atheros/ath9k: add common read/write ops and port ath9k to use it
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "ath9k.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
30                               enum ath9k_ht_macmode macmode);
31 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
32                               struct ar5416_eeprom_def *pEepData,
33                               u32 reg, u32 value);
34 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
35 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
36
37 /********************/
38 /* Helper Functions */
39 /********************/
40
41 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
42 {
43         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
44
45         if (!ah->curchan) /* should really check for CCK instead */
46                 return clks / ATH9K_CLOCK_RATE_CCK;
47         if (conf->channel->band == IEEE80211_BAND_2GHZ)
48                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
49
50         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
51 }
52
53 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
54 {
55         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
56
57         if (conf_is_ht40(conf))
58                 return ath9k_hw_mac_usec(ah, clks) / 2;
59         else
60                 return ath9k_hw_mac_usec(ah, clks);
61 }
62
63 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
64 {
65         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
66
67         if (!ah->curchan) /* should really check for CCK instead */
68                 return usecs *ATH9K_CLOCK_RATE_CCK;
69         if (conf->channel->band == IEEE80211_BAND_2GHZ)
70                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
71         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
72 }
73
74 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
75 {
76         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
77
78         if (conf_is_ht40(conf))
79                 return ath9k_hw_mac_clks(ah, usecs) * 2;
80         else
81                 return ath9k_hw_mac_clks(ah, usecs);
82 }
83
84 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
85 {
86         int i;
87
88         BUG_ON(timeout < AH_TIME_QUANTUM);
89
90         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
91                 if ((REG_READ(ah, reg) & mask) == val)
92                         return true;
93
94                 udelay(AH_TIME_QUANTUM);
95         }
96
97         DPRINTF(ah, ATH_DBG_ANY,
98                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
99                 timeout, reg, REG_READ(ah, reg), mask, val);
100
101         return false;
102 }
103
104 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
105 {
106         u32 retval;
107         int i;
108
109         for (i = 0, retval = 0; i < n; i++) {
110                 retval = (retval << 1) | (val & 1);
111                 val >>= 1;
112         }
113         return retval;
114 }
115
116 bool ath9k_get_channel_edges(struct ath_hw *ah,
117                              u16 flags, u16 *low,
118                              u16 *high)
119 {
120         struct ath9k_hw_capabilities *pCap = &ah->caps;
121
122         if (flags & CHANNEL_5GHZ) {
123                 *low = pCap->low_5ghz_chan;
124                 *high = pCap->high_5ghz_chan;
125                 return true;
126         }
127         if ((flags & CHANNEL_2GHZ)) {
128                 *low = pCap->low_2ghz_chan;
129                 *high = pCap->high_2ghz_chan;
130                 return true;
131         }
132         return false;
133 }
134
135 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
136                            const struct ath_rate_table *rates,
137                            u32 frameLen, u16 rateix,
138                            bool shortPreamble)
139 {
140         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
141         u32 kbps;
142
143         kbps = rates->info[rateix].ratekbps;
144
145         if (kbps == 0)
146                 return 0;
147
148         switch (rates->info[rateix].phy) {
149         case WLAN_RC_PHY_CCK:
150                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
151                 if (shortPreamble && rates->info[rateix].short_preamble)
152                         phyTime >>= 1;
153                 numBits = frameLen << 3;
154                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
155                 break;
156         case WLAN_RC_PHY_OFDM:
157                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
158                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
159                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
160                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
161                         txTime = OFDM_SIFS_TIME_QUARTER
162                                 + OFDM_PREAMBLE_TIME_QUARTER
163                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
164                 } else if (ah->curchan &&
165                            IS_CHAN_HALF_RATE(ah->curchan)) {
166                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
167                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
168                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
169                         txTime = OFDM_SIFS_TIME_HALF +
170                                 OFDM_PREAMBLE_TIME_HALF
171                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
172                 } else {
173                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
174                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
175                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
176                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
177                                 + (numSymbols * OFDM_SYMBOL_TIME);
178                 }
179                 break;
180         default:
181                 DPRINTF(ah, ATH_DBG_FATAL,
182                         "Unknown phy %u (rate ix %u)\n",
183                         rates->info[rateix].phy, rateix);
184                 txTime = 0;
185                 break;
186         }
187
188         return txTime;
189 }
190
191 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
192                                   struct ath9k_channel *chan,
193                                   struct chan_centers *centers)
194 {
195         int8_t extoff;
196
197         if (!IS_CHAN_HT40(chan)) {
198                 centers->ctl_center = centers->ext_center =
199                         centers->synth_center = chan->channel;
200                 return;
201         }
202
203         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
204             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
205                 centers->synth_center =
206                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
207                 extoff = 1;
208         } else {
209                 centers->synth_center =
210                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
211                 extoff = -1;
212         }
213
214         centers->ctl_center =
215                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
216         centers->ext_center =
217                 centers->synth_center + (extoff *
218                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
219                           HT40_CHANNEL_CENTER_SHIFT : 15));
220 }
221
222 /******************/
223 /* Chip Revisions */
224 /******************/
225
226 static void ath9k_hw_read_revisions(struct ath_hw *ah)
227 {
228         u32 val;
229
230         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
231
232         if (val == 0xFF) {
233                 val = REG_READ(ah, AR_SREV);
234                 ah->hw_version.macVersion =
235                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
236                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
237                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
238         } else {
239                 if (!AR_SREV_9100(ah))
240                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
241
242                 ah->hw_version.macRev = val & AR_SREV_REVISION;
243
244                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
245                         ah->is_pciexpress = true;
246         }
247 }
248
249 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
250 {
251         u32 val;
252         int i;
253
254         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
255
256         for (i = 0; i < 8; i++)
257                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
258         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
259         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
260
261         return ath9k_hw_reverse_bits(val, 8);
262 }
263
264 /************************************/
265 /* HW Attach, Detach, Init Routines */
266 /************************************/
267
268 static void ath9k_hw_disablepcie(struct ath_hw *ah)
269 {
270         if (AR_SREV_9100(ah))
271                 return;
272
273         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
274         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
275         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
276         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
277         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
278         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
279         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
280         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
281         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
282
283         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
284 }
285
286 static bool ath9k_hw_chip_test(struct ath_hw *ah)
287 {
288         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
289         u32 regHold[2];
290         u32 patternData[4] = { 0x55555555,
291                                0xaaaaaaaa,
292                                0x66666666,
293                                0x99999999 };
294         int i, j;
295
296         for (i = 0; i < 2; i++) {
297                 u32 addr = regAddr[i];
298                 u32 wrData, rdData;
299
300                 regHold[i] = REG_READ(ah, addr);
301                 for (j = 0; j < 0x100; j++) {
302                         wrData = (j << 16) | j;
303                         REG_WRITE(ah, addr, wrData);
304                         rdData = REG_READ(ah, addr);
305                         if (rdData != wrData) {
306                                 DPRINTF(ah, ATH_DBG_FATAL,
307                                         "address test failed "
308                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
309                                         addr, wrData, rdData);
310                                 return false;
311                         }
312                 }
313                 for (j = 0; j < 4; j++) {
314                         wrData = patternData[j];
315                         REG_WRITE(ah, addr, wrData);
316                         rdData = REG_READ(ah, addr);
317                         if (wrData != rdData) {
318                                 DPRINTF(ah, ATH_DBG_FATAL,
319                                         "address test failed "
320                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
321                                         addr, wrData, rdData);
322                                 return false;
323                         }
324                 }
325                 REG_WRITE(ah, regAddr[i], regHold[i]);
326         }
327         udelay(100);
328
329         return true;
330 }
331
332 static const char *ath9k_hw_devname(u16 devid)
333 {
334         switch (devid) {
335         case AR5416_DEVID_PCI:
336                 return "Atheros 5416";
337         case AR5416_DEVID_PCIE:
338                 return "Atheros 5418";
339         case AR9160_DEVID_PCI:
340                 return "Atheros 9160";
341         case AR5416_AR9100_DEVID:
342                 return "Atheros 9100";
343         case AR9280_DEVID_PCI:
344         case AR9280_DEVID_PCIE:
345                 return "Atheros 9280";
346         case AR9285_DEVID_PCIE:
347                 return "Atheros 9285";
348         case AR5416_DEVID_AR9287_PCI:
349         case AR5416_DEVID_AR9287_PCIE:
350                 return "Atheros 9287";
351         }
352
353         return NULL;
354 }
355
356 static void ath9k_hw_init_config(struct ath_hw *ah)
357 {
358         int i;
359
360         ah->config.dma_beacon_response_time = 2;
361         ah->config.sw_beacon_response_time = 10;
362         ah->config.additional_swba_backoff = 0;
363         ah->config.ack_6mb = 0x0;
364         ah->config.cwm_ignore_extcca = 0;
365         ah->config.pcie_powersave_enable = 0;
366         ah->config.pcie_clock_req = 0;
367         ah->config.pcie_waen = 0;
368         ah->config.analog_shiftreg = 1;
369         ah->config.ht_enable = 1;
370         ah->config.ofdm_trig_low = 200;
371         ah->config.ofdm_trig_high = 500;
372         ah->config.cck_trig_high = 200;
373         ah->config.cck_trig_low = 100;
374         ah->config.enable_ani = 1;
375         ah->config.diversity_control = ATH9K_ANT_VARIABLE;
376         ah->config.antenna_switch_swap = 0;
377
378         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
379                 ah->config.spurchans[i][0] = AR_NO_SPUR;
380                 ah->config.spurchans[i][1] = AR_NO_SPUR;
381         }
382
383         ah->config.intr_mitigation = true;
384
385         /*
386          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
387          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
388          * This means we use it for all AR5416 devices, and the few
389          * minor PCI AR9280 devices out there.
390          *
391          * Serialization is required because these devices do not handle
392          * well the case of two concurrent reads/writes due to the latency
393          * involved. During one read/write another read/write can be issued
394          * on another CPU while the previous read/write may still be working
395          * on our hardware, if we hit this case the hardware poops in a loop.
396          * We prevent this by serializing reads and writes.
397          *
398          * This issue is not present on PCI-Express devices or pre-AR5416
399          * devices (legacy, 802.11abg).
400          */
401         if (num_possible_cpus() > 1)
402                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
403 }
404
405 static void ath9k_hw_init_defaults(struct ath_hw *ah)
406 {
407         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
408
409         regulatory->country_code = CTRY_DEFAULT;
410         regulatory->power_limit = MAX_RATE_POWER;
411         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
412
413         ah->hw_version.magic = AR5416_MAGIC;
414         ah->hw_version.subvendorid = 0;
415
416         ah->ah_flags = 0;
417         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
418                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
419         if (!AR_SREV_9100(ah))
420                 ah->ah_flags = AH_USE_EEPROM;
421
422         ah->atim_window = 0;
423         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
424         ah->beacon_interval = 100;
425         ah->enable_32kHz_clock = DONT_USE_32KHZ;
426         ah->slottime = (u32) -1;
427         ah->acktimeout = (u32) -1;
428         ah->ctstimeout = (u32) -1;
429         ah->globaltxtimeout = (u32) -1;
430
431         ah->gbeacon_rate = 0;
432
433         ah->power_mode = ATH9K_PM_UNDEFINED;
434 }
435
436 static int ath9k_hw_rfattach(struct ath_hw *ah)
437 {
438         bool rfStatus = false;
439         int ecode = 0;
440
441         rfStatus = ath9k_hw_init_rf(ah, &ecode);
442         if (!rfStatus) {
443                 DPRINTF(ah, ATH_DBG_FATAL,
444                         "RF setup failed, status: %u\n", ecode);
445                 return ecode;
446         }
447
448         return 0;
449 }
450
451 static int ath9k_hw_rf_claim(struct ath_hw *ah)
452 {
453         u32 val;
454
455         REG_WRITE(ah, AR_PHY(0), 0x00000007);
456
457         val = ath9k_hw_get_radiorev(ah);
458         switch (val & AR_RADIO_SREV_MAJOR) {
459         case 0:
460                 val = AR_RAD5133_SREV_MAJOR;
461                 break;
462         case AR_RAD5133_SREV_MAJOR:
463         case AR_RAD5122_SREV_MAJOR:
464         case AR_RAD2133_SREV_MAJOR:
465         case AR_RAD2122_SREV_MAJOR:
466                 break;
467         default:
468                 DPRINTF(ah, ATH_DBG_FATAL,
469                         "Radio Chip Rev 0x%02X not supported\n",
470                         val & AR_RADIO_SREV_MAJOR);
471                 return -EOPNOTSUPP;
472         }
473
474         ah->hw_version.analog5GhzRev = val;
475
476         return 0;
477 }
478
479 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
480 {
481         struct ath_common *common = ath9k_hw_common(ah);
482         u32 sum;
483         int i;
484         u16 eeval;
485
486         sum = 0;
487         for (i = 0; i < 3; i++) {
488                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
489                 sum += eeval;
490                 common->macaddr[2 * i] = eeval >> 8;
491                 common->macaddr[2 * i + 1] = eeval & 0xff;
492         }
493         if (sum == 0 || sum == 0xffff * 3)
494                 return -EADDRNOTAVAIL;
495
496         return 0;
497 }
498
499 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
500 {
501         u32 rxgain_type;
502
503         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
504                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
505
506                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
507                         INIT_INI_ARRAY(&ah->iniModesRxGain,
508                         ar9280Modes_backoff_13db_rxgain_9280_2,
509                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
510                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
511                         INIT_INI_ARRAY(&ah->iniModesRxGain,
512                         ar9280Modes_backoff_23db_rxgain_9280_2,
513                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
514                 else
515                         INIT_INI_ARRAY(&ah->iniModesRxGain,
516                         ar9280Modes_original_rxgain_9280_2,
517                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
518         } else {
519                 INIT_INI_ARRAY(&ah->iniModesRxGain,
520                         ar9280Modes_original_rxgain_9280_2,
521                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
522         }
523 }
524
525 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
526 {
527         u32 txgain_type;
528
529         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
530                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
531
532                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
533                         INIT_INI_ARRAY(&ah->iniModesTxGain,
534                         ar9280Modes_high_power_tx_gain_9280_2,
535                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
536                 else
537                         INIT_INI_ARRAY(&ah->iniModesTxGain,
538                         ar9280Modes_original_tx_gain_9280_2,
539                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
540         } else {
541                 INIT_INI_ARRAY(&ah->iniModesTxGain,
542                 ar9280Modes_original_tx_gain_9280_2,
543                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
544         }
545 }
546
547 static int ath9k_hw_post_init(struct ath_hw *ah)
548 {
549         int ecode;
550
551         if (!ath9k_hw_chip_test(ah))
552                 return -ENODEV;
553
554         ecode = ath9k_hw_rf_claim(ah);
555         if (ecode != 0)
556                 return ecode;
557
558         ecode = ath9k_hw_eeprom_init(ah);
559         if (ecode != 0)
560                 return ecode;
561
562         DPRINTF(ah, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
563                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
564
565         ecode = ath9k_hw_rfattach(ah);
566         if (ecode != 0)
567                 return ecode;
568
569         if (!AR_SREV_9100(ah)) {
570                 ath9k_hw_ani_setup(ah);
571                 ath9k_hw_ani_init(ah);
572         }
573
574         return 0;
575 }
576
577 static bool ath9k_hw_devid_supported(u16 devid)
578 {
579         switch (devid) {
580         case AR5416_DEVID_PCI:
581         case AR5416_DEVID_PCIE:
582         case AR5416_AR9100_DEVID:
583         case AR9160_DEVID_PCI:
584         case AR9280_DEVID_PCI:
585         case AR9280_DEVID_PCIE:
586         case AR9285_DEVID_PCIE:
587         case AR5416_DEVID_AR9287_PCI:
588         case AR5416_DEVID_AR9287_PCIE:
589                 return true;
590         default:
591                 break;
592         }
593         return false;
594 }
595
596 static bool ath9k_hw_macversion_supported(u32 macversion)
597 {
598         switch (macversion) {
599         case AR_SREV_VERSION_5416_PCI:
600         case AR_SREV_VERSION_5416_PCIE:
601         case AR_SREV_VERSION_9160:
602         case AR_SREV_VERSION_9100:
603         case AR_SREV_VERSION_9280:
604         case AR_SREV_VERSION_9285:
605         case AR_SREV_VERSION_9287:
606                 return true;
607         /* Not yet */
608         case AR_SREV_VERSION_9271:
609         default:
610                 break;
611         }
612         return false;
613 }
614
615 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
616 {
617         if (AR_SREV_9160_10_OR_LATER(ah)) {
618                 if (AR_SREV_9280_10_OR_LATER(ah)) {
619                         ah->iq_caldata.calData = &iq_cal_single_sample;
620                         ah->adcgain_caldata.calData =
621                                 &adc_gain_cal_single_sample;
622                         ah->adcdc_caldata.calData =
623                                 &adc_dc_cal_single_sample;
624                         ah->adcdc_calinitdata.calData =
625                                 &adc_init_dc_cal;
626                 } else {
627                         ah->iq_caldata.calData = &iq_cal_multi_sample;
628                         ah->adcgain_caldata.calData =
629                                 &adc_gain_cal_multi_sample;
630                         ah->adcdc_caldata.calData =
631                                 &adc_dc_cal_multi_sample;
632                         ah->adcdc_calinitdata.calData =
633                                 &adc_init_dc_cal;
634                 }
635                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
636         }
637 }
638
639 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
640 {
641         if (AR_SREV_9271(ah)) {
642                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
643                                ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
644                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
645                                ARRAY_SIZE(ar9271Common_9271_1_0), 2);
646                 return;
647         }
648
649         if (AR_SREV_9287_11_OR_LATER(ah)) {
650                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
651                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
652                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
653                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
654                 if (ah->config.pcie_clock_req)
655                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
656                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
657                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
658                 else
659                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
660                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
661                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
662                                         2);
663         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
664                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
665                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
666                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
667                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
668
669                 if (ah->config.pcie_clock_req)
670                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
671                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
672                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
673                 else
674                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
675                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
676                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
677                                   2);
678         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
679
680
681                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
682                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
683                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
684                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
685
686                 if (ah->config.pcie_clock_req) {
687                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
688                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
689                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
690                 } else {
691                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
692                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
693                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
694                                   2);
695                 }
696         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
697                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
698                                ARRAY_SIZE(ar9285Modes_9285), 6);
699                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
700                                ARRAY_SIZE(ar9285Common_9285), 2);
701
702                 if (ah->config.pcie_clock_req) {
703                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
704                         ar9285PciePhy_clkreq_off_L1_9285,
705                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
706                 } else {
707                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
708                         ar9285PciePhy_clkreq_always_on_L1_9285,
709                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
710                 }
711         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
712                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
713                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
714                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
715                                ARRAY_SIZE(ar9280Common_9280_2), 2);
716
717                 if (ah->config.pcie_clock_req) {
718                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
719                                ar9280PciePhy_clkreq_off_L1_9280,
720                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
721                 } else {
722                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
723                                ar9280PciePhy_clkreq_always_on_L1_9280,
724                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
725                 }
726                 INIT_INI_ARRAY(&ah->iniModesAdditional,
727                                ar9280Modes_fast_clock_9280_2,
728                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
729         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
730                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
731                                ARRAY_SIZE(ar9280Modes_9280), 6);
732                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
733                                ARRAY_SIZE(ar9280Common_9280), 2);
734         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
735                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
736                                ARRAY_SIZE(ar5416Modes_9160), 6);
737                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
738                                ARRAY_SIZE(ar5416Common_9160), 2);
739                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
740                                ARRAY_SIZE(ar5416Bank0_9160), 2);
741                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
742                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
743                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
744                                ARRAY_SIZE(ar5416Bank1_9160), 2);
745                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
746                                ARRAY_SIZE(ar5416Bank2_9160), 2);
747                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
748                                ARRAY_SIZE(ar5416Bank3_9160), 3);
749                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
750                                ARRAY_SIZE(ar5416Bank6_9160), 3);
751                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
752                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
753                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
754                                ARRAY_SIZE(ar5416Bank7_9160), 2);
755                 if (AR_SREV_9160_11(ah)) {
756                         INIT_INI_ARRAY(&ah->iniAddac,
757                                        ar5416Addac_91601_1,
758                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
759                 } else {
760                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
761                                        ARRAY_SIZE(ar5416Addac_9160), 2);
762                 }
763         } else if (AR_SREV_9100_OR_LATER(ah)) {
764                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
765                                ARRAY_SIZE(ar5416Modes_9100), 6);
766                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
767                                ARRAY_SIZE(ar5416Common_9100), 2);
768                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
769                                ARRAY_SIZE(ar5416Bank0_9100), 2);
770                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
771                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
772                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
773                                ARRAY_SIZE(ar5416Bank1_9100), 2);
774                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
775                                ARRAY_SIZE(ar5416Bank2_9100), 2);
776                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
777                                ARRAY_SIZE(ar5416Bank3_9100), 3);
778                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
779                                ARRAY_SIZE(ar5416Bank6_9100), 3);
780                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
781                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
782                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
783                                ARRAY_SIZE(ar5416Bank7_9100), 2);
784                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
785                                ARRAY_SIZE(ar5416Addac_9100), 2);
786         } else {
787                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
788                                ARRAY_SIZE(ar5416Modes), 6);
789                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
790                                ARRAY_SIZE(ar5416Common), 2);
791                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
792                                ARRAY_SIZE(ar5416Bank0), 2);
793                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
794                                ARRAY_SIZE(ar5416BB_RfGain), 3);
795                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
796                                ARRAY_SIZE(ar5416Bank1), 2);
797                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
798                                ARRAY_SIZE(ar5416Bank2), 2);
799                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
800                                ARRAY_SIZE(ar5416Bank3), 3);
801                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
802                                ARRAY_SIZE(ar5416Bank6), 3);
803                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
804                                ARRAY_SIZE(ar5416Bank6TPC), 3);
805                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
806                                ARRAY_SIZE(ar5416Bank7), 2);
807                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
808                                ARRAY_SIZE(ar5416Addac), 2);
809         }
810 }
811
812 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
813 {
814         if (AR_SREV_9287_11_OR_LATER(ah))
815                 INIT_INI_ARRAY(&ah->iniModesRxGain,
816                 ar9287Modes_rx_gain_9287_1_1,
817                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
818         else if (AR_SREV_9287_10(ah))
819                 INIT_INI_ARRAY(&ah->iniModesRxGain,
820                 ar9287Modes_rx_gain_9287_1_0,
821                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
822         else if (AR_SREV_9280_20(ah))
823                 ath9k_hw_init_rxgain_ini(ah);
824
825         if (AR_SREV_9287_11_OR_LATER(ah)) {
826                 INIT_INI_ARRAY(&ah->iniModesTxGain,
827                 ar9287Modes_tx_gain_9287_1_1,
828                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
829         } else if (AR_SREV_9287_10(ah)) {
830                 INIT_INI_ARRAY(&ah->iniModesTxGain,
831                 ar9287Modes_tx_gain_9287_1_0,
832                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
833         } else if (AR_SREV_9280_20(ah)) {
834                 ath9k_hw_init_txgain_ini(ah);
835         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
836                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
837
838                 /* txgain table */
839                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
840                         INIT_INI_ARRAY(&ah->iniModesTxGain,
841                         ar9285Modes_high_power_tx_gain_9285_1_2,
842                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
843                 } else {
844                         INIT_INI_ARRAY(&ah->iniModesTxGain,
845                         ar9285Modes_original_tx_gain_9285_1_2,
846                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
847                 }
848
849         }
850 }
851
852 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
853 {
854         u32 i, j;
855
856         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
857             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
858
859                 /* EEPROM Fixup */
860                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
861                         u32 reg = INI_RA(&ah->iniModes, i, 0);
862
863                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
864                                 u32 val = INI_RA(&ah->iniModes, i, j);
865
866                                 INI_RA(&ah->iniModes, i, j) =
867                                         ath9k_hw_ini_fixup(ah,
868                                                            &ah->eeprom.def,
869                                                            reg, val);
870                         }
871                 }
872         }
873 }
874
875 int ath9k_hw_init(struct ath_hw *ah)
876 {
877         int r = 0;
878
879         if (!ath9k_hw_devid_supported(ah->hw_version.devid))
880                 return -EOPNOTSUPP;
881
882         ath9k_hw_init_defaults(ah);
883         ath9k_hw_init_config(ah);
884
885         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
886                 DPRINTF(ah, ATH_DBG_FATAL, "Couldn't reset chip\n");
887                 return -EIO;
888         }
889
890         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
891                 DPRINTF(ah, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
892                 return -EIO;
893         }
894
895         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
896                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
897                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
898                         ah->config.serialize_regmode =
899                                 SER_REG_MODE_ON;
900                 } else {
901                         ah->config.serialize_regmode =
902                                 SER_REG_MODE_OFF;
903                 }
904         }
905
906         DPRINTF(ah, ATH_DBG_RESET, "serialize_regmode is %d\n",
907                 ah->config.serialize_regmode);
908
909         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
910                 DPRINTF(ah, ATH_DBG_FATAL,
911                         "Mac Chip Rev 0x%02x.%x is not supported by "
912                         "this driver\n", ah->hw_version.macVersion,
913                         ah->hw_version.macRev);
914                 return -EOPNOTSUPP;
915         }
916
917         if (AR_SREV_9100(ah)) {
918                 ah->iq_caldata.calData = &iq_cal_multi_sample;
919                 ah->supp_cals = IQ_MISMATCH_CAL;
920                 ah->is_pciexpress = false;
921         }
922
923         if (AR_SREV_9271(ah))
924                 ah->is_pciexpress = false;
925
926         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
927
928         ath9k_hw_init_cal_settings(ah);
929
930         ah->ani_function = ATH9K_ANI_ALL;
931         if (AR_SREV_9280_10_OR_LATER(ah))
932                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
933
934         ath9k_hw_init_mode_regs(ah);
935
936         if (ah->is_pciexpress)
937                 ath9k_hw_configpcipowersave(ah, 0, 0);
938         else
939                 ath9k_hw_disablepcie(ah);
940
941         r = ath9k_hw_post_init(ah);
942         if (r)
943                 return r;
944
945         ath9k_hw_init_mode_gain_regs(ah);
946         ath9k_hw_fill_cap_info(ah);
947         ath9k_hw_init_11a_eeprom_fix(ah);
948
949         r = ath9k_hw_init_macaddr(ah);
950         if (r) {
951                 DPRINTF(ah, ATH_DBG_FATAL,
952                         "Failed to initialize MAC address\n");
953                 return r;
954         }
955
956         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
957                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
958         else
959                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
960
961         ath9k_init_nfcal_hist_buffer(ah);
962
963         return 0;
964 }
965
966 static void ath9k_hw_init_bb(struct ath_hw *ah,
967                              struct ath9k_channel *chan)
968 {
969         u32 synthDelay;
970
971         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
972         if (IS_CHAN_B(chan))
973                 synthDelay = (4 * synthDelay) / 22;
974         else
975                 synthDelay /= 10;
976
977         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
978
979         udelay(synthDelay + BASE_ACTIVATE_DELAY);
980 }
981
982 static void ath9k_hw_init_qos(struct ath_hw *ah)
983 {
984         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
985         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
986
987         REG_WRITE(ah, AR_QOS_NO_ACK,
988                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
989                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
990                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
991
992         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
993         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
994         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
995         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
996         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
997 }
998
999 static void ath9k_hw_init_pll(struct ath_hw *ah,
1000                               struct ath9k_channel *chan)
1001 {
1002         u32 pll;
1003
1004         if (AR_SREV_9100(ah)) {
1005                 if (chan && IS_CHAN_5GHZ(chan))
1006                         pll = 0x1450;
1007                 else
1008                         pll = 0x1458;
1009         } else {
1010                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1011                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1012
1013                         if (chan && IS_CHAN_HALF_RATE(chan))
1014                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1015                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1016                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1017
1018                         if (chan && IS_CHAN_5GHZ(chan)) {
1019                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1020
1021
1022                                 if (AR_SREV_9280_20(ah)) {
1023                                         if (((chan->channel % 20) == 0)
1024                                             || ((chan->channel % 10) == 0))
1025                                                 pll = 0x2850;
1026                                         else
1027                                                 pll = 0x142c;
1028                                 }
1029                         } else {
1030                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1031                         }
1032
1033                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1034
1035                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1036
1037                         if (chan && IS_CHAN_HALF_RATE(chan))
1038                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1039                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1040                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1041
1042                         if (chan && IS_CHAN_5GHZ(chan))
1043                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1044                         else
1045                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1046                 } else {
1047                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1048
1049                         if (chan && IS_CHAN_HALF_RATE(chan))
1050                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1051                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1052                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1053
1054                         if (chan && IS_CHAN_5GHZ(chan))
1055                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1056                         else
1057                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1058                 }
1059         }
1060         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1061
1062         udelay(RTC_PLL_SETTLE_DELAY);
1063
1064         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1065 }
1066
1067 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1068 {
1069         int rx_chainmask, tx_chainmask;
1070
1071         rx_chainmask = ah->rxchainmask;
1072         tx_chainmask = ah->txchainmask;
1073
1074         switch (rx_chainmask) {
1075         case 0x5:
1076                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1077                             AR_PHY_SWAP_ALT_CHAIN);
1078         case 0x3:
1079                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1080                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1081                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1082                         break;
1083                 }
1084         case 0x1:
1085         case 0x2:
1086         case 0x7:
1087                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1088                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1089                 break;
1090         default:
1091                 break;
1092         }
1093
1094         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1095         if (tx_chainmask == 0x5) {
1096                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1097                             AR_PHY_SWAP_ALT_CHAIN);
1098         }
1099         if (AR_SREV_9100(ah))
1100                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1101                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1102 }
1103
1104 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1105                                           enum nl80211_iftype opmode)
1106 {
1107         ah->mask_reg = AR_IMR_TXERR |
1108                 AR_IMR_TXURN |
1109                 AR_IMR_RXERR |
1110                 AR_IMR_RXORN |
1111                 AR_IMR_BCNMISC;
1112
1113         if (ah->config.intr_mitigation)
1114                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1115         else
1116                 ah->mask_reg |= AR_IMR_RXOK;
1117
1118         ah->mask_reg |= AR_IMR_TXOK;
1119
1120         if (opmode == NL80211_IFTYPE_AP)
1121                 ah->mask_reg |= AR_IMR_MIB;
1122
1123         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1124         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1125
1126         if (!AR_SREV_9100(ah)) {
1127                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1128                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1129                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1130         }
1131 }
1132
1133 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1134 {
1135         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1136                 DPRINTF(ah, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1137                 ah->acktimeout = (u32) -1;
1138                 return false;
1139         } else {
1140                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1141                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1142                 ah->acktimeout = us;
1143                 return true;
1144         }
1145 }
1146
1147 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1148 {
1149         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1150                 DPRINTF(ah, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1151                 ah->ctstimeout = (u32) -1;
1152                 return false;
1153         } else {
1154                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1155                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1156                 ah->ctstimeout = us;
1157                 return true;
1158         }
1159 }
1160
1161 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1162 {
1163         if (tu > 0xFFFF) {
1164                 DPRINTF(ah, ATH_DBG_XMIT,
1165                         "bad global tx timeout %u\n", tu);
1166                 ah->globaltxtimeout = (u32) -1;
1167                 return false;
1168         } else {
1169                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1170                 ah->globaltxtimeout = tu;
1171                 return true;
1172         }
1173 }
1174
1175 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1176 {
1177         DPRINTF(ah, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1178                 ah->misc_mode);
1179
1180         if (ah->misc_mode != 0)
1181                 REG_WRITE(ah, AR_PCU_MISC,
1182                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1183         if (ah->slottime != (u32) -1)
1184                 ath9k_hw_setslottime(ah, ah->slottime);
1185         if (ah->acktimeout != (u32) -1)
1186                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1187         if (ah->ctstimeout != (u32) -1)
1188                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1189         if (ah->globaltxtimeout != (u32) -1)
1190                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1191 }
1192
1193 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1194 {
1195         return vendorid == ATHEROS_VENDOR_ID ?
1196                 ath9k_hw_devname(devid) : NULL;
1197 }
1198
1199 void ath9k_hw_detach(struct ath_hw *ah)
1200 {
1201         if (!AR_SREV_9100(ah))
1202                 ath9k_hw_ani_disable(ah);
1203
1204         ath9k_hw_rf_free(ah);
1205         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1206         kfree(ah);
1207         ah = NULL;
1208 }
1209
1210 /*******/
1211 /* INI */
1212 /*******/
1213
1214 static void ath9k_hw_override_ini(struct ath_hw *ah,
1215                                   struct ath9k_channel *chan)
1216 {
1217         u32 val;
1218
1219         if (AR_SREV_9271(ah)) {
1220                 /*
1221                  * Enable spectral scan to solution for issues with stuck
1222                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1223                  * AR9271 1.1
1224                  */
1225                 if (AR_SREV_9271_10(ah)) {
1226                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1227                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1228                 }
1229                 else if (AR_SREV_9271_11(ah))
1230                         /*
1231                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1232                          * present on AR9271 1.1
1233                          */
1234                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1235                 return;
1236         }
1237
1238         /*
1239          * Set the RX_ABORT and RX_DIS and clear if off only after
1240          * RXE is set for MAC. This prevents frames with corrupted
1241          * descriptor status.
1242          */
1243         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1244
1245         if (AR_SREV_9280_10_OR_LATER(ah)) {
1246                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1247                                (~AR_PCU_MISC_MODE2_HWWAR1);
1248
1249                 if (AR_SREV_9287_10_OR_LATER(ah))
1250                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1251
1252                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1253         }
1254
1255         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1256             AR_SREV_9280_10_OR_LATER(ah))
1257                 return;
1258         /*
1259          * Disable BB clock gating
1260          * Necessary to avoid issues on AR5416 2.0
1261          */
1262         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1263 }
1264
1265 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1266                               struct ar5416_eeprom_def *pEepData,
1267                               u32 reg, u32 value)
1268 {
1269         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1270
1271         switch (ah->hw_version.devid) {
1272         case AR9280_DEVID_PCI:
1273                 if (reg == 0x7894) {
1274                         DPRINTF(ah, ATH_DBG_EEPROM,
1275                                 "ini VAL: %x  EEPROM: %x\n", value,
1276                                 (pBase->version & 0xff));
1277
1278                         if ((pBase->version & 0xff) > 0x0a) {
1279                                 DPRINTF(ah, ATH_DBG_EEPROM,
1280                                         "PWDCLKIND: %d\n",
1281                                         pBase->pwdclkind);
1282                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1283                                 value |= AR_AN_TOP2_PWDCLKIND &
1284                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1285                         } else {
1286                                 DPRINTF(ah, ATH_DBG_EEPROM,
1287                                         "PWDCLKIND Earlier Rev\n");
1288                         }
1289
1290                         DPRINTF(ah, ATH_DBG_EEPROM,
1291                                 "final ini VAL: %x\n", value);
1292                 }
1293                 break;
1294         }
1295
1296         return value;
1297 }
1298
1299 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1300                               struct ar5416_eeprom_def *pEepData,
1301                               u32 reg, u32 value)
1302 {
1303         if (ah->eep_map == EEP_MAP_4KBITS)
1304                 return value;
1305         else
1306                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1307 }
1308
1309 static void ath9k_olc_init(struct ath_hw *ah)
1310 {
1311         u32 i;
1312
1313         if (OLC_FOR_AR9287_10_LATER) {
1314                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1315                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1316                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1317                                 AR9287_AN_TXPC0_TXPCMODE,
1318                                 AR9287_AN_TXPC0_TXPCMODE_S,
1319                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1320                 udelay(100);
1321         } else {
1322                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1323                         ah->originalGain[i] =
1324                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1325                                                 AR_PHY_TX_GAIN);
1326                 ah->PDADCdelta = 0;
1327         }
1328 }
1329
1330 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1331                               struct ath9k_channel *chan)
1332 {
1333         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1334
1335         if (IS_CHAN_B(chan))
1336                 ctl |= CTL_11B;
1337         else if (IS_CHAN_G(chan))
1338                 ctl |= CTL_11G;
1339         else
1340                 ctl |= CTL_11A;
1341
1342         return ctl;
1343 }
1344
1345 static int ath9k_hw_process_ini(struct ath_hw *ah,
1346                                 struct ath9k_channel *chan,
1347                                 enum ath9k_ht_macmode macmode)
1348 {
1349         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1350         int i, regWrites = 0;
1351         struct ieee80211_channel *channel = chan->chan;
1352         u32 modesIndex, freqIndex;
1353
1354         switch (chan->chanmode) {
1355         case CHANNEL_A:
1356         case CHANNEL_A_HT20:
1357                 modesIndex = 1;
1358                 freqIndex = 1;
1359                 break;
1360         case CHANNEL_A_HT40PLUS:
1361         case CHANNEL_A_HT40MINUS:
1362                 modesIndex = 2;
1363                 freqIndex = 1;
1364                 break;
1365         case CHANNEL_G:
1366         case CHANNEL_G_HT20:
1367         case CHANNEL_B:
1368                 modesIndex = 4;
1369                 freqIndex = 2;
1370                 break;
1371         case CHANNEL_G_HT40PLUS:
1372         case CHANNEL_G_HT40MINUS:
1373                 modesIndex = 3;
1374                 freqIndex = 2;
1375                 break;
1376
1377         default:
1378                 return -EINVAL;
1379         }
1380
1381         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1382         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1383         ah->eep_ops->set_addac(ah, chan);
1384
1385         if (AR_SREV_5416_22_OR_LATER(ah)) {
1386                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1387         } else {
1388                 struct ar5416IniArray temp;
1389                 u32 addacSize =
1390                         sizeof(u32) * ah->iniAddac.ia_rows *
1391                         ah->iniAddac.ia_columns;
1392
1393                 memcpy(ah->addac5416_21,
1394                        ah->iniAddac.ia_array, addacSize);
1395
1396                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1397
1398                 temp.ia_array = ah->addac5416_21;
1399                 temp.ia_columns = ah->iniAddac.ia_columns;
1400                 temp.ia_rows = ah->iniAddac.ia_rows;
1401                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1402         }
1403
1404         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1405
1406         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1407                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1408                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1409
1410                 REG_WRITE(ah, reg, val);
1411
1412                 if (reg >= 0x7800 && reg < 0x78a0
1413                     && ah->config.analog_shiftreg) {
1414                         udelay(100);
1415                 }
1416
1417                 DO_DELAY(regWrites);
1418         }
1419
1420         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1421                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1422
1423         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1424             AR_SREV_9287_10_OR_LATER(ah))
1425                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1426
1427         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1428                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1429                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1430
1431                 REG_WRITE(ah, reg, val);
1432
1433                 if (reg >= 0x7800 && reg < 0x78a0
1434                     && ah->config.analog_shiftreg) {
1435                         udelay(100);
1436                 }
1437
1438                 DO_DELAY(regWrites);
1439         }
1440
1441         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1442
1443         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1444                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1445                                 regWrites);
1446         }
1447
1448         ath9k_hw_override_ini(ah, chan);
1449         ath9k_hw_set_regs(ah, chan, macmode);
1450         ath9k_hw_init_chain_masks(ah);
1451
1452         if (OLC_FOR_AR9280_20_LATER)
1453                 ath9k_olc_init(ah);
1454
1455         ah->eep_ops->set_txpower(ah, chan,
1456                                  ath9k_regd_get_ctl(regulatory, chan),
1457                                  channel->max_antenna_gain * 2,
1458                                  channel->max_power * 2,
1459                                  min((u32) MAX_RATE_POWER,
1460                                  (u32) regulatory->power_limit));
1461
1462         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1463                 DPRINTF(ah, ATH_DBG_FATAL,
1464                         "ar5416SetRfRegs failed\n");
1465                 return -EIO;
1466         }
1467
1468         return 0;
1469 }
1470
1471 /****************************************/
1472 /* Reset and Channel Switching Routines */
1473 /****************************************/
1474
1475 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1476 {
1477         u32 rfMode = 0;
1478
1479         if (chan == NULL)
1480                 return;
1481
1482         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1483                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1484
1485         if (!AR_SREV_9280_10_OR_LATER(ah))
1486                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1487                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1488
1489         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1490                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1491
1492         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1493 }
1494
1495 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1496 {
1497         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1498 }
1499
1500 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1501 {
1502         u32 regval;
1503
1504         /*
1505          * set AHB_MODE not to do cacheline prefetches
1506         */
1507         regval = REG_READ(ah, AR_AHB_MODE);
1508         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1509
1510         /*
1511          * let mac dma reads be in 128 byte chunks
1512          */
1513         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1514         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1515
1516         /*
1517          * Restore TX Trigger Level to its pre-reset value.
1518          * The initial value depends on whether aggregation is enabled, and is
1519          * adjusted whenever underruns are detected.
1520          */
1521         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1522
1523         /*
1524          * let mac dma writes be in 128 byte chunks
1525          */
1526         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1527         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1528
1529         /*
1530          * Setup receive FIFO threshold to hold off TX activities
1531          */
1532         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1533
1534         /*
1535          * reduce the number of usable entries in PCU TXBUF to avoid
1536          * wrap around issues.
1537          */
1538         if (AR_SREV_9285(ah)) {
1539                 /* For AR9285 the number of Fifos are reduced to half.
1540                  * So set the usable tx buf size also to half to
1541                  * avoid data/delimiter underruns
1542                  */
1543                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1544                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1545         } else if (!AR_SREV_9271(ah)) {
1546                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1547                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1548         }
1549 }
1550
1551 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1552 {
1553         u32 val;
1554
1555         val = REG_READ(ah, AR_STA_ID1);
1556         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1557         switch (opmode) {
1558         case NL80211_IFTYPE_AP:
1559                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1560                           | AR_STA_ID1_KSRCH_MODE);
1561                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1562                 break;
1563         case NL80211_IFTYPE_ADHOC:
1564         case NL80211_IFTYPE_MESH_POINT:
1565                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1566                           | AR_STA_ID1_KSRCH_MODE);
1567                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1568                 break;
1569         case NL80211_IFTYPE_STATION:
1570         case NL80211_IFTYPE_MONITOR:
1571                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1572                 break;
1573         }
1574 }
1575
1576 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1577                                                  u32 coef_scaled,
1578                                                  u32 *coef_mantissa,
1579                                                  u32 *coef_exponent)
1580 {
1581         u32 coef_exp, coef_man;
1582
1583         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1584                 if ((coef_scaled >> coef_exp) & 0x1)
1585                         break;
1586
1587         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1588
1589         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1590
1591         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1592         *coef_exponent = coef_exp - 16;
1593 }
1594
1595 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1596                                      struct ath9k_channel *chan)
1597 {
1598         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1599         u32 clockMhzScaled = 0x64000000;
1600         struct chan_centers centers;
1601
1602         if (IS_CHAN_HALF_RATE(chan))
1603                 clockMhzScaled = clockMhzScaled >> 1;
1604         else if (IS_CHAN_QUARTER_RATE(chan))
1605                 clockMhzScaled = clockMhzScaled >> 2;
1606
1607         ath9k_hw_get_channel_centers(ah, chan, &centers);
1608         coef_scaled = clockMhzScaled / centers.synth_center;
1609
1610         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1611                                       &ds_coef_exp);
1612
1613         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1614                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1615         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1616                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1617
1618         coef_scaled = (9 * coef_scaled) / 10;
1619
1620         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1621                                       &ds_coef_exp);
1622
1623         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1624                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1625         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1626                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1627 }
1628
1629 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1630 {
1631         u32 rst_flags;
1632         u32 tmpReg;
1633
1634         if (AR_SREV_9100(ah)) {
1635                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1636                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1637                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1638                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1639                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1640         }
1641
1642         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1643                   AR_RTC_FORCE_WAKE_ON_INT);
1644
1645         if (AR_SREV_9100(ah)) {
1646                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1647                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1648         } else {
1649                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1650                 if (tmpReg &
1651                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1652                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1653                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1654                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1655                 } else {
1656                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1657                 }
1658
1659                 rst_flags = AR_RTC_RC_MAC_WARM;
1660                 if (type == ATH9K_RESET_COLD)
1661                         rst_flags |= AR_RTC_RC_MAC_COLD;
1662         }
1663
1664         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1665         udelay(50);
1666
1667         REG_WRITE(ah, AR_RTC_RC, 0);
1668         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1669                 DPRINTF(ah, ATH_DBG_RESET,
1670                         "RTC stuck in MAC reset\n");
1671                 return false;
1672         }
1673
1674         if (!AR_SREV_9100(ah))
1675                 REG_WRITE(ah, AR_RC, 0);
1676
1677         ath9k_hw_init_pll(ah, NULL);
1678
1679         if (AR_SREV_9100(ah))
1680                 udelay(50);
1681
1682         return true;
1683 }
1684
1685 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1686 {
1687         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1688                   AR_RTC_FORCE_WAKE_ON_INT);
1689
1690         if (!AR_SREV_9100(ah))
1691                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1692
1693         REG_WRITE(ah, AR_RTC_RESET, 0);
1694         udelay(2);
1695
1696         if (!AR_SREV_9100(ah))
1697                 REG_WRITE(ah, AR_RC, 0);
1698
1699         REG_WRITE(ah, AR_RTC_RESET, 1);
1700
1701         if (!ath9k_hw_wait(ah,
1702                            AR_RTC_STATUS,
1703                            AR_RTC_STATUS_M,
1704                            AR_RTC_STATUS_ON,
1705                            AH_WAIT_TIMEOUT)) {
1706                 DPRINTF(ah, ATH_DBG_RESET, "RTC not waking up\n");
1707                 return false;
1708         }
1709
1710         ath9k_hw_read_revisions(ah);
1711
1712         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1713 }
1714
1715 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1716 {
1717         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1718                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1719
1720         switch (type) {
1721         case ATH9K_RESET_POWER_ON:
1722                 return ath9k_hw_set_reset_power_on(ah);
1723         case ATH9K_RESET_WARM:
1724         case ATH9K_RESET_COLD:
1725                 return ath9k_hw_set_reset(ah, type);
1726         default:
1727                 return false;
1728         }
1729 }
1730
1731 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1732                               enum ath9k_ht_macmode macmode)
1733 {
1734         u32 phymode;
1735         u32 enableDacFifo = 0;
1736
1737         if (AR_SREV_9285_10_OR_LATER(ah))
1738                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1739                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1740
1741         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1742                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1743
1744         if (IS_CHAN_HT40(chan)) {
1745                 phymode |= AR_PHY_FC_DYN2040_EN;
1746
1747                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1748                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1749                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1750
1751                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1752                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1753         }
1754         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1755
1756         ath9k_hw_set11nmac2040(ah, macmode);
1757
1758         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1759         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1760 }
1761
1762 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1763                                 struct ath9k_channel *chan)
1764 {
1765         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1766                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1767                         return false;
1768         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1769                 return false;
1770
1771         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1772                 return false;
1773
1774         ah->chip_fullsleep = false;
1775         ath9k_hw_init_pll(ah, chan);
1776         ath9k_hw_set_rfmode(ah, chan);
1777
1778         return true;
1779 }
1780
1781 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1782                                     struct ath9k_channel *chan,
1783                                     enum ath9k_ht_macmode macmode)
1784 {
1785         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1786         struct ieee80211_channel *channel = chan->chan;
1787         u32 synthDelay, qnum;
1788
1789         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1790                 if (ath9k_hw_numtxpending(ah, qnum)) {
1791                         DPRINTF(ah, ATH_DBG_QUEUE,
1792                                 "Transmit frames pending on queue %d\n", qnum);
1793                         return false;
1794                 }
1795         }
1796
1797         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1798         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1799                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1800                 DPRINTF(ah, ATH_DBG_FATAL,
1801                         "Could not kill baseband RX\n");
1802                 return false;
1803         }
1804
1805         ath9k_hw_set_regs(ah, chan, macmode);
1806
1807         if (AR_SREV_9280_10_OR_LATER(ah)) {
1808                 ath9k_hw_ar9280_set_channel(ah, chan);
1809         } else {
1810                 if (!(ath9k_hw_set_channel(ah, chan))) {
1811                         DPRINTF(ah, ATH_DBG_FATAL,
1812                                 "Failed to set channel\n");
1813                         return false;
1814                 }
1815         }
1816
1817         ah->eep_ops->set_txpower(ah, chan,
1818                              ath9k_regd_get_ctl(regulatory, chan),
1819                              channel->max_antenna_gain * 2,
1820                              channel->max_power * 2,
1821                              min((u32) MAX_RATE_POWER,
1822                              (u32) regulatory->power_limit));
1823
1824         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1825         if (IS_CHAN_B(chan))
1826                 synthDelay = (4 * synthDelay) / 22;
1827         else
1828                 synthDelay /= 10;
1829
1830         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1831
1832         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1833
1834         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1835                 ath9k_hw_set_delta_slope(ah, chan);
1836
1837         if (AR_SREV_9280_10_OR_LATER(ah))
1838                 ath9k_hw_9280_spur_mitigate(ah, chan);
1839         else
1840                 ath9k_hw_spur_mitigate(ah, chan);
1841
1842         if (!chan->oneTimeCalsDone)
1843                 chan->oneTimeCalsDone = true;
1844
1845         return true;
1846 }
1847
1848 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1849 {
1850         int bb_spur = AR_NO_SPUR;
1851         int freq;
1852         int bin, cur_bin;
1853         int bb_spur_off, spur_subchannel_sd;
1854         int spur_freq_sd;
1855         int spur_delta_phase;
1856         int denominator;
1857         int upper, lower, cur_vit_mask;
1858         int tmp, newVal;
1859         int i;
1860         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1861                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1862         };
1863         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1864                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1865         };
1866         int inc[4] = { 0, 100, 0, 0 };
1867         struct chan_centers centers;
1868
1869         int8_t mask_m[123];
1870         int8_t mask_p[123];
1871         int8_t mask_amt;
1872         int tmp_mask;
1873         int cur_bb_spur;
1874         bool is2GHz = IS_CHAN_2GHZ(chan);
1875
1876         memset(&mask_m, 0, sizeof(int8_t) * 123);
1877         memset(&mask_p, 0, sizeof(int8_t) * 123);
1878
1879         ath9k_hw_get_channel_centers(ah, chan, &centers);
1880         freq = centers.synth_center;
1881
1882         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1883         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1884                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1885
1886                 if (is2GHz)
1887                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1888                 else
1889                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1890
1891                 if (AR_NO_SPUR == cur_bb_spur)
1892                         break;
1893                 cur_bb_spur = cur_bb_spur - freq;
1894
1895                 if (IS_CHAN_HT40(chan)) {
1896                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1897                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1898                                 bb_spur = cur_bb_spur;
1899                                 break;
1900                         }
1901                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1902                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1903                         bb_spur = cur_bb_spur;
1904                         break;
1905                 }
1906         }
1907
1908         if (AR_NO_SPUR == bb_spur) {
1909                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1910                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1911                 return;
1912         } else {
1913                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1914                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1915         }
1916
1917         bin = bb_spur * 320;
1918
1919         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1920
1921         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1922                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1923                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1924                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1925         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1926
1927         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1928                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1929                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1930                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1931                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1932         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1933
1934         if (IS_CHAN_HT40(chan)) {
1935                 if (bb_spur < 0) {
1936                         spur_subchannel_sd = 1;
1937                         bb_spur_off = bb_spur + 10;
1938                 } else {
1939                         spur_subchannel_sd = 0;
1940                         bb_spur_off = bb_spur - 10;
1941                 }
1942         } else {
1943                 spur_subchannel_sd = 0;
1944                 bb_spur_off = bb_spur;
1945         }
1946
1947         if (IS_CHAN_HT40(chan))
1948                 spur_delta_phase =
1949                         ((bb_spur * 262144) /
1950                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1951         else
1952                 spur_delta_phase =
1953                         ((bb_spur * 524288) /
1954                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1955
1956         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1957         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1958
1959         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1960                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1961                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1962         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1963
1964         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1965         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1966
1967         cur_bin = -6000;
1968         upper = bin + 100;
1969         lower = bin - 100;
1970
1971         for (i = 0; i < 4; i++) {
1972                 int pilot_mask = 0;
1973                 int chan_mask = 0;
1974                 int bp = 0;
1975                 for (bp = 0; bp < 30; bp++) {
1976                         if ((cur_bin > lower) && (cur_bin < upper)) {
1977                                 pilot_mask = pilot_mask | 0x1 << bp;
1978                                 chan_mask = chan_mask | 0x1 << bp;
1979                         }
1980                         cur_bin += 100;
1981                 }
1982                 cur_bin += inc[i];
1983                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1984                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1985         }
1986
1987         cur_vit_mask = 6100;
1988         upper = bin + 120;
1989         lower = bin - 120;
1990
1991         for (i = 0; i < 123; i++) {
1992                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1993
1994                         /* workaround for gcc bug #37014 */
1995                         volatile int tmp_v = abs(cur_vit_mask - bin);
1996
1997                         if (tmp_v < 75)
1998                                 mask_amt = 1;
1999                         else
2000                                 mask_amt = 0;
2001                         if (cur_vit_mask < 0)
2002                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2003                         else
2004                                 mask_p[cur_vit_mask / 100] = mask_amt;
2005                 }
2006                 cur_vit_mask -= 100;
2007         }
2008
2009         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2010                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2011                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2012                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2013                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2014                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2015                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2016                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2017         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2018         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2019
2020         tmp_mask = (mask_m[31] << 28)
2021                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2022                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2023                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2024                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2025                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2026                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2027                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2028         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2029         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2030
2031         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2032                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2033                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2034                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2035                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2036                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2037                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2038                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2039         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2040         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2041
2042         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2043                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2044                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2045                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2046                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2047                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2048                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2049                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2050         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2051         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2052
2053         tmp_mask = (mask_p[15] << 28)
2054                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2055                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2056                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2057                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2058                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2059                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2060                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2061         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2062         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2063
2064         tmp_mask = (mask_p[30] << 28)
2065                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2066                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2067                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2068                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2069                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2070                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2071                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2072         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2073         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2074
2075         tmp_mask = (mask_p[45] << 28)
2076                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2077                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2078                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2079                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2080                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2081                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2082                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2083         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2084         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2085
2086         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2087                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2088                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2089                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2090                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2091                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2092                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2093                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2094         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2095         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2096 }
2097
2098 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2099 {
2100         int bb_spur = AR_NO_SPUR;
2101         int bin, cur_bin;
2102         int spur_freq_sd;
2103         int spur_delta_phase;
2104         int denominator;
2105         int upper, lower, cur_vit_mask;
2106         int tmp, new;
2107         int i;
2108         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2109                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2110         };
2111         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2112                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2113         };
2114         int inc[4] = { 0, 100, 0, 0 };
2115
2116         int8_t mask_m[123];
2117         int8_t mask_p[123];
2118         int8_t mask_amt;
2119         int tmp_mask;
2120         int cur_bb_spur;
2121         bool is2GHz = IS_CHAN_2GHZ(chan);
2122
2123         memset(&mask_m, 0, sizeof(int8_t) * 123);
2124         memset(&mask_p, 0, sizeof(int8_t) * 123);
2125
2126         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2127                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2128                 if (AR_NO_SPUR == cur_bb_spur)
2129                         break;
2130                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2131                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2132                         bb_spur = cur_bb_spur;
2133                         break;
2134                 }
2135         }
2136
2137         if (AR_NO_SPUR == bb_spur)
2138                 return;
2139
2140         bin = bb_spur * 32;
2141
2142         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2143         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2144                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2145                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2146                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2147
2148         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2149
2150         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2151                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2152                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2153                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2154                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2155         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2156
2157         spur_delta_phase = ((bb_spur * 524288) / 100) &
2158                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2159
2160         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2161         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2162
2163         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2164                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2165                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2166         REG_WRITE(ah, AR_PHY_TIMING11, new);
2167
2168         cur_bin = -6000;
2169         upper = bin + 100;
2170         lower = bin - 100;
2171
2172         for (i = 0; i < 4; i++) {
2173                 int pilot_mask = 0;
2174                 int chan_mask = 0;
2175                 int bp = 0;
2176                 for (bp = 0; bp < 30; bp++) {
2177                         if ((cur_bin > lower) && (cur_bin < upper)) {
2178                                 pilot_mask = pilot_mask | 0x1 << bp;
2179                                 chan_mask = chan_mask | 0x1 << bp;
2180                         }
2181                         cur_bin += 100;
2182                 }
2183                 cur_bin += inc[i];
2184                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2185                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2186         }
2187
2188         cur_vit_mask = 6100;
2189         upper = bin + 120;
2190         lower = bin - 120;
2191
2192         for (i = 0; i < 123; i++) {
2193                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2194
2195                         /* workaround for gcc bug #37014 */
2196                         volatile int tmp_v = abs(cur_vit_mask - bin);
2197
2198                         if (tmp_v < 75)
2199                                 mask_amt = 1;
2200                         else
2201                                 mask_amt = 0;
2202                         if (cur_vit_mask < 0)
2203                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2204                         else
2205                                 mask_p[cur_vit_mask / 100] = mask_amt;
2206                 }
2207                 cur_vit_mask -= 100;
2208         }
2209
2210         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2211                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2212                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2213                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2214                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2215                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2216                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2217                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2218         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2219         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2220
2221         tmp_mask = (mask_m[31] << 28)
2222                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2223                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2224                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2225                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2226                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2227                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2228                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2229         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2230         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2231
2232         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2233                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2234                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2235                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2236                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2237                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2238                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2239                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2240         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2241         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2242
2243         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2244                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2245                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2246                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2247                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2248                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2249                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2250                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2251         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2252         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2253
2254         tmp_mask = (mask_p[15] << 28)
2255                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2256                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2257                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2258                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2259                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2260                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2261                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2262         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2263         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2264
2265         tmp_mask = (mask_p[30] << 28)
2266                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2267                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2268                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2269                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2270                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2271                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2272                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2273         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2274         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2275
2276         tmp_mask = (mask_p[45] << 28)
2277                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2278                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2279                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2280                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2281                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2282                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2283                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2284         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2285         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2286
2287         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2288                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2289                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2290                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2291                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2292                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2293                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2294                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2295         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2296         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2297 }
2298
2299 static void ath9k_enable_rfkill(struct ath_hw *ah)
2300 {
2301         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2302                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2303
2304         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2305                     AR_GPIO_INPUT_MUX2_RFSILENT);
2306
2307         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2308         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2309 }
2310
2311 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2312                     bool bChannelChange)
2313 {
2314         struct ath_common *common = ath9k_hw_common(ah);
2315         u32 saveLedState;
2316         struct ath_softc *sc = ah->ah_sc;
2317         struct ath9k_channel *curchan = ah->curchan;
2318         u32 saveDefAntenna;
2319         u32 macStaId1;
2320         u64 tsf = 0;
2321         int i, rx_chainmask, r;
2322
2323         ah->extprotspacing = sc->ht_extprotspacing;
2324         ah->txchainmask = sc->tx_chainmask;
2325         ah->rxchainmask = sc->rx_chainmask;
2326
2327         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2328                 return -EIO;
2329
2330         if (curchan && !ah->chip_fullsleep)
2331                 ath9k_hw_getnf(ah, curchan);
2332
2333         if (bChannelChange &&
2334             (ah->chip_fullsleep != true) &&
2335             (ah->curchan != NULL) &&
2336             (chan->channel != ah->curchan->channel) &&
2337             ((chan->channelFlags & CHANNEL_ALL) ==
2338              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2339              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
2340              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
2341
2342                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2343                         ath9k_hw_loadnf(ah, ah->curchan);
2344                         ath9k_hw_start_nfcal(ah);
2345                         return 0;
2346                 }
2347         }
2348
2349         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2350         if (saveDefAntenna == 0)
2351                 saveDefAntenna = 1;
2352
2353         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2354
2355         /* For chips on which RTC reset is done, save TSF before it gets cleared */
2356         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2357                 tsf = ath9k_hw_gettsf64(ah);
2358
2359         saveLedState = REG_READ(ah, AR_CFG_LED) &
2360                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2361                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2362
2363         ath9k_hw_mark_phy_inactive(ah);
2364
2365         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2366                 REG_WRITE(ah,
2367                           AR9271_RESET_POWER_DOWN_CONTROL,
2368                           AR9271_RADIO_RF_RST);
2369                 udelay(50);
2370         }
2371
2372         if (!ath9k_hw_chip_reset(ah, chan)) {
2373                 DPRINTF(ah, ATH_DBG_FATAL, "Chip reset failed\n");
2374                 return -EINVAL;
2375         }
2376
2377         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2378                 ah->htc_reset_init = false;
2379                 REG_WRITE(ah,
2380                           AR9271_RESET_POWER_DOWN_CONTROL,
2381                           AR9271_GATE_MAC_CTL);
2382                 udelay(50);
2383         }
2384
2385         /* Restore TSF */
2386         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2387                 ath9k_hw_settsf64(ah, tsf);
2388
2389         if (AR_SREV_9280_10_OR_LATER(ah))
2390                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2391
2392         if (AR_SREV_9287_12_OR_LATER(ah)) {
2393                 /* Enable ASYNC FIFO */
2394                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2395                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2396                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2397                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2398                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2399                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2400                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2401         }
2402         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2403         if (r)
2404                 return r;
2405
2406         /* Setup MFP options for CCMP */
2407         if (AR_SREV_9280_20_OR_LATER(ah)) {
2408                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2409                  * frames when constructing CCMP AAD. */
2410                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2411                               0xc7ff);
2412                 ah->sw_mgmt_crypto = false;
2413         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2414                 /* Disable hardware crypto for management frames */
2415                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2416                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2417                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2418                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2419                 ah->sw_mgmt_crypto = true;
2420         } else
2421                 ah->sw_mgmt_crypto = true;
2422
2423         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2424                 ath9k_hw_set_delta_slope(ah, chan);
2425
2426         if (AR_SREV_9280_10_OR_LATER(ah))
2427                 ath9k_hw_9280_spur_mitigate(ah, chan);
2428         else
2429                 ath9k_hw_spur_mitigate(ah, chan);
2430
2431         ah->eep_ops->set_board_values(ah, chan);
2432
2433         ath9k_hw_decrease_chain_power(ah, chan);
2434
2435         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2436         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2437                   | macStaId1
2438                   | AR_STA_ID1_RTS_USE_DEF
2439                   | (ah->config.
2440                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2441                   | ah->sta_id1_defaults);
2442         ath9k_hw_set_operating_mode(ah, ah->opmode);
2443
2444         ath9k_hw_setbssidmask(ah);
2445
2446         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2447
2448         ath9k_hw_write_associd(ah);
2449
2450         REG_WRITE(ah, AR_ISR, ~0);
2451
2452         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2453
2454         if (AR_SREV_9280_10_OR_LATER(ah))
2455                 ath9k_hw_ar9280_set_channel(ah, chan);
2456         else
2457                 if (!(ath9k_hw_set_channel(ah, chan)))
2458                         return -EIO;
2459
2460         for (i = 0; i < AR_NUM_DCU; i++)
2461                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2462
2463         ah->intr_txqs = 0;
2464         for (i = 0; i < ah->caps.total_queues; i++)
2465                 ath9k_hw_resettxqueue(ah, i);
2466
2467         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2468         ath9k_hw_init_qos(ah);
2469
2470         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2471                 ath9k_enable_rfkill(ah);
2472
2473         ath9k_hw_init_user_settings(ah);
2474
2475         if (AR_SREV_9287_12_OR_LATER(ah)) {
2476                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2477                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2478                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2479                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2480                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2481                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2482
2483                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2484                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2485
2486                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2487                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2488                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2489                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2490         }
2491         if (AR_SREV_9287_12_OR_LATER(ah)) {
2492                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2493                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2494         }
2495
2496         REG_WRITE(ah, AR_STA_ID1,
2497                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2498
2499         ath9k_hw_set_dma(ah);
2500
2501         REG_WRITE(ah, AR_OBS, 8);
2502
2503         if (ah->config.intr_mitigation) {
2504                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2505                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2506         }
2507
2508         ath9k_hw_init_bb(ah, chan);
2509
2510         if (!ath9k_hw_init_cal(ah, chan))
2511                 return -EIO;
2512
2513         rx_chainmask = ah->rxchainmask;
2514         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2515                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2516                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2517         }
2518
2519         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2520
2521         /*
2522          * For big endian systems turn on swapping for descriptors
2523          */
2524         if (AR_SREV_9100(ah)) {
2525                 u32 mask;
2526                 mask = REG_READ(ah, AR_CFG);
2527                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2528                         DPRINTF(ah, ATH_DBG_RESET,
2529                                 "CFG Byte Swap Set 0x%x\n", mask);
2530                 } else {
2531                         mask =
2532                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2533                         REG_WRITE(ah, AR_CFG, mask);
2534                         DPRINTF(ah, ATH_DBG_RESET,
2535                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2536                 }
2537         } else {
2538                 /* Configure AR9271 target WLAN */
2539                 if (AR_SREV_9271(ah))
2540                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2541 #ifdef __BIG_ENDIAN
2542                 else
2543                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2544 #endif
2545         }
2546
2547         if (ah->btcoex_hw.enabled)
2548                 ath9k_hw_btcoex_enable(ah);
2549
2550         return 0;
2551 }
2552
2553 /************************/
2554 /* Key Cache Management */
2555 /************************/
2556
2557 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2558 {
2559         u32 keyType;
2560
2561         if (entry >= ah->caps.keycache_size) {
2562                 DPRINTF(ah, ATH_DBG_FATAL,
2563                         "keychache entry %u out of range\n", entry);
2564                 return false;
2565         }
2566
2567         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2568
2569         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2570         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2571         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2572         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2573         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2574         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2575         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2576         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2577
2578         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2579                 u16 micentry = entry + 64;
2580
2581                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2582                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2583                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2584                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2585
2586         }
2587
2588         return true;
2589 }
2590
2591 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2592 {
2593         u32 macHi, macLo;
2594
2595         if (entry >= ah->caps.keycache_size) {
2596                 DPRINTF(ah, ATH_DBG_FATAL,
2597                         "keychache entry %u out of range\n", entry);
2598                 return false;
2599         }
2600
2601         if (mac != NULL) {
2602                 macHi = (mac[5] << 8) | mac[4];
2603                 macLo = (mac[3] << 24) |
2604                         (mac[2] << 16) |
2605                         (mac[1] << 8) |
2606                         mac[0];
2607                 macLo >>= 1;
2608                 macLo |= (macHi & 1) << 31;
2609                 macHi >>= 1;
2610         } else {
2611                 macLo = macHi = 0;
2612         }
2613         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2614         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2615
2616         return true;
2617 }
2618
2619 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2620                                  const struct ath9k_keyval *k,
2621                                  const u8 *mac)
2622 {
2623         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2624         u32 key0, key1, key2, key3, key4;
2625         u32 keyType;
2626
2627         if (entry >= pCap->keycache_size) {
2628                 DPRINTF(ah, ATH_DBG_FATAL,
2629                         "keycache entry %u out of range\n", entry);
2630                 return false;
2631         }
2632
2633         switch (k->kv_type) {
2634         case ATH9K_CIPHER_AES_OCB:
2635                 keyType = AR_KEYTABLE_TYPE_AES;
2636                 break;
2637         case ATH9K_CIPHER_AES_CCM:
2638                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2639                         DPRINTF(ah, ATH_DBG_ANY,
2640                                 "AES-CCM not supported by mac rev 0x%x\n",
2641                                 ah->hw_version.macRev);
2642                         return false;
2643                 }
2644                 keyType = AR_KEYTABLE_TYPE_CCM;
2645                 break;
2646         case ATH9K_CIPHER_TKIP:
2647                 keyType = AR_KEYTABLE_TYPE_TKIP;
2648                 if (ATH9K_IS_MIC_ENABLED(ah)
2649                     && entry + 64 >= pCap->keycache_size) {
2650                         DPRINTF(ah, ATH_DBG_ANY,
2651                                 "entry %u inappropriate for TKIP\n", entry);
2652                         return false;
2653                 }
2654                 break;
2655         case ATH9K_CIPHER_WEP:
2656                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2657                         DPRINTF(ah, ATH_DBG_ANY,
2658                                 "WEP key length %u too small\n", k->kv_len);
2659                         return false;
2660                 }
2661                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2662                         keyType = AR_KEYTABLE_TYPE_40;
2663                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2664                         keyType = AR_KEYTABLE_TYPE_104;
2665                 else
2666                         keyType = AR_KEYTABLE_TYPE_128;
2667                 break;
2668         case ATH9K_CIPHER_CLR:
2669                 keyType = AR_KEYTABLE_TYPE_CLR;
2670                 break;
2671         default:
2672                 DPRINTF(ah, ATH_DBG_FATAL,
2673                         "cipher %u not supported\n", k->kv_type);
2674                 return false;
2675         }
2676
2677         key0 = get_unaligned_le32(k->kv_val + 0);
2678         key1 = get_unaligned_le16(k->kv_val + 4);
2679         key2 = get_unaligned_le32(k->kv_val + 6);
2680         key3 = get_unaligned_le16(k->kv_val + 10);
2681         key4 = get_unaligned_le32(k->kv_val + 12);
2682         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2683                 key4 &= 0xff;
2684
2685         /*
2686          * Note: Key cache registers access special memory area that requires
2687          * two 32-bit writes to actually update the values in the internal
2688          * memory. Consequently, the exact order and pairs used here must be
2689          * maintained.
2690          */
2691
2692         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2693                 u16 micentry = entry + 64;
2694
2695                 /*
2696                  * Write inverted key[47:0] first to avoid Michael MIC errors
2697                  * on frames that could be sent or received at the same time.
2698                  * The correct key will be written in the end once everything
2699                  * else is ready.
2700                  */
2701                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2702                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2703
2704                 /* Write key[95:48] */
2705                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2706                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2707
2708                 /* Write key[127:96] and key type */
2709                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2710                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2711
2712                 /* Write MAC address for the entry */
2713                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2714
2715                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2716                         /*
2717                          * TKIP uses two key cache entries:
2718                          * Michael MIC TX/RX keys in the same key cache entry
2719                          * (idx = main index + 64):
2720                          * key0 [31:0] = RX key [31:0]
2721                          * key1 [15:0] = TX key [31:16]
2722                          * key1 [31:16] = reserved
2723                          * key2 [31:0] = RX key [63:32]
2724                          * key3 [15:0] = TX key [15:0]
2725                          * key3 [31:16] = reserved
2726                          * key4 [31:0] = TX key [63:32]
2727                          */
2728                         u32 mic0, mic1, mic2, mic3, mic4;
2729
2730                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2731                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2732                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2733                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2734                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2735
2736                         /* Write RX[31:0] and TX[31:16] */
2737                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2738                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2739
2740                         /* Write RX[63:32] and TX[15:0] */
2741                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2742                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2743
2744                         /* Write TX[63:32] and keyType(reserved) */
2745                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2746                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2747                                   AR_KEYTABLE_TYPE_CLR);
2748
2749                 } else {
2750                         /*
2751                          * TKIP uses four key cache entries (two for group
2752                          * keys):
2753                          * Michael MIC TX/RX keys are in different key cache
2754                          * entries (idx = main index + 64 for TX and
2755                          * main index + 32 + 96 for RX):
2756                          * key0 [31:0] = TX/RX MIC key [31:0]
2757                          * key1 [31:0] = reserved
2758                          * key2 [31:0] = TX/RX MIC key [63:32]
2759                          * key3 [31:0] = reserved
2760                          * key4 [31:0] = reserved
2761                          *
2762                          * Upper layer code will call this function separately
2763                          * for TX and RX keys when these registers offsets are
2764                          * used.
2765                          */
2766                         u32 mic0, mic2;
2767
2768                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2769                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2770
2771                         /* Write MIC key[31:0] */
2772                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2773                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2774
2775                         /* Write MIC key[63:32] */
2776                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2777                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2778
2779                         /* Write TX[63:32] and keyType(reserved) */
2780                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2781                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2782                                   AR_KEYTABLE_TYPE_CLR);
2783                 }
2784
2785                 /* MAC address registers are reserved for the MIC entry */
2786                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2787                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2788
2789                 /*
2790                  * Write the correct (un-inverted) key[47:0] last to enable
2791                  * TKIP now that all other registers are set with correct
2792                  * values.
2793                  */
2794                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2795                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2796         } else {
2797                 /* Write key[47:0] */
2798                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2799                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2800
2801                 /* Write key[95:48] */
2802                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2803                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2804
2805                 /* Write key[127:96] and key type */
2806                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2807                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2808
2809                 /* Write MAC address for the entry */
2810                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2811         }
2812
2813         return true;
2814 }
2815
2816 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2817 {
2818         if (entry < ah->caps.keycache_size) {
2819                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2820                 if (val & AR_KEYTABLE_VALID)
2821                         return true;
2822         }
2823         return false;
2824 }
2825
2826 /******************************/
2827 /* Power Management (Chipset) */
2828 /******************************/
2829
2830 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2831 {
2832         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2833         if (setChip) {
2834                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2835                             AR_RTC_FORCE_WAKE_EN);
2836                 if (!AR_SREV_9100(ah))
2837                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2838
2839                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2840                             AR_RTC_RESET_EN);
2841         }
2842 }
2843
2844 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2845 {
2846         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2847         if (setChip) {
2848                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2849
2850                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2851                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2852                                   AR_RTC_FORCE_WAKE_ON_INT);
2853                 } else {
2854                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2855                                     AR_RTC_FORCE_WAKE_EN);
2856                 }
2857         }
2858 }
2859
2860 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2861 {
2862         u32 val;
2863         int i;
2864
2865         if (setChip) {
2866                 if ((REG_READ(ah, AR_RTC_STATUS) &
2867                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2868                         if (ath9k_hw_set_reset_reg(ah,
2869                                            ATH9K_RESET_POWER_ON) != true) {
2870                                 return false;
2871                         }
2872                 }
2873                 if (AR_SREV_9100(ah))
2874                         REG_SET_BIT(ah, AR_RTC_RESET,
2875                                     AR_RTC_RESET_EN);
2876
2877                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2878                             AR_RTC_FORCE_WAKE_EN);
2879                 udelay(50);
2880
2881                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2882                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2883                         if (val == AR_RTC_STATUS_ON)
2884                                 break;
2885                         udelay(50);
2886                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2887                                     AR_RTC_FORCE_WAKE_EN);
2888                 }
2889                 if (i == 0) {
2890                         DPRINTF(ah, ATH_DBG_FATAL,
2891                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2892                         return false;
2893                 }
2894         }
2895
2896         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2897
2898         return true;
2899 }
2900
2901 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2902 {
2903         int status = true, setChip = true;
2904         static const char *modes[] = {
2905                 "AWAKE",
2906                 "FULL-SLEEP",
2907                 "NETWORK SLEEP",
2908                 "UNDEFINED"
2909         };
2910
2911         if (ah->power_mode == mode)
2912                 return status;
2913
2914         DPRINTF(ah, ATH_DBG_RESET, "%s -> %s\n",
2915                 modes[ah->power_mode], modes[mode]);
2916
2917         switch (mode) {
2918         case ATH9K_PM_AWAKE:
2919                 status = ath9k_hw_set_power_awake(ah, setChip);
2920                 break;
2921         case ATH9K_PM_FULL_SLEEP:
2922                 ath9k_set_power_sleep(ah, setChip);
2923                 ah->chip_fullsleep = true;
2924                 break;
2925         case ATH9K_PM_NETWORK_SLEEP:
2926                 ath9k_set_power_network_sleep(ah, setChip);
2927                 break;
2928         default:
2929                 DPRINTF(ah, ATH_DBG_FATAL,
2930                         "Unknown power mode %u\n", mode);
2931                 return false;
2932         }
2933         ah->power_mode = mode;
2934
2935         return status;
2936 }
2937
2938 /*
2939  * Helper for ASPM support.
2940  *
2941  * Disable PLL when in L0s as well as receiver clock when in L1.
2942  * This power saving option must be enabled through the SerDes.
2943  *
2944  * Programming the SerDes must go through the same 288 bit serial shift
2945  * register as the other analog registers.  Hence the 9 writes.
2946  */
2947 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2948 {
2949         u8 i;
2950         u32 val;
2951
2952         if (ah->is_pciexpress != true)
2953                 return;
2954
2955         /* Do not touch SerDes registers */
2956         if (ah->config.pcie_powersave_enable == 2)
2957                 return;
2958
2959         /* Nothing to do on restore for 11N */
2960         if (!restore) {
2961                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2962                         /*
2963                          * AR9280 2.0 or later chips use SerDes values from the
2964                          * initvals.h initialized depending on chipset during
2965                          * ath9k_hw_init()
2966                          */
2967                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2968                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2969                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2970                         }
2971                 } else if (AR_SREV_9280(ah) &&
2972                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2973                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2974                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2975
2976                         /* RX shut off when elecidle is asserted */
2977                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2978                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2979                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2980
2981                         /* Shut off CLKREQ active in L1 */
2982                         if (ah->config.pcie_clock_req)
2983                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2984                         else
2985                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2986
2987                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2988                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2989                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2990
2991                         /* Load the new settings */
2992                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2993
2994                 } else {
2995                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2996                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2997
2998                         /* RX shut off when elecidle is asserted */
2999                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3000                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3001                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3002
3003                         /*
3004                          * Ignore ah->ah_config.pcie_clock_req setting for
3005                          * pre-AR9280 11n
3006                          */
3007                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3008
3009                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3010                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3011                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3012
3013                         /* Load the new settings */
3014                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3015                 }
3016
3017                 udelay(1000);
3018
3019                 /* set bit 19 to allow forcing of pcie core into L1 state */
3020                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3021
3022                 /* Several PCIe massages to ensure proper behaviour */
3023                 if (ah->config.pcie_waen) {
3024                         val = ah->config.pcie_waen;
3025                         if (!power_off)
3026                                 val &= (~AR_WA_D3_L1_DISABLE);
3027                 } else {
3028                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3029                             AR_SREV_9287(ah)) {
3030                                 val = AR9285_WA_DEFAULT;
3031                                 if (!power_off)
3032                                         val &= (~AR_WA_D3_L1_DISABLE);
3033                         } else if (AR_SREV_9280(ah)) {
3034                                 /*
3035                                  * On AR9280 chips bit 22 of 0x4004 needs to be
3036                                  * set otherwise card may disappear.
3037                                  */
3038                                 val = AR9280_WA_DEFAULT;
3039                                 if (!power_off)
3040                                         val &= (~AR_WA_D3_L1_DISABLE);
3041                         } else
3042                                 val = AR_WA_DEFAULT;
3043                 }
3044
3045                 REG_WRITE(ah, AR_WA, val);
3046         }
3047
3048         if (power_off) {
3049                 /*
3050                  * Set PCIe workaround bits
3051                  * bit 14 in WA register (disable L1) should only
3052                  * be set when device enters D3 and be cleared
3053                  * when device comes back to D0.
3054                  */
3055                 if (ah->config.pcie_waen) {
3056                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
3057                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3058                 } else {
3059                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3060                               AR_SREV_9287(ah)) &&
3061                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
3062                             (AR_SREV_9280(ah) &&
3063                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
3064                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3065                         }
3066                 }
3067         }
3068 }
3069
3070 /**********************/
3071 /* Interrupt Handling */
3072 /**********************/
3073
3074 bool ath9k_hw_intrpend(struct ath_hw *ah)
3075 {
3076         u32 host_isr;
3077
3078         if (AR_SREV_9100(ah))
3079                 return true;
3080
3081         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3082         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3083                 return true;
3084
3085         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3086         if ((host_isr & AR_INTR_SYNC_DEFAULT)
3087             && (host_isr != AR_INTR_SPURIOUS))
3088                 return true;
3089
3090         return false;
3091 }
3092
3093 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3094 {
3095         u32 isr = 0;
3096         u32 mask2 = 0;
3097         struct ath9k_hw_capabilities *pCap = &ah->caps;
3098         u32 sync_cause = 0;
3099         bool fatal_int = false;
3100
3101         if (!AR_SREV_9100(ah)) {
3102                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3103                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3104                             == AR_RTC_STATUS_ON) {
3105                                 isr = REG_READ(ah, AR_ISR);
3106                         }
3107                 }
3108
3109                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3110                         AR_INTR_SYNC_DEFAULT;
3111
3112                 *masked = 0;
3113
3114                 if (!isr && !sync_cause)
3115                         return false;
3116         } else {
3117                 *masked = 0;
3118                 isr = REG_READ(ah, AR_ISR);
3119         }
3120
3121         if (isr) {
3122                 if (isr & AR_ISR_BCNMISC) {
3123                         u32 isr2;
3124                         isr2 = REG_READ(ah, AR_ISR_S2);
3125                         if (isr2 & AR_ISR_S2_TIM)
3126                                 mask2 |= ATH9K_INT_TIM;
3127                         if (isr2 & AR_ISR_S2_DTIM)
3128                                 mask2 |= ATH9K_INT_DTIM;
3129                         if (isr2 & AR_ISR_S2_DTIMSYNC)
3130                                 mask2 |= ATH9K_INT_DTIMSYNC;
3131                         if (isr2 & (AR_ISR_S2_CABEND))
3132                                 mask2 |= ATH9K_INT_CABEND;
3133                         if (isr2 & AR_ISR_S2_GTT)
3134                                 mask2 |= ATH9K_INT_GTT;
3135                         if (isr2 & AR_ISR_S2_CST)
3136                                 mask2 |= ATH9K_INT_CST;
3137                         if (isr2 & AR_ISR_S2_TSFOOR)
3138                                 mask2 |= ATH9K_INT_TSFOOR;
3139                 }
3140
3141                 isr = REG_READ(ah, AR_ISR_RAC);
3142                 if (isr == 0xffffffff) {
3143                         *masked = 0;
3144                         return false;
3145                 }
3146
3147                 *masked = isr & ATH9K_INT_COMMON;
3148
3149                 if (ah->config.intr_mitigation) {
3150                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3151                                 *masked |= ATH9K_INT_RX;
3152                 }
3153
3154                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3155                         *masked |= ATH9K_INT_RX;
3156                 if (isr &
3157                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3158                      AR_ISR_TXEOL)) {
3159                         u32 s0_s, s1_s;
3160
3161                         *masked |= ATH9K_INT_TX;
3162
3163                         s0_s = REG_READ(ah, AR_ISR_S0_S);
3164                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3165                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3166
3167                         s1_s = REG_READ(ah, AR_ISR_S1_S);
3168                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3169                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3170                 }
3171
3172                 if (isr & AR_ISR_RXORN) {
3173                         DPRINTF(ah, ATH_DBG_INTERRUPT,
3174                                 "receive FIFO overrun interrupt\n");
3175                 }
3176
3177                 if (!AR_SREV_9100(ah)) {
3178                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3179                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3180                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
3181                                         *masked |= ATH9K_INT_TIM_TIMER;
3182                         }
3183                 }
3184
3185                 *masked |= mask2;
3186         }
3187
3188         if (AR_SREV_9100(ah))
3189                 return true;
3190
3191         if (isr & AR_ISR_GENTMR) {
3192                 u32 s5_s;
3193
3194                 s5_s = REG_READ(ah, AR_ISR_S5_S);
3195                 if (isr & AR_ISR_GENTMR) {
3196                         ah->intr_gen_timer_trigger =
3197                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
3198
3199                         ah->intr_gen_timer_thresh =
3200                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
3201
3202                         if (ah->intr_gen_timer_trigger)
3203                                 *masked |= ATH9K_INT_GENTIMER;
3204
3205                 }
3206         }
3207
3208         if (sync_cause) {
3209                 fatal_int =
3210                         (sync_cause &
3211                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3212                         ? true : false;
3213
3214                 if (fatal_int) {
3215                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3216                                 DPRINTF(ah, ATH_DBG_ANY,
3217                                         "received PCI FATAL interrupt\n");
3218                         }
3219                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3220                                 DPRINTF(ah, ATH_DBG_ANY,
3221                                         "received PCI PERR interrupt\n");
3222                         }
3223                         *masked |= ATH9K_INT_FATAL;
3224                 }
3225                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3226                         DPRINTF(ah, ATH_DBG_INTERRUPT,
3227                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3228                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3229                         REG_WRITE(ah, AR_RC, 0);
3230                         *masked |= ATH9K_INT_FATAL;
3231                 }
3232                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3233                         DPRINTF(ah, ATH_DBG_INTERRUPT,
3234                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3235                 }
3236
3237                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3238                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3239         }
3240
3241         return true;
3242 }
3243
3244 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3245 {
3246         u32 omask = ah->mask_reg;
3247         u32 mask, mask2;
3248         struct ath9k_hw_capabilities *pCap = &ah->caps;
3249
3250         DPRINTF(ah, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3251
3252         if (omask & ATH9K_INT_GLOBAL) {
3253                 DPRINTF(ah, ATH_DBG_INTERRUPT, "disable IER\n");
3254                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3255                 (void) REG_READ(ah, AR_IER);
3256                 if (!AR_SREV_9100(ah)) {
3257                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3258                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3259
3260                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3261                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3262                 }
3263         }
3264
3265         mask = ints & ATH9K_INT_COMMON;
3266         mask2 = 0;
3267
3268         if (ints & ATH9K_INT_TX) {
3269                 if (ah->txok_interrupt_mask)
3270                         mask |= AR_IMR_TXOK;
3271                 if (ah->txdesc_interrupt_mask)
3272                         mask |= AR_IMR_TXDESC;
3273                 if (ah->txerr_interrupt_mask)
3274                         mask |= AR_IMR_TXERR;
3275                 if (ah->txeol_interrupt_mask)
3276                         mask |= AR_IMR_TXEOL;
3277         }
3278         if (ints & ATH9K_INT_RX) {
3279                 mask |= AR_IMR_RXERR;
3280                 if (ah->config.intr_mitigation)
3281                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3282                 else
3283                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3284                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3285                         mask |= AR_IMR_GENTMR;
3286         }
3287
3288         if (ints & (ATH9K_INT_BMISC)) {
3289                 mask |= AR_IMR_BCNMISC;
3290                 if (ints & ATH9K_INT_TIM)
3291                         mask2 |= AR_IMR_S2_TIM;
3292                 if (ints & ATH9K_INT_DTIM)
3293                         mask2 |= AR_IMR_S2_DTIM;
3294                 if (ints & ATH9K_INT_DTIMSYNC)
3295                         mask2 |= AR_IMR_S2_DTIMSYNC;
3296                 if (ints & ATH9K_INT_CABEND)
3297                         mask2 |= AR_IMR_S2_CABEND;
3298                 if (ints & ATH9K_INT_TSFOOR)
3299                         mask2 |= AR_IMR_S2_TSFOOR;
3300         }
3301
3302         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3303                 mask |= AR_IMR_BCNMISC;
3304                 if (ints & ATH9K_INT_GTT)
3305                         mask2 |= AR_IMR_S2_GTT;
3306                 if (ints & ATH9K_INT_CST)
3307                         mask2 |= AR_IMR_S2_CST;
3308         }
3309
3310         DPRINTF(ah, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3311         REG_WRITE(ah, AR_IMR, mask);
3312         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3313                                            AR_IMR_S2_DTIM |
3314                                            AR_IMR_S2_DTIMSYNC |
3315                                            AR_IMR_S2_CABEND |
3316                                            AR_IMR_S2_CABTO |
3317                                            AR_IMR_S2_TSFOOR |
3318                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3319         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3320         ah->mask_reg = ints;
3321
3322         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3323                 if (ints & ATH9K_INT_TIM_TIMER)
3324                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3325                 else
3326                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3327         }
3328
3329         if (ints & ATH9K_INT_GLOBAL) {
3330                 DPRINTF(ah, ATH_DBG_INTERRUPT, "enable IER\n");
3331                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3332                 if (!AR_SREV_9100(ah)) {
3333                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3334                                   AR_INTR_MAC_IRQ);
3335                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3336
3337
3338                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3339                                   AR_INTR_SYNC_DEFAULT);
3340                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3341                                   AR_INTR_SYNC_DEFAULT);
3342                 }
3343                 DPRINTF(ah, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3344                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3345         }
3346
3347         return omask;
3348 }
3349
3350 /*******************/
3351 /* Beacon Handling */
3352 /*******************/
3353
3354 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3355 {
3356         int flags = 0;
3357
3358         ah->beacon_interval = beacon_period;
3359
3360         switch (ah->opmode) {
3361         case NL80211_IFTYPE_STATION:
3362         case NL80211_IFTYPE_MONITOR:
3363                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3364                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3365                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3366                 flags |= AR_TBTT_TIMER_EN;
3367                 break;
3368         case NL80211_IFTYPE_ADHOC:
3369         case NL80211_IFTYPE_MESH_POINT:
3370                 REG_SET_BIT(ah, AR_TXCFG,
3371                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3372                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3373                           TU_TO_USEC(next_beacon +
3374                                      (ah->atim_window ? ah->
3375                                       atim_window : 1)));
3376                 flags |= AR_NDP_TIMER_EN;
3377         case NL80211_IFTYPE_AP:
3378                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3379                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3380                           TU_TO_USEC(next_beacon -
3381                                      ah->config.
3382                                      dma_beacon_response_time));
3383                 REG_WRITE(ah, AR_NEXT_SWBA,
3384                           TU_TO_USEC(next_beacon -
3385                                      ah->config.
3386                                      sw_beacon_response_time));
3387                 flags |=
3388                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3389                 break;
3390         default:
3391                 DPRINTF(ah, ATH_DBG_BEACON,
3392                         "%s: unsupported opmode: %d\n",
3393                         __func__, ah->opmode);
3394                 return;
3395                 break;
3396         }
3397
3398         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3399         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3400         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3401         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3402
3403         beacon_period &= ~ATH9K_BEACON_ENA;
3404         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3405                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3406                 ath9k_hw_reset_tsf(ah);
3407         }
3408
3409         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3410 }
3411
3412 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3413                                     const struct ath9k_beacon_state *bs)
3414 {
3415         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3416         struct ath9k_hw_capabilities *pCap = &ah->caps;
3417
3418         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3419
3420         REG_WRITE(ah, AR_BEACON_PERIOD,
3421                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3422         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3423                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3424
3425         REG_RMW_FIELD(ah, AR_RSSI_THR,
3426                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3427
3428         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3429
3430         if (bs->bs_sleepduration > beaconintval)
3431                 beaconintval = bs->bs_sleepduration;
3432
3433         dtimperiod = bs->bs_dtimperiod;
3434         if (bs->bs_sleepduration > dtimperiod)
3435                 dtimperiod = bs->bs_sleepduration;
3436
3437         if (beaconintval == dtimperiod)
3438                 nextTbtt = bs->bs_nextdtim;
3439         else
3440                 nextTbtt = bs->bs_nexttbtt;
3441
3442         DPRINTF(ah, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3443         DPRINTF(ah, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3444         DPRINTF(ah, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3445         DPRINTF(ah, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3446
3447         REG_WRITE(ah, AR_NEXT_DTIM,
3448                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3449         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3450
3451         REG_WRITE(ah, AR_SLEEP1,
3452                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3453                   | AR_SLEEP1_ASSUME_DTIM);
3454
3455         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3456                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3457         else
3458                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3459
3460         REG_WRITE(ah, AR_SLEEP2,
3461                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3462
3463         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3464         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3465
3466         REG_SET_BIT(ah, AR_TIMER_MODE,
3467                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3468                     AR_DTIM_TIMER_EN);
3469
3470         /* TSF Out of Range Threshold */
3471         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3472 }
3473
3474 /*******************/
3475 /* HW Capabilities */
3476 /*******************/
3477
3478 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3479 {
3480         struct ath9k_hw_capabilities *pCap = &ah->caps;
3481         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3482         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3483
3484         u16 capField = 0, eeval;
3485
3486         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3487         regulatory->current_rd = eeval;
3488
3489         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3490         if (AR_SREV_9285_10_OR_LATER(ah))
3491                 eeval |= AR9285_RDEXT_DEFAULT;
3492         regulatory->current_rd_ext = eeval;
3493
3494         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3495
3496         if (ah->opmode != NL80211_IFTYPE_AP &&
3497             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3498                 if (regulatory->current_rd == 0x64 ||
3499                     regulatory->current_rd == 0x65)
3500                         regulatory->current_rd += 5;
3501                 else if (regulatory->current_rd == 0x41)
3502                         regulatory->current_rd = 0x43;
3503                 DPRINTF(ah, ATH_DBG_REGULATORY,
3504                         "regdomain mapped to 0x%x\n", regulatory->current_rd);
3505         }
3506
3507         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3508         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3509
3510         if (eeval & AR5416_OPFLAGS_11A) {
3511                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3512                 if (ah->config.ht_enable) {
3513                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3514                                 set_bit(ATH9K_MODE_11NA_HT20,
3515                                         pCap->wireless_modes);
3516                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3517                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3518                                         pCap->wireless_modes);
3519                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3520                                         pCap->wireless_modes);
3521                         }
3522                 }
3523         }
3524
3525         if (eeval & AR5416_OPFLAGS_11G) {
3526                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3527                 if (ah->config.ht_enable) {
3528                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3529                                 set_bit(ATH9K_MODE_11NG_HT20,
3530                                         pCap->wireless_modes);
3531                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3532                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3533                                         pCap->wireless_modes);
3534                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3535                                         pCap->wireless_modes);
3536                         }
3537                 }
3538         }
3539
3540         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3541         /*
3542          * For AR9271 we will temporarilly uses the rx chainmax as read from
3543          * the EEPROM.
3544          */
3545         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3546             !(eeval & AR5416_OPFLAGS_11A) &&
3547             !(AR_SREV_9271(ah)))
3548                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3549                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3550         else
3551                 /* Use rx_chainmask from EEPROM. */
3552                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3553
3554         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3555                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3556
3557         pCap->low_2ghz_chan = 2312;
3558         pCap->high_2ghz_chan = 2732;
3559
3560         pCap->low_5ghz_chan = 4920;
3561         pCap->high_5ghz_chan = 6100;
3562
3563         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3564         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3565         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3566
3567         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3568         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3569         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3570
3571         if (ah->config.ht_enable)
3572                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3573         else
3574                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3575
3576         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3577         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3578         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3579         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3580
3581         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3582                 pCap->total_queues =
3583                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3584         else
3585                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3586
3587         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3588                 pCap->keycache_size =
3589                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3590         else
3591                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3592
3593         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3594         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3595
3596         if (AR_SREV_9285_10_OR_LATER(ah))
3597                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3598         else if (AR_SREV_9280_10_OR_LATER(ah))
3599                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3600         else
3601                 pCap->num_gpio_pins = AR_NUM_GPIO;
3602
3603         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3604                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3605                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3606         } else {
3607                 pCap->rts_aggr_limit = (8 * 1024);
3608         }
3609
3610         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3611
3612 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3613         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3614         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3615                 ah->rfkill_gpio =
3616                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3617                 ah->rfkill_polarity =
3618                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3619
3620                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3621         }
3622 #endif
3623
3624         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3625
3626         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3627                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3628         else
3629                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3630
3631         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3632                 pCap->reg_cap =
3633                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3634                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3635                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3636                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3637         } else {
3638                 pCap->reg_cap =
3639                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3640                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3641         }
3642
3643         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3644
3645         pCap->num_antcfg_5ghz =
3646                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3647         pCap->num_antcfg_2ghz =
3648                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3649
3650         if (AR_SREV_9280_10_OR_LATER(ah) &&
3651             ath9k_hw_btcoex_supported(ah)) {
3652                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3653                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3654
3655                 if (AR_SREV_9285(ah)) {
3656                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3657                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3658                 } else {
3659                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3660                 }
3661         } else {
3662                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3663         }
3664 }
3665
3666 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3667                             u32 capability, u32 *result)
3668 {
3669         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3670         switch (type) {
3671         case ATH9K_CAP_CIPHER:
3672                 switch (capability) {
3673                 case ATH9K_CIPHER_AES_CCM:
3674                 case ATH9K_CIPHER_AES_OCB:
3675                 case ATH9K_CIPHER_TKIP:
3676                 case ATH9K_CIPHER_WEP:
3677                 case ATH9K_CIPHER_MIC:
3678                 case ATH9K_CIPHER_CLR:
3679                         return true;
3680                 default:
3681                         return false;
3682                 }
3683         case ATH9K_CAP_TKIP_MIC:
3684                 switch (capability) {
3685                 case 0:
3686                         return true;
3687                 case 1:
3688                         return (ah->sta_id1_defaults &
3689                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3690                         false;
3691                 }
3692         case ATH9K_CAP_TKIP_SPLIT:
3693                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3694                         false : true;
3695         case ATH9K_CAP_DIVERSITY:
3696                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3697                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3698                         true : false;
3699         case ATH9K_CAP_MCAST_KEYSRCH:
3700                 switch (capability) {
3701                 case 0:
3702                         return true;
3703                 case 1:
3704                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3705                                 return false;
3706                         } else {
3707                                 return (ah->sta_id1_defaults &
3708                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3709                                         false;
3710                         }
3711                 }
3712                 return false;
3713         case ATH9K_CAP_TXPOW:
3714                 switch (capability) {
3715                 case 0:
3716                         return 0;
3717                 case 1:
3718                         *result = regulatory->power_limit;
3719                         return 0;
3720                 case 2:
3721                         *result = regulatory->max_power_level;
3722                         return 0;
3723                 case 3:
3724                         *result = regulatory->tp_scale;
3725                         return 0;
3726                 }
3727                 return false;
3728         case ATH9K_CAP_DS:
3729                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3730                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3731                         ? false : true;
3732         default:
3733                 return false;
3734         }
3735 }
3736
3737 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3738                             u32 capability, u32 setting, int *status)
3739 {
3740         u32 v;
3741
3742         switch (type) {
3743         case ATH9K_CAP_TKIP_MIC:
3744                 if (setting)
3745                         ah->sta_id1_defaults |=
3746                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3747                 else
3748                         ah->sta_id1_defaults &=
3749                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3750                 return true;
3751         case ATH9K_CAP_DIVERSITY:
3752                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3753                 if (setting)
3754                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3755                 else
3756                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3757                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3758                 return true;
3759         case ATH9K_CAP_MCAST_KEYSRCH:
3760                 if (setting)
3761                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3762                 else
3763                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3764                 return true;
3765         default:
3766                 return false;
3767         }
3768 }
3769
3770 /****************************/
3771 /* GPIO / RFKILL / Antennae */
3772 /****************************/
3773
3774 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3775                                          u32 gpio, u32 type)
3776 {
3777         int addr;
3778         u32 gpio_shift, tmp;
3779
3780         if (gpio > 11)
3781                 addr = AR_GPIO_OUTPUT_MUX3;
3782         else if (gpio > 5)
3783                 addr = AR_GPIO_OUTPUT_MUX2;
3784         else
3785                 addr = AR_GPIO_OUTPUT_MUX1;
3786
3787         gpio_shift = (gpio % 6) * 5;
3788
3789         if (AR_SREV_9280_20_OR_LATER(ah)
3790             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3791                 REG_RMW(ah, addr, (type << gpio_shift),
3792                         (0x1f << gpio_shift));
3793         } else {
3794                 tmp = REG_READ(ah, addr);
3795                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3796                 tmp &= ~(0x1f << gpio_shift);
3797                 tmp |= (type << gpio_shift);
3798                 REG_WRITE(ah, addr, tmp);
3799         }
3800 }
3801
3802 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3803 {
3804         u32 gpio_shift;
3805
3806         ASSERT(gpio < ah->caps.num_gpio_pins);
3807
3808         gpio_shift = gpio << 1;
3809
3810         REG_RMW(ah,
3811                 AR_GPIO_OE_OUT,
3812                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3813                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3814 }
3815
3816 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3817 {
3818 #define MS_REG_READ(x, y) \
3819         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3820
3821         if (gpio >= ah->caps.num_gpio_pins)
3822                 return 0xffffffff;
3823
3824         if (AR_SREV_9287_10_OR_LATER(ah))
3825                 return MS_REG_READ(AR9287, gpio) != 0;
3826         else if (AR_SREV_9285_10_OR_LATER(ah))
3827                 return MS_REG_READ(AR9285, gpio) != 0;
3828         else if (AR_SREV_9280_10_OR_LATER(ah))
3829                 return MS_REG_READ(AR928X, gpio) != 0;
3830         else
3831                 return MS_REG_READ(AR, gpio) != 0;
3832 }
3833
3834 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3835                          u32 ah_signal_type)
3836 {
3837         u32 gpio_shift;
3838
3839         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3840
3841         gpio_shift = 2 * gpio;
3842
3843         REG_RMW(ah,
3844                 AR_GPIO_OE_OUT,
3845                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3846                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3847 }
3848
3849 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3850 {
3851         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3852                 AR_GPIO_BIT(gpio));
3853 }
3854
3855 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3856 {
3857         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3858 }
3859
3860 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3861 {
3862         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3863 }
3864
3865 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3866                                enum ath9k_ant_setting settings,
3867                                struct ath9k_channel *chan,
3868                                u8 *tx_chainmask,
3869                                u8 *rx_chainmask,
3870                                u8 *antenna_cfgd)
3871 {
3872         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3873
3874         if (AR_SREV_9280(ah)) {
3875                 if (!tx_chainmask_cfg) {
3876
3877                         tx_chainmask_cfg = *tx_chainmask;
3878                         rx_chainmask_cfg = *rx_chainmask;
3879                 }
3880
3881                 switch (settings) {
3882                 case ATH9K_ANT_FIXED_A:
3883                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3884                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3885                         *antenna_cfgd = true;
3886                         break;
3887                 case ATH9K_ANT_FIXED_B:
3888                         if (ah->caps.tx_chainmask >
3889                             ATH9K_ANTENNA1_CHAINMASK) {
3890                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3891                         }
3892                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3893                         *antenna_cfgd = true;
3894                         break;
3895                 case ATH9K_ANT_VARIABLE:
3896                         *tx_chainmask = tx_chainmask_cfg;
3897                         *rx_chainmask = rx_chainmask_cfg;
3898                         *antenna_cfgd = true;
3899                         break;
3900                 default:
3901                         break;
3902                 }
3903         } else {
3904                 ah->config.diversity_control = settings;
3905         }
3906
3907         return true;
3908 }
3909
3910 /*********************/
3911 /* General Operation */
3912 /*********************/
3913
3914 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3915 {
3916         u32 bits = REG_READ(ah, AR_RX_FILTER);
3917         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3918
3919         if (phybits & AR_PHY_ERR_RADAR)
3920                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3921         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3922                 bits |= ATH9K_RX_FILTER_PHYERR;
3923
3924         return bits;
3925 }
3926
3927 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3928 {
3929         u32 phybits;
3930
3931         REG_WRITE(ah, AR_RX_FILTER, bits);
3932
3933         phybits = 0;
3934         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3935                 phybits |= AR_PHY_ERR_RADAR;
3936         if (bits & ATH9K_RX_FILTER_PHYERR)
3937                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3938         REG_WRITE(ah, AR_PHY_ERR, phybits);
3939
3940         if (phybits)
3941                 REG_WRITE(ah, AR_RXCFG,
3942                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3943         else
3944                 REG_WRITE(ah, AR_RXCFG,
3945                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3946 }
3947
3948 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3949 {
3950         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3951 }
3952
3953 bool ath9k_hw_disable(struct ath_hw *ah)
3954 {
3955         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3956                 return false;
3957
3958         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3959 }
3960
3961 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3962 {
3963         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3964         struct ath9k_channel *chan = ah->curchan;
3965         struct ieee80211_channel *channel = chan->chan;
3966
3967         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3968
3969         ah->eep_ops->set_txpower(ah, chan,
3970                                  ath9k_regd_get_ctl(regulatory, chan),
3971                                  channel->max_antenna_gain * 2,
3972                                  channel->max_power * 2,
3973                                  min((u32) MAX_RATE_POWER,
3974                                  (u32) regulatory->power_limit));
3975 }
3976
3977 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3978 {
3979         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3980 }
3981
3982 void ath9k_hw_setopmode(struct ath_hw *ah)
3983 {
3984         ath9k_hw_set_operating_mode(ah, ah->opmode);
3985 }
3986
3987 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3988 {
3989         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3990         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3991 }
3992
3993 void ath9k_hw_setbssidmask(struct ath_hw *ah)
3994 {
3995         struct ath_common *common = ath9k_hw_common(ah);
3996
3997         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(common->bssidmask));
3998         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(common->bssidmask + 4));
3999 }
4000
4001 void ath9k_hw_write_associd(struct ath_hw *ah)
4002 {
4003         struct ath_common *common = ath9k_hw_common(ah);
4004
4005         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
4006         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
4007                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
4008 }
4009
4010 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
4011 {
4012         u64 tsf;
4013
4014         tsf = REG_READ(ah, AR_TSF_U32);
4015         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4016
4017         return tsf;
4018 }
4019
4020 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
4021 {
4022         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
4023         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
4024 }
4025
4026 void ath9k_hw_reset_tsf(struct ath_hw *ah)
4027 {
4028         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
4029                            AH_TSF_WRITE_TIMEOUT))
4030                 DPRINTF(ah, ATH_DBG_RESET,
4031                         "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4032
4033         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4034 }
4035
4036 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
4037 {
4038         if (setting)
4039                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
4040         else
4041                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
4042 }
4043
4044 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
4045 {
4046         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4047                 DPRINTF(ah, ATH_DBG_RESET, "bad slot time %u\n", us);
4048                 ah->slottime = (u32) -1;
4049                 return false;
4050         } else {
4051                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4052                 ah->slottime = us;
4053                 return true;
4054         }
4055 }
4056
4057 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
4058 {
4059         u32 macmode;
4060
4061         if (mode == ATH9K_HT_MACMODE_2040 &&
4062             !ah->config.cwm_ignore_extcca)
4063                 macmode = AR_2040_JOINED_RX_CLEAR;
4064         else
4065                 macmode = 0;
4066
4067         REG_WRITE(ah, AR_2040_MODE, macmode);
4068 }
4069
4070 /* HW Generic timers configuration */
4071
4072 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
4073 {
4074         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4075         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4076         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4077         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4078         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4079         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4080         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4081         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4082         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
4083         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
4084                                 AR_NDP2_TIMER_MODE, 0x0002},
4085         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
4086                                 AR_NDP2_TIMER_MODE, 0x0004},
4087         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
4088                                 AR_NDP2_TIMER_MODE, 0x0008},
4089         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
4090                                 AR_NDP2_TIMER_MODE, 0x0010},
4091         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
4092                                 AR_NDP2_TIMER_MODE, 0x0020},
4093         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
4094                                 AR_NDP2_TIMER_MODE, 0x0040},
4095         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
4096                                 AR_NDP2_TIMER_MODE, 0x0080}
4097 };
4098
4099 /* HW generic timer primitives */
4100
4101 /* compute and clear index of rightmost 1 */
4102 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
4103 {
4104         u32 b;
4105
4106         b = *mask;
4107         b &= (0-b);
4108         *mask &= ~b;
4109         b *= debruijn32;
4110         b >>= 27;
4111
4112         return timer_table->gen_timer_index[b];
4113 }
4114
4115 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
4116 {
4117         return REG_READ(ah, AR_TSF_L32);
4118 }
4119
4120 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
4121                                           void (*trigger)(void *),
4122                                           void (*overflow)(void *),
4123                                           void *arg,
4124                                           u8 timer_index)
4125 {
4126         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4127         struct ath_gen_timer *timer;
4128
4129         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
4130
4131         if (timer == NULL) {
4132                 printk(KERN_DEBUG "Failed to allocate memory"
4133                        "for hw timer[%d]\n", timer_index);
4134                 return NULL;
4135         }
4136
4137         /* allocate a hardware generic timer slot */
4138         timer_table->timers[timer_index] = timer;
4139         timer->index = timer_index;
4140         timer->trigger = trigger;
4141         timer->overflow = overflow;
4142         timer->arg = arg;
4143
4144         return timer;
4145 }
4146
4147 void ath_gen_timer_start(struct ath_hw *ah,
4148                          struct ath_gen_timer *timer,
4149                          u32 timer_next, u32 timer_period)
4150 {
4151         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4152         u32 tsf;
4153
4154         BUG_ON(!timer_period);
4155
4156         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
4157
4158         tsf = ath9k_hw_gettsf32(ah);
4159
4160         DPRINTF(ah, ATH_DBG_HWTIMER, "curent tsf %x period %x"
4161                 "timer_next %x\n", tsf, timer_period, timer_next);
4162
4163         /*
4164          * Pull timer_next forward if the current TSF already passed it
4165          * because of software latency
4166          */
4167         if (timer_next < tsf)
4168                 timer_next = tsf + timer_period;
4169
4170         /*
4171          * Program generic timer registers
4172          */
4173         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
4174                  timer_next);
4175         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
4176                   timer_period);
4177         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4178                     gen_tmr_configuration[timer->index].mode_mask);
4179
4180         /* Enable both trigger and thresh interrupt masks */
4181         REG_SET_BIT(ah, AR_IMR_S5,
4182                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4183                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4184
4185         if ((ah->ah_sc->imask & ATH9K_INT_GENTIMER) == 0) {
4186                 ath9k_hw_set_interrupts(ah, 0);
4187                 ah->ah_sc->imask |= ATH9K_INT_GENTIMER;
4188                 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4189         }
4190 }
4191
4192 void ath_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
4193 {
4194         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4195
4196         if ((timer->index < AR_FIRST_NDP_TIMER) ||
4197                 (timer->index >= ATH_MAX_GEN_TIMER)) {
4198                 return;
4199         }
4200
4201         /* Clear generic timer enable bits. */
4202         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4203                         gen_tmr_configuration[timer->index].mode_mask);
4204
4205         /* Disable both trigger and thresh interrupt masks */
4206         REG_CLR_BIT(ah, AR_IMR_S5,
4207                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4208                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4209
4210         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
4211
4212         /* if no timer is enabled, turn off interrupt mask */
4213         if (timer_table->timer_mask.val == 0) {
4214                 ath9k_hw_set_interrupts(ah, 0);
4215                 ah->ah_sc->imask &= ~ATH9K_INT_GENTIMER;
4216                 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4217         }
4218 }
4219
4220 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
4221 {
4222         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4223
4224         /* free the hardware generic timer slot */
4225         timer_table->timers[timer->index] = NULL;
4226         kfree(timer);
4227 }
4228
4229 /*
4230  * Generic Timer Interrupts handling
4231  */
4232 void ath_gen_timer_isr(struct ath_hw *ah)
4233 {
4234         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4235         struct ath_gen_timer *timer;
4236         u32 trigger_mask, thresh_mask, index;
4237
4238         /* get hardware generic timer interrupt status */
4239         trigger_mask = ah->intr_gen_timer_trigger;
4240         thresh_mask = ah->intr_gen_timer_thresh;
4241         trigger_mask &= timer_table->timer_mask.val;
4242         thresh_mask &= timer_table->timer_mask.val;
4243
4244         trigger_mask &= ~thresh_mask;
4245
4246         while (thresh_mask) {
4247                 index = rightmost_index(timer_table, &thresh_mask);
4248                 timer = timer_table->timers[index];
4249                 BUG_ON(!timer);
4250                 DPRINTF(ah, ATH_DBG_HWTIMER,
4251                         "TSF overflow for Gen timer %d\n", index);
4252                 timer->overflow(timer->arg);
4253         }
4254
4255         while (trigger_mask) {
4256                 index = rightmost_index(timer_table, &trigger_mask);
4257                 timer = timer_table->timers[index];
4258                 BUG_ON(!timer);
4259                 DPRINTF(ah, ATH_DBG_HWTIMER,
4260                         "Gen timer[%d] trigger\n", index);
4261                 timer->trigger(timer->arg);
4262         }
4263 }