         return true;
2160 }
2161 EXPORT_SYMBOL(ath9k_hw_keyreset);
2162
2163 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2164 {
2165         u32 macHi, macLo;
2166
2167         if (entry >= ah->caps.keycache_size) {
2168                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2169                           "keychache entry %u out of range\n", entry);
2170                 return false;
2171         }
2172
2173         if (mac != NULL) {
2174                 macHi = (mac[5] << 8) | mac[4];
2175                 macLo = (mac[3] << 24) |
2176                         (mac[2] << 16) |
2177                         (mac[1] << 8) |
2178                         mac[0];
2179                 macLo >>= 1;
2180                 macLo |= (macHi & 1) << 31;
2181                 macHi >>= 1;
2182         } else {
2183                 macLo = macHi = 0;
2184         }
2185         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2186         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2187
2188         return true;
2189 }
2190 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2191
2192 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2193                                  const struct ath9k_keyval *k,
2194                                  const u8 *mac)
2195 {
2196         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2197         struct ath_common *common = ath9k_hw_common(ah);
2198         u32 key0, key1, key2, key3, key4;
2199         u32 keyType;
2200
2201         if (entry >= pCap->keycache_size) {
2202                 ath_print(common, ATH_DBG_FATAL,
2203                           "keycache entry %u out of range\n", entry);
2204                 return false;
2205         }
2206
2207         switch (k->kv_type) {
2208         case ATH9K_CIPHER_AES_OCB:
2209                 keyType = AR_KEYTABLE_TYPE_AES;
2210                 break;
2211         case ATH9K_CIPHER_AES_CCM:
2212                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2213                         ath_print(common, ATH_DBG_ANY,
2214                                   "AES-CCM not supported by mac rev 0x%x\n",
2215                                   ah->hw_version.macRev);
2216                         return false;
2217                 }
2218                 keyType = AR_KEYTABLE_TYPE_CCM;
2219                 break;
2220         case ATH9K_CIPHER_TKIP:
2221                 keyType = AR_KEYTABLE_TYPE_TKIP;
2222                 if (ATH9K_IS_MIC_ENABLED(ah)
2223                     && entry + 64 >= pCap->keycache_size) {
2224                         ath_print(common, ATH_DBG_ANY,
2225                                   "entry %u inappropriate for TKIP\n", entry);
2226                         return false;
2227                 }
2228                 break;
2229         case ATH9K_CIPHER_WEP:
2230                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2231                         ath_print(common, ATH_DBG_ANY,
2232                                   "WEP key length %u too small\n", k->kv_len);
2233                         return false;
2234                 }
2235                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2236                         keyType = AR_KEYTABLE_TYPE_40;
2237                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2238                         keyType = AR_KEYTABLE_TYPE_104;
2239                 else
2240                         keyType = AR_KEYTABLE_TYPE_128;
2241                 break;
2242         case ATH9K_CIPHER_CLR:
2243                 keyType = AR_KEYTABLE_TYPE_CLR;
2244                 break;
2245         default:
2246                 ath_print(common, ATH_DBG_FATAL,
2247                           "cipher %u not supported\n", k->kv_type);
2248                 return false;
2249         }
2250
2251         key0 = get_unaligned_le32(k->kv_val + 0);
2252         key1 = get_unaligned_le16(k->kv_val + 4);
2253         key2 = get_unaligned_le32(k->kv_val + 6);
2254         key3 = get_unaligned_le16(k->kv_val + 10);
2255         key4 = get_unaligned_le32(k->kv_val + 12);
2256         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2257                 key4 &= 0xff;
2258
2259         /*
2260          * Note: Key cache registers access special memory area that requires
2261          * two 32-bit writes to actually update the values in the internal
2262          * memory. Consequently, the exact order and pairs used here must be
2263          * maintained.
2264          */
2265
2266         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2267                 u16 micentry = entry + 64;
2268
2269                 /*
2270                  * Write inverted key[47:0] first to avoid Michael MIC errors
2271                  * on frames that could be sent or received at the same time.
2272                  * The correct key will be written in the end once everything
2273                  * else is ready.
2274                  */
2275                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2276                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2277
2278                 /* Write key[95:48] */
2279                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2280                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2281
2282                 /* Write key[127:96] and key type */
2283                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2284                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2285
2286                 /* Write MAC address for the entry */
2287                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2288
2289                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2290                         /*
2291                          * TKIP uses two key cache entries:
2292                          * Michael MIC TX/RX keys in the same key cache entry
2293                          * (idx = main index + 64):
2294                          * key0 [31:0] = RX key [31:0]
2295                          * key1 [15:0] = TX key [31:16]
2296                          * key1 [31:16] = reserved
2297                          * key2 [31:0] = RX key [63:32]
2298                          * key3 [15:0] = TX key [15:0]
2299                          * key3 [31:16] = reserved
2300                          * key4 [31:0] = TX key [63:32]
2301                          */
2302                         u32 mic0, mic1, mic2, mic3, mic4;
2303
2304                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2305                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2306                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2307                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2308                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2309
2310                         /* Write RX[31:0] and TX[31:16] */
2311                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2312                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2313
2314                         /* Write RX[63:32] and TX[15:0] */
2315                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2316                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2317
2318                         /* Write TX[63:32] and keyType(reserved) */
2319                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2320                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2321                                   AR_KEYTABLE_TYPE_CLR);
2322
2323                 } else {
2324                         /*
2325                          * TKIP uses four key cache entries (two for group
2326                          * keys):
2327                          * Michael MIC TX/RX keys are in different key cache
2328                          * entries (idx = main index + 64 for TX and
2329                          * main index + 32 + 96 for RX):
2330                          * key0 [31:0] = TX/RX MIC key [31:0]
2331                          * key1 [31:0] = reserved
2332                          * key2 [31:0] = TX/RX MIC key [63:32]
2333                          * key3 [31:0] = reserved
2334                          * key4 [31:0] = reserved
2335                          *
2336                          * Upper layer code will call this function separately
2337                          * for TX and RX keys when these registers offsets are
2338                          * used.
2339                          */
2340                         u32 mic0, mic2;
2341
2342                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2343                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2344
2345                         /* Write MIC key[31:0] */
2346                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2347                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2348
2349                         /* Write MIC key[63:32] */
2350                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2351                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2352
2353                         /* Write TX[63:32] and keyType(reserved) */
2354                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2355                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2356                                   AR_KEYTABLE_TYPE_CLR);
2357                 }
2358
2359                 /* MAC address registers are reserved for the MIC entry */
2360                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2361                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2362
2363                 /*
2364                  * Write the correct (un-inverted) key[47:0] last to enable
2365                  * TKIP now that all other registers are set with correct
2366                  * values.
2367                  */
2368                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2369                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2370         } else {
2371                 /* Write key[47:0] */
2372                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2373                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2374
2375                 /* Write key[95:48] */
2376                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2377                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2378
2379                 /* Write key[127:96] and key type */
2380                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2381                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2382
2383                 /* Write MAC address for the entry */
2384                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2385         }
2386
2387         return true;
2388 }
2389 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2390
2391 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2392 {
2393         if (entry < ah->caps.keycache_size) {
2394                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2395                 if (val & AR_KEYTABLE_VALID)
2396                         return true;
2397         }
2398         return false;
2399 }
2400 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2401
2402 /******************************/
2403 /* Power Management (Chipset) */
2404 /******************************/
2405
2406 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2407 {
2408         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2409         if (setChip) {
2410                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2411                             AR_RTC_FORCE_WAKE_EN);
2412                 if (!AR_SREV_9100(ah))
2413                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2414
2415                 if(!AR_SREV_5416(ah))
2416                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2417                                     AR_RTC_RESET_EN);
2418         }
2419 }
2420
2421 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2422 {
2423         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2424         if (setChip) {
2425                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2426
2427                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2428                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2429                                   AR_RTC_FORCE_WAKE_ON_INT);
2430                 } else {
2431                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2432                                     AR_RTC_FORCE_WAKE_EN);
2433                 }
2434         }
2435 }
2436
2437 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2438 {
2439         u32 val;
2440         int i;
2441
2442         if (setChip) {
2443                 if ((REG_READ(ah, AR_RTC_STATUS) &
2444                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2445                         if (ath9k_hw_set_reset_reg(ah,
2446                                            ATH9K_RESET_POWER_ON) != true) {
2447                                 return false;
2448                         }
2449                         ath9k_hw_init_pll(ah, NULL);
2450                 }
2451                 if (AR_SREV_9100(ah))
2452                         REG_SET_BIT(ah, AR_RTC_RESET,
2453                                     AR_RTC_RESET_EN);
2454
2455                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2456                             AR_RTC_FORCE_WAKE_EN);
2457                 udelay(50);
2458
2459                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2460                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2461                         if (val == AR_RTC_STATUS_ON)
2462                                 break;
2463                         udelay(50);
2464                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2465                                     AR_RTC_FORCE_WAKE_EN);
2466                 }
2467                 if (i == 0) {
2468                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2469                                   "Failed to wakeup in %uus\n",
2470                                   POWER_UP_TIME / 20);
2471                         return false;
2472                 }
2473         }
2474
2475         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2476
2477         return true;
2478 }
2479
2480 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2481 {
2482         struct ath_common *common = ath9k_hw_common(ah);
2483         int status = true, setChip = true;
2484         static const char *modes[] = {
2485                 "AWAKE",
2486                 "FULL-SLEEP",
2487                 "NETWORK SLEEP",
2488                 "UNDEFINED"
2489         };
2490
2491         if (ah->power_mode == mode)
2492                 return status;
2493
2494         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2495                   modes[ah->power_mode], modes[mode]);
2496
2497         switch (mode) {
2498         case ATH9K_PM_AWAKE:
2499                 status = ath9k_hw_set_power_awake(ah, setChip);
2500                 break;
2501         case ATH9K_PM_FULL_SLEEP:
2502                 ath9k_set_power_sleep(ah, setChip);
2503                 ah->chip_fullsleep = true;
2504                 break;
2505         case ATH9K_PM_NETWORK_SLEEP:
2506                 ath9k_set_power_network_sleep(ah, setChip);
2507                 break;
2508         default:
2509                 ath_print(common, ATH_DBG_FATAL,
2510                           "Unknown power mode %u\n", mode);
2511                 return false;
2512         }
2513         ah->power_mode = mode;
2514
2515         return status;
2516 }
2517 EXPORT_SYMBOL(ath9k_hw_setpower);
2518
2519 /*
2520  * Helper for ASPM support.
2521  *
2522  * Disable PLL when in L0s as well as receiver clock when in L1.
2523  * This power saving option must be enabled through the SerDes.
2524  *
2525  * Programming the SerDes must go through the same 288 bit serial shift
2526  * register as the other analog registers.  Hence the 9 writes.
2527  */
2528 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2529 {
2530         u8 i;
2531         u32 val;
2532
2533         if (ah->is_pciexpress != true)
2534                 return;
2535
2536         /* Do not touch SerDes registers */
2537         if (ah->config.pcie_powersave_enable == 2)
2538                 return;
2539
2540         /* Nothing to do on restore for 11N */
2541         if (!restore) {
2542                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2543                         /*
2544                          * AR9280 2.0 or later chips use SerDes values from the
2545                          * initvals.h initialized depending on chipset during
2546                          * ath9k_hw_init()
2547                          */
2548                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2549                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2550                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2551                         }
2552                 } else if (AR_SREV_9280(ah) &&
2553                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2554                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2555                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2556
2557                         /* RX shut off when elecidle is asserted */
2558                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2559                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2560                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2561
2562                         /* Shut off CLKREQ active in L1 */
2563                         if (ah->config.pcie_clock_req)
2564                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2565                         else
2566                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2567
2568                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2569                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2570                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2571
2572                         /* Load the new settings */
2573                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2574
2575                 } else {
2576                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2577                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2578
2579                         /* RX shut off when elecidle is asserted */
2580                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2581                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2582                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2583
2584                         /*
2585                          * Ignore ah->ah_config.pcie_clock_req setting for
2586                          * pre-AR9280 11n
2587                          */
2588                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2589
2590                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2591                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2592                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2593
2594                         /* Load the new settings */
2595                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2596                 }
2597
2598                 udelay(1000);
2599
2600                 /* set bit 19 to allow forcing of pcie core into L1 state */
2601                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2602
2603                 /* Several PCIe massages to ensure proper behaviour */
2604                 if (ah->config.pcie_waen) {
2605                         val = ah->config.pcie_waen;
2606                         if (!power_off)
2607                                 val &= (~AR_WA_D3_L1_DISABLE);
2608                 } else {
2609                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2610                             AR_SREV_9287(ah)) {
2611                                 val = AR9285_WA_DEFAULT;
2612                                 if (!power_off)
2613                                         val &= (~AR_WA_D3_L1_DISABLE);
2614                         } else if (AR_SREV_9280(ah)) {
2615                                 /*
2616                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2617                                  * set otherwise card may disappear.
2618                                  */
2619                                 val = AR9280_WA_DEFAULT;
2620                                 if (!power_off)
2621                                         val &= (~AR_WA_D3_L1_DISABLE);
2622                         } else
2623                                 val = AR_WA_DEFAULT;
2624                 }
2625
2626                 REG_WRITE(ah, AR_WA, val);
2627         }
2628
2629         if (power_off) {
2630                 /*
2631                  * Set PCIe workaround bits
2632                  * bit 14 in WA register (disable L1) should only
2633                  * be set when device enters D3 and be cleared
2634                  * when device comes back to D0.
2635                  */
2636                 if (ah->config.pcie_waen) {
2637                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2638                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2639                 } else {
2640                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2641                               AR_SREV_9287(ah)) &&
2642                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2643                             (AR_SREV_9280(ah) &&
2644                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2645                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2646                         }
2647                 }
2648         }
2649 }
2650 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2651
2652 /**********************/
2653 /* Interrupt Handling */
2654 /**********************/
2655
2656 bool ath9k_hw_intrpend(struct ath_hw *ah)
2657 {
2658         u32 host_isr;
2659
2660         if (AR_SREV_9100(ah))
2661                 return true;
2662
2663         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2664         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2665                 return true;
2666
2667         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2668         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2669             && (host_isr != AR_INTR_SPURIOUS))
2670                 return true;
2671
2672         return false;
2673 }
2674 EXPORT_SYMBOL(ath9k_hw_intrpend);
2675
2676 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2677 {
2678         u32 isr = 0;
2679         u32 mask2 = 0;
2680         struct ath9k_hw_capabilities *pCap = &ah->caps;
2681         u32 sync_cause = 0;
2682         bool fatal_int = false;
2683         struct ath_common *common = ath9k_hw_common(ah);
2684
2685         if (!AR_SREV_9100(ah)) {
2686                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2687                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2688                             == AR_RTC_STATUS_ON) {
2689                                 isr = REG_READ(ah, AR_ISR);
2690                         }
2691                 }
2692
2693                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2694                         AR_INTR_SYNC_DEFAULT;
2695
2696                 *masked = 0;
2697
2698                 if (!isr && !sync_cause)
2699                         return false;
2700         } else {
2701                 *masked = 0;
2702                 isr = REG_READ(ah, AR_ISR);
2703         }
2704
2705         if (isr) {
2706                 if (isr & AR_ISR_BCNMISC) {
2707                         u32 isr2;
2708                         isr2 = REG_READ(ah, AR_ISR_S2);
2709                         if (isr2 & AR_ISR_S2_TIM)
2710                                 mask2 |= ATH9K_INT_TIM;
2711                         if (isr2 & AR_ISR_S2_DTIM)
2712                                 mask2 |= ATH9K_INT_DTIM;
2713                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2714                                 mask2 |= ATH9K_INT_DTIMSYNC;
2715                         if (isr2 & (AR_ISR_S2_CABEND))
2716                                 mask2 |= ATH9K_INT_CABEND;
2717                         if (isr2 & AR_ISR_S2_GTT)
2718                                 mask2 |= ATH9K_INT_GTT;
2719                         if (isr2 & AR_ISR_S2_CST)
2720                                 mask2 |= ATH9K_INT_CST;
2721                         if (isr2 & AR_ISR_S2_TSFOOR)
2722                                 mask2 |= ATH9K_INT_TSFOOR;
2723                 }
2724
2725                 isr = REG_READ(ah, AR_ISR_RAC);
2726                 if (isr == 0xffffffff) {
2727                         *masked = 0;
2728                         return false;
2729                 }
2730
2731                 *masked = isr & ATH9K_INT_COMMON;
2732
2733                 if (ah->config.rx_intr_mitigation) {
2734                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2735                                 *masked |= ATH9K_INT_RX;
2736                 }
2737
2738                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2739                         *masked |= ATH9K_INT_RX;
2740                 if (isr &
2741                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2742                      AR_ISR_TXEOL)) {
2743                         u32 s0_s, s1_s;
2744
2745                         *masked |= ATH9K_INT_TX;
2746
2747                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2748                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2749                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2750
2751                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2752                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2753                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2754                 }
2755
2756                 if (isr & AR_ISR_RXORN) {
2757                         ath_print(common, ATH_DBG_INTERRUPT,
2758                                   "receive FIFO overrun interrupt\n");
2759                 }
2760
2761                 if (!AR_SREV_9100(ah)) {
2762                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2763                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2764                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2765                                         *masked |= ATH9K_INT_TIM_TIMER;
2766                         }
2767                 }
2768
2769                 *masked |= mask2;
2770         }
2771
2772         if (AR_SREV_9100(ah))
2773                 return true;
2774
2775         if (isr & AR_ISR_GENTMR) {
2776                 u32 s5_s;
2777
2778                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2779                 if (isr & AR_ISR_GENTMR) {
2780                         ah->intr_gen_timer_trigger =
2781                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2782
2783                         ah->intr_gen_timer_thresh =
2784                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2785
2786                         if (ah->intr_gen_timer_trigger)
2787                                 *masked |= ATH9K_INT_GENTIMER;
2788
2789                 }
2790         }
2791
2792         if (sync_cause) {
2793                 fatal_int =
2794                         (sync_cause &
2795                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2796                         ? true : false;
2797
2798                 if (fatal_int) {
2799                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2800                                 ath_print(common, ATH_DBG_ANY,
2801                                           "received PCI FATAL interrupt\n");
2802                         }
2803                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2804                                 ath_print(common, ATH_DBG_ANY,
2805                                           "received PCI PERR interrupt\n");
2806                         }
2807                         *masked |= ATH9K_INT_FATAL;
2808                 }
2809                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2810                         ath_print(common, ATH_DBG_INTERRUPT,
2811                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2812                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2813                         REG_WRITE(ah, AR_RC, 0);
2814                         *masked |= ATH9K_INT_FATAL;
2815                 }
2816                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2817                         ath_print(common, ATH_DBG_INTERRUPT,
2818                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2819                 }
2820
2821                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2822                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2823         }
2824
2825         return true;
2826 }
2827 EXPORT_SYMBOL(ath9k_hw_getisr);
2828
2829 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2830 {
2831         u32 omask = ah->mask_reg;
2832         u32 mask, mask2;
2833         struct ath9k_hw_capabilities *pCap = &ah->caps;
2834         struct ath_common *common = ath9k_hw_common(ah);
2835
2836         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2837
2838         if (omask & ATH9K_INT_GLOBAL) {
2839                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2840                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2841                 (void) REG_READ(ah, AR_IER);
2842                 if (!AR_SREV_9100(ah)) {
2843                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2844                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2845
2846                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2847                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2848                 }
2849         }
2850
2851         mask = ints & ATH9K_INT_COMMON;
2852         mask2 = 0;
2853
2854         if (ints & ATH9K_INT_TX) {
2855                 if (ah->txok_interrupt_mask)
2856                         mask |= AR_IMR_TXOK;
2857                 if (ah->txdesc_interrupt_mask)
2858                         mask |= AR_IMR_TXDESC;
2859                 if (ah->txerr_interrupt_mask)
2860                         mask |= AR_IMR_TXERR;
2861                 if (ah->txeol_interrupt_mask)
2862                         mask |= AR_IMR_TXEOL;
2863         }
2864         if (ints & ATH9K_INT_RX) {
2865                 mask |= AR_IMR_RXERR;
2866                 if (ah->config.rx_intr_mitigation)
2867                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2868                 else
2869                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2870                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2871                         mask |= AR_IMR_GENTMR;
2872         }
2873
2874         if (ints & (ATH9K_INT_BMISC)) {
2875                 mask |= AR_IMR_BCNMISC;
2876                 if (ints & ATH9K_INT_TIM)
2877                         mask2 |= AR_IMR_S2_TIM;
2878                 if (ints & ATH9K_INT_DTIM)
2879                         mask2 |= AR_IMR_S2_DTIM;
2880                 if (ints & ATH9K_INT_DTIMSYNC)
2881                         mask2 |= AR_IMR_S2_DTIMSYNC;
2882                 if (ints & ATH9K_INT_CABEND)
2883                         mask2 |= AR_IMR_S2_CABEND;
2884                 if (ints & ATH9K_INT_TSFOOR)
2885                         mask2 |= AR_IMR_S2_TSFOOR;
2886         }
2887
2888         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2889                 mask |= AR_IMR_BCNMISC;
2890                 if (ints & ATH9K_INT_GTT)
2891                         mask2 |= AR_IMR_S2_GTT;
2892                 if (ints & ATH9K_INT_CST)
2893                         mask2 |= AR_IMR_S2_CST;
2894         }
2895
2896         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2897         REG_WRITE(ah, AR_IMR, mask);
2898         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2899                                            AR_IMR_S2_DTIM |
2900                                            AR_IMR_S2_DTIMSYNC |
2901                                            AR_IMR_S2_CABEND |
2902                                            AR_IMR_S2_CABTO |
2903                                            AR_IMR_S2_TSFOOR |
2904                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
2905         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2906         ah->mask_reg = ints;
2907
2908         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2909                 if (ints & ATH9K_INT_TIM_TIMER)
2910                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2911                 else
2912                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2913         }
2914
2915         if (ints & ATH9K_INT_GLOBAL) {
2916                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2917                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2918                 if (!AR_SREV_9100(ah)) {
2919                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2920                                   AR_INTR_MAC_IRQ);
2921                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2922
2923
2924                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2925                                   AR_INTR_SYNC_DEFAULT);
2926                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2927                                   AR_INTR_SYNC_DEFAULT);
2928                 }
2929                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2930                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2931         }
2932
2933         return omask;
2934 }
2935 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2936
2937 /*******************/
2938 /* Beacon Handling */
2939 /*******************/
2940
2941 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2942 {
2943         int flags = 0;
2944
2945         ah->beacon_interval = beacon_period;
2946
2947         switch (ah->opmode) {
2948         case NL80211_IFTYPE_STATION:
2949         case NL80211_IFTYPE_MONITOR:
2950                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2951                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2952                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2953                 flags |= AR_TBTT_TIMER_EN;
2954                 break;
2955         case NL80211_IFTYPE_ADHOC:
2956         case NL80211_IFTYPE_MESH_POINT:
2957                 REG_SET_BIT(ah, AR_TXCFG,
2958                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2959                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2960                           TU_TO_USEC(next_beacon +
2961                                      (ah->atim_window ? ah->
2962                                       atim_window : 1)));
2963                 flags |= AR_NDP_TIMER_EN;
2964         case NL80211_IFTYPE_AP:
2965                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2966                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2967                           TU_TO_USEC(next_beacon -
2968                                      ah->config.
2969                                      dma_beacon_response_time));
2970                 REG_WRITE(ah, AR_NEXT_SWBA,
2971                           TU_TO_USEC(next_beacon -
2972                                      ah->config.
2973                                      sw_beacon_response_time));
2974                 flags |=
2975                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2976                 break;
2977         default:
2978                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2979                           "%s: unsupported opmode: %d\n",
2980                           __func__, ah->opmode);
2981                 return;
2982                 break;
2983         }
2984
2985         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2986         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2987         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
2988         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
2989
2990         beacon_period &= ~ATH9K_BEACON_ENA;
2991         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
2992                 ath9k_hw_reset_tsf(ah);
2993         }
2994
2995         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2996 }
2997 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2998
2999 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3000                                     const struct ath9k_beacon_state *bs)
3001 {
3002         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3003         struct ath9k_hw_capabilities *pCap = &ah->caps;
3004         struct ath_common *common = ath9k_hw_common(ah);
3005
3006         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3007
3008         REG_WRITE(ah, AR_BEACON_PERIOD,
3009                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3010         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3011                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3012
3013         REG_RMW_FIELD(ah, AR_RSSI_THR,
3014                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3015
3016         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3017
3018         if (bs->bs_sleepduration > beaconintval)
3019                 beaconintval = bs->bs_sleepduration;
3020
3021         dtimperiod = bs->bs_dtimperiod;
3022         if (bs->bs_sleepduration > dtimperiod)
3023                 dtimperiod = bs->bs_sleepduration;
3024
3025         if (beaconintval == dtimperiod)
3026                 nextTbtt = bs->bs_nextdtim;
3027         else
3028                 nextTbtt = bs->bs_nexttbtt;
3029
3030         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3031         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3032         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3033         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3034
3035         REG_WRITE(ah, AR_NEXT_DTIM,
3036                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3037         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3038
3039         REG_WRITE(ah, AR_SLEEP1,
3040                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3041                   | AR_SLEEP1_ASSUME_DTIM);
3042
3043         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3044                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3045         else
3046                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3047
3048         REG_WRITE(ah, AR_SLEEP2,
3049                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3050
3051         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3052         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3053
3054         REG_SET_BIT(ah, AR_TIMER_MODE,
3055                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3056                     AR_DTIM_TIMER_EN);
3057
3058         /* TSF Out of Range Threshold */
3059         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3060 }
3061 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3062
3063 /*******************/
3064 /* HW Capabilities */
3065 /*******************/
3066
3067 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3068 {
3069         struct ath9k_hw_capabilities *pCap = &ah->caps;
3070         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3071         struct ath_common *common = ath9k_hw_common(ah);
3072         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3073
3074         u16 capField = 0, eeval;
3075
3076         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3077         regulatory->current_rd = eeval;
3078
3079         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3080         if (AR_SREV_9285_10_OR_LATER(ah))
3081                 eeval |= AR9285_RDEXT_DEFAULT;
3082         regulatory->current_rd_ext = eeval;
3083
3084         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3085
3086         if (ah->opmode != NL80211_IFTYPE_AP &&
3087             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3088                 if (regulatory->current_rd == 0x64 ||
3089                     regulatory->current_rd == 0x65)
3090                         regulatory->current_rd += 5;
3091                 else if (regulatory->current_rd == 0x41)
3092                         regulatory->current_rd = 0x43;
3093                 ath_print(common, ATH_DBG_REGULATORY,
3094                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3095         }
3096
3097         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3098         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3099                 ath_print(common, ATH_DBG_FATAL,
3100                           "no band has been marked as supported in EEPROM.\n");
3101                 return -EINVAL;
3102         }
3103
3104         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3105
3106         if (eeval & AR5416_OPFLAGS_11A) {
3107                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3108                 if (ah->config.ht_enable) {
3109                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3110                                 set_bit(ATH9K_MODE_11NA_HT20,
3111                                         pCap->wireless_modes);
3112                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3113                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3114                                         pCap->wireless_modes);
3115                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3116                                         pCap->wireless_modes);
3117                         }
3118                 }
3119         }
3120
3121         if (eeval & AR5416_OPFLAGS_11G) {
3122                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3123                 if (ah->config.ht_enable) {
3124                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3125                                 set_bit(ATH9K_MODE_11NG_HT20,
3126                                         pCap->wireless_modes);
3127                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3128                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3129                                         pCap->wireless_modes);
3130                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3131                                         pCap->wireless_modes);
3132                         }
3133                 }
3134         }
3135
3136         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3137         /*
3138          * For AR9271 we will temporarilly uses the rx chainmax as read from
3139          * the EEPROM.
3140          */
3141         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3142             !(eeval & AR5416_OPFLAGS_11A) &&
3143             !(AR_SREV_9271(ah)))
3144                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3145                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3146         else
3147                 /* Use rx_chainmask from EEPROM. */
3148                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3149
3150         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3151                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3152
3153         pCap->low_2ghz_chan = 2312;
3154         pCap->high_2ghz_chan = 2732;
3155
3156         pCap->low_5ghz_chan = 4920;
3157         pCap->high_5ghz_chan = 6100;
3158
3159         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3160         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3161         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3162
3163         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3164         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3165         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3166
3167         if (ah->config.ht_enable)
3168                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3169         else
3170                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3171
3172         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3173         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3174         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3175         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3176
3177         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3178                 pCap->total_queues =
3179                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3180         else
3181                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3182
3183         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3184                 pCap->keycache_size =
3185                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3186         else
3187                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3188
3189         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3190
3191         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3192                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3193         else
3194                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3195
3196         if (AR_SREV_9285_10_OR_LATER(ah))
3197                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3198         else if (AR_SREV_9280_10_OR_LATER(ah))
3199                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3200         else
3201                 pCap->num_gpio_pins = AR_NUM_GPIO;
3202
3203         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3204                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3205                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3206         } else {
3207                 pCap->rts_aggr_limit = (8 * 1024);
3208         }
3209
3210         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3211
3212 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3213         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3214         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3215                 ah->rfkill_gpio =
3216                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3217                 ah->rfkill_polarity =
3218                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3219
3220                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3221         }
3222 #endif
3223
3224         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3225
3226         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3227                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3228         else
3229                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3230
3231         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3232                 pCap->reg_cap =
3233                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3234                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3235                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3236                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3237         } else {
3238                 pCap->reg_cap =
3239                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3240                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3241         }
3242
3243         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3244         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3245             AR_SREV_5416(ah))
3246                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3247
3248         pCap->num_antcfg_5ghz =
3249                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3250         pCap->num_antcfg_2ghz =
3251                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3252
3253         if (AR_SREV_9280_10_OR_LATER(ah) &&
3254             ath9k_hw_btcoex_supported(ah)) {
3255                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3256                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3257
3258                 if (AR_SREV_9285(ah)) {
3259                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3260                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3261                 } else {
3262                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3263                 }
3264         } else {
3265                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3266         }
3267
3268         return 0;
3269 }
3270
3271 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3272                             u32 capability, u32 *result)
3273 {
3274         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3275         switch (type) {
3276         case ATH9K_CAP_CIPHER:
3277                 switch (capability) {
3278                 case ATH9K_CIPHER_AES_CCM:
3279                 case ATH9K_CIPHER_AES_OCB:
3280                 case ATH9K_CIPHER_TKIP:
3281                 case ATH9K_CIPHER_WEP:
3282                 case ATH9K_CIPHER_MIC:
3283                 case ATH9K_CIPHER_CLR:
3284                         return true;
3285                 default:
3286                         return false;
3287                 }
3288         case ATH9K_CAP_TKIP_MIC:
3289                 switch (capability) {
3290                 case 0:
3291                         return true;
3292                 case 1:
3293                         return (ah->sta_id1_defaults &
3294                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3295                         false;
3296                 }
3297         case ATH9K_CAP_TKIP_SPLIT:
3298                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3299                         false : true;
3300         case ATH9K_CAP_DIVERSITY:
3301                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3302                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3303                         true : false;
3304         case ATH9K_CAP_MCAST_KEYSRCH:
3305                 switch (capability) {
3306                 case 0:
3307                         return true;
3308                 case 1:
3309                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3310                                 return false;
3311                         } else {
3312                                 return (ah->sta_id1_defaults &
3313                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3314                                         false;
3315                         }
3316                 }
3317                 return false;
3318         case ATH9K_CAP_TXPOW:
3319                 switch (capability) {
3320                 case 0:
3321                         return 0;
3322                 case 1:
3323                         *result = regulatory->power_limit;
3324                         return 0;
3325                 case 2:
3326                         *result = regulatory->max_power_level;
3327                         return 0;
3328                 case 3:
3329                         *result = regulatory->tp_scale;
3330                         return 0;
3331                 }
3332                 return false;
3333         case ATH9K_CAP_DS:
3334                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3335                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3336                         ? false : true;
3337         default:
3338                 return false;
3339         }
3340 }
3341 EXPORT_SYMBOL(ath9k_hw_getcapability);
3342
3343 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3344                             u32 capability, u32 setting, int *status)
3345 {
3346         u32 v;
3347
3348         switch (type) {
3349         case ATH9K_CAP_TKIP_MIC:
3350                 if (setting)
3351                         ah->sta_id1_defaults |=
3352                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3353                 else
3354                         ah->sta_id1_defaults &=
3355                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3356                 return true;
3357         case ATH9K_CAP_DIVERSITY:
3358                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3359                 if (setting)
3360                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3361                 else
3362                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3363                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3364                 return true;
3365         case ATH9K_CAP_MCAST_KEYSRCH:
3366                 if (setting)
3367                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3368                 else
3369                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3370                 return true;
3371         default:
3372                 return false;
3373         }
3374 }
3375 EXPORT_SYMBOL(ath9k_hw_setcapability);
3376
3377 /****************************/
3378 /* GPIO / RFKILL / Antennae */
3379 /****************************/
3380
3381 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3382                                          u32 gpio, u32 type)
3383 {
3384         int addr;
3385         u32 gpio_shift, tmp;
3386
3387         if (gpio > 11)
3388                 addr = AR_GPIO_OUTPUT_MUX3;
3389         else if (gpio > 5)
3390                 addr = AR_GPIO_OUTPUT_MUX2;
3391         else
3392                 addr = AR_GPIO_OUTPUT_MUX1;
3393
3394         gpio_shift = (gpio % 6) * 5;
3395
3396         if (AR_SREV_9280_20_OR_LATER(ah)
3397             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3398                 REG_RMW(ah, addr, (type << gpio_shift),
3399                         (0x1f << gpio_shift));
3400         } else {
3401                 tmp = REG_READ(ah, addr);
3402                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3403                 tmp &= ~(0x1f << gpio_shift);
3404                 tmp |= (type << gpio_shift);
3405                 REG_WRITE(ah, addr, tmp);
3406         }
3407 }
3408
3409 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3410 {
3411         u32 gpio_shift;
3412
3413         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3414
3415         gpio_shift = gpio << 1;
3416
3417         REG_RMW(ah,
3418                 AR_GPIO_OE_OUT,
3419                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3420                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3421 }
3422 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3423
3424 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3425 {
3426 #define MS_REG_READ(x, y) \
3427         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3428
3429         if (gpio >= ah->caps.num_gpio_pins)
3430                 return 0xffffffff;
3431
3432         if (AR_SREV_9287_10_OR_LATER(ah))
3433                 return MS_REG_READ(AR9287, gpio) != 0;
3434         else if (AR_SREV_9285_10_OR_LATER(ah))
3435                 return MS_REG_READ(AR9285, gpio) != 0;
3436         else if (AR_SREV_9280_10_OR_LATER(ah))
3437                 return MS_REG_READ(AR928X, gpio) != 0;
3438         else
3439                 return MS_REG_READ(AR, gpio) != 0;
3440 }
3441 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3442
3443 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3444                          u32 ah_signal_type)
3445 {
3446         u32 gpio_shift;
3447
3448         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3449
3450         gpio_shift = 2 * gpio;
3451
3452         REG_RMW(ah,
3453                 AR_GPIO_OE_OUT,
3454                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3455                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3456 }
3457 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3458
3459 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3460 {
3461         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3462                 AR_GPIO_BIT(gpio));
3463 }
3464 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3465
3466 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3467 {
3468         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3469 }
3470 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3471
3472 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3473 {
3474         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3475 }
3476 EXPORT_SYMBOL(ath9k_hw_setantenna);
3477
3478 /*********************/
3479 /* General Operation */
3480 /*********************/
3481
3482 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3483 {
3484         u32 bits = REG_READ(ah, AR_RX_FILTER);
3485         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3486
3487         if (phybits & AR_PHY_ERR_RADAR)
3488                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3489         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3490                 bits |= ATH9K_RX_FILTER_PHYERR;
3491
3492         return bits;
3493 }
3494 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3495
3496 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3497 {
3498         u32 phybits;
3499
3500         REG_WRITE(ah, AR_RX_FILTER, bits);
3501
3502         phybits = 0;
3503         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3504                 phybits |= AR_PHY_ERR_RADAR;
3505         if (bits & ATH9K_RX_FILTER_PHYERR)
3506                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3507         REG_WRITE(ah, AR_PHY_ERR, phybits);
3508
3509         if (phybits)
3510                 REG_WRITE(ah, AR_RXCFG,
3511                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3512         else
3513                 REG_WRITE(ah, AR_RXCFG,
3514                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3515 }
3516 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3517
3518 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3519 {
3520         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3521                 return false;
3522
3523         ath9k_hw_init_pll(ah, NULL);
3524         return true;
3525 }
3526 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3527
3528 bool ath9k_hw_disable(struct ath_hw *ah)
3529 {
3530         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3531                 return false;
3532
3533         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3534                 return false;
3535
3536         ath9k_hw_init_pll(ah, NULL);
3537         return true;
3538 }
3539 EXPORT_SYMBOL(ath9k_hw_disable);
3540
3541 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3542 {
3543         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3544         struct ath9k_channel *chan = ah->curchan;
3545         struct ieee80211_channel *channel = chan->chan;
3546
3547         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3548
3549         ah->eep_ops->set_txpower(ah, chan,
3550                                  ath9k_regd_get_ctl(regulatory, chan),
3551                                  channel->max_antenna_gain * 2,
3552                                  channel->max_power * 2,
3553                                  min((u32) MAX_RATE_POWER,
3554                                  (u32) regulatory->power_limit));
3555 }
3556 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3557
3558 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3559 {
3560         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3561 }
3562 EXPORT_SYMBOL(ath9k_hw_setmac);
3563
3564 void ath9k_hw_setopmode(struct ath_hw *ah)
3565 {
3566         ath9k_hw_set_operating_mode(ah, ah->opmode);
3567 }
3568 EXPORT_SYMBOL(ath9k_hw_setopmode);
3569
3570 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3571 {
3572         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3573         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3574 }
3575 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3576
3577 void ath9k_hw_write_associd(struct ath_hw *ah)
3578 {
3579         struct ath_common *common = ath9k_hw_common(ah);
3580
3581         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3582         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3583                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3584 }
3585 EXPORT_SYMBOL(ath9k_hw_write_associd);
3586
3587 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3588 {
3589         u64 tsf;
3590
3591         tsf = REG_READ(ah, AR_TSF_U32);
3592         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3593
3594         return tsf;
3595 }
3596 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3597
3598 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3599 {
3600         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3601         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3602 }
3603 EXPORT_SYMBOL(ath9k_hw_settsf64);
3604
3605 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3606 {
3607         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3608                            AH_TSF_WRITE_TIMEOUT))
3609                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3610                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3611
3612         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3613 }
3614 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3615
3616 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3617 {
3618         if (setting)
3619                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3620         else
3621                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3622 }
3623 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3624
3625 /*
3626  *  Extend 15-bit time stamp from rx descriptor to
3627  *  a full 64-bit TSF using the current h/w TSF.
3628 */
3629 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3630 {
3631         u64 tsf;
3632
3633         tsf = ath9k_hw_gettsf64(ah);
3634         if ((tsf & 0x7fff) < rstamp)
3635                 tsf -= 0x8000;
3636         return (tsf & ~0x7fff) | rstamp;
3637 }
3638 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3639
3640 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3641 {
3642         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3643         u32 macmode;
3644
3645         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3646                 macmode = AR_2040_JOINED_RX_CLEAR;
3647         else
3648                 macmode = 0;
3649
3650         REG_WRITE(ah, AR_2040_MODE, macmode);
3651 }
3652
3653 /* HW Generic timers configuration */
3654
3655 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3656 {
3657         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3658         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3659         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3660         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3661         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3662         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3663         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3664         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3665         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3666         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3667                                 AR_NDP2_TIMER_MODE, 0x0002},
3668         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3669                                 AR_NDP2_TIMER_MODE, 0x0004},
3670         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3671                                 AR_NDP2_TIMER_MODE, 0x0008},
3672         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3673                                 AR_NDP2_TIMER_MODE, 0x0010},
3674         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3675                                 AR_NDP2_TIMER_MODE, 0x0020},
3676         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3677                                 AR_NDP2_TIMER_MODE, 0x0040},
3678         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3679                                 AR_NDP2_TIMER_MODE, 0x0080}
3680 };
3681
3682 /* HW generic timer primitives */
3683
3684 /* compute and clear index of rightmost 1 */
3685 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3686 {
3687         u32 b;
3688
3689         b = *mask;
3690         b &= (0-b);
3691         *mask &= ~b;
3692         b *= debruijn32;
3693         b >>= 27;
3694
3695         return timer_table->gen_timer_index[b];
3696 }
3697
3698 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3699 {
3700         return REG_READ(ah, AR_TSF_L32);
3701 }
3702 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3703
3704 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3705                                           void (*trigger)(void *),
3706                                           void (*overflow)(void *),
3707                                           void *arg,
3708                                           u8 timer_index)
3709 {
3710         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3711         struct ath_gen_timer *timer;
3712
3713         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3714
3715         if (timer == NULL) {
3716                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3717                           "Failed to allocate memory"
3718                           "for hw timer[%d]\n", timer_index);
3719                 return NULL;
3720         }
3721
3722         /* allocate a hardware generic timer slot */
3723         timer_table->timers[timer_index] = timer;
3724         timer->index = timer_index;
3725         timer->trigger = trigger;
3726         timer->overflow = overflow;
3727         timer->arg = arg;
3728
3729         return timer;
3730 }
3731 EXPORT_SYMBOL(ath_gen_timer_alloc);
3732
3733 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3734                               struct ath_gen_timer *timer,
3735                               u32 timer_next,
3736                               u32 timer_period)
3737 {
3738         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3739         u32 tsf;
3740
3741         BUG_ON(!timer_period);
3742
3743         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3744
3745         tsf = ath9k_hw_gettsf32(ah);
3746
3747         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3748                   "curent tsf %x period %x"
3749                   "timer_next %x\n", tsf, timer_period, timer_next);
3750
3751         /*
3752          * Pull timer_next forward if the current TSF already passed it
3753          * because of software latency
3754          */
3755         if (timer_next < tsf)
3756                 timer_next = tsf + timer_period;
3757
3758         /*
3759          * Program generic timer registers
3760          */
3761         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3762                  timer_next);
3763         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3764                   timer_period);
3765         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3766                     gen_tmr_configuration[timer->index].mode_mask);
3767
3768         /* Enable both trigger and thresh interrupt masks */
3769         REG_SET_BIT(ah, AR_IMR_S5,
3770                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3771                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3772 }
3773 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3774
3775 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3776 {
3777         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3778
3779         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3780                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3781                 return;
3782         }
3783
3784         /* Clear generic timer enable bits. */
3785         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3786                         gen_tmr_configuration[timer->index].mode_mask);
3787
3788         /* Disable both trigger and thresh interrupt masks */
3789         REG_CLR_BIT(ah, AR_IMR_S5,
3790                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3791                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3792
3793         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3794 }
3795 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3796
3797 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3798 {
3799         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3800
3801         /* free the hardware generic timer slot */
3802         timer_table->timers[timer->index] = NULL;
3803         kfree(timer);
3804 }
3805 EXPORT_SYMBOL(ath_gen_timer_free);
3806
3807 /*
3808  * Generic Timer Interrupts handling
3809  */
3810 void ath_gen_timer_isr(struct ath_hw *ah)
3811 {
3812         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3813         struct ath_gen_timer *timer;
3814         struct ath_common *common = ath9k_hw_common(ah);
3815         u32 trigger_mask, thresh_mask, index;
3816
3817         /* get hardware generic timer interrupt status */
3818         trigger_mask = ah->intr_gen_timer_trigger;
3819         thresh_mask = ah->intr_gen_timer_thresh;
3820         trigger_mask &= timer_table->timer_mask.val;
3821         thresh_mask &= timer_table->timer_mask.val;
3822
3823         trigger_mask &= ~thresh_mask;
3824
3825         while (thresh_mask) {
3826                 index = rightmost_index(timer_table, &thresh_mask);
3827                 timer = timer_table->timers[index];
3828                 BUG_ON(!timer);
3829                 ath_print(common, ATH_DBG_HWTIMER,
3830                           "TSF overflow for Gen timer %d\n", index);
3831                 timer->overflow(timer->arg);
3832         }
3833
3834         while (trigger_mask) {
3835                 index = rightmost_index(timer_table, &trigger_mask);
3836                 timer = timer_table->timers[index];
3837                 BUG_ON(!timer);
3838                 ath_print(common, ATH_DBG_HWTIMER,
3839                           "Gen timer[%d] trigger\n", index);
3840                 timer->trigger(timer->arg);
3841         }
3842 }
3843 EXPORT_SYMBOL(ath_gen_timer_isr);
3844
3845 static struct {
3846         u32 version;
3847         const char * name;
3848 } ath_mac_bb_names[] = {
3849         /* Devices with external radios */
3850         { AR_SREV_VERSION_5416_PCI,     "5416" },
3851         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3852         { AR_SREV_VERSION_9100,         "9100" },
3853         { AR_SREV_VERSION_9160,         "9160" },
3854         /* Single-chip solutions */
3855         { AR_SREV_VERSION_9280,         "9280" },
3856         { AR_SREV_VERSION_9285,         "9285" },
3857         { AR_SREV_VERSION_9287,         "9287" },
3858         { AR_SREV_VERSION_9271,         "9271" },
3859 };
3860
3861 /* For devices with external radios */
3862 static struct {
3863         u16 version;
3864         const char * name;
3865 } ath_rf_names[] = {
3866         { 0,                            "5133" },
3867         { AR_RAD5133_SREV_MAJOR,        "5133" },
3868         { AR_RAD5122_SREV_MAJOR,        "5122" },
3869         { AR_RAD2133_SREV_MAJOR,        "2133" },
3870         { AR_RAD2122_SREV_MAJOR,        "2122" }
3871 };
3872
3873 /*
3874  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3875  */
3876 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3877 {
3878         int i;
3879
3880         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3881                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3882                         return ath_mac_bb_names[i].name;
3883                 }
3884         }
3885
3886         return "????";
3887 }
3888
3889 /*
3890  * Return the RF name. "????" is returned if the RF is unknown.
3891  * Used for devices with external radios.
3892  */
3893 static const char *ath9k_hw_rf_name(u16 rf_version)
3894 {
3895         int i;
3896
3897         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3898                 if (ath_rf_names[i].version == rf_version) {
3899                         return ath_rf_names[i].name;
3900                 }
3901         }
3902
3903         return "????";
3904 }
3905
3906 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3907 {
3908         int used;
3909
3910         /* chipsets >= AR9280 are single-chip */
3911         if (AR_SREV_9280_10_OR_LATER(ah)) {
3912                 used = snprintf(hw_name, len,
3913                                "Atheros AR%s Rev:%x",
3914                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3915                                ah->hw_version.macRev);
3916         }
3917         else {
3918                 used = snprintf(hw_name, len,
3919                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3920                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3921                                ah->hw_version.macRev,
3922                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3923                                                 AR_RADIO_SREV_MAJOR)),
3924                                ah->hw_version.phyRev);
3925         }
3926
3927         hw_name[used] = '\0';
3928 }
3929 EXPORT_SYMBOL(ath9k_hw_name);