ath9k_hw: remove unused modesIndex param from ath9k_hw_write_regs()
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return clks / ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
63
64         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66
67 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
68 {
69         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70
71         if (conf_is_ht40(conf))
72                 return ath9k_hw_mac_usec(ah, clks) / 2;
73         else
74                 return ath9k_hw_mac_usec(ah, clks);
75 }
76
77 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
80
81         if (!ah->curchan) /* should really check for CCK instead */
82                 return usecs *ATH9K_CLOCK_RATE_CCK;
83         if (conf->channel->band == IEEE80211_BAND_2GHZ)
84                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
85         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
86 }
87
88 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
89 {
90         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
91
92         if (conf_is_ht40(conf))
93                 return ath9k_hw_mac_clks(ah, usecs) * 2;
94         else
95                 return ath9k_hw_mac_clks(ah, usecs);
96 }
97
98 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
99 {
100         int i;
101
102         BUG_ON(timeout < AH_TIME_QUANTUM);
103
104         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
105                 if ((REG_READ(ah, reg) & mask) == val)
106                         return true;
107
108                 udelay(AH_TIME_QUANTUM);
109         }
110
111         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
112                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
113                   timeout, reg, REG_READ(ah, reg), mask, val);
114
115         return false;
116 }
117 EXPORT_SYMBOL(ath9k_hw_wait);
118
119 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
120 {
121         u32 retval;
122         int i;
123
124         for (i = 0, retval = 0; i < n; i++) {
125                 retval = (retval << 1) | (val & 1);
126                 val >>= 1;
127         }
128         return retval;
129 }
130
131 bool ath9k_get_channel_edges(struct ath_hw *ah,
132                              u16 flags, u16 *low,
133                              u16 *high)
134 {
135         struct ath9k_hw_capabilities *pCap = &ah->caps;
136
137         if (flags & CHANNEL_5GHZ) {
138                 *low = pCap->low_5ghz_chan;
139                 *high = pCap->high_5ghz_chan;
140                 return true;
141         }
142         if ((flags & CHANNEL_2GHZ)) {
143                 *low = pCap->low_2ghz_chan;
144                 *high = pCap->high_2ghz_chan;
145                 return true;
146         }
147         return false;
148 }
149
150 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
151                            const struct ath_rate_table *rates,
152                            u32 frameLen, u16 rateix,
153                            bool shortPreamble)
154 {
155         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
156         u32 kbps;
157
158         kbps = rates->info[rateix].ratekbps;
159
160         if (kbps == 0)
161                 return 0;
162
163         switch (rates->info[rateix].phy) {
164         case WLAN_RC_PHY_CCK:
165                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
166                 if (shortPreamble && rates->info[rateix].short_preamble)
167                         phyTime >>= 1;
168                 numBits = frameLen << 3;
169                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
170                 break;
171         case WLAN_RC_PHY_OFDM:
172                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
173                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
174                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
175                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
176                         txTime = OFDM_SIFS_TIME_QUARTER
177                                 + OFDM_PREAMBLE_TIME_QUARTER
178                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
179                 } else if (ah->curchan &&
180                            IS_CHAN_HALF_RATE(ah->curchan)) {
181                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
182                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
183                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
184                         txTime = OFDM_SIFS_TIME_HALF +
185                                 OFDM_PREAMBLE_TIME_HALF
186                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
187                 } else {
188                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
189                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
190                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
192                                 + (numSymbols * OFDM_SYMBOL_TIME);
193                 }
194                 break;
195         default:
196                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
197                           "Unknown phy %u (rate ix %u)\n",
198                           rates->info[rateix].phy, rateix);
199                 txTime = 0;
200                 break;
201         }
202
203         return txTime;
204 }
205 EXPORT_SYMBOL(ath9k_hw_computetxtime);
206
207 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
208                                   struct ath9k_channel *chan,
209                                   struct chan_centers *centers)
210 {
211         int8_t extoff;
212
213         if (!IS_CHAN_HT40(chan)) {
214                 centers->ctl_center = centers->ext_center =
215                         centers->synth_center = chan->channel;
216                 return;
217         }
218
219         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
220             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
221                 centers->synth_center =
222                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
223                 extoff = 1;
224         } else {
225                 centers->synth_center =
226                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
227                 extoff = -1;
228         }
229
230         centers->ctl_center =
231                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
232         /* 25 MHz spacing is supported by hw but not on upper layers */
233         centers->ext_center =
234                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
235 }
236
237 /******************/
238 /* Chip Revisions */
239 /******************/
240
241 static void ath9k_hw_read_revisions(struct ath_hw *ah)
242 {
243         u32 val;
244
245         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
246
247         if (val == 0xFF) {
248                 val = REG_READ(ah, AR_SREV);
249                 ah->hw_version.macVersion =
250                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
251                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
252                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
253         } else {
254                 if (!AR_SREV_9100(ah))
255                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
256
257                 ah->hw_version.macRev = val & AR_SREV_REVISION;
258
259                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
260                         ah->is_pciexpress = true;
261         }
262 }
263
264 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
265 {
266         u32 val;
267         int i;
268
269         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
270
271         for (i = 0; i < 8; i++)
272                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
273         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
274         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
275
276         return ath9k_hw_reverse_bits(val, 8);
277 }
278
279 /************************************/
280 /* HW Attach, Detach, Init Routines */
281 /************************************/
282
283 static void ath9k_hw_disablepcie(struct ath_hw *ah)
284 {
285         if (AR_SREV_9100(ah))
286                 return;
287
288         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
289         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
290         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
291         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
292         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
293         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
294         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
295         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
296         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
297
298         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
299 }
300
301 static bool ath9k_hw_chip_test(struct ath_hw *ah)
302 {
303         struct ath_common *common = ath9k_hw_common(ah);
304         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
305         u32 regHold[2];
306         u32 patternData[4] = { 0x55555555,
307                                0xaaaaaaaa,
308                                0x66666666,
309                                0x99999999 };
310         int i, j;
311
312         for (i = 0; i < 2; i++) {
313                 u32 addr = regAddr[i];
314                 u32 wrData, rdData;
315
316                 regHold[i] = REG_READ(ah, addr);
317                 for (j = 0; j < 0x100; j++) {
318                         wrData = (j << 16) | j;
319                         REG_WRITE(ah, addr, wrData);
320                         rdData = REG_READ(ah, addr);
321                         if (rdData != wrData) {
322                                 ath_print(common, ATH_DBG_FATAL,
323                                           "address test failed "
324                                           "addr: 0x%08x - wr:0x%08x != "
325                                           "rd:0x%08x\n",
326                                           addr, wrData, rdData);
327                                 return false;
328                         }
329                 }
330                 for (j = 0; j < 4; j++) {
331                         wrData = patternData[j];
332                         REG_WRITE(ah, addr, wrData);
333                         rdData = REG_READ(ah, addr);
334                         if (wrData != rdData) {
335                                 ath_print(common, ATH_DBG_FATAL,
336                                           "address test failed "
337                                           "addr: 0x%08x - wr:0x%08x != "
338                                           "rd:0x%08x\n",
339                                           addr, wrData, rdData);
340                                 return false;
341                         }
342                 }
343                 REG_WRITE(ah, regAddr[i], regHold[i]);
344         }
345         udelay(100);
346
347         return true;
348 }
349
350 static const char *ath9k_hw_devname(u16 devid)
351 {
352         switch (devid) {
353         case AR5416_DEVID_PCI:
354                 return "Atheros 5416";
355         case AR5416_DEVID_PCIE:
356                 return "Atheros 5418";
357         case AR9160_DEVID_PCI:
358                 return "Atheros 9160";
359         case AR5416_AR9100_DEVID:
360                 return "Atheros 9100";
361         case AR9280_DEVID_PCI:
362         case AR9280_DEVID_PCIE:
363                 return "Atheros 9280";
364         case AR9285_DEVID_PCIE:
365                 return "Atheros 9285";
366         case AR5416_DEVID_AR9287_PCI:
367         case AR5416_DEVID_AR9287_PCIE:
368                 return "Atheros 9287";
369         }
370
371         return NULL;
372 }
373
374 static void ath9k_hw_init_config(struct ath_hw *ah)
375 {
376         int i;
377
378         ah->config.dma_beacon_response_time = 2;
379         ah->config.sw_beacon_response_time = 10;
380         ah->config.additional_swba_backoff = 0;
381         ah->config.ack_6mb = 0x0;
382         ah->config.cwm_ignore_extcca = 0;
383         ah->config.pcie_powersave_enable = 0;
384         ah->config.pcie_clock_req = 0;
385         ah->config.pcie_waen = 0;
386         ah->config.analog_shiftreg = 1;
387         ah->config.ht_enable = 1;
388         ah->config.ofdm_trig_low = 200;
389         ah->config.ofdm_trig_high = 500;
390         ah->config.cck_trig_high = 200;
391         ah->config.cck_trig_low = 100;
392         ah->config.enable_ani = 1;
393         ah->config.diversity_control = ATH9K_ANT_VARIABLE;
394         ah->config.antenna_switch_swap = 0;
395
396         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
397                 ah->config.spurchans[i][0] = AR_NO_SPUR;
398                 ah->config.spurchans[i][1] = AR_NO_SPUR;
399         }
400
401         ah->config.intr_mitigation = true;
402
403         /*
404          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
405          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
406          * This means we use it for all AR5416 devices, and the few
407          * minor PCI AR9280 devices out there.
408          *
409          * Serialization is required because these devices do not handle
410          * well the case of two concurrent reads/writes due to the latency
411          * involved. During one read/write another read/write can be issued
412          * on another CPU while the previous read/write may still be working
413          * on our hardware, if we hit this case the hardware poops in a loop.
414          * We prevent this by serializing reads and writes.
415          *
416          * This issue is not present on PCI-Express devices or pre-AR5416
417          * devices (legacy, 802.11abg).
418          */
419         if (num_possible_cpus() > 1)
420                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
421 }
422 EXPORT_SYMBOL(ath9k_hw_init);
423
424 static void ath9k_hw_init_defaults(struct ath_hw *ah)
425 {
426         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
427
428         regulatory->country_code = CTRY_DEFAULT;
429         regulatory->power_limit = MAX_RATE_POWER;
430         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
431
432         ah->hw_version.magic = AR5416_MAGIC;
433         ah->hw_version.subvendorid = 0;
434
435         ah->ah_flags = 0;
436         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
437                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
438         if (!AR_SREV_9100(ah))
439                 ah->ah_flags = AH_USE_EEPROM;
440
441         ah->atim_window = 0;
442         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
443         ah->beacon_interval = 100;
444         ah->enable_32kHz_clock = DONT_USE_32KHZ;
445         ah->slottime = (u32) -1;
446         ah->acktimeout = (u32) -1;
447         ah->ctstimeout = (u32) -1;
448         ah->globaltxtimeout = (u32) -1;
449
450         ah->gbeacon_rate = 0;
451
452         ah->power_mode = ATH9K_PM_UNDEFINED;
453 }
454
455 static int ath9k_hw_rf_claim(struct ath_hw *ah)
456 {
457         u32 val;
458
459         REG_WRITE(ah, AR_PHY(0), 0x00000007);
460
461         val = ath9k_hw_get_radiorev(ah);
462         switch (val & AR_RADIO_SREV_MAJOR) {
463         case 0:
464                 val = AR_RAD5133_SREV_MAJOR;
465                 break;
466         case AR_RAD5133_SREV_MAJOR:
467         case AR_RAD5122_SREV_MAJOR:
468         case AR_RAD2133_SREV_MAJOR:
469         case AR_RAD2122_SREV_MAJOR:
470                 break;
471         default:
472                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
473                           "Radio Chip Rev 0x%02X not supported\n",
474                           val & AR_RADIO_SREV_MAJOR);
475                 return -EOPNOTSUPP;
476         }
477
478         ah->hw_version.analog5GhzRev = val;
479
480         return 0;
481 }
482
483 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
484 {
485         struct ath_common *common = ath9k_hw_common(ah);
486         u32 sum;
487         int i;
488         u16 eeval;
489
490         sum = 0;
491         for (i = 0; i < 3; i++) {
492                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
493                 sum += eeval;
494                 common->macaddr[2 * i] = eeval >> 8;
495                 common->macaddr[2 * i + 1] = eeval & 0xff;
496         }
497         if (sum == 0 || sum == 0xffff * 3)
498                 return -EADDRNOTAVAIL;
499
500         return 0;
501 }
502
503 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
504 {
505         u32 rxgain_type;
506
507         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
508                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
509
510                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
511                         INIT_INI_ARRAY(&ah->iniModesRxGain,
512                         ar9280Modes_backoff_13db_rxgain_9280_2,
513                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
514                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
515                         INIT_INI_ARRAY(&ah->iniModesRxGain,
516                         ar9280Modes_backoff_23db_rxgain_9280_2,
517                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
518                 else
519                         INIT_INI_ARRAY(&ah->iniModesRxGain,
520                         ar9280Modes_original_rxgain_9280_2,
521                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
522         } else {
523                 INIT_INI_ARRAY(&ah->iniModesRxGain,
524                         ar9280Modes_original_rxgain_9280_2,
525                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
526         }
527 }
528
529 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
530 {
531         u32 txgain_type;
532
533         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
534                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
535
536                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
537                         INIT_INI_ARRAY(&ah->iniModesTxGain,
538                         ar9280Modes_high_power_tx_gain_9280_2,
539                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
540                 else
541                         INIT_INI_ARRAY(&ah->iniModesTxGain,
542                         ar9280Modes_original_tx_gain_9280_2,
543                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
544         } else {
545                 INIT_INI_ARRAY(&ah->iniModesTxGain,
546                 ar9280Modes_original_tx_gain_9280_2,
547                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
548         }
549 }
550
551 static int ath9k_hw_post_init(struct ath_hw *ah)
552 {
553         int ecode;
554
555         if (!ath9k_hw_chip_test(ah))
556                 return -ENODEV;
557
558         ecode = ath9k_hw_rf_claim(ah);
559         if (ecode != 0)
560                 return ecode;
561
562         ecode = ath9k_hw_eeprom_init(ah);
563         if (ecode != 0)
564                 return ecode;
565
566         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
567                   "Eeprom VER: %d, REV: %d\n",
568                   ah->eep_ops->get_eeprom_ver(ah),
569                   ah->eep_ops->get_eeprom_rev(ah));
570
571         if (!AR_SREV_9280_10_OR_LATER(ah)) {
572                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
573                 if (ecode) {
574                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
575                                   "Failed allocating banks for "
576                                   "external radio\n");
577                         return ecode;
578                 }
579         }
580
581         if (!AR_SREV_9100(ah)) {
582                 ath9k_hw_ani_setup(ah);
583                 ath9k_hw_ani_init(ah);
584         }
585
586         return 0;
587 }
588
589 static bool ath9k_hw_devid_supported(u16 devid)
590 {
591         switch (devid) {
592         case AR5416_DEVID_PCI:
593         case AR5416_DEVID_PCIE:
594         case AR5416_AR9100_DEVID:
595         case AR9160_DEVID_PCI:
596         case AR9280_DEVID_PCI:
597         case AR9280_DEVID_PCIE:
598         case AR9285_DEVID_PCIE:
599         case AR5416_DEVID_AR9287_PCI:
600         case AR5416_DEVID_AR9287_PCIE:
601         case AR9271_USB:
602                 return true;
603         default:
604                 break;
605         }
606         return false;
607 }
608
609 static bool ath9k_hw_macversion_supported(u32 macversion)
610 {
611         switch (macversion) {
612         case AR_SREV_VERSION_5416_PCI:
613         case AR_SREV_VERSION_5416_PCIE:
614         case AR_SREV_VERSION_9160:
615         case AR_SREV_VERSION_9100:
616         case AR_SREV_VERSION_9280:
617         case AR_SREV_VERSION_9285:
618         case AR_SREV_VERSION_9287:
619         case AR_SREV_VERSION_9271:
620                 return true;
621         default:
622                 break;
623         }
624         return false;
625 }
626
627 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
628 {
629         if (AR_SREV_9160_10_OR_LATER(ah)) {
630                 if (AR_SREV_9280_10_OR_LATER(ah)) {
631                         ah->iq_caldata.calData = &iq_cal_single_sample;
632                         ah->adcgain_caldata.calData =
633                                 &adc_gain_cal_single_sample;
634                         ah->adcdc_caldata.calData =
635                                 &adc_dc_cal_single_sample;
636                         ah->adcdc_calinitdata.calData =
637                                 &adc_init_dc_cal;
638                 } else {
639                         ah->iq_caldata.calData = &iq_cal_multi_sample;
640                         ah->adcgain_caldata.calData =
641                                 &adc_gain_cal_multi_sample;
642                         ah->adcdc_caldata.calData =
643                                 &adc_dc_cal_multi_sample;
644                         ah->adcdc_calinitdata.calData =
645                                 &adc_init_dc_cal;
646                 }
647                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
648         }
649 }
650
651 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
652 {
653         if (AR_SREV_9271(ah)) {
654                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
655                                ARRAY_SIZE(ar9271Modes_9271), 6);
656                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
657                                ARRAY_SIZE(ar9271Common_9271), 2);
658                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
659                                ar9271Modes_9271_1_0_only,
660                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
661                 return;
662         }
663
664         if (AR_SREV_9287_11_OR_LATER(ah)) {
665                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
666                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
667                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
668                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
669                 if (ah->config.pcie_clock_req)
670                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
671                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
672                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
673                 else
674                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
675                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
676                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
677                                         2);
678         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
679                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
680                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
681                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
682                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
683
684                 if (ah->config.pcie_clock_req)
685                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
686                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
687                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
688                 else
689                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
690                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
691                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
692                                   2);
693         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
694
695
696                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
697                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
698                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
699                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
700
701                 if (ah->config.pcie_clock_req) {
702                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
703                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
704                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
705                 } else {
706                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
707                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
708                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
709                                   2);
710                 }
711         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
712                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
713                                ARRAY_SIZE(ar9285Modes_9285), 6);
714                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
715                                ARRAY_SIZE(ar9285Common_9285), 2);
716
717                 if (ah->config.pcie_clock_req) {
718                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
719                         ar9285PciePhy_clkreq_off_L1_9285,
720                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
721                 } else {
722                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
723                         ar9285PciePhy_clkreq_always_on_L1_9285,
724                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
725                 }
726         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
727                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
728                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
729                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
730                                ARRAY_SIZE(ar9280Common_9280_2), 2);
731
732                 if (ah->config.pcie_clock_req) {
733                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
734                                ar9280PciePhy_clkreq_off_L1_9280,
735                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
736                 } else {
737                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
738                                ar9280PciePhy_clkreq_always_on_L1_9280,
739                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
740                 }
741                 INIT_INI_ARRAY(&ah->iniModesAdditional,
742                                ar9280Modes_fast_clock_9280_2,
743                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
744         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
745                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
746                                ARRAY_SIZE(ar9280Modes_9280), 6);
747                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
748                                ARRAY_SIZE(ar9280Common_9280), 2);
749         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
750                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
751                                ARRAY_SIZE(ar5416Modes_9160), 6);
752                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
753                                ARRAY_SIZE(ar5416Common_9160), 2);
754                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
755                                ARRAY_SIZE(ar5416Bank0_9160), 2);
756                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
757                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
758                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
759                                ARRAY_SIZE(ar5416Bank1_9160), 2);
760                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
761                                ARRAY_SIZE(ar5416Bank2_9160), 2);
762                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
763                                ARRAY_SIZE(ar5416Bank3_9160), 3);
764                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
765                                ARRAY_SIZE(ar5416Bank6_9160), 3);
766                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
767                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
768                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
769                                ARRAY_SIZE(ar5416Bank7_9160), 2);
770                 if (AR_SREV_9160_11(ah)) {
771                         INIT_INI_ARRAY(&ah->iniAddac,
772                                        ar5416Addac_91601_1,
773                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
774                 } else {
775                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
776                                        ARRAY_SIZE(ar5416Addac_9160), 2);
777                 }
778         } else if (AR_SREV_9100_OR_LATER(ah)) {
779                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
780                                ARRAY_SIZE(ar5416Modes_9100), 6);
781                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
782                                ARRAY_SIZE(ar5416Common_9100), 2);
783                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
784                                ARRAY_SIZE(ar5416Bank0_9100), 2);
785                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
786                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
787                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
788                                ARRAY_SIZE(ar5416Bank1_9100), 2);
789                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
790                                ARRAY_SIZE(ar5416Bank2_9100), 2);
791                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
792                                ARRAY_SIZE(ar5416Bank3_9100), 3);
793                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
794                                ARRAY_SIZE(ar5416Bank6_9100), 3);
795                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
796                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
797                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
798                                ARRAY_SIZE(ar5416Bank7_9100), 2);
799                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
800                                ARRAY_SIZE(ar5416Addac_9100), 2);
801         } else {
802                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
803                                ARRAY_SIZE(ar5416Modes), 6);
804                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
805                                ARRAY_SIZE(ar5416Common), 2);
806                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
807                                ARRAY_SIZE(ar5416Bank0), 2);
808                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
809                                ARRAY_SIZE(ar5416BB_RfGain), 3);
810                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
811                                ARRAY_SIZE(ar5416Bank1), 2);
812                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
813                                ARRAY_SIZE(ar5416Bank2), 2);
814                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
815                                ARRAY_SIZE(ar5416Bank3), 3);
816                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
817                                ARRAY_SIZE(ar5416Bank6), 3);
818                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
819                                ARRAY_SIZE(ar5416Bank6TPC), 3);
820                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
821                                ARRAY_SIZE(ar5416Bank7), 2);
822                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
823                                ARRAY_SIZE(ar5416Addac), 2);
824         }
825 }
826
827 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
828 {
829         if (AR_SREV_9287_11_OR_LATER(ah))
830                 INIT_INI_ARRAY(&ah->iniModesRxGain,
831                 ar9287Modes_rx_gain_9287_1_1,
832                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
833         else if (AR_SREV_9287_10(ah))
834                 INIT_INI_ARRAY(&ah->iniModesRxGain,
835                 ar9287Modes_rx_gain_9287_1_0,
836                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
837         else if (AR_SREV_9280_20(ah))
838                 ath9k_hw_init_rxgain_ini(ah);
839
840         if (AR_SREV_9287_11_OR_LATER(ah)) {
841                 INIT_INI_ARRAY(&ah->iniModesTxGain,
842                 ar9287Modes_tx_gain_9287_1_1,
843                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
844         } else if (AR_SREV_9287_10(ah)) {
845                 INIT_INI_ARRAY(&ah->iniModesTxGain,
846                 ar9287Modes_tx_gain_9287_1_0,
847                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
848         } else if (AR_SREV_9280_20(ah)) {
849                 ath9k_hw_init_txgain_ini(ah);
850         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
851                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
852
853                 /* txgain table */
854                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
855                         INIT_INI_ARRAY(&ah->iniModesTxGain,
856                         ar9285Modes_high_power_tx_gain_9285_1_2,
857                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
858                 } else {
859                         INIT_INI_ARRAY(&ah->iniModesTxGain,
860                         ar9285Modes_original_tx_gain_9285_1_2,
861                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
862                 }
863
864         }
865 }
866
867 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
868 {
869         u32 i, j;
870
871         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
872             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
873
874                 /* EEPROM Fixup */
875                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
876                         u32 reg = INI_RA(&ah->iniModes, i, 0);
877
878                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
879                                 u32 val = INI_RA(&ah->iniModes, i, j);
880
881                                 INI_RA(&ah->iniModes, i, j) =
882                                         ath9k_hw_ini_fixup(ah,
883                                                            &ah->eeprom.def,
884                                                            reg, val);
885                         }
886                 }
887         }
888 }
889
890 int ath9k_hw_init(struct ath_hw *ah)
891 {
892         struct ath_common *common = ath9k_hw_common(ah);
893         int r = 0;
894
895         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
896                 ath_print(common, ATH_DBG_FATAL,
897                           "Unsupported device ID: 0x%0x\n",
898                           ah->hw_version.devid);
899                 return -EOPNOTSUPP;
900         }
901
902         ath9k_hw_init_defaults(ah);
903         ath9k_hw_init_config(ah);
904
905         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
906                 ath_print(common, ATH_DBG_FATAL,
907                           "Couldn't reset chip\n");
908                 return -EIO;
909         }
910
911         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
912                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
913                 return -EIO;
914         }
915
916         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
917                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
918                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
919                         ah->config.serialize_regmode =
920                                 SER_REG_MODE_ON;
921                 } else {
922                         ah->config.serialize_regmode =
923                                 SER_REG_MODE_OFF;
924                 }
925         }
926
927         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
928                 ah->config.serialize_regmode);
929
930         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
931                 ath_print(common, ATH_DBG_FATAL,
932                           "Mac Chip Rev 0x%02x.%x is not supported by "
933                           "this driver\n", ah->hw_version.macVersion,
934                           ah->hw_version.macRev);
935                 return -EOPNOTSUPP;
936         }
937
938         if (AR_SREV_9100(ah)) {
939                 ah->iq_caldata.calData = &iq_cal_multi_sample;
940                 ah->supp_cals = IQ_MISMATCH_CAL;
941                 ah->is_pciexpress = false;
942         }
943
944         if (AR_SREV_9271(ah))
945                 ah->is_pciexpress = false;
946
947         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
948
949         ath9k_hw_init_cal_settings(ah);
950
951         ah->ani_function = ATH9K_ANI_ALL;
952         if (AR_SREV_9280_10_OR_LATER(ah)) {
953                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
954                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
955                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
956         } else {
957                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
958                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
959         }
960
961         ath9k_hw_init_mode_regs(ah);
962
963         if (ah->is_pciexpress)
964                 ath9k_hw_configpcipowersave(ah, 0, 0);
965         else
966                 ath9k_hw_disablepcie(ah);
967
968         /* Support for Japan ch.14 (2484) spread */
969         if (AR_SREV_9287_11_OR_LATER(ah)) {
970                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
971                        ar9287Common_normal_cck_fir_coeff_92871_1,
972                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
973                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
974                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
975                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
976         }
977
978         r = ath9k_hw_post_init(ah);
979         if (r)
980                 return r;
981
982         ath9k_hw_init_mode_gain_regs(ah);
983         ath9k_hw_fill_cap_info(ah);
984         ath9k_hw_init_11a_eeprom_fix(ah);
985
986         r = ath9k_hw_init_macaddr(ah);
987         if (r) {
988                 ath_print(common, ATH_DBG_FATAL,
989                           "Failed to initialize MAC address\n");
990                 return r;
991         }
992
993         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
994                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
995         else
996                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
997
998         ath9k_init_nfcal_hist_buffer(ah);
999
1000         common->state = ATH_HW_INITIALIZED;
1001
1002         return 0;
1003 }
1004
1005 static void ath9k_hw_init_bb(struct ath_hw *ah,
1006                              struct ath9k_channel *chan)
1007 {
1008         u32 synthDelay;
1009
1010         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1011         if (IS_CHAN_B(chan))
1012                 synthDelay = (4 * synthDelay) / 22;
1013         else
1014                 synthDelay /= 10;
1015
1016         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1017
1018         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1019 }
1020
1021 static void ath9k_hw_init_qos(struct ath_hw *ah)
1022 {
1023         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1024         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1025
1026         REG_WRITE(ah, AR_QOS_NO_ACK,
1027                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1028                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1029                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1030
1031         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1032         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1033         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1034         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1035         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1036 }
1037
1038 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
1039 {
1040         u32 lcr;
1041         u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
1042
1043         lcr = REG_READ(ah , 0x5100c);
1044         lcr |= 0x80;
1045
1046         REG_WRITE(ah, 0x5100c, lcr);
1047         REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1048         REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1049
1050         lcr &= ~0x80;
1051         REG_WRITE(ah, 0x5100c, lcr);
1052 }
1053
1054 static void ath9k_hw_init_pll(struct ath_hw *ah,
1055                               struct ath9k_channel *chan)
1056 {
1057         u32 pll;
1058
1059         if (AR_SREV_9100(ah)) {
1060                 if (chan && IS_CHAN_5GHZ(chan))
1061                         pll = 0x1450;
1062                 else
1063                         pll = 0x1458;
1064         } else {
1065                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1066                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1067
1068                         if (chan && IS_CHAN_HALF_RATE(chan))
1069                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1070                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1071                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1072
1073                         if (chan && IS_CHAN_5GHZ(chan)) {
1074                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1075
1076
1077                                 if (AR_SREV_9280_20(ah)) {
1078                                         if (((chan->channel % 20) == 0)
1079                                             || ((chan->channel % 10) == 0))
1080                                                 pll = 0x2850;
1081                                         else
1082                                                 pll = 0x142c;
1083                                 }
1084                         } else {
1085                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1086                         }
1087
1088                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1089
1090                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1091
1092                         if (chan && IS_CHAN_HALF_RATE(chan))
1093                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1094                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1095                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1096
1097                         if (chan && IS_CHAN_5GHZ(chan))
1098                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1099                         else
1100                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1101                 } else {
1102                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1103
1104                         if (chan && IS_CHAN_HALF_RATE(chan))
1105                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1106                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1107                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1108
1109                         if (chan && IS_CHAN_5GHZ(chan))
1110                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1111                         else
1112                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1113                 }
1114         }
1115         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1116
1117         /* Switch the core clock for ar9271 to 117Mhz */
1118         if (AR_SREV_9271(ah)) {
1119                 if ((pll == 0x142c) || (pll == 0x2850) ) {
1120                         udelay(500);
1121                         /* set CLKOBS to output AHB clock */
1122                         REG_WRITE(ah, 0x7020, 0xe);
1123                         /*
1124                          * 0x304: 117Mhz, ahb_ratio: 1x1
1125                          * 0x306: 40Mhz, ahb_ratio: 1x1
1126                          */
1127                         REG_WRITE(ah, 0x50040, 0x304);
1128                         /*
1129                          * makes adjustments for the baud dividor to keep the
1130                          * targetted baud rate based on the used core clock.
1131                          */
1132                         ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1133                                                     AR9271_TARGET_BAUD_RATE);
1134                 }
1135         }
1136
1137         udelay(RTC_PLL_SETTLE_DELAY);
1138
1139         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1140 }
1141
1142 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1143 {
1144         int rx_chainmask, tx_chainmask;
1145
1146         rx_chainmask = ah->rxchainmask;
1147         tx_chainmask = ah->txchainmask;
1148
1149         switch (rx_chainmask) {
1150         case 0x5:
1151                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1152                             AR_PHY_SWAP_ALT_CHAIN);
1153         case 0x3:
1154                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1155                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1156                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1157                         break;
1158                 }
1159         case 0x1:
1160         case 0x2:
1161         case 0x7:
1162                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1163                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1164                 break;
1165         default:
1166                 break;
1167         }
1168
1169         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1170         if (tx_chainmask == 0x5) {
1171                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1172                             AR_PHY_SWAP_ALT_CHAIN);
1173         }
1174         if (AR_SREV_9100(ah))
1175                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1176                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1177 }
1178
1179 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1180                                           enum nl80211_iftype opmode)
1181 {
1182         ah->mask_reg = AR_IMR_TXERR |
1183                 AR_IMR_TXURN |
1184                 AR_IMR_RXERR |
1185                 AR_IMR_RXORN |
1186                 AR_IMR_BCNMISC;
1187
1188         if (ah->config.intr_mitigation)
1189                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1190         else
1191                 ah->mask_reg |= AR_IMR_RXOK;
1192
1193         ah->mask_reg |= AR_IMR_TXOK;
1194
1195         if (opmode == NL80211_IFTYPE_AP)
1196                 ah->mask_reg |= AR_IMR_MIB;
1197
1198         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1199         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1200
1201         if (!AR_SREV_9100(ah)) {
1202                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1203                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1204                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1205         }
1206 }
1207
1208 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1209 {
1210         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1211                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1212                           "bad ack timeout %u\n", us);
1213                 ah->acktimeout = (u32) -1;
1214                 return false;
1215         } else {
1216                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1217                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1218                 ah->acktimeout = us;
1219                 return true;
1220         }
1221 }
1222
1223 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1224 {
1225         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1226                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1227                           "bad cts timeout %u\n", us);
1228                 ah->ctstimeout = (u32) -1;
1229                 return false;
1230         } else {
1231                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1232                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1233                 ah->ctstimeout = us;
1234                 return true;
1235         }
1236 }
1237
1238 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1239 {
1240         if (tu > 0xFFFF) {
1241                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1242                           "bad global tx timeout %u\n", tu);
1243                 ah->globaltxtimeout = (u32) -1;
1244                 return false;
1245         } else {
1246                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1247                 ah->globaltxtimeout = tu;
1248                 return true;
1249         }
1250 }
1251
1252 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1253 {
1254         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1255                   ah->misc_mode);
1256
1257         if (ah->misc_mode != 0)
1258                 REG_WRITE(ah, AR_PCU_MISC,
1259                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1260         if (ah->slottime != (u32) -1)
1261                 ath9k_hw_setslottime(ah, ah->slottime);
1262         if (ah->acktimeout != (u32) -1)
1263                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1264         if (ah->ctstimeout != (u32) -1)
1265                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1266         if (ah->globaltxtimeout != (u32) -1)
1267                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1268 }
1269
1270 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1271 {
1272         return vendorid == ATHEROS_VENDOR_ID ?
1273                 ath9k_hw_devname(devid) : NULL;
1274 }
1275
1276 void ath9k_hw_detach(struct ath_hw *ah)
1277 {
1278         struct ath_common *common = ath9k_hw_common(ah);
1279
1280         if (common->state <= ATH_HW_INITIALIZED)
1281                 goto free_hw;
1282
1283         if (!AR_SREV_9100(ah))
1284                 ath9k_hw_ani_disable(ah);
1285
1286         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1287
1288 free_hw:
1289         if (!AR_SREV_9280_10_OR_LATER(ah))
1290                 ath9k_hw_rf_free_ext_banks(ah);
1291         kfree(ah);
1292         ah = NULL;
1293 }
1294 EXPORT_SYMBOL(ath9k_hw_detach);
1295
1296 /*******/
1297 /* INI */
1298 /*******/
1299
1300 static void ath9k_hw_override_ini(struct ath_hw *ah,
1301                                   struct ath9k_channel *chan)
1302 {
1303         u32 val;
1304
1305         if (AR_SREV_9271(ah)) {
1306                 /*
1307                  * Enable spectral scan to solution for issues with stuck
1308                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1309                  * AR9271 1.1
1310                  */
1311                 if (AR_SREV_9271_10(ah)) {
1312                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1313                               AR_PHY_SPECTRAL_SCAN_ENABLE;
1314                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1315                 }
1316                 else if (AR_SREV_9271_11(ah))
1317                         /*
1318                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1319                          * present on AR9271 1.1
1320                          */
1321                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1322                 return;
1323         }
1324
1325         /*
1326          * Set the RX_ABORT and RX_DIS and clear if off only after
1327          * RXE is set for MAC. This prevents frames with corrupted
1328          * descriptor status.
1329          */
1330         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1331
1332         if (AR_SREV_9280_10_OR_LATER(ah)) {
1333                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1334                                (~AR_PCU_MISC_MODE2_HWWAR1);
1335
1336                 if (AR_SREV_9287_10_OR_LATER(ah))
1337                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1338
1339                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1340         }
1341
1342         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1343             AR_SREV_9280_10_OR_LATER(ah))
1344                 return;
1345         /*
1346          * Disable BB clock gating
1347          * Necessary to avoid issues on AR5416 2.0
1348          */
1349         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1350 }
1351
1352 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1353                               struct ar5416_eeprom_def *pEepData,
1354                               u32 reg, u32 value)
1355 {
1356         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1357         struct ath_common *common = ath9k_hw_common(ah);
1358
1359         switch (ah->hw_version.devid) {
1360         case AR9280_DEVID_PCI:
1361                 if (reg == 0x7894) {
1362                         ath_print(common, ATH_DBG_EEPROM,
1363                                 "ini VAL: %x  EEPROM: %x\n", value,
1364                                 (pBase->version & 0xff));
1365
1366                         if ((pBase->version & 0xff) > 0x0a) {
1367                                 ath_print(common, ATH_DBG_EEPROM,
1368                                           "PWDCLKIND: %d\n",
1369                                           pBase->pwdclkind);
1370                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1371                                 value |= AR_AN_TOP2_PWDCLKIND &
1372                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1373                         } else {
1374                                 ath_print(common, ATH_DBG_EEPROM,
1375                                           "PWDCLKIND Earlier Rev\n");
1376                         }
1377
1378                         ath_print(common, ATH_DBG_EEPROM,
1379                                   "final ini VAL: %x\n", value);
1380                 }
1381                 break;
1382         }
1383
1384         return value;
1385 }
1386
1387 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1388                               struct ar5416_eeprom_def *pEepData,
1389                               u32 reg, u32 value)
1390 {
1391         if (ah->eep_map == EEP_MAP_4KBITS)
1392                 return value;
1393         else
1394                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1395 }
1396
1397 static void ath9k_olc_init(struct ath_hw *ah)
1398 {
1399         u32 i;
1400
1401         if (OLC_FOR_AR9287_10_LATER) {
1402                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1403                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1404                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1405                                 AR9287_AN_TXPC0_TXPCMODE,
1406                                 AR9287_AN_TXPC0_TXPCMODE_S,
1407                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1408                 udelay(100);
1409         } else {
1410                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1411                         ah->originalGain[i] =
1412                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1413                                                 AR_PHY_TX_GAIN);
1414                 ah->PDADCdelta = 0;
1415         }
1416 }
1417
1418 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1419                               struct ath9k_channel *chan)
1420 {
1421         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1422
1423         if (IS_CHAN_B(chan))
1424                 ctl |= CTL_11B;
1425         else if (IS_CHAN_G(chan))
1426                 ctl |= CTL_11G;
1427         else
1428                 ctl |= CTL_11A;
1429
1430         return ctl;
1431 }
1432
1433 static int ath9k_hw_process_ini(struct ath_hw *ah,
1434                                 struct ath9k_channel *chan)
1435 {
1436         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1437         int i, regWrites = 0;
1438         struct ieee80211_channel *channel = chan->chan;
1439         u32 modesIndex, freqIndex;
1440
1441         switch (chan->chanmode) {
1442         case CHANNEL_A:
1443         case CHANNEL_A_HT20:
1444                 modesIndex = 1;
1445                 freqIndex = 1;
1446                 break;
1447         case CHANNEL_A_HT40PLUS:
1448         case CHANNEL_A_HT40MINUS:
1449                 modesIndex = 2;
1450                 freqIndex = 1;
1451                 break;
1452         case CHANNEL_G:
1453         case CHANNEL_G_HT20:
1454         case CHANNEL_B:
1455                 modesIndex = 4;
1456                 freqIndex = 2;
1457                 break;
1458         case CHANNEL_G_HT40PLUS:
1459         case CHANNEL_G_HT40MINUS:
1460                 modesIndex = 3;
1461                 freqIndex = 2;
1462                 break;
1463
1464         default:
1465                 return -EINVAL;
1466         }
1467
1468         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1469         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1470         ah->eep_ops->set_addac(ah, chan);
1471
1472         if (AR_SREV_5416_22_OR_LATER(ah)) {
1473                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1474         } else {
1475                 struct ar5416IniArray temp;
1476                 u32 addacSize =
1477                         sizeof(u32) * ah->iniAddac.ia_rows *
1478                         ah->iniAddac.ia_columns;
1479
1480                 memcpy(ah->addac5416_21,
1481                        ah->iniAddac.ia_array, addacSize);
1482
1483                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1484
1485                 temp.ia_array = ah->addac5416_21;
1486                 temp.ia_columns = ah->iniAddac.ia_columns;
1487                 temp.ia_rows = ah->iniAddac.ia_rows;
1488                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1489         }
1490
1491         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1492
1493         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1494                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1495                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1496
1497                 REG_WRITE(ah, reg, val);
1498
1499                 if (reg >= 0x7800 && reg < 0x78a0
1500                     && ah->config.analog_shiftreg) {
1501                         udelay(100);
1502                 }
1503
1504                 DO_DELAY(regWrites);
1505         }
1506
1507         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1508                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1509
1510         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1511             AR_SREV_9287_10_OR_LATER(ah))
1512                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1513
1514         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1515                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1516                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1517
1518                 REG_WRITE(ah, reg, val);
1519
1520                 if (reg >= 0x7800 && reg < 0x78a0
1521                     && ah->config.analog_shiftreg) {
1522                         udelay(100);
1523                 }
1524
1525                 DO_DELAY(regWrites);
1526         }
1527
1528         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1529
1530         if (AR_SREV_9271_10(ah))
1531                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1532                                 modesIndex, regWrites);
1533
1534         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1535                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1536                                 regWrites);
1537         }
1538
1539         ath9k_hw_override_ini(ah, chan);
1540         ath9k_hw_set_regs(ah, chan);
1541         ath9k_hw_init_chain_masks(ah);
1542
1543         if (OLC_FOR_AR9280_20_LATER)
1544                 ath9k_olc_init(ah);
1545
1546         ah->eep_ops->set_txpower(ah, chan,
1547                                  ath9k_regd_get_ctl(regulatory, chan),
1548                                  channel->max_antenna_gain * 2,
1549                                  channel->max_power * 2,
1550                                  min((u32) MAX_RATE_POWER,
1551                                  (u32) regulatory->power_limit));
1552
1553         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1554                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1555                           "ar5416SetRfRegs failed\n");
1556                 return -EIO;
1557         }
1558
1559         return 0;
1560 }
1561
1562 /****************************************/
1563 /* Reset and Channel Switching Routines */
1564 /****************************************/
1565
1566 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1567 {
1568         u32 rfMode = 0;
1569
1570         if (chan == NULL)
1571                 return;
1572
1573         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1574                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1575
1576         if (!AR_SREV_9280_10_OR_LATER(ah))
1577                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1578                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1579
1580         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1581                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1582
1583         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1584 }
1585
1586 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1587 {
1588         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1589 }
1590
1591 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1592 {
1593         u32 regval;
1594
1595         /*
1596          * set AHB_MODE not to do cacheline prefetches
1597         */
1598         regval = REG_READ(ah, AR_AHB_MODE);
1599         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1600
1601         /*
1602          * let mac dma reads be in 128 byte chunks
1603          */
1604         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1605         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1606
1607         /*
1608          * Restore TX Trigger Level to its pre-reset value.
1609          * The initial value depends on whether aggregation is enabled, and is
1610          * adjusted whenever underruns are detected.
1611          */
1612         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1613
1614         /*
1615          * let mac dma writes be in 128 byte chunks
1616          */
1617         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1618         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1619
1620         /*
1621          * Setup receive FIFO threshold to hold off TX activities
1622          */
1623         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1624
1625         /*
1626          * reduce the number of usable entries in PCU TXBUF to avoid
1627          * wrap around issues.
1628          */
1629         if (AR_SREV_9285(ah)) {
1630                 /* For AR9285 the number of Fifos are reduced to half.
1631                  * So set the usable tx buf size also to half to
1632                  * avoid data/delimiter underruns
1633                  */
1634                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1635                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1636         } else if (!AR_SREV_9271(ah)) {
1637                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1638                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1639         }
1640 }
1641
1642 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1643 {
1644         u32 val;
1645
1646         val = REG_READ(ah, AR_STA_ID1);
1647         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1648         switch (opmode) {
1649         case NL80211_IFTYPE_AP:
1650                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1651                           | AR_STA_ID1_KSRCH_MODE);
1652                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1653                 break;
1654         case NL80211_IFTYPE_ADHOC:
1655         case NL80211_IFTYPE_MESH_POINT:
1656                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1657                           | AR_STA_ID1_KSRCH_MODE);
1658                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1659                 break;
1660         case NL80211_IFTYPE_STATION:
1661         case NL80211_IFTYPE_MONITOR:
1662                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1663                 break;
1664         }
1665 }
1666
1667 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1668                                                  u32 coef_scaled,
1669                                                  u32 *coef_mantissa,
1670                                                  u32 *coef_exponent)
1671 {
1672         u32 coef_exp, coef_man;
1673
1674         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1675                 if ((coef_scaled >> coef_exp) & 0x1)
1676                         break;
1677
1678         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1679
1680         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1681
1682         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1683         *coef_exponent = coef_exp - 16;
1684 }
1685
1686 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1687                                      struct ath9k_channel *chan)
1688 {
1689         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1690         u32 clockMhzScaled = 0x64000000;
1691         struct chan_centers centers;
1692
1693         if (IS_CHAN_HALF_RATE(chan))
1694                 clockMhzScaled = clockMhzScaled >> 1;
1695         else if (IS_CHAN_QUARTER_RATE(chan))
1696                 clockMhzScaled = clockMhzScaled >> 2;
1697
1698         ath9k_hw_get_channel_centers(ah, chan, &centers);
1699         coef_scaled = clockMhzScaled / centers.synth_center;
1700
1701         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1702                                       &ds_coef_exp);
1703
1704         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1705                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1706         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1707                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1708
1709         coef_scaled = (9 * coef_scaled) / 10;
1710
1711         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1712                                       &ds_coef_exp);
1713
1714         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1715                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1716         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1717                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1718 }
1719
1720 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1721 {
1722         u32 rst_flags;
1723         u32 tmpReg;
1724
1725         if (AR_SREV_9100(ah)) {
1726                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1727                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1728                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1729                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1730                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1731         }
1732
1733         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1734                   AR_RTC_FORCE_WAKE_ON_INT);
1735
1736         if (AR_SREV_9100(ah)) {
1737                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1738                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1739         } else {
1740                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1741                 if (tmpReg &
1742                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1743                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1744                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1745                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1746                 } else {
1747                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1748                 }
1749
1750                 rst_flags = AR_RTC_RC_MAC_WARM;
1751                 if (type == ATH9K_RESET_COLD)
1752                         rst_flags |= AR_RTC_RC_MAC_COLD;
1753         }
1754
1755         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1756         udelay(50);
1757
1758         REG_WRITE(ah, AR_RTC_RC, 0);
1759         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1760                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1761                           "RTC stuck in MAC reset\n");
1762                 return false;
1763         }
1764
1765         if (!AR_SREV_9100(ah))
1766                 REG_WRITE(ah, AR_RC, 0);
1767
1768         if (AR_SREV_9100(ah))
1769                 udelay(50);
1770
1771         return true;
1772 }
1773
1774 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1775 {
1776         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1777                   AR_RTC_FORCE_WAKE_ON_INT);
1778
1779         if (!AR_SREV_9100(ah))
1780                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1781
1782         REG_WRITE(ah, AR_RTC_RESET, 0);
1783         udelay(2);
1784
1785         if (!AR_SREV_9100(ah))
1786                 REG_WRITE(ah, AR_RC, 0);
1787
1788         REG_WRITE(ah, AR_RTC_RESET, 1);
1789
1790         if (!ath9k_hw_wait(ah,
1791                            AR_RTC_STATUS,
1792                            AR_RTC_STATUS_M,
1793                            AR_RTC_STATUS_ON,
1794                            AH_WAIT_TIMEOUT)) {
1795                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1796                           "RTC not waking up\n");
1797                 return false;
1798         }
1799
1800         ath9k_hw_read_revisions(ah);
1801
1802         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1803 }
1804
1805 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1806 {
1807         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1808                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1809
1810         switch (type) {
1811         case ATH9K_RESET_POWER_ON:
1812                 return ath9k_hw_set_reset_power_on(ah);
1813         case ATH9K_RESET_WARM:
1814         case ATH9K_RESET_COLD:
1815                 return ath9k_hw_set_reset(ah, type);
1816         default:
1817                 return false;
1818         }
1819 }
1820
1821 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1822 {
1823         u32 phymode;
1824         u32 enableDacFifo = 0;
1825
1826         if (AR_SREV_9285_10_OR_LATER(ah))
1827                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1828                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1829
1830         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1831                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1832
1833         if (IS_CHAN_HT40(chan)) {
1834                 phymode |= AR_PHY_FC_DYN2040_EN;
1835
1836                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1837                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1838                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1839
1840         }
1841         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1842
1843         ath9k_hw_set11nmac2040(ah);
1844
1845         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1846         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1847 }
1848
1849 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1850                                 struct ath9k_channel *chan)
1851 {
1852         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1853                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1854                         return false;
1855         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1856                 return false;
1857
1858         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1859                 return false;
1860
1861         ah->chip_fullsleep = false;
1862         ath9k_hw_init_pll(ah, chan);
1863         ath9k_hw_set_rfmode(ah, chan);
1864
1865         return true;
1866 }
1867
1868 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1869                                     struct ath9k_channel *chan)
1870 {
1871         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1872         struct ath_common *common = ath9k_hw_common(ah);
1873         struct ieee80211_channel *channel = chan->chan;
1874         u32 synthDelay, qnum;
1875         int r;
1876
1877         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1878                 if (ath9k_hw_numtxpending(ah, qnum)) {
1879                         ath_print(common, ATH_DBG_QUEUE,
1880                                   "Transmit frames pending on "
1881                                   "queue %d\n", qnum);
1882                         return false;
1883                 }
1884         }
1885
1886         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1887         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1888                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1889                 ath_print(common, ATH_DBG_FATAL,
1890                           "Could not kill baseband RX\n");
1891                 return false;
1892         }
1893
1894         ath9k_hw_set_regs(ah, chan);
1895
1896         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1897         if (r) {
1898                 ath_print(common, ATH_DBG_FATAL,
1899                           "Failed to set channel\n");
1900                 return false;
1901         }
1902
1903         ah->eep_ops->set_txpower(ah, chan,
1904                              ath9k_regd_get_ctl(regulatory, chan),
1905                              channel->max_antenna_gain * 2,
1906                              channel->max_power * 2,
1907                              min((u32) MAX_RATE_POWER,
1908                              (u32) regulatory->power_limit));
1909
1910         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1911         if (IS_CHAN_B(chan))
1912                 synthDelay = (4 * synthDelay) / 22;
1913         else
1914                 synthDelay /= 10;
1915
1916         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1917
1918         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1919
1920         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1921                 ath9k_hw_set_delta_slope(ah, chan);
1922
1923         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1924
1925         if (!chan->oneTimeCalsDone)
1926                 chan->oneTimeCalsDone = true;
1927
1928         return true;
1929 }
1930
1931 static void ath9k_enable_rfkill(struct ath_hw *ah)
1932 {
1933         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1934                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1935
1936         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1937                     AR_GPIO_INPUT_MUX2_RFSILENT);
1938
1939         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1940         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1941 }
1942
1943 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1944                     bool bChannelChange)
1945 {
1946         struct ath_common *common = ath9k_hw_common(ah);
1947         u32 saveLedState;
1948         struct ath9k_channel *curchan = ah->curchan;
1949         u32 saveDefAntenna;
1950         u32 macStaId1;
1951         u64 tsf = 0;
1952         int i, rx_chainmask, r;
1953
1954         ah->txchainmask = common->tx_chainmask;
1955         ah->rxchainmask = common->rx_chainmask;
1956
1957         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1958                 return -EIO;
1959
1960         if (curchan && !ah->chip_fullsleep)
1961                 ath9k_hw_getnf(ah, curchan);
1962
1963         if (bChannelChange &&
1964             (ah->chip_fullsleep != true) &&
1965             (ah->curchan != NULL) &&
1966             (chan->channel != ah->curchan->channel) &&
1967             ((chan->channelFlags & CHANNEL_ALL) ==
1968              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1969              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1970              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1971
1972                 if (ath9k_hw_channel_change(ah, chan)) {
1973                         ath9k_hw_loadnf(ah, ah->curchan);
1974                         ath9k_hw_start_nfcal(ah);
1975                         return 0;
1976                 }
1977         }
1978
1979         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1980         if (saveDefAntenna == 0)
1981                 saveDefAntenna = 1;
1982
1983         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1984
1985         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1986         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1987                 tsf = ath9k_hw_gettsf64(ah);
1988
1989         saveLedState = REG_READ(ah, AR_CFG_LED) &
1990                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1991                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1992
1993         ath9k_hw_mark_phy_inactive(ah);
1994
1995         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1996                 REG_WRITE(ah,
1997                           AR9271_RESET_POWER_DOWN_CONTROL,
1998                           AR9271_RADIO_RF_RST);
1999                 udelay(50);
2000         }
2001
2002         if (!ath9k_hw_chip_reset(ah, chan)) {
2003                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2004                 return -EINVAL;
2005         }
2006
2007         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2008                 ah->htc_reset_init = false;
2009                 REG_WRITE(ah,
2010                           AR9271_RESET_POWER_DOWN_CONTROL,
2011                           AR9271_GATE_MAC_CTL);
2012                 udelay(50);
2013         }
2014
2015         /* Restore TSF */
2016         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2017                 ath9k_hw_settsf64(ah, tsf);
2018
2019         if (AR_SREV_9280_10_OR_LATER(ah))
2020                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2021
2022         if (AR_SREV_9287_12_OR_LATER(ah)) {
2023                 /* Enable ASYNC FIFO */
2024                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2025                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2026                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2027                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2028                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2029                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2030                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2031         }
2032         r = ath9k_hw_process_ini(ah, chan);
2033         if (r)
2034                 return r;
2035
2036         /* Setup MFP options for CCMP */
2037         if (AR_SREV_9280_20_OR_LATER(ah)) {
2038                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2039                  * frames when constructing CCMP AAD. */
2040                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2041                               0xc7ff);
2042                 ah->sw_mgmt_crypto = false;
2043         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2044                 /* Disable hardware crypto for management frames */
2045                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2046                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2047                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2048                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2049                 ah->sw_mgmt_crypto = true;
2050         } else
2051                 ah->sw_mgmt_crypto = true;
2052
2053         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2054                 ath9k_hw_set_delta_slope(ah, chan);
2055
2056         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2057         ah->eep_ops->set_board_values(ah, chan);
2058         ath9k_hw_decrease_chain_power(ah, chan);
2059
2060         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2061         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2062                   | macStaId1
2063                   | AR_STA_ID1_RTS_USE_DEF
2064                   | (ah->config.
2065                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2066                   | ah->sta_id1_defaults);
2067         ath9k_hw_set_operating_mode(ah, ah->opmode);
2068
2069         ath_hw_setbssidmask(common);
2070
2071         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2072
2073         ath9k_hw_write_associd(ah);
2074
2075         REG_WRITE(ah, AR_ISR, ~0);
2076
2077         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2078
2079         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2080         if (r)
2081                 return r;
2082
2083         for (i = 0; i < AR_NUM_DCU; i++)
2084                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2085
2086         ah->intr_txqs = 0;
2087         for (i = 0; i < ah->caps.total_queues; i++)
2088                 ath9k_hw_resettxqueue(ah, i);
2089
2090         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2091         ath9k_hw_init_qos(ah);
2092
2093         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2094                 ath9k_enable_rfkill(ah);
2095
2096         ath9k_hw_init_user_settings(ah);
2097
2098         if (AR_SREV_9287_12_OR_LATER(ah)) {
2099                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2100                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2101                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2102                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2103                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2104                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2105
2106                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2107                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2108
2109                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2110                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2111                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2112                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2113         }
2114         if (AR_SREV_9287_12_OR_LATER(ah)) {
2115                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2116                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2117         }
2118
2119         REG_WRITE(ah, AR_STA_ID1,
2120                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2121
2122         ath9k_hw_set_dma(ah);
2123
2124         REG_WRITE(ah, AR_OBS, 8);
2125
2126         if (ah->config.intr_mitigation) {
2127                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2128                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2129         }
2130
2131         ath9k_hw_init_bb(ah, chan);
2132
2133         if (!ath9k_hw_init_cal(ah, chan))
2134                 return -EIO;
2135
2136         rx_chainmask = ah->rxchainmask;
2137         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2138                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2139                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2140         }
2141
2142         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2143
2144         /*
2145          * For big endian systems turn on swapping for descriptors
2146          */
2147         if (AR_SREV_9100(ah)) {
2148                 u32 mask;
2149                 mask = REG_READ(ah, AR_CFG);
2150                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2151                         ath_print(common, ATH_DBG_RESET,
2152                                 "CFG Byte Swap Set 0x%x\n", mask);
2153                 } else {
2154                         mask =
2155                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2156                         REG_WRITE(ah, AR_CFG, mask);
2157                         ath_print(common, ATH_DBG_RESET,
2158                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2159                 }
2160         } else {
2161                 /* Configure AR9271 target WLAN */
2162                 if (AR_SREV_9271(ah))
2163                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2164 #ifdef __BIG_ENDIAN
2165                 else
2166                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2167 #endif
2168         }
2169
2170         if (ah->btcoex_hw.enabled)
2171                 ath9k_hw_btcoex_enable(ah);
2172
2173         return 0;
2174 }
2175 EXPORT_SYMBOL(ath9k_hw_reset);
2176
2177 /************************/
2178 /* Key Cache Management */
2179 /************************/
2180
2181 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2182 {
2183         u32 keyType;
2184
2185         if (entry >= ah->caps.keycache_size) {
2186                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2187                           "keychache entry %u out of range\n", entry);
2188                 return false;
2189         }
2190
2191         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2192
2193         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2194         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2195         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2196         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2197         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2198         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2199         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2200         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2201
2202         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2203                 u16 micentry = entry + 64;
2204
2205                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2206                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2207                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2208                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2209
2210         }
2211
2212         return true;
2213 }
2214 EXPORT_SYMBOL(ath9k_hw_keyreset);
2215
2216 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2217 {
2218         u32 macHi, macLo;
2219
2220         if (entry >= ah->caps.keycache_size) {
2221                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2222                           "keychache entry %u out of range\n", entry);
2223                 return false;
2224         }
2225
2226         if (mac != NULL) {
2227                 macHi = (mac[5] << 8) | mac[4];
2228                 macLo = (mac[3] << 24) |
2229                         (mac[2] << 16) |
2230                         (mac[1] << 8) |
2231                         mac[0];
2232                 macLo >>= 1;
2233                 macLo |= (macHi & 1) << 31;
2234                 macHi >>= 1;
2235         } else {
2236                 macLo = macHi = 0;
2237         }
2238         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2239         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2240
2241         return true;
2242 }
2243 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2244
2245 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2246                                  const struct ath9k_keyval *k,
2247                                  const u8 *mac)
2248 {
2249         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2250         struct ath_common *common = ath9k_hw_common(ah);
2251         u32 key0, key1, key2, key3, key4;
2252         u32 keyType;
2253
2254         if (entry >= pCap->keycache_size) {
2255                 ath_print(common, ATH_DBG_FATAL,
2256                           "keycache entry %u out of range\n", entry);
2257                 return false;
2258         }
2259
2260         switch (k->kv_type) {
2261         case ATH9K_CIPHER_AES_OCB:
2262                 keyType = AR_KEYTABLE_TYPE_AES;
2263                 break;
2264         case ATH9K_CIPHER_AES_CCM:
2265                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2266                         ath_print(common, ATH_DBG_ANY,
2267                                   "AES-CCM not supported by mac rev 0x%x\n",
2268                                   ah->hw_version.macRev);
2269                         return false;
2270                 }
2271                 keyType = AR_KEYTABLE_TYPE_CCM;
2272                 break;
2273         case ATH9K_CIPHER_TKIP:
2274                 keyType = AR_KEYTABLE_TYPE_TKIP;
2275                 if (ATH9K_IS_MIC_ENABLED(ah)
2276                     && entry + 64 >= pCap->keycache_size) {
2277                         ath_print(common, ATH_DBG_ANY,
2278                                   "entry %u inappropriate for TKIP\n", entry);
2279                         return false;
2280                 }
2281                 break;
2282         case ATH9K_CIPHER_WEP:
2283                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2284                         ath_print(common, ATH_DBG_ANY,
2285                                   "WEP key length %u too small\n", k->kv_len);
2286                         return false;
2287                 }
2288                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2289                         keyType = AR_KEYTABLE_TYPE_40;
2290                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2291                         keyType = AR_KEYTABLE_TYPE_104;
2292                 else
2293                         keyType = AR_KEYTABLE_TYPE_128;
2294                 break;
2295         case ATH9K_CIPHER_CLR:
2296                 keyType = AR_KEYTABLE_TYPE_CLR;
2297                 break;
2298         default:
2299                 ath_print(common, ATH_DBG_FATAL,
2300                           "cipher %u not supported\n", k->kv_type);
2301                 return false;
2302         }
2303
2304         key0 = get_unaligned_le32(k->kv_val + 0);
2305         key1 = get_unaligned_le16(k->kv_val + 4);
2306         key2 = get_unaligned_le32(k->kv_val + 6);
2307         key3 = get_unaligned_le16(k->kv_val + 10);
2308         key4 = get_unaligned_le32(k->kv_val + 12);
2309         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2310                 key4 &= 0xff;
2311
2312         /*
2313          * Note: Key cache registers access special memory area that requires
2314          * two 32-bit writes to actually update the values in the internal
2315          * memory. Consequently, the exact order and pairs used here must be
2316          * maintained.
2317          */
2318
2319         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2320                 u16 micentry = entry + 64;
2321
2322                 /*
2323                  * Write inverted key[47:0] first to avoid Michael MIC errors
2324                  * on frames that could be sent or received at the same time.
2325                  * The correct key will be written in the end once everything
2326                  * else is ready.
2327                  */
2328                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2329                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2330
2331                 /* Write key[95:48] */
2332                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2333                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2334
2335                 /* Write key[127:96] and key type */
2336                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2337                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2338
2339                 /* Write MAC address for the entry */
2340                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2341
2342                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2343                         /*
2344                          * TKIP uses two key cache entries:
2345                          * Michael MIC TX/RX keys in the same key cache entry
2346                          * (idx = main index + 64):
2347                          * key0 [31:0] = RX key [31:0]
2348                          * key1 [15:0] = TX key [31:16]
2349                          * key1 [31:16] = reserved
2350                          * key2 [31:0] = RX key [63:32]
2351                          * key3 [15:0] = TX key [15:0]
2352                          * key3 [31:16] = reserved
2353                          * key4 [31:0] = TX key [63:32]
2354                          */
2355                         u32 mic0, mic1, mic2, mic3, mic4;
2356
2357                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2358                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2359                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2360                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2361                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2362
2363                         /* Write RX[31:0] and TX[31:16] */
2364                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2365                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2366
2367                         /* Write RX[63:32] and TX[15:0] */
2368                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2369                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2370
2371                         /* Write TX[63:32] and keyType(reserved) */
2372                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2373                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2374                                   AR_KEYTABLE_TYPE_CLR);
2375
2376                 } else {
2377                         /*
2378                          * TKIP uses four key cache entries (two for group
2379                          * keys):
2380                          * Michael MIC TX/RX keys are in different key cache
2381                          * entries (idx = main index + 64 for TX and
2382                          * main index + 32 + 96 for RX):
2383                          * key0 [31:0] = TX/RX MIC key [31:0]
2384                          * key1 [31:0] = reserved
2385                          * key2 [31:0] = TX/RX MIC key [63:32]
2386                          * key3 [31:0] = reserved
2387                          * key4 [31:0] = reserved
2388                          *
2389                          * Upper layer code will call this function separately
2390                          * for TX and RX keys when these registers offsets are
2391                          * used.
2392                          */
2393                         u32 mic0, mic2;
2394
2395                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2396                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2397
2398                         /* Write MIC key[31:0] */
2399                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2400                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2401
2402                         /* Write MIC key[63:32] */
2403                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2404                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2405
2406                         /* Write TX[63:32] and keyType(reserved) */
2407                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2408                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2409                                   AR_KEYTABLE_TYPE_CLR);
2410                 }
2411
2412                 /* MAC address registers are reserved for the MIC entry */
2413                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2414                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2415
2416                 /*
2417                  * Write the correct (un-inverted) key[47:0] last to enable
2418                  * TKIP now that all other registers are set with correct
2419                  * values.
2420                  */
2421                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2422                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2423         } else {
2424                 /* Write key[47:0] */
2425                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2426                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2427
2428                 /* Write key[95:48] */
2429                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2430                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2431
2432                 /* Write key[127:96] and key type */
2433                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2434                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2435
2436                 /* Write MAC address for the entry */
2437                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2438         }
2439
2440         return true;
2441 }
2442 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2443
2444 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2445 {
2446         if (entry < ah->caps.keycache_size) {
2447                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2448                 if (val & AR_KEYTABLE_VALID)
2449                         return true;
2450         }
2451         return false;
2452 }
2453 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2454
2455 /******************************/
2456 /* Power Management (Chipset) */
2457 /******************************/
2458
2459 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2460 {
2461         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2462         if (setChip) {
2463                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2464                             AR_RTC_FORCE_WAKE_EN);
2465                 if (!AR_SREV_9100(ah))
2466                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2467
2468                 if(!AR_SREV_5416(ah))
2469                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2470                                     AR_RTC_RESET_EN);
2471         }
2472 }
2473
2474 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2475 {
2476         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2477         if (setChip) {
2478                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2479
2480                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2481                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2482                                   AR_RTC_FORCE_WAKE_ON_INT);
2483                 } else {
2484                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2485                                     AR_RTC_FORCE_WAKE_EN);
2486                 }
2487         }
2488 }
2489
2490 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2491 {
2492         u32 val;
2493         int i;
2494
2495         if (setChip) {
2496                 if ((REG_READ(ah, AR_RTC_STATUS) &
2497                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2498                         if (ath9k_hw_set_reset_reg(ah,
2499                                            ATH9K_RESET_POWER_ON) != true) {
2500                                 return false;
2501                         }
2502                         ath9k_hw_init_pll(ah, NULL);
2503                 }
2504                 if (AR_SREV_9100(ah))
2505                         REG_SET_BIT(ah, AR_RTC_RESET,
2506                                     AR_RTC_RESET_EN);
2507
2508                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2509                             AR_RTC_FORCE_WAKE_EN);
2510                 udelay(50);
2511
2512                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2513                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2514                         if (val == AR_RTC_STATUS_ON)
2515                                 break;
2516                         udelay(50);
2517                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2518                                     AR_RTC_FORCE_WAKE_EN);
2519                 }
2520                 if (i == 0) {
2521                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2522                                   "Failed to wakeup in %uus\n",
2523                                   POWER_UP_TIME / 20);
2524                         return false;
2525                 }
2526         }
2527
2528         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2529
2530         return true;
2531 }
2532
2533 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2534 {
2535         struct ath_common *common = ath9k_hw_common(ah);
2536         int status = true, setChip = true;
2537         static const char *modes[] = {
2538                 "AWAKE",
2539                 "FULL-SLEEP",
2540                 "NETWORK SLEEP",
2541                 "UNDEFINED"
2542         };
2543
2544         if (ah->power_mode == mode)
2545                 return status;
2546
2547         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2548                   modes[ah->power_mode], modes[mode]);
2549
2550         switch (mode) {
2551         case ATH9K_PM_AWAKE:
2552                 status = ath9k_hw_set_power_awake(ah, setChip);
2553                 break;
2554         case ATH9K_PM_FULL_SLEEP:
2555                 ath9k_set_power_sleep(ah, setChip);
2556                 ah->chip_fullsleep = true;
2557                 break;
2558         case ATH9K_PM_NETWORK_SLEEP:
2559                 ath9k_set_power_network_sleep(ah, setChip);
2560                 break;
2561         default:
2562                 ath_print(common, ATH_DBG_FATAL,
2563                           "Unknown power mode %u\n", mode);
2564                 return false;
2565         }
2566         ah->power_mode = mode;
2567
2568         return status;
2569 }
2570 EXPORT_SYMBOL(ath9k_hw_setpower);
2571
2572 /*
2573  * Helper for ASPM support.
2574  *
2575  * Disable PLL when in L0s as well as receiver clock when in L1.
2576  * This power saving option must be enabled through the SerDes.
2577  *
2578  * Programming the SerDes must go through the same 288 bit serial shift
2579  * register as the other analog registers.  Hence the 9 writes.
2580  */
2581 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2582 {
2583         u8 i;
2584         u32 val;
2585
2586         if (ah->is_pciexpress != true)
2587                 return;
2588
2589         /* Do not touch SerDes registers */
2590         if (ah->config.pcie_powersave_enable == 2)
2591                 return;
2592
2593         /* Nothing to do on restore for 11N */
2594         if (!restore) {
2595                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2596                         /*
2597                          * AR9280 2.0 or later chips use SerDes values from the
2598                          * initvals.h initialized depending on chipset during
2599                          * ath9k_hw_init()
2600                          */
2601                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2602                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2603                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2604                         }
2605                 } else if (AR_SREV_9280(ah) &&
2606                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2607                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2608                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2609
2610                         /* RX shut off when elecidle is asserted */
2611                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2612                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2613                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2614
2615                         /* Shut off CLKREQ active in L1 */
2616                         if (ah->config.pcie_clock_req)
2617                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2618                         else
2619                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2620
2621                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2622                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2623                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2624
2625                         /* Load the new settings */
2626                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2627
2628                 } else {
2629                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2630                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2631
2632                         /* RX shut off when elecidle is asserted */
2633                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2634                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2635                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2636
2637                         /*
2638                          * Ignore ah->ah_config.pcie_clock_req setting for
2639                          * pre-AR9280 11n
2640                          */
2641                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2642
2643                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2644                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2645                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2646
2647                         /* Load the new settings */
2648                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2649                 }
2650
2651                 udelay(1000);
2652
2653                 /* set bit 19 to allow forcing of pcie core into L1 state */
2654                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2655
2656                 /* Several PCIe massages to ensure proper behaviour */
2657                 if (ah->config.pcie_waen) {
2658                         val = ah->config.pcie_waen;
2659                         if (!power_off)
2660                                 val &= (~AR_WA_D3_L1_DISABLE);
2661                 } else {
2662                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2663                             AR_SREV_9287(ah)) {
2664                                 val = AR9285_WA_DEFAULT;
2665                                 if (!power_off)
2666                                         val &= (~AR_WA_D3_L1_DISABLE);
2667                         } else if (AR_SREV_9280(ah)) {
2668                                 /*
2669                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2670                                  * set otherwise card may disappear.
2671                                  */
2672                                 val = AR9280_WA_DEFAULT;
2673                                 if (!power_off)
2674                                         val &= (~AR_WA_D3_L1_DISABLE);
2675                         } else
2676                                 val = AR_WA_DEFAULT;
2677                 }
2678
2679                 REG_WRITE(ah, AR_WA, val);
2680         }
2681
2682         if (power_off) {
2683                 /*
2684                  * Set PCIe workaround bits
2685                  * bit 14 in WA register (disable L1) should only
2686                  * be set when device enters D3 and be cleared
2687                  * when device comes back to D0.
2688                  */
2689                 if (ah->config.pcie_waen) {
2690                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2691                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2692                 } else {
2693                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2694                               AR_SREV_9287(ah)) &&
2695                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2696                             (AR_SREV_9280(ah) &&
2697                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2698                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2699                         }
2700                 }
2701         }
2702 }
2703 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2704
2705 /**********************/
2706 /* Interrupt Handling */
2707 /**********************/
2708
2709 bool ath9k_hw_intrpend(struct ath_hw *ah)
2710 {
2711         u32 host_isr;
2712
2713         if (AR_SREV_9100(ah))
2714                 return true;
2715
2716         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2717         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2718                 return true;
2719
2720         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2721         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2722             && (host_isr != AR_INTR_SPURIOUS))
2723                 return true;
2724
2725         return false;
2726 }
2727 EXPORT_SYMBOL(ath9k_hw_intrpend);
2728
2729 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2730 {
2731         u32 isr = 0;
2732         u32 mask2 = 0;
2733         struct ath9k_hw_capabilities *pCap = &ah->caps;
2734         u32 sync_cause = 0;
2735         bool fatal_int = false;
2736         struct ath_common *common = ath9k_hw_common(ah);
2737
2738         if (!AR_SREV_9100(ah)) {
2739                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2740                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2741                             == AR_RTC_STATUS_ON) {
2742                                 isr = REG_READ(ah, AR_ISR);
2743                         }
2744                 }
2745
2746                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2747                         AR_INTR_SYNC_DEFAULT;
2748
2749                 *masked = 0;
2750
2751                 if (!isr && !sync_cause)
2752                         return false;
2753         } else {
2754                 *masked = 0;
2755                 isr = REG_READ(ah, AR_ISR);
2756         }
2757
2758         if (isr) {
2759                 if (isr & AR_ISR_BCNMISC) {
2760                         u32 isr2;
2761                         isr2 = REG_READ(ah, AR_ISR_S2);
2762                         if (isr2 & AR_ISR_S2_TIM)
2763                                 mask2 |= ATH9K_INT_TIM;
2764                         if (isr2 & AR_ISR_S2_DTIM)
2765                                 mask2 |= ATH9K_INT_DTIM;
2766                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2767                                 mask2 |= ATH9K_INT_DTIMSYNC;
2768                         if (isr2 & (AR_ISR_S2_CABEND))
2769                                 mask2 |= ATH9K_INT_CABEND;
2770                         if (isr2 & AR_ISR_S2_GTT)
2771                                 mask2 |= ATH9K_INT_GTT;
2772                         if (isr2 & AR_ISR_S2_CST)
2773                                 mask2 |= ATH9K_INT_CST;
2774                         if (isr2 & AR_ISR_S2_TSFOOR)
2775                                 mask2 |= ATH9K_INT_TSFOOR;
2776                 }
2777
2778                 isr = REG_READ(ah, AR_ISR_RAC);
2779                 if (isr == 0xffffffff) {
2780                         *masked = 0;
2781                         return false;
2782                 }
2783
2784                 *masked = isr & ATH9K_INT_COMMON;
2785
2786                 if (ah->config.intr_mitigation) {
2787                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2788                                 *masked |= ATH9K_INT_RX;
2789                 }
2790
2791                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2792                         *masked |= ATH9K_INT_RX;
2793                 if (isr &
2794                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2795                      AR_ISR_TXEOL)) {
2796                         u32 s0_s, s1_s;
2797
2798                         *masked |= ATH9K_INT_TX;
2799
2800                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2801                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2802                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2803
2804                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2805                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2806                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2807                 }
2808
2809                 if (isr & AR_ISR_RXORN) {
2810                         ath_print(common, ATH_DBG_INTERRUPT,
2811                                   "receive FIFO overrun interrupt\n");
2812                 }
2813
2814                 if (!AR_SREV_9100(ah)) {
2815                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2816                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2817                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2818                                         *masked |= ATH9K_INT_TIM_TIMER;
2819                         }
2820                 }
2821
2822                 *masked |= mask2;
2823         }
2824
2825         if (AR_SREV_9100(ah))
2826                 return true;
2827
2828         if (isr & AR_ISR_GENTMR) {
2829                 u32 s5_s;
2830
2831                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2832                 if (isr & AR_ISR_GENTMR) {
2833                         ah->intr_gen_timer_trigger =
2834                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2835
2836                         ah->intr_gen_timer_thresh =
2837                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2838
2839                         if (ah->intr_gen_timer_trigger)
2840                                 *masked |= ATH9K_INT_GENTIMER;
2841
2842                 }
2843         }
2844
2845         if (sync_cause) {
2846                 fatal_int =
2847                         (sync_cause &
2848                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2849                         ? true : false;
2850
2851                 if (fatal_int) {
2852                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2853                                 ath_print(common, ATH_DBG_ANY,
2854                                           "received PCI FATAL interrupt\n");
2855                         }
2856                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2857                                 ath_print(common, ATH_DBG_ANY,
2858                                           "received PCI PERR interrupt\n");
2859                         }
2860                         *masked |= ATH9K_INT_FATAL;
2861                 }
2862                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2863                         ath_print(common, ATH_DBG_INTERRUPT,
2864                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2865                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2866                         REG_WRITE(ah, AR_RC, 0);
2867                         *masked |= ATH9K_INT_FATAL;
2868                 }
2869                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2870                         ath_print(common, ATH_DBG_INTERRUPT,
2871                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2872                 }
2873
2874                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2875                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2876         }
2877
2878         return true;
2879 }
2880 EXPORT_SYMBOL(ath9k_hw_getisr);
2881
2882 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2883 {
2884         u32 omask = ah->mask_reg;
2885         u32 mask, mask2;
2886         struct ath9k_hw_capabilities *pCap = &ah->caps;
2887         struct ath_common *common = ath9k_hw_common(ah);
2888
2889         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2890
2891         if (omask & ATH9K_INT_GLOBAL) {
2892                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2893                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2894                 (void) REG_READ(ah, AR_IER);
2895                 if (!AR_SREV_9100(ah)) {
2896                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2897                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2898
2899                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2900                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2901                 }
2902         }
2903
2904         mask = ints & ATH9K_INT_COMMON;
2905         mask2 = 0;
2906
2907         if (ints & ATH9K_INT_TX) {
2908                 if (ah->txok_interrupt_mask)
2909                         mask |= AR_IMR_TXOK;
2910                 if (ah->txdesc_interrupt_mask)
2911                         mask |= AR_IMR_TXDESC;
2912                 if (ah->txerr_interrupt_mask)
2913                         mask |= AR_IMR_TXERR;
2914                 if (ah->txeol_interrupt_mask)
2915                         mask |= AR_IMR_TXEOL;
2916         }
2917         if (ints & ATH9K_INT_RX) {
2918                 mask |= AR_IMR_RXERR;
2919                 if (ah->config.intr_mitigation)
2920                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2921                 else
2922                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2923                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2924                         mask |= AR_IMR_GENTMR;
2925         }
2926
2927         if (ints & (ATH9K_INT_BMISC)) {
2928                 mask |= AR_IMR_BCNMISC;
2929                 if (ints & ATH9K_INT_TIM)
2930                         mask2 |= AR_IMR_S2_TIM;
2931                 if (ints & ATH9K_INT_DTIM)
2932                         mask2 |= AR_IMR_S2_DTIM;
2933                 if (ints & ATH9K_INT_DTIMSYNC)
2934                         mask2 |= AR_IMR_S2_DTIMSYNC;
2935                 if (ints & ATH9K_INT_CABEND)
2936                         mask2 |= AR_IMR_S2_CABEND;
2937                 if (ints & ATH9K_INT_TSFOOR)
2938                         mask2 |= AR_IMR_S2_TSFOOR;
2939         }
2940
2941         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2942                 mask |= AR_IMR_BCNMISC;
2943                 if (ints & ATH9K_INT_GTT)
2944                         mask2 |= AR_IMR_S2_GTT;
2945                 if (ints & ATH9K_INT_CST)
2946                         mask2 |= AR_IMR_S2_CST;
2947         }
2948
2949         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2950         REG_WRITE(ah, AR_IMR, mask);
2951         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2952                                            AR_IMR_S2_DTIM |
2953                                            AR_IMR_S2_DTIMSYNC |
2954                                            AR_IMR_S2_CABEND |
2955                                            AR_IMR_S2_CABTO |
2956                                            AR_IMR_S2_TSFOOR |
2957                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
2958         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2959         ah->mask_reg = ints;
2960
2961         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2962                 if (ints & ATH9K_INT_TIM_TIMER)
2963                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2964                 else
2965                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2966         }
2967
2968         if (ints & ATH9K_INT_GLOBAL) {
2969                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2970                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2971                 if (!AR_SREV_9100(ah)) {
2972                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2973                                   AR_INTR_MAC_IRQ);
2974                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2975
2976
2977                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2978                                   AR_INTR_SYNC_DEFAULT);
2979                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2980                                   AR_INTR_SYNC_DEFAULT);
2981                 }
2982                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2983                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2984         }
2985
2986         return omask;
2987 }
2988 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2989
2990 /*******************/
2991 /* Beacon Handling */
2992 /*******************/
2993
2994 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2995 {
2996         int flags = 0;
2997
2998         ah->beacon_interval = beacon_period;
2999
3000         switch (ah->opmode) {
3001         case NL80211_IFTYPE_STATION:
3002         case NL80211_IFTYPE_MONITOR:
3003                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3004                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3005                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3006                 flags |= AR_TBTT_TIMER_EN;
3007                 break;
3008         case NL80211_IFTYPE_ADHOC:
3009         case NL80211_IFTYPE_MESH_POINT:
3010                 REG_SET_BIT(ah, AR_TXCFG,
3011                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3012                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3013                           TU_TO_USEC(next_beacon +
3014                                      (ah->atim_window ? ah->
3015                                       atim_window : 1)));
3016                 flags |= AR_NDP_TIMER_EN;
3017         case NL80211_IFTYPE_AP:
3018                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3019                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3020                           TU_TO_USEC(next_beacon -
3021                                      ah->config.
3022                                      dma_beacon_response_time));
3023                 REG_WRITE(ah, AR_NEXT_SWBA,
3024                           TU_TO_USEC(next_beacon -
3025                                      ah->config.
3026                                      sw_beacon_response_time));
3027                 flags |=
3028                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3029                 break;
3030         default:
3031                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3032                           "%s: unsupported opmode: %d\n",
3033                           __func__, ah->opmode);
3034                 return;
3035                 break;
3036         }
3037
3038         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3039         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3040         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3041         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3042
3043         beacon_period &= ~ATH9K_BEACON_ENA;
3044         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3045                 ath9k_hw_reset_tsf(ah);
3046         }
3047
3048         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3049 }
3050 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3051
3052 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3053                                     const struct ath9k_beacon_state *bs)
3054 {
3055         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3056         struct ath9k_hw_capabilities *pCap = &ah->caps;
3057         struct ath_common *common = ath9k_hw_common(ah);
3058
3059         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3060
3061         REG_WRITE(ah, AR_BEACON_PERIOD,
3062                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3063         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3064                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3065
3066         REG_RMW_FIELD(ah, AR_RSSI_THR,
3067                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3068
3069         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3070
3071         if (bs->bs_sleepduration > beaconintval)
3072                 beaconintval = bs->bs_sleepduration;
3073
3074         dtimperiod = bs->bs_dtimperiod;
3075         if (bs->bs_sleepduration > dtimperiod)
3076                 dtimperiod = bs->bs_sleepduration;
3077
3078         if (beaconintval == dtimperiod)
3079                 nextTbtt = bs->bs_nextdtim;
3080         else
3081                 nextTbtt = bs->bs_nexttbtt;
3082
3083         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3084         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3085         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3086         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3087
3088         REG_WRITE(ah, AR_NEXT_DTIM,
3089                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3090         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3091
3092         REG_WRITE(ah, AR_SLEEP1,
3093                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3094                   | AR_SLEEP1_ASSUME_DTIM);
3095
3096         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3097                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3098         else
3099                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3100
3101         REG_WRITE(ah, AR_SLEEP2,
3102                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3103
3104         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3105         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3106
3107         REG_SET_BIT(ah, AR_TIMER_MODE,
3108                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3109                     AR_DTIM_TIMER_EN);
3110
3111         /* TSF Out of Range Threshold */
3112         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3113 }
3114 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3115
3116 /*******************/
3117 /* HW Capabilities */
3118 /*******************/
3119
3120 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3121 {
3122         struct ath9k_hw_capabilities *pCap = &ah->caps;
3123         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3124         struct ath_common *common = ath9k_hw_common(ah);
3125         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3126
3127         u16 capField = 0, eeval;
3128
3129         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3130         regulatory->current_rd = eeval;
3131
3132         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3133         if (AR_SREV_9285_10_OR_LATER(ah))
3134                 eeval |= AR9285_RDEXT_DEFAULT;
3135         regulatory->current_rd_ext = eeval;
3136
3137         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3138
3139         if (ah->opmode != NL80211_IFTYPE_AP &&
3140             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3141                 if (regulatory->current_rd == 0x64 ||
3142                     regulatory->current_rd == 0x65)
3143                         regulatory->current_rd += 5;
3144                 else if (regulatory->current_rd == 0x41)
3145                         regulatory->current_rd = 0x43;
3146                 ath_print(common, ATH_DBG_REGULATORY,
3147                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3148         }
3149
3150         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3151         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3152
3153         if (eeval & AR5416_OPFLAGS_11A) {
3154                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3155                 if (ah->config.ht_enable) {
3156                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3157                                 set_bit(ATH9K_MODE_11NA_HT20,
3158                                         pCap->wireless_modes);
3159                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3160                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3161                                         pCap->wireless_modes);
3162                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3163                                         pCap->wireless_modes);
3164                         }
3165                 }
3166         }
3167
3168         if (eeval & AR5416_OPFLAGS_11G) {
3169                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3170                 if (ah->config.ht_enable) {
3171                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3172                                 set_bit(ATH9K_MODE_11NG_HT20,
3173                                         pCap->wireless_modes);
3174                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3175                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3176                                         pCap->wireless_modes);
3177                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3178                                         pCap->wireless_modes);
3179                         }
3180                 }
3181         }
3182
3183         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3184         /*
3185          * For AR9271 we will temporarilly uses the rx chainmax as read from
3186          * the EEPROM.
3187          */
3188         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3189             !(eeval & AR5416_OPFLAGS_11A) &&
3190             !(AR_SREV_9271(ah)))
3191                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3192                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3193         else
3194                 /* Use rx_chainmask from EEPROM. */
3195                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3196
3197         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3198                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3199
3200         pCap->low_2ghz_chan = 2312;
3201         pCap->high_2ghz_chan = 2732;
3202
3203         pCap->low_5ghz_chan = 4920;
3204         pCap->high_5ghz_chan = 6100;
3205
3206         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3207         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3208         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3209
3210         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3211         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3212         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3213
3214         if (ah->config.ht_enable)
3215                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3216         else
3217                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3218
3219         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3220         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3221         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3222         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3223
3224         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3225                 pCap->total_queues =
3226                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3227         else
3228                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3229
3230         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3231                 pCap->keycache_size =
3232                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3233         else
3234                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3235
3236         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3237         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3238
3239         if (AR_SREV_9285_10_OR_LATER(ah))
3240                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3241         else if (AR_SREV_9280_10_OR_LATER(ah))
3242                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3243         else
3244                 pCap->num_gpio_pins = AR_NUM_GPIO;
3245
3246         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3247                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3248                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3249         } else {
3250                 pCap->rts_aggr_limit = (8 * 1024);
3251         }
3252
3253         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3254
3255 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3256         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3257         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3258                 ah->rfkill_gpio =
3259                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3260                 ah->rfkill_polarity =
3261                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3262
3263                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3264         }
3265 #endif
3266
3267         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3268
3269         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3270                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3271         else
3272                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3273
3274         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3275                 pCap->reg_cap =
3276                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3277                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3278                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3279                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3280         } else {
3281                 pCap->reg_cap =
3282                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3283                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3284         }
3285
3286         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3287         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3288             AR_SREV_5416(ah))
3289                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3290
3291         pCap->num_antcfg_5ghz =
3292                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3293         pCap->num_antcfg_2ghz =
3294                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3295
3296         if (AR_SREV_9280_10_OR_LATER(ah) &&
3297             ath9k_hw_btcoex_supported(ah)) {
3298                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3299                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3300
3301                 if (AR_SREV_9285(ah)) {
3302                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3303                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3304                 } else {
3305                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3306                 }
3307         } else {
3308                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3309         }
3310 }
3311
3312 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3313                             u32 capability, u32 *result)
3314 {
3315         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3316         switch (type) {
3317         case ATH9K_CAP_CIPHER:
3318                 switch (capability) {
3319                 case ATH9K_CIPHER_AES_CCM:
3320                 case ATH9K_CIPHER_AES_OCB:
3321                 case ATH9K_CIPHER_TKIP:
3322                 case ATH9K_CIPHER_WEP:
3323                 case ATH9K_CIPHER_MIC:
3324                 case ATH9K_CIPHER_CLR:
3325                         return true;
3326                 default:
3327                         return false;
3328                 }
3329         case ATH9K_CAP_TKIP_MIC:
3330                 switch (capability) {
3331                 case 0:
3332                         return true;
3333                 case 1:
3334                         return (ah->sta_id1_defaults &
3335                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3336                         false;
3337                 }
3338         case ATH9K_CAP_TKIP_SPLIT:
3339                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3340                         false : true;
3341         case ATH9K_CAP_DIVERSITY:
3342                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3343                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3344                         true : false;
3345         case ATH9K_CAP_MCAST_KEYSRCH:
3346                 switch (capability) {
3347                 case 0:
3348                         return true;
3349                 case 1:
3350                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3351                                 return false;
3352                         } else {
3353                                 return (ah->sta_id1_defaults &
3354                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3355                                         false;
3356                         }
3357                 }
3358                 return false;
3359         case ATH9K_CAP_TXPOW:
3360                 switch (capability) {
3361                 case 0:
3362                         return 0;
3363                 case 1:
3364                         *result = regulatory->power_limit;
3365                         return 0;
3366                 case 2:
3367                         *result = regulatory->max_power_level;
3368                         return 0;
3369                 case 3:
3370                         *result = regulatory->tp_scale;
3371                         return 0;
3372                 }
3373                 return false;
3374         case ATH9K_CAP_DS:
3375                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3376                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3377                         ? false : true;
3378         default:
3379                 return false;
3380         }
3381 }
3382 EXPORT_SYMBOL(ath9k_hw_getcapability);
3383
3384 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3385                             u32 capability, u32 setting, int *status)
3386 {
3387         u32 v;
3388
3389         switch (type) {
3390         case ATH9K_CAP_TKIP_MIC:
3391                 if (setting)
3392                         ah->sta_id1_defaults |=
3393                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3394                 else
3395                         ah->sta_id1_defaults &=
3396                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3397                 return true;
3398         case ATH9K_CAP_DIVERSITY:
3399                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3400                 if (setting)
3401                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3402                 else
3403                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3404                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3405                 return true;
3406         case ATH9K_CAP_MCAST_KEYSRCH:
3407                 if (setting)
3408                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3409                 else
3410                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3411                 return true;
3412         default:
3413                 return false;
3414         }
3415 }
3416 EXPORT_SYMBOL(ath9k_hw_setcapability);
3417
3418 /****************************/
3419 /* GPIO / RFKILL / Antennae */
3420 /****************************/
3421
3422 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3423                                          u32 gpio, u32 type)
3424 {
3425         int addr;
3426         u32 gpio_shift, tmp;
3427
3428         if (gpio > 11)
3429                 addr = AR_GPIO_OUTPUT_MUX3;
3430         else if (gpio > 5)
3431                 addr = AR_GPIO_OUTPUT_MUX2;
3432         else
3433                 addr = AR_GPIO_OUTPUT_MUX1;
3434
3435         gpio_shift = (gpio % 6) * 5;
3436
3437         if (AR_SREV_9280_20_OR_LATER(ah)
3438             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3439                 REG_RMW(ah, addr, (type << gpio_shift),
3440                         (0x1f << gpio_shift));
3441         } else {
3442                 tmp = REG_READ(ah, addr);
3443                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3444                 tmp &= ~(0x1f << gpio_shift);
3445                 tmp |= (type << gpio_shift);
3446                 REG_WRITE(ah, addr, tmp);
3447         }
3448 }
3449
3450 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3451 {
3452         u32 gpio_shift;
3453
3454         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3455
3456         gpio_shift = gpio << 1;
3457
3458         REG_RMW(ah,
3459                 AR_GPIO_OE_OUT,
3460                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3461                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3462 }
3463 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3464
3465 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3466 {
3467 #define MS_REG_READ(x, y) \
3468         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3469
3470         if (gpio >= ah->caps.num_gpio_pins)
3471                 return 0xffffffff;
3472
3473         if (AR_SREV_9287_10_OR_LATER(ah))
3474                 return MS_REG_READ(AR9287, gpio) != 0;
3475         else if (AR_SREV_9285_10_OR_LATER(ah))
3476                 return MS_REG_READ(AR9285, gpio) != 0;
3477         else if (AR_SREV_9280_10_OR_LATER(ah))
3478                 return MS_REG_READ(AR928X, gpio) != 0;
3479         else
3480                 return MS_REG_READ(AR, gpio) != 0;
3481 }
3482 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3483
3484 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3485                          u32 ah_signal_type)
3486 {
3487         u32 gpio_shift;
3488
3489         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3490
3491         gpio_shift = 2 * gpio;
3492
3493         REG_RMW(ah,
3494                 AR_GPIO_OE_OUT,
3495                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3496                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3497 }
3498 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3499
3500 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3501 {
3502         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3503                 AR_GPIO_BIT(gpio));
3504 }
3505 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3506
3507 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3508 {
3509         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3510 }
3511 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3512
3513 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3514 {
3515         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3516 }
3517 EXPORT_SYMBOL(ath9k_hw_setantenna);
3518
3519 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3520                                enum ath9k_ant_setting settings,
3521                                struct ath9k_channel *chan,
3522                                u8 *tx_chainmask,
3523                                u8 *rx_chainmask,
3524                                u8 *antenna_cfgd)
3525 {
3526         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3527
3528         if (AR_SREV_9280(ah)) {
3529                 if (!tx_chainmask_cfg) {
3530
3531                         tx_chainmask_cfg = *tx_chainmask;
3532                         rx_chainmask_cfg = *rx_chainmask;
3533                 }
3534
3535                 switch (settings) {
3536                 case ATH9K_ANT_FIXED_A:
3537                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3538                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3539                         *antenna_cfgd = true;
3540                         break;
3541                 case ATH9K_ANT_FIXED_B:
3542                         if (ah->caps.tx_chainmask >
3543                             ATH9K_ANTENNA1_CHAINMASK) {
3544                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3545                         }
3546                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3547                         *antenna_cfgd = true;
3548                         break;
3549                 case ATH9K_ANT_VARIABLE:
3550                         *tx_chainmask = tx_chainmask_cfg;
3551                         *rx_chainmask = rx_chainmask_cfg;
3552                         *antenna_cfgd = true;
3553                         break;
3554                 default:
3555                         break;
3556                 }
3557         } else {
3558                 ah->config.diversity_control = settings;
3559         }
3560
3561         return true;
3562 }
3563
3564 /*********************/
3565 /* General Operation */
3566 /*********************/
3567
3568 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3569 {
3570         u32 bits = REG_READ(ah, AR_RX_FILTER);
3571         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3572
3573         if (phybits & AR_PHY_ERR_RADAR)
3574                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3575         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3576                 bits |= ATH9K_RX_FILTER_PHYERR;
3577
3578         return bits;
3579 }
3580 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3581
3582 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3583 {
3584         u32 phybits;
3585
3586         REG_WRITE(ah, AR_RX_FILTER, bits);
3587
3588         phybits = 0;
3589         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3590                 phybits |= AR_PHY_ERR_RADAR;
3591         if (bits & ATH9K_RX_FILTER_PHYERR)
3592                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3593         REG_WRITE(ah, AR_PHY_ERR, phybits);
3594
3595         if (phybits)
3596                 REG_WRITE(ah, AR_RXCFG,
3597                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3598         else
3599                 REG_WRITE(ah, AR_RXCFG,
3600                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3601 }
3602 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3603
3604 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3605 {
3606         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3607                 return false;
3608
3609         ath9k_hw_init_pll(ah, NULL);
3610         return true;
3611 }
3612 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3613
3614 bool ath9k_hw_disable(struct ath_hw *ah)
3615 {
3616         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3617                 return false;
3618
3619         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3620                 return false;
3621
3622         ath9k_hw_init_pll(ah, NULL);
3623         return true;
3624 }
3625 EXPORT_SYMBOL(ath9k_hw_disable);
3626
3627 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3628 {
3629         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3630         struct ath9k_channel *chan = ah->curchan;
3631         struct ieee80211_channel *channel = chan->chan;
3632
3633         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3634
3635         ah->eep_ops->set_txpower(ah, chan,
3636                                  ath9k_regd_get_ctl(regulatory, chan),
3637                                  channel->max_antenna_gain * 2,
3638                                  channel->max_power * 2,
3639                                  min((u32) MAX_RATE_POWER,
3640                                  (u32) regulatory->power_limit));
3641 }
3642 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3643
3644 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3645 {
3646         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3647 }
3648 EXPORT_SYMBOL(ath9k_hw_setmac);
3649
3650 void ath9k_hw_setopmode(struct ath_hw *ah)
3651 {
3652         ath9k_hw_set_operating_mode(ah, ah->opmode);
3653 }
3654 EXPORT_SYMBOL(ath9k_hw_setopmode);
3655
3656 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3657 {
3658         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3659         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3660 }
3661 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3662
3663 void ath9k_hw_write_associd(struct ath_hw *ah)
3664 {
3665         struct ath_common *common = ath9k_hw_common(ah);
3666
3667         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3668         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3669                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3670 }
3671 EXPORT_SYMBOL(ath9k_hw_write_associd);
3672
3673 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3674 {
3675         u64 tsf;
3676
3677         tsf = REG_READ(ah, AR_TSF_U32);
3678         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3679
3680         return tsf;
3681 }
3682 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3683
3684 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3685 {
3686         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3687         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3688 }
3689 EXPORT_SYMBOL(ath9k_hw_settsf64);
3690
3691 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3692 {
3693         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3694                            AH_TSF_WRITE_TIMEOUT))
3695                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3696                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3697
3698         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3699 }
3700 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3701
3702 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3703 {
3704         if (setting)
3705                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3706         else
3707                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3708 }
3709 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3710
3711 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3712 {
3713         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3714                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3715                           "bad slot time %u\n", us);
3716                 ah->slottime = (u32) -1;
3717                 return false;
3718         } else {
3719                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3720                 ah->slottime = us;
3721                 return true;
3722         }
3723 }
3724 EXPORT_SYMBOL(ath9k_hw_setslottime);
3725
3726 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3727 {
3728         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3729         u32 macmode;
3730
3731         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3732                 macmode = AR_2040_JOINED_RX_CLEAR;
3733         else
3734                 macmode = 0;
3735
3736         REG_WRITE(ah, AR_2040_MODE, macmode);
3737 }
3738
3739 /* HW Generic timers configuration */
3740
3741 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3742 {
3743         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3744         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3745         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3746         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3747         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3748         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3749         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3750         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3751         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3752         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3753                                 AR_NDP2_TIMER_MODE, 0x0002},
3754         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3755                                 AR_NDP2_TIMER_MODE, 0x0004},
3756         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3757                                 AR_NDP2_TIMER_MODE, 0x0008},
3758         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3759                                 AR_NDP2_TIMER_MODE, 0x0010},
3760         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3761                                 AR_NDP2_TIMER_MODE, 0x0020},
3762         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3763                                 AR_NDP2_TIMER_MODE, 0x0040},
3764         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3765                                 AR_NDP2_TIMER_MODE, 0x0080}
3766 };
3767
3768 /* HW generic timer primitives */
3769
3770 /* compute and clear index of rightmost 1 */
3771 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3772 {
3773         u32 b;
3774
3775         b = *mask;
3776         b &= (0-b);
3777         *mask &= ~b;
3778         b *= debruijn32;
3779         b >>= 27;
3780
3781         return timer_table->gen_timer_index[b];
3782 }
3783
3784 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3785 {
3786         return REG_READ(ah, AR_TSF_L32);
3787 }
3788 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3789
3790 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3791                                           void (*trigger)(void *),
3792                                           void (*overflow)(void *),
3793                                           void *arg,
3794                                           u8 timer_index)
3795 {
3796         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3797         struct ath_gen_timer *timer;
3798
3799         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3800
3801         if (timer == NULL) {
3802                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3803                           "Failed to allocate memory"
3804                           "for hw timer[%d]\n", timer_index);
3805                 return NULL;
3806         }
3807
3808         /* allocate a hardware generic timer slot */
3809         timer_table->timers[timer_index] = timer;
3810         timer->index = timer_index;
3811         timer->trigger = trigger;
3812         timer->overflow = overflow;
3813         timer->arg = arg;
3814
3815         return timer;
3816 }
3817 EXPORT_SYMBOL(ath_gen_timer_alloc);
3818
3819 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3820                               struct ath_gen_timer *timer,
3821                               u32 timer_next,
3822                               u32 timer_period)
3823 {
3824         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3825         u32 tsf;
3826
3827         BUG_ON(!timer_period);
3828
3829         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3830
3831         tsf = ath9k_hw_gettsf32(ah);
3832
3833         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3834                   "curent tsf %x period %x"
3835                   "timer_next %x\n", tsf, timer_period, timer_next);
3836
3837         /*
3838          * Pull timer_next forward if the current TSF already passed it
3839          * because of software latency
3840          */
3841         if (timer_next < tsf)
3842                 timer_next = tsf + timer_period;
3843
3844         /*
3845          * Program generic timer registers
3846          */
3847         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3848                  timer_next);
3849         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3850                   timer_period);
3851         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3852                     gen_tmr_configuration[timer->index].mode_mask);
3853
3854         /* Enable both trigger and thresh interrupt masks */
3855         REG_SET_BIT(ah, AR_IMR_S5,
3856                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3857                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3858 }
3859 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3860
3861 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3862 {
3863         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3864
3865         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3866                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3867                 return;
3868         }
3869
3870         /* Clear generic timer enable bits. */
3871         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3872                         gen_tmr_configuration[timer->index].mode_mask);
3873
3874         /* Disable both trigger and thresh interrupt masks */
3875         REG_CLR_BIT(ah, AR_IMR_S5,
3876                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3877                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3878
3879         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3880 }
3881 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3882
3883 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3884 {
3885         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3886
3887         /* free the hardware generic timer slot */
3888         timer_table->timers[timer->index] = NULL;
3889         kfree(timer);
3890 }
3891 EXPORT_SYMBOL(ath_gen_timer_free);
3892
3893 /*
3894  * Generic Timer Interrupts handling
3895  */
3896 void ath_gen_timer_isr(struct ath_hw *ah)
3897 {
3898         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3899         struct ath_gen_timer *timer;
3900         struct ath_common *common = ath9k_hw_common(ah);
3901         u32 trigger_mask, thresh_mask, index;
3902
3903         /* get hardware generic timer interrupt status */
3904         trigger_mask = ah->intr_gen_timer_trigger;
3905         thresh_mask = ah->intr_gen_timer_thresh;
3906         trigger_mask &= timer_table->timer_mask.val;
3907         thresh_mask &= timer_table->timer_mask.val;
3908
3909         trigger_mask &= ~thresh_mask;
3910
3911         while (thresh_mask) {
3912                 index = rightmost_index(timer_table, &thresh_mask);
3913                 timer = timer_table->timers[index];
3914                 BUG_ON(!timer);
3915                 ath_print(common, ATH_DBG_HWTIMER,
3916                           "TSF overflow for Gen timer %d\n", index);
3917                 timer->overflow(timer->arg);
3918         }
3919
3920         while (trigger_mask) {
3921                 index = rightmost_index(timer_table, &trigger_mask);
3922                 timer = timer_table->timers[index];
3923                 BUG_ON(!timer);
3924                 ath_print(common, ATH_DBG_HWTIMER,
3925                           "Gen timer[%d] trigger\n", index);
3926                 timer->trigger(timer->arg);
3927         }
3928 }
3929 EXPORT_SYMBOL(ath_gen_timer_isr);
3930
3931 static struct {
3932         u32 version;
3933         const char * name;
3934 } ath_mac_bb_names[] = {
3935         /* Devices with external radios */
3936         { AR_SREV_VERSION_5416_PCI,     "5416" },
3937         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3938         { AR_SREV_VERSION_9100,         "9100" },
3939         { AR_SREV_VERSION_9160,         "9160" },
3940         /* Single-chip solutions */
3941         { AR_SREV_VERSION_9280,         "9280" },
3942         { AR_SREV_VERSION_9285,         "9285" },
3943         { AR_SREV_VERSION_9287,         "9287" },
3944         { AR_SREV_VERSION_9271,         "9271" },
3945 };
3946
3947 /* For devices with external radios */
3948 static struct {
3949         u16 version;
3950         const char * name;
3951 } ath_rf_names[] = {
3952         { 0,                            "5133" },
3953         { AR_RAD5133_SREV_MAJOR,        "5133" },
3954         { AR_RAD5122_SREV_MAJOR,        "5122" },
3955         { AR_RAD2133_SREV_MAJOR,        "2133" },
3956         { AR_RAD2122_SREV_MAJOR,        "2122" }
3957 };
3958
3959 /*
3960  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3961  */
3962 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3963 {
3964         int i;
3965
3966         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3967                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3968                         return ath_mac_bb_names[i].name;
3969                 }
3970         }
3971
3972         return "????";
3973 }
3974
3975 /*
3976  * Return the RF name. "????" is returned if the RF is unknown.
3977  * Used for devices with external radios.
3978  */
3979 static const char *ath9k_hw_rf_name(u16 rf_version)
3980 {
3981         int i;
3982
3983         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3984                 if (ath_rf_names[i].version == rf_version) {
3985                         return ath_rf_names[i].name;
3986                 }
3987         }
3988
3989         return "????";
3990 }
3991
3992 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3993 {
3994         int used;
3995
3996         /* chipsets >= AR9280 are single-chip */
3997         if (AR_SREV_9280_10_OR_LATER(ah)) {
3998                 used = snprintf(hw_name, len,
3999                                "Atheros AR%s Rev:%x",
4000                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4001                                ah->hw_version.macRev);
4002         }
4003         else {
4004                 used = snprintf(hw_name, len,
4005                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
4006                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4007                                ah->hw_version.macRev,
4008                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
4009                                                 AR_RADIO_SREV_MAJOR)),
4010                                ah->hw_version.phyRev);
4011         }
4012
4013         hw_name[used] = '\0';
4014 }
4015 EXPORT_SYMBOL(ath9k_hw_name);